The influence of surface impurities on photoelectric currents driven by intense soft x rays
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
In an x-ray driven cavity experiment, an intense flux of soft x rays on the emitting surface produces significant emission of photoelectrons having several kiloelectronvolts of kinetic energy. At the same time, rapid heating of the emitting surface occurs, resulting in the release of adsorbed surface impurities and subsequent formation of an impurity plasma. This numerical study explores a simple model for the photoelectric currents and the impurity plasma. In this work, attention is given to the effect of varying the composition of the impurity plasma. The presence of protons or hydrogen molecular ions leads to a substantially enhanced cavity current, while heavier plasma ions are seen to have a limited effect on the cavity current due to their lower mobility. Additionally, it is demonstrated that an additional peak in the current waveform can appear due to the impurity plasma. A correlation between the impurity plasma composition and the timing of this peak is elucidated.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0003525
- OSTI ID:
- 1882886
- Alternate ID(s):
- OSTI ID: 1846847
- Report Number(s):
- SAND2022-1489J; 703358
- Journal Information:
- Physics of Plasmas, Journal Name: Physics of Plasmas Journal Issue: 3 Vol. 29; ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
THE PHOTOELECTRIC EMISSION OF POSITIVE IONS FROM AN ADSORPTION LAYER