Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Cathodoluminescence-based nanoscopic thermometry in a lanthanide-doped phosphor

Journal Article · · arXiv.org Repository
OSTI ID:1603629

Crucial to analyze phenomena as varied as plasmonic hot spots and the spread of cancer in living tissue, nanoscale thermometry is challenging: probes are usually larger than the sample under study, and contact techniques may alter the sample temperature itself. Many photostable nanomaterials whose luminescence is temperature-dependent, such as lanthanide-doped phosphors, have been shown to be good non-contact thermometric sensors when optically excited. Using such nanomaterials, in this work we accomplished the key milestone of enabling far-field thermometry with a spatial resolution that is not diffraction-limited at readout. We explore thermal effects on the cathodoluminescence of lanthanide-doped NaYF$$_4$$ nanoparticles. Whereas cathodoluminescence from such lanthanide-doped nanomaterials has been previously observed, here we use quantitative features of such emission for the first time towards an application beyond localization. We demonstrate a thermometry scheme that is based on cathodoluminescence lifetime changes as a function of temperature that achieves $$\sim$$ 30 mK sensitivity in sub-$$\mu$$m nanoparticle patches. The scheme is robust against spurious effects related to electron beam radiation damage and optical alignment fluctuations. We foresee the potential of single nanoparticles, of sheets of nanoparticles, and also of thin films of lanthanide-doped NaYF$$_4$$ to yield temperature information via cathodoluminescence changes when in the vicinity of a sample of interest; the phosphor may even protect the sample from direct contact to damaging electron beam radiation. Cathodoluminescence-based thermometry is thus a valuable novel tool towards temperature monitoring at the nanoscale, with broad applications including heat dissipation in miniaturized electronics and biological diagnostics.

Research Organization:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1603629
Journal Information:
arXiv.org Repository, Journal Name: arXiv.org Repository Vol. 2018; ISSN 9999-0017
Publisher:
Cornell University
Country of Publication:
United States
Language:
English

Similar Records

Single Particle Cathodoluminescence Spectroscopy with Sub-20 nm, Electron-Stable Phosphors
Journal Article · Mon May 17 00:00:00 EDT 2021 · ACS Photonics · OSTI ID:1840947

Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy
Journal Article · Sun Mar 03 23:00:00 EST 2019 · Nature Nanotechnology · OSTI ID:1542401

Tuning Phonon Energies in Lanthanide-doped Potassium Lead Halide Nanocrystals for Enhanced Nonlinearity and Upconversion
Journal Article · Mon Nov 14 23:00:00 EST 2022 · Angewandte Chemie (International Edition) · OSTI ID:2422854