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ABSTRACT 

Phase change materials (PCMs) that undergo a phase transition may be used to provide a nearly isothermal latent 

heat storage at the phase change temperature. This work reports the energy storage material cost ($/kWh) of various 

PCMs with phase change between 0 – 65°C. Four PCM classes are analyzed for their potential use in building 

systems: 1) inorganic salt hydrates, 2) organic fatty acids, 3) organic fatty alcohols, and 4) organic paraffin waxes.  

Many salt hydrates have low material costs (0.09 – 2.53 $/kg), high latent heat of fusion (100 – 290 J/g), and high 

densities (1.3 – 2.6 g/cm3), leading to favorable volumetric storage density and low energy storage costs, 50 – 130 

kWh/m3 and 0.90 – 40 $/kWh, respectively.  Some salts are notably more expensive due to their scarcity or 

pressures from competing industries such as lithium-based salts.  Fatty acids have the lowest energy storage cost in 

the temperature range 8 – 17°C at 6.50 – 40 $/kWh.  Despite favorable latent heat (125 – 250 J/g) their low density 

gives (0.9 g/cm3) gives poor volumetric storage capacity, 32 – 80 kWh/m3.  Fatty alcohols generally have high 

material costs 2.50 – 200 $/kg which leads to high energy storage costs, 40 – 3000 $/kWh.  With latent heat and 

density similar to fatty acids, fatty alcohols have poor volumetric energy storage, 43 – 55 kWh/m3.  Paraffin waxes 

containing only a single length carbon chain have a higher energy cost (15 – 500 $/kWh) than generic paraffin 

waxes containing many lengths of carbon chains (7 – 30 $/kWh).  Pure waxes have a discrete phase change 

temperature due to their homogeneity. In contrast, a less refined generic wax with several carbon chain lengths is 

more likely to have a pronounced temperature glide during its phase change.  Pure single carbon chain waxes are 

generally required for applications <45°C as generic paraffin waxes melt between 45 – 70°C.  For many waxes, a 

solid-solid transition occurs at temperatures below the solid-liquid phase change.  For pure paraffins with carbon 

content ≥22 C atoms, these transitions may appear near the same temperature resembling a temperature glide.  The 

challenges with fatty acids, fatty alcohols, and waxes are low thermal conductivity, low density, some flammability 

concerns, and compatibility issues with some common engineering materials such as polymers.  Challenges with salt 

hydrates are pronounced supercooling (>5°C), incongruent melting, and corrosiveness.  All PCMs may degrade if 

exposed to ambient conditions and therefore require proper sealing. 

1. INTRODUCTION

A phase change material (PCM) is capable of absorbing, storing, and releasing thermal energy nearly isothermally at 

the phase change temperature.  The thermal battery may act as a heat source or a heat sink depending on the desired 

application, mode of operation, and the phase change temperature.  The selection of a PCM for a given application is 

dependent on its phase change temperature, the size of the system, the external operating temperatures, and cost. 

Incorporating PCMs into building systems has been researched extensively.  There are two schemes of incorporating 

PCMs into building systems: 1) passive systems whereby the PCM acts as an unobtrusive and uncontrolled thermal 
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buffer for high transient thermal loads on the building envelope, and 2) active systems where the PCM is coupled to 

a heat pump or similar mechanical device and absorbs or releases heat at the operators’ control.  The successful 

implementation of both passive and active systems requires a PCM with an appropriate phase change temperature. 

The present study examines the thermophysical properties of PCMs with a phase change temperature of 0 – 65°C 

that may be useful for building applications: inorganic salt hydrates, organic fatty acids, organic fatty alcohols, and 

organic paraffin waxes. This present study expands on the work published by Hirschey et al. (2018). 

2. PCM PROPERTIES

2.1 Inorganic Salt Hydrate PCMs 
Salt hydrates are inorganic materials composed of salt and water in specific molar ratios.  The salt and water form a 

solid crystalline structure, often different than the original salt crystal structure.  Some salts may form multiple 

hydrates with different water:salt ratios. The solid-liquid phase change process for a salt hydrate is observed when 

the hydrogen bonds between the water molecules in the solid crystal structure are overcome by the molecular 

vibrations and the water is liberated from the crystal structure forming an aqueous solution.  In many salt hydrates 

the salt is not fully soluble in the water content of its hydrate.  This results in incongruent melting whereby the 

undissolved salt settles out of the solution.  

The liquid-solid phase change for a salt hydrate is the reformation of the salt hydrate crystal structure from the 

aqueous solution.  However, many salt hydrates experience extreme supercooling which is the phenomenon where 

the liquid cool below nominal phase change temperature without the spontaneous formation of the solid structure.  

Supercooling can be problematic for systems that rely on a consistent phase change temperature.  Solutions to 

preventing large supercooling include adding nucleating agents or through some mechanical work (shaking, 

vibrating, stirring) (Lane, 1992).  Some systems may take advantage of this supercooling phenomenon into the 

design; the subcooled liquid salt hydrate is stored nearer the ambient temperature, removing the need for insulation 

and recrystallization provided from an exterior source when the heat release is desired (Sandnes & Rekstad, 2006). 

Incongruently melted salt hydrates are not homogenous; there is a gradient from saturated solution to anhydrous salt. 

This separation between the water and salt does not allow for the full recrystallization of the original salt hydrate 

crystal and the resulting smaller crystal will form a barrier between water and anhydrous salt.  This leads to a 

reduction in energy storage capacity as only a fraction of the original PCM will crystallize.  In a closed system, the 

full solid salt hydrate may recrystallize, but the time required is not useful for thermal storage systems. 

Salt hydrates have been explored extensively for their thermal storage potential, namely high volumetric latent heat. 

Table 1 shows the thermal energy storage-relevant thermophysical properties of salt hydrates including nominal 

phase change temperature (solid-to-liquid phase change; the degree of supercooling can be unpredictable), the latent 

heat associated with the phase change, and the solid density.  Some double salts are included in this analysis. 

Double salts are those salts with two cation or two anions in the unit cell, but the resultant is distinct in the crystal 

structure and properties than the corresponding salts with only single cations or anions, e.g., chromium (III) 

potassium sulfate dodecahydrate (CrK(SO4)2·12H2O). 

2.2 Organic PCMs 
Organic PCMs are materials that consist of a hydrocarbon chain.  Organic PCMs include, but are not limited to, 

waxes, alcohols, and fatty acids.  The phase transition temperature of organic PCMs often correlates to its 

hydrocarbon chain length.  For most saturated organic compounds, a longer chain has higher melting temperatures.  

Unsaturated or branched organic compounds may break from this simplification.  Organic PCMs may exhibit a 

temperature glide where the phase change occurs over a temperature range around the nominal phase change 

temperature.  Often the reported enthalpy values for these materials with glide include the sensible heating that is 

present in the glide.  Some organic PCMs may display supercooling tendencies where the temperature for the onset 

of freezing occurs below the temperature for the completion of melting.  This is observed more frequently in 

unsaturated materials or those that contain many polymorphic forms.  These are often more predictable and 

repeatable than supercooling of salt hydrate PCMs.  Only the solid-to-liquid phase change temperatures are reported 

here. Unsaturated hydrocarbons are less stable than similar saturated chains and thus are more susceptible to 

oxidation.  Therefore, proper sealing and separation from atmospheric oxygen is required if these materials are used 
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for TES without degradation.  Most organic PCMs are biodegradable.  Some material compliance issues with 

plastics and polymers may be present for some organic PCMs.   

2.4 Fatty Acid PCMs 
Fatty acids are a subset of carboxylic acids which have an organic functional group terminating with a carboxyl 

group and have the general formula R-COOH.  The functional group for a fatty acid is generally a hydrocarbon 

chain, saturated or unsaturated.  Saturated fatty acids may be written as COOH(CH2)nCH3. Fatty acids are named so 

because they are the basis of the fats of all plants and animals; a triglyceride is composed of glycerol and three fatty 

acids.  The most commonly analyzed fatty acids for TES are medium to long straight-chain saturated fatty acids with 

an even number of carbon atoms: capric acid (C10:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid 

(C16:0), and stearic acid (C18:0).  Fatty acids with an odd number of carbon atoms exist, albeit more rarely, and will 

be included in this analysis when data is available.  For completeness and comparison, formic acid (HCOOH) and 

acetic acid (CH₃COOH) are included in this analysis as they contain the same terminating carboxyl group although 

they do not appear in naturally occurring triglycerides. 

2.5 Fatty Alcohol PCMs 
The fatty alcohols analyzed here are primary alcohols composed of a saturated or unsaturated hydrocarbon chain 

terminating with an alcohol group and have the general formula R-OH.  Saturated fatty alcohols are written as 

CH3(CH2)nOH.  More alcohols exist with branches and additional functional groups, but these will be excluded.   

2.5 Paraffin Waxes 
Paraffin waxes are common for thermal energy storage, are often derived from petroleum sources.  Paraffins are 

straight-chain, saturated alkane hydrocarbons with no terminating functional groups, written as CnH2n+2.  More detail 

on paraffin structure is included in Hirschey et al. (2018).  Many paraffins have a solid-solid transition at a lower 

temperature than the solid-liquid transition.  The crystalline solid structures vary by the carbon content, more details 

included in Mondieig et al. (2004).  In paraffins with a carbon number ≥C22, the solid-solid transition temperature, 

Ts-s, may be very near the solid-liquid transition, Ts-l.  For example, tetracosane (C24H50) has Ts-s ≈ 48°C and a Ts-l ≈ 

50.3°C.  The latent heat associated with the solid-solid is nearly 90 J/g and the solid-liquid is around 160 J/g.  Thus, 

tetracosane may be considered as having a total latent heat 250 J/g with a 2.3°C temperature glide if both transitions 

are included.  This analysis will show solid-solid and solid-liquid separately where data is available. 

The predominant application for paraffins with melting temperatures between 50 – 70°C is candle making. These 

waxes are not pure substances, rather they are a mix of several alkane chains of various lengths with a marketed 

average melting temperature. Due to their heterogeneity, these waxes may have several degrees of temperature 

glide.  Often the exact chemical composition in unknown. The melting temperature of these candle making waxes 

generally overlap with pure paraffins with a carbon content between 24 and 32 atoms but at a reduced cost.   

3. METHODOLOGY

The thermophysical properties of the PCMs are surveyed from literature.  When available, a primary source and 

measurement data were used.  Many reported PCM thermophysical properties have “citation chains” where the same 

values are repeated article after article.  Attempts were made to trace back to the original measurement data which 

are often old, difficult to locate, or used out-of-date technology; or search for more recent data.  Where primary data 

was not found, a (*) is denoted by the material name.  These PCMs should be viewed more critically, and more 

work should be done to assess their viability and confirm these data.  Materials in the tables but not present in Figure 

1 have current costs that exceed the maximum value of the chart. 

All cost data were gathered from data publicly available from industrial suppliers using the CAS number as the 

search terms.  Wherever possible, the cost data were collected in bulk quantities per metric ton or per ton.  Several 

different suppliers for each PCM were identified and the listed prices recorded.  Care was taken to ensure that the 

same material form was used for each individual material to ensure an accurate cost comparison (e.g. powder).  All 

cost data is consolidated into a single dataset source white paper, Hirschey (2020). All cost data were collected in 

the autumn of 2020 and prices were largely static during this time.  Some seasonality may exist for materials that 

have seasonal applications such as calcium chloride (CaCl2) as a deicing agent. 
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Salt hydrates were sourced in their anhydrous form and the cost of water was considered negligible.  Many salt 

hydrates with other industrial applications may only be sold as a solution with water, e.g. calcium bromide (CaBr2) 

as a 52% solution drilling fluid.  Under these special circumstances, the PCM cost was adjusted by the 

stoichiometric anhydrous salt content.  It should be noted that adding water in bulk to some anhydrous salts can be 

an energetic exothermic event, and proper safety precautions should be taken.  This reaction is distinct from, though 

related to, the solid-liquid phase transformations analyzed here. 

The energy storage material cost was calculated by dividing the material bulk cost ($/kg) by melting enthalpy 

(kJ/kg), and plotted versus the material melting temperature in Figure 1.  The vertical error bars represent the range 

of possible energy storage material costs which includes extrema in price and melting enthalpy values.  Many 

material costs vary wildly, sometimes two orders of magnitude.  This is often the difference between ordering a 

single shipment of one metric ton versus regular shipments of hundreds of metric tons. 

The horizontal error bars of Figure 1 represent the range in documented melting temperatures of that material; they 

do not represent supercooling or temperature glide. For materials that experience a temperature glide, the peak 

temperature, or similar, is used.  The peak temperature is the temperature that shows a maximum value in a heat 

flow vs. temperature curve (commonly differential scanning calorimetry data).  This temperature may vary with the 

experimental variables. 

Figure 1: PCM Energy Storage Material Cost 
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Table 1: Properties of Salt Hydrate PCMs 

Fig. 1 

ID 
Salt Hydrate Chemical Formula 

Anhydrous 

Salt CAS 

Number 

Melting 

Temp (°C) 

Melting 

Enthalpy 

(J/g) 

Density 

(kg/m3) 
Cost ($/kg) Thermophysical property sources 

- Lithium Chlorate Trihydrate LiClO3·3H2O 13453-71-9 8.0 – 8.2 155 – 253.0 1720 25.00 - 37.50 
(Gawron & Shröder, 1977; Guion et al., 1983; Marcus, 

2017) 

H2 
Dipotassium Hydrogen Phosphate 

Hexahydrate* 
K2HPO4·6H2O 7758-11-4 13.0 – 15.0 107 – 122.0 2440 0.66 - 1.34 

(Guion et al., 1983; Kauffman & Pan, 1973; Marcus, 
2017) 

H3 Potassium Fluoride Tetrahydrate KF·4H2O 
7789-23-3 

18.0 – 18.9 231 – 330 1445 0.88 - 1.00 
(Counioux & Cohen-Adad, 1976; Guion et al., 1983; S. 

D. Sharma et al., 2004) 

- Sodium Chromate Decahydrate* Na2CrO4·10H2O 7775-11-3 16.0 – 18.9 164 – 172 1483 10.00 - 51.67 (Guion et al., 1983; Kauffman & Pan, 1973) 

- Iron (III) Bromide Hexahydrate* FeBr3·6H2O 10031-26-2 21.0 – 27 105 1820 
10.00 - 

119.33 

(S. D. Sharma et al., 2004; Veerakumar & Sreekumar, 

2016) 

H6 Copper (II) Nitrate Hexahydrate Cu(NO3)2·6H2O 3251-23-8 24.4 123 2074 0.88 - 2.53 (Guion et al., 1983; Kauffman & Pan, 1973) 

H7 
Manganese (II) Nitrate 

Hexahydrate 
Mn(NO3)2·6H2O 10377-66-9 25.0 – 26.0 125.8 – 148 1800 0.45 - 0.89 (Marcus, 2017; Nagano et al., 2003) 

H8 Lithium Metaborate Octahydrate* LiBO2·8H2O 13453-69-5 25.7 289 1400 2.00 - 32.33 (S. D. Sharma et al., 2004) 

H9 Calcium Chloride Hexahydrate CaCl2·6H2O 10043-52-4 24 – 30.0 
133.9 – 

211.3 
1710 0.10 - 0.19 (Guion et al., 1983) 

H10 Lithium Nitrate Trihydrate LiNO3·3H2O 7790-69-4 29.9 – 30.0 189 – 296 1575 0.23 - 37.43 
(Guion et al., 1983; Kauffman & Pan, 1973; S. D. 

Sharma et al., 2004) 

H11 Sodium Sulfate Decahydrate Na2SO4·10H2O 7757-82-6 31.0 – 32.4 239 – 251.2 1477 0.03 - 0.09 (Abhat, 1983; S. D. Sharma et al., 2004) 

H12 Sodium Carbonate Decahydrate Na2CO3·10H2O 
497-19-8 

33.0 – 33.9 179.8 – 251 1447 0.18 - 0.26 (Guion et al., 1983; Rao et al., 2018) 

- Lithium Bromide Dihydrate* LiBr2·2H2O 7550-35-8 34 124 1570 1.00 - 20.67 (S. D. Sharma et al., 2004) 

H14 
Sodium Hydrogen Phosphate 

Dodecahydrate 
Na2HPO4·12H2O 7558-79-4 35.0 – 38.7 187.7 – 281 1521 0.39 - 1.03 

(Abhat, 1983; Guion et al., 1983; Lorsch et al., 1975; Rao 

et al., 2018) 

H15 Zinc Nitrate Hexahydrate Zn(NO3)2·6H2O 
7779-88-6 

36.0 – 36.4 126.7 – 147 2015 0.44 - 0.99 
(Abhat, 1983; Lorsch et al., 1975; Marcus, 2017; Rao et 

al., 2018) 

H16 
Ammonium Iron (III) Sulfate 

Dodecahydrate* 
FeNH4(SO4)2·12H2O 10138-04-2 29.7 – 36.5 197.6 1713 1.00 - 2.32 (Guion et al., 1983) 

H17 Calcium Bromide Hexahydrate CaBr2·6H2O 7789-41-5 34.0 – 38.3 115 – 138 2228 0.28 - 1.64 (Marcus, 2017; S. D. Sharma et al., 2004) 

H18 Iron (III) Chloride Hexahydrate FeCl3·6H2O 7705-08-0 36.1 – 37.0 186.2 – 226 1600 0.22 - 0.68 
(Guion et al., 1983; Kauffman & Pan, 1973; Marcus, 

2017) 

H19 
Manganese (II) Nitrate 

tetrahydrate* 
Mn(NO3)2·4H2O 10377-66-9 37.0 115 2130 0.45 - 0.89 (S. D. Sharma et al., 2004) 

H20 Calcium Chloride Tetrahydrate CaCl2·4H2O 10043-52-4 39 – 44.2 99.6 – 158 1567 0.10 - 0.19 (S. D. Sharma et al., 2004) 

H21 Potassium Fluoride Dihydrate* KF·2H2O 7789-23-3 41.0 – 42.0 162 – 266 1658 0.88 - 1.00 (Guion et al., 1983; S. D. Sharma et al., 2004) 

H22 Magnesium Iodide Octahydrate* MgI2·8H2O 
10377-58-9 

42 133 2098 1.00 - 9.30 (S. D. Sharma et al., 2004) 

- Calcium Iodide Hexahydrate* CaI2·6H2O 10102-68-8 42 162 2550 20.00 - 76.75 (S. D. Sharma et al., 2004) 

H24 
Chromium (III) Potassium Sulfate 

Dodecahydrate* 
CrK(SO4)2·12H2O 10141-00-1 42.7 237.9 1828 1.00 - 1.61 (Guion et al., 1983) 

H25 Calcium Nitrate Tetrahydrate Ca(NO3)2·4H2O 10124-37-5 39.0 – 47.0 106 – 209.2 1858 0.18 - 0.34 
(Guion et al., 1983; Kauffman & Pan, 1973; S. D. 

Sharma et al., 2004) 

H26 
Tripotassium Phosphate 

Heptahydrate* 
K3PO4·7H2O 7778-53-2 45 145 2500 0.30 - 1.32 (S. D. Sharma et al., 2004) 
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Table 1 (continued): Properties of Salt Hydrate PCMs 

Fig. 1 

ID 
Salt Hydrate Chemical Formula 

Anhydrous 

Salt CAS 

Number 

Melting 

Temp (°C) 

Melting 

Enthalpy 

(J/g) 

Density 

(kg/m3) 
Cost ($/kg) Thermophysical property sources 

H27 Zinc Nitrate Tetrahydrate* Zn(NO3)2·4H2O 7779-88-6 45 – 48.0 110 – 144 2220 0.44 - 0.99 (Guion et al., 1983; S. D. Sharma et al., 2004) 

H28 
Sodium Metasilicate 

Pentahydrate* 
Na2SiO3·5H2O 6834-92-0 48.0 68 2610 0.20 - 0.34 (S. D. Sharma et al., 2004) 

H29 
Sodium Hydrogen Phosphate 

Heptahydrate 
Na2HPO4·7H2O 7558-79-4 48.0 – 48.2 135 – 170 1679 0.39 - 1.03 

(Guion et al., 1983; Kauffman & Pan, 1973; S. D. Sharma 
et al., 2004) 

H30 
Magnesium Sulfate 

Heptahydrate* 
MgSO4·7H2O 7487-88-9 48 – 49.2 201 – 202 1680 0.09 - 0.46 

(Guion et al., 1983; Kauffman & Pan, 1973; S. D. Sharma 

et al., 2004) 

H31 Sodium thiosulfate pentahydrate Na2S2O3·5H2O 7772-98-7 48.0 200 – 209 1708 0.19 - 0.25 (Bajnóczy et al., 1995; Zhang et al., 1999) 

H32 Iron Nitrate Nonahydrate* Fe(NO3)3·9H2O 10421-48-4 47 – 48.7 155 – 190.5 1684 0.79 - 17.91 (Guion et al., 1983; S. D. Sharma et al., 2004) 

H33 Sodium Nitrate Hexahydrate* NaNO3·6H2O 7631-99-4 53.0 158 2261 0.33 - 6.02 (Guion et al., 1983) 

- Cobalt Nitrate Hexahydrate* Co(NO3)2·6H2O 10141-05-6 55.5 – 57.0 115 – 203.3 1870 1.00 - 23.50 (Marcus, 2017; S. D. Sharma et al., 2004) 

H35 Nickel Nitrate Hexahydrate* Ni(NO3)2·6H2O 13138-45-9 56.7 – 57 168 2050 3.00 - 6.25 (Guion et al., 1983; S. D. Sharma et al., 2004) 

H36 Sodium Acetate Trihydrate CH3COONa·3H2O 127-09-3 57.9 – 58.0 180 – 289 1450 0.22 - 0.71 (Bajnóczy et al., 1995; Marcus, 2017) 

H37 
Manganese Chloride 

Tetrahydrate* 
MnCl2·4H2O 7773-01-5 57.9 – 58.0 151 – 178 2010 0.17 - 1.84 (Guion et al., 1983; S. D. Sharma et al., 2004) 

- Lithium Acetate Dihydrate* CH3COOLi·2H2O 546-89-4 57.9 – 58.0 250.9 – 377 1300 3.00 - 59.15 (Marcus, 2017; S. D. Sharma et al., 2004) 

- Cadmium Nitrate Tetrahydrate* Cd(NO3)2·4H2O 10325-94-7 59 – 59.5 98 – 155 1773 10.00 - 45.00 
(Guion et al., 1983; Marcus, 2017; S. D. Sharma et al., 

2004) 

H40 Sodium Bisulfate Monohydrate* NaHSO4·H2O 7681-38-1 60 129.6 1800 0.21 - 0.31 (Guion et al., 1983) 

H41 
Sodium Aluminum Sulfate 

Dodecahydrate* 
NaAl(SO4)2·12H2O 10102-71-3 61 181 1675 1.00 - 16.63 (S. D. Sharma et al., 2004) 

H42 Sodium Hydroxide Monohydrate NaOH·H2O 1310-73-2 58 – 65.2 272 – 272.4 1710 0.30 - 0.36 (Murch & Giauque, 1962; S. D. Sharma et al., 2004) 

H43 Iron (II) Sulfate Heptahydrate* FeSO4·7H2O 
7720-78-7 

64.0 200 1890 0.07 - 0.24 (Guion et al., 1983) 

H44 Chromium Nitrate Nonahydrate* Cr(NO3)3·9H2O 13548-38-4 65.0 194.8 1807 1.50 - 8.46 (Guion et al., 1983) 

* Single primary measurement or no primary measurement found

Table 2: Properties of Fatty Alcohols PCMs 

Fig. 1 

ID 
Fatty Alcohol 

Chemical 

Formula 
CAS Number 

Melting 

Temperature 

(°C) 

Melting 

Enthalpy (J/g) 

Density 

(kg/m3) 
Cost ($/kg) Thermophysical property sources 

AL1 1-Decanol C10H22O 112-30-1 6-7 – 7.5 181 – 212 830 2.5 – 9.36 (de Matos et al., 2015) 

AL2 Lauryl alcohol C12H26O 112-53-8 23.2 – 24.7 202 – 216 831 1.85 – 100 
(de Matos et al., 2015; Saeed et al., 2016; van 

Miltenburg et al., 2003) 

AL3 Myristyl alcohol C14H30O 112-72-1 37.9 – 38.2 219 – 230 824 1.60 – 80 (Maximo et al., 2014) 

AL4 Cetyl alcohol C16H34O 36653-82-4 49 – 50.1 232 – 240 811 0.90 – 50 (Maximo et al., 2014) 

AL5 Heptadecyl alcohol C17H36O 1454-85-9 53.4 – 54.1 244 – 245.8 815 10 – 100 (van Miltenburg et al., 2003; Ventolà et al., 2004) 

AL6 Stearyl alcohol C18H38O 112-92-5 57.2 – 58.7 148 – 257 813 1.60 – 3.30 
(Maximo et al., 2014; van Miltenburg et al., 2001; 

Ventolà et al., 2004) 

AL7 Arachidyl alcohol C20H42O 629-96-9 63.5 – 65 241 – 247 805 3 – 199 (van Miltenburg et al., 2001; Ventolà et al., 2004) 
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Table 3: Properties of Fatty Acid PCMs 

Fig. 1 

ID 
Fatty Acid Structural Chemical Formula 

CAS 

Number 

Melting 

Temperature 

(°C) 

Melting 

Enthalpy 

(J/g) 

Density 

(kg/m3) 
Cost ($/kg) Thermophysical property sources 

AC1 
Formic Acid 

Methanoic Acid 
HCOOH 64-18-6 7.8 – 8.4 247 1200 0.36 - 0.68 (Veerakumar & Sreekumar, 2016) 

AC2 
Pelargonic Acid 
Nonanoic Acid* 

CH3(CH2)7COOH 112-05-0 12.5 128 900 0.90 - 10.60 (Acree, 1991) 

AC3 α-Oleic Acid CH3(CH2)7CH=CH(CH2)7COOH 
112-80-1 

13.3 76 – 140 895 0.80 - 3.50 
(Acree, 1991; Cedeño et al., 2001; Sato et 

al., 1997) 

AC4 β-Oleic Acid CH3(CH2)7CH=CH(CH2)7COOH 112-80-1 16.0 – 16.3 173 – 205 895 0.80 - 3.50 (Cedeño et al., 2001; Sato et al., 1997) 

- 
Caprylic Acid 

Octanoic acid 
CH3(CH2)6COOH 124-07-2 16.3 – 16.7 135 – 148 910 3.50 - 120.00 (Acree, 1991; Domalski & Hearing, 1996) 

AC6 
Acetic Acid 

Ethanoic Acid 
CH3COOH 64-19-7 16 – 16.91 180 – 195 1270 0.40 - 1.20 

(Julius, 1910; Parks & Kelley, 1925; 

Pickering, 1895) 

- 
Undecylic Acid 

Undecanoic Acid* 
CH3(CH2)9COOH 

112-37-8 
28.6 139 890 1 - 5 (Domalski & Hearing, 1996) 

AC8 
Capric Acid 

Decanoic Acid 
CH3(CH2)8COOH 334-48-5 31 – 32.13 

152.7 – 

162.7 
885 1 - 100 

(Hobi Bordón Sosa et al., 2019; Saeed et 

al., 2016; A. Sharma et al., 2005) 

- 
Petroselinic Acid 

o-6-0ctadecenoic Acid* 
CH3(CH2)10CH=CH(CH2)4COOH 593-39-5 30.5 168 900 10 - 100 (Sato et al., 1997) 

- 
Tridecylic Acid 

Tridecanoic Acid* 
CH3(CH2)11COOH 

638-53-9 
41.5 157 983 20 - 150 (Domalski & Hearing, 1996) 

AC11 
Lauric Acid 

Dodecanoic Acid 
CH3(CH2)10COOH 143-07-7 44 – 44.92 

177.4 – 

181.5 
903 2.00 - 200 

(Hobi Bordón Sosa et al., 2019; Saeed et 

al., 2016; A. Sharma et al., 2005) 

AC12 Elaidic Acid* CH3(CH2)7CH=CH(CH2)7COOH 112-79-8 43.9 – 44.5 190 – 218 873 1 - 50 (Wilson et al., 2015) 

- Pentadecanoic Acid* CH3(CH2)13COOH 1002-84-2 52.5 188 842 50 - 150 (Wilson et al., 2015) 

AC14 
Myristic Acid 

Tetradecanoic Acid 
CH3(CH2)12COOH 544-63-8 54.2 – 58 191 – 198 962 1 - 120 

(Hobi Bordón Sosa et al., 2019; Saeed et 

al., 2016; A. Sharma et al., 2005) 

- 
Margaric Acid 

Heptadecanoic Acid* 
CH3(CH2)15COOH 

506-12-7 
61.2 – 61.3 217 853 2500 - 7500 (Wilson et al., 2015) 

AC16 
Palmitic Acid 

Hexadecanoic Acid 
CH3(CH2)14COOH 57-10-3 62.5 – 64 163 – 212 886 2 - 150 

(Hobi Bordón Sosa et al., 2019; Saeed et 

al., 2016; A. Sharma et al., 2005) 

* Single primary measurement or no primary measurement found
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Table 4: Properties of Paraffin PCMs 

Fig 1 

ID 
Paraffin Name Chemical 

Formula 

CAS 

Number 

Dominant 

Solid-Solid 

Temp (°C) 

Solid-Solid 

Enthalpy 

(J/g) 

Solid-Liquid 

Temp (°C) 

Solid-Liquid 

Enthalpy 

(J/g) 

Density 

(kg/m3) 
Cost ($/kg) Thermophysical property sources 

P1 Tetradecane C14H30 629-59-4 -79 0.9  5.2 - 15.6   215 - 227 759 1 – 20 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P2 Pentadecane C15H32 629-62-9 -3 – -2 41 - 43   9.6 - 10.0   161 – 163 765 1 – 45 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P3 Hexadecane C16H34 544-76-3 – –  17.6 - 18.2   228 – 236 770 1 – 20 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P4 Heptadecane C17H36 629-78-7 11 45 - 46   21.6 - 22.0   164 – 167 775 1 – 15 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P5 Octadecane C18H38 593-45-3 – –  27.6 - 28.4   236 – 242 779 1 – 20 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P6 Nonadecane C19H40 629-92-5 22 – 23 47 - 51   30.8 - 32.0   159 – 176 782 1 – 100 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P7 Icosane C20H42 112-95-8 – –  35.4 - 36.9   218 – 251 785 1 – 20 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P8 Heneicosane C21H44 629-94-7  31 - 33   52 - 56   39.9 - 40.3   155 – 161  788 8 – 100 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P9 Docosane C22H46 629-97-0  40 - 43   29 - 128   41.3 - 44.1   49 – 253  791 1 – 25 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

- Tricosane C23H48 638-67-5  39 - 41   60 - 67   46.6 - 47.7   161 – 236 793 1 – 100 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P11 Tetracosane C24H50 646-31-1  46 - 51   82 - 93   48.9 - 50.7   159 – 241 796 1 – 25 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P12 Pentacosane C25H52 629-99-2  47 - 53   67 - 75   53.1 - 53.6   160 – 225 798 1 – 100  (Domalski & Hearing, 1996; Mondieig et al., 2004) 

- Hexacosane C26H54 630-01-3  50 - 53   83 - 95   56.0 - 56.5   160 – 174 800 15,620 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

- Heptacosane C27H56 593-49-7  47 - 53   71 - 76   58.5 - 58.8   159 – 165  802 255,000 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

P15 Octacosane C28H58 630-02-4  56 - 58   85 - 90   60.3 - 61.6  160 – 169 803 2.10 – 100 (Domalski & Hearing, 1996; Mondieig et al., 2004) 

- Nonacosane C29H60 630-03-5  58 - 58   73 - 73  63.4 162 805 10 – 100 (Domalski & Hearing, 1996) 

- Triacontane C30H62 638-68-6  59 - 62   86 - 89  65.5 - 65.6  163 806 16,800 (Domalski & Hearing, 1996) 

P18 Paraffin 46-50 – – 20 – 43.0 228 765 0.99 – 1.76 (Ukrainczyk et al., 2010) 

P19 Paraffin 52-54 – – 20 – 53.0 220 774 0.72 – 1.50 (Ukrainczyk et al., 2010) 

P20 Paraffin 58-62 – – 27 – 60.0 206 782 0.45 – 0.90 (Ukrainczyk et al., 2010) 

P21 Paraffin 62-70 – – 25 – 62.0 201 799 0.45 – 1.10 (Ukrainczyk et al., 2010) 
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4. CONCLUSIONS

• Salt hydrate PCMs have the lowest energy storage cost for applications 18 – 65°C, between 0.90 – 15 $/kWh.

With high density and latent heat, salt hydrates have the highest volumetric energy storage, 50 – 130 kWh/m3.

• Fatty acid PCMs have the lowest energy storage cost in 8 – 17°C range, between 6.50 – 40 $/kWh.  Fatty acids

with higher melting temperatures are scarcer and thus have higher costs comparable to other organics.

• Organic fatty alcohols have the highest average energy storage cost, >40 $/kWh, for all temperatures.

• Pure paraffin waxes consisting of a single length carbon chain may be viable for applications between 8 – 28°C
with energy storage costs 16 – 25 $/kWh at their most competitive material costs.

• Generic paraffin waxes that have many different carbon chains of various lengths are more viable for

applications 40 – 65°C, at 7 – 30 $/kWh, but these materials have more pronounced temperature glide.
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