Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Review of Low-Cost Organic and Inorganic Phase Change Materials with Phase Change Temperature between 0°C and 65°C

Conference ·
OSTI ID:1813229
Phase change materials (PCMs) that undergo a phase transition may be used to provide a nearly isothermal latent heat storage at the phase change temperature. This work reports the energy storage material cost ($/kWh) of various PCMs with phase change between 0-65°C. Four PCM classes are analyzed for their potential use in building systems: 1) inorganic salt hydrates, 2) organic fatty acids, 3) organic fatty alcohols, and 4) organic paraffin waxes. Many salt hydrates have low material costs (0.09 - 2.53 $-kg-1), high latent heat of fusion (100-290 J-g-1), and high densities (1.3-2.6 g-cm-3), leading to favorable volumetric storage density and low energy storage costs, 50-130 kWh-m3 and 0.90-40 $-kWh-1, respectively. Some salts are notably more expensive due to their scarcity or pressures from competing industries such as lithium-based salts. Fatty acids have the lowest energy storage cost in the temperature range 8-17°C at 6.50 – 40 $-kWh-1. Despite favorable latent heat (125 – 250 J-g-1) their low density gives (0.9 g-cm3) gives poor volumetric storage capacity, 32 – 80 kWh-m3. Fatty alcohols generally have high material costs 2.50 – 200 $-kg-1 which leads to high energy storage costs, 40-3000 $/kWh. With latent heat and density similar to fatty acids, fatty alcohols have poor volumetric energy storage, 43 – 55 kWh-m-3.Paraffin waxes containing only a single length carbon chain have a higher energy cost (15 – 500 $-kWh-1) than generic paraffin waxes containing many lengths of carbon chains (7 – 30 $-kWh-1). Pure waxes have a discrete phase change temperature due to their homogeneity. In contrast, a less refined generic wax with several carbon chain lengths is more likely to have a pronounced temperature glide during its phase change. Pure single carbon chain waxes are generally required for applications <45°C as generic paraffin waxes melt between 45-70°C. For many waxes, a solid-solid transition occurs at temperatures below the solid-liquid phase change. For pure paraffins with carbon content ≥22 C atoms, these transitions may appear near the same temperature resembling a temperature glide.The challenges with fatty acids, fatty alcohols, and waxes are low thermal conductivity, low density, some flammability concerns, and compatibility issues with some common engineering materials such as polymers. Challenges with salt hydrates are pronounced supercooling (>5°C), incongruent melting, and corrosiveness. All PCMs may degrade if exposed to ambient conditions and therefore require proper sealing.
Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE; USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1813229
Country of Publication:
United States
Language:
English

Similar Records

Review of Inorganic Salt Hydrates with Phase Change Temperature in Range of 5°C to 60°C and Material Cost Comparison with Common Waxes
Conference · Sun Jul 01 00:00:00 EDT 2018 · OSTI ID:1468092

Polymers in molten inorganic salt hydrate phase change materials: solubility and gelation
Journal Article · Sun Nov 07 19:00:00 EST 2021 · Journal of Materials Chemistry. A · OSTI ID:1978842

Characterization of alkanes and paraffin waxes for application as phase change energy storage medium
Journal Article · · Energy Sources; (United States) · OSTI ID:5077566

Related Subjects