skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

Abstract

Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.

Authors:
 [1];  [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1422959
Report Number(s):
LA-UR-14-29698
Journal ID: ISSN 0021-9606; TRN: US1801675
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 142; Journal Issue: 15; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Martínez, Enrique, Cawkwell, Marc J., Voter, Arthur F., and Niklasson, Anders M. N. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics. United States: N. p., 2015. Web. doi:10.1063/1.4917546.
Martínez, Enrique, Cawkwell, Marc J., Voter, Arthur F., & Niklasson, Anders M. N. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics. United States. doi:10.1063/1.4917546.
Martínez, Enrique, Cawkwell, Marc J., Voter, Arthur F., and Niklasson, Anders M. N. Tue . "Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics". United States. doi:10.1063/1.4917546. https://www.osti.gov/servlets/purl/1422959.
@article{osti_1422959,
title = {Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics},
author = {Martínez, Enrique and Cawkwell, Marc J. and Voter, Arthur F. and Niklasson, Anders M. N.},
abstractNote = {Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.},
doi = {10.1063/1.4917546},
journal = {Journal of Chemical Physics},
issn = {0021-9606},
number = 15,
volume = 142,
place = {United States},
year = {2015},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Energy conserving, linear scaling Born-Oppenheimer molecular dynamics
journal, October 2012

  • Cawkwell, M. J.; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 137, Issue 13
  • DOI: 10.1063/1.4755991

A molecular dynamics method for simulations in the canonical ensemble
journal, June 1984


Molecular dynamics without effective potentials via the Car-Parrinello approach
journal, August 1990


Nosé–Hoover chains: The canonical ensemble via continuous dynamics
journal, August 1992

  • Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463940

Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation
journal, June 2009

  • Niklasson, Anders M. N.; Steneteg, Peter; Odell, Anders
  • The Journal of Chemical Physics, Vol. 130, Issue 21
  • DOI: 10.1063/1.3148075

Expansion algorithm for the density matrix
journal, October 2002


DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method
journal, July 2007

  • Aradi, B.; Hourahine, B.; Frauenheim, Th.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 26
  • DOI: 10.1021/jp070186p

Robust and efficient configurational molecular sampling via Langevin dynamics
journal, May 2013

  • Leimkuhler, Benedict; Matthews, Charles
  • The Journal of Chemical Physics, Vol. 138, Issue 17
  • DOI: 10.1063/1.4802990

Extended Born-Oppenheimer Molecular Dynamics
journal, March 2008


Fock matrix dynamics
journal, March 2004


Wave function extended Lagrangian Born-Oppenheimer molecular dynamics
journal, August 2010


Generalized extended Lagrangian Born-Oppenheimer molecular dynamics
journal, October 2014

  • Niklasson, Anders M. N.; Cawkwell, Marc J.
  • The Journal of Chemical Physics, Vol. 141, Issue 16
  • DOI: 10.1063/1.4898803

Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units
journal, October 2012

  • Cawkwell, M. J.; Sanville, E. J.; Mniszewski, S. M.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 11
  • DOI: 10.1021/ct300442w

A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
journal, January 1982

  • Swope, William C.; Andersen, Hans C.; Berens, Peter H.
  • The Journal of Chemical Physics, Vol. 76, Issue 1
  • DOI: 10.1063/1.442716

Rational Construction of Stochastic Numerical Methods for Molecular Sampling
journal, June 2012


Inhomogeneous Electron Gas
journal, November 1964


Time-Reversible Born-Oppenheimer Molecular Dynamics
journal, September 2006


Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

Geometric integration in Born-Oppenheimer molecular dynamics
journal, December 2011

  • Odell, Anders; Delin, Anna; Johansson, Börje
  • The Journal of Chemical Physics, Vol. 135, Issue 22
  • DOI: 10.1063/1.3660689

Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method
journal, July 2011

  • Zheng, Guishan; Niklasson, Anders M. N.; Karplus, Martin
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3605303

\mathcal{O}(N) methods in electronic structure calculations
journal, February 2012


Car-Parrinello molecular dynamics: Car-Parrinello molecular dynamics
journal, September 2011

  • Hutter, Jürg
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 4
  • DOI: 10.1002/wcms.90

Crystal Structures of Zirconia from First Principles and Self-Consistent Tight Binding
journal, December 1998


Stochastic thermostats: comparison of local and global schemes
journal, July 2008


Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics
journal, December 2013

  • Lin, Lin; Lu, Jianfeng; Shao, Sihong
  • Entropy, Vol. 16, Issue 1
  • DOI: 10.3390/e16010110

A simple and effective Verlet-type algorithm for simulating Langevin dynamics
journal, January 2013


Design of quasisymplectic propagators for Langevin dynamics
journal, July 2007

  • Melchionna, Simone
  • The Journal of Chemical Physics, Vol. 127, Issue 4
  • DOI: 10.1063/1.2753496

First principles molecular dynamics without self-consistent field optimization
journal, January 2014

  • Souvatzis, Petros; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 140, Issue 4
  • DOI: 10.1063/1.4862907

Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nosé-Hoover dynamics
journal, September 1995


The Nosé–Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics
journal, May 2014

  • Coughtrie, David J.; Tew, David P.
  • The Journal of Chemical Physics, Vol. 140, Issue 19
  • DOI: 10.1063/1.4875517

Accelerated, energy-conserving Born–Oppenheimer molecular dynamics via Fock matrix extrapolation
journal, January 2005

  • Herbert, John M.; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18
  • DOI: 10.1039/b509494a

Molecular dynamics simulations at constant pressure and/or temperature
journal, February 1980

  • Andersen, Hans C.
  • The Journal of Chemical Physics, Vol. 72, Issue 4
  • DOI: 10.1063/1.439486

Fast method for quantum mechanical molecular dynamics
journal, November 2012


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


    Works referencing / citing this record:

    Examining the chemical and structural properties that influence the sensitivity of energetic nitrate esters
    journal, January 2018

    • Manner, Virginia W.; Cawkwell, Marc J.; Kober, Edward M.
    • Chemical Science, Vol. 9, Issue 15
    • DOI: 10.1039/c8sc00903a

    Examining the chemical and structural properties that influence the sensitivity of energetic nitrate esters
    journal, January 2018

    • Manner, Virginia W.; Cawkwell, Marc J.; Kober, Edward M.
    • Chemical Science, Vol. 9, Issue 15
    • DOI: 10.1039/c8sc00903a