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Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for ap-
plications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and
Andersen thermostats, and Langevin dynamics. We have tested the temperature distribution under
different conditions of self-consistence field (SCF) convergence and time step, and compared the
results to analytical predictions. We find that the simulations based on the extended Lagrangian
Born-Oppenheimer framework provides accurate canonical distributions even under approximate
SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-
Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of conver-
gence is reached at each time step. The thermostated extended Lagrangian framework thus offers an
accurate approach to sample processes in the canonical ensemble at a fraction of the computational
cost of regular Born-Oppenheimer molecular dynamics simulations.
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I. INTRODUCTION

Electronic structure based molecular dynamics pro-
vide a powerful, but computationally expensive tool to
predict, understand and design materials directly from
theory1,2. Born-Oppenheimer molecular dynamics sim-
ulations, where classical molecular trajectories are prop-
agated by forces that are calculated on-the-fly from the
electronic ground state in each time step is a particular
challenge. In traditional Born-Oppenheimer molecular
dynamics simulations based on Kohn-Sham density func-
tional theory3–6, the computational cost scales cubically
with the number of atoms and linearly with the number
of self-consistent field iterations that are required to find
the relaxed electronic ground state prior to the force eval-
uation in each time step. If a sufficient degree of conver-
gence is not achieved, the electronic system behaves like a
heat sink or source, gradually draining or adding energy
to the atomic system due to a broken time reversibility
in the propagation of the underlying electronic degrees
of freedom7–11. Recently, an extended Lagrangian for-
mulation of Born-Oppenheimer molecular dynamics was
proposed that overcomes this problem12–18. By including
an auxiliary electronic degree of freedom as a dynamical
variable, the equations of motion can be integrated with-
out breaking time reversibility, even under approximate
self-consistent field convergence. This framework there-
fore enables accurate energy conserving simulations at a
fraction of the cost of regular Born-Oppenheimer simu-
lations.

So far, extended Lagrangian Born-Oppenheimer
molecular dynamics has been formulated and applied to
microcanonical (NVE) simulations. However, a large
class of systems appear in the canonical (NVT) en-
semble. The application of extended Lagrangian Born-
Oppenheimer molecular dynamics in canonical simula-

tions raises two important questions: 1) are the conser-
vative forces and the long-term energy conservation of
the underlying Born-Oppenheimer molecular dynamics
of any physical significance in canonical simulations, and
2) are the equations of motion for the electronic degrees
of freedom that are given by the extended Lagrangian
approach compatible with the stochastic noise associated
with certain thermostats?

To answer these questions, we combine extended La-
grangian Born-Oppenheimer molecular dynamics with
three different well established approaches to canonical
simulations: the Nosé and Andersen thermostats, and
Langevin dynamics. The simulation results using the
equations of motion for the extended electronic degrees
of freedom of the extended Lagrangian framework are
compared to the corresponding simulations based on reg-
ular Born-Oppenheimer molecular dynamics. A priori,
it is not known if the extended electronic degrees of
freedom that are indirectly coupled to the thermostat
noise will remain numerically stable or if the number
of self-consistent field cycles will have to be increased,
in which case little would be gained from the extended
Lagrangian framework over regular Born-Oppenheimer
molecular dynamics. By using three different types of
thermostats that have properties that are representative
for a broad range of thermostats the conclusions from our
tests should be fairly general.

Our comparisons present some important features.
First, they show that unless the forces in regular Born-
Oppenheimer simulations are well converged the sim-
ulations exhibit unphysical fluctuations that may lead
to significant errors. Second, the comparisons demon-
strate that we can recover the highly converged “exact”
results of regular Born-Oppenheimer molecular dynam-
ics with extended Lagrangian Born-Oppenheimer simu-
lations even with approximately converged forces, using
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only a single diagonalization per time step on our test
simulations, i.e. at a fraction of the computational cost
of the regular simulations. Thus, our comparison shows
how the extended Lagrangian Born-Oppenheimer frame-
work is both highly efficient and fully compatible with
canonical simulations both for the stochastic simulations
based on the Andersen thermostat or Langevin dynam-
ics, as well as for the deterministic Nosé thermostat.

II. EXTENDED LAGRANGIAN
BORN-OPPENHEIMER MOLECULAR

DYNAMICS

Regular Born-Oppenheimer molecular dynamics of a
system (S) can be described by the Lagrangian,

LS(R, Ṙ) =
1

2

∑
I

MIṘ
2
I − U(R, ρsc). (1)

The first term on the right hand side is the kinetic energy
term, where MI is the mass of atom I with velocity ṘI .
The second term, U(R, ρsc), is the Born-Oppenheimer
potential energy calculated at the relaxed self-consistent
ground state electronic density ρsc(r) for a given nuclear
configuration R = {RI}. Notice that ρsc(r) is not a
dynamical variable. It is included only to highlight the
ground state density dependence of the potential. The
equations of motion are given by

MIR̈I = −∂U(R, ρsc)

∂RI
, (2)

where the main computational cost is the calculation of
the self consistent ground state density ρsc(r). To reduce
the burden of the iterative self-consistent field (SCF) op-
timization, the density from the previous time step is
traditionally used as an accurate initial guess, i.e.

ρsc(r, t) = SCF[ρsc(r, t−∆t)]. (3)

Higher order extrapolation schemes can also be used, but
such schemes may lead to instabilities in the integration
of the equations of motion. The extrapolation followed by
the self-consistent field optimization can be interpreted
as an adiabatic propagation on a Born-Oppenheimer po-
tential energy surface. However, a major problem with
this propagation of the density in Eq. (3) is that with
an approximate ground state SCF convergence, which in
practice never is complete, the time-reversal symmetry
is broken, leading to a hysteresis effect and a systematic
drift in the total energy7–11. Extended Lagrangian Born-
Oppenheimer molecular dynamics12,18, which originally
was motivated by an ad hoc time-reversible extrapolation
scheme10, was introduced to avoid the hysteresis and the
systematic drift in the total energy.

Extended Lagrangian Born-Oppenheimer molecular

dynamics is described by the Lagrangian

LX(R, Ṙ, n, ṅ) = LS(R, Ṙ) +
1

2
µ

∫
ṅ2(r)dr

− 1

2
µω2

∫
(ρsc(r)− n(r))

2
dr,

(4)

where n(r) and ṅ(r) are extended dynamical variables
corresponding to an auxiliary electron density and its
time derivative. The extended electronic degrees of
freedom evolve through a harmonic oscillator centered
around the self-consistent ground state density ρsc(r).
The equations of motion in the limit when the fictitious
electron mass parameter µ→ 0 are given by

MIR̈I = −∂U(R, ρsc)

∂RI
, (5)

n̈(r) = −ω2 (ρsc(r)− n(r)). (6)

For a sufficiently large value of the frequency parameter
ω, the density n(r) will evolve closely to the exact ground
state density ρsc(r). Moreover, since n(r) is a dynami-
cal variable it can be integrated with a time-reversible
symplectic integration scheme, mapping n(r, t − ∆t) →
n(r, t), in the same way as the nuclear degrees of freedom.
In this way we may use n(r, t) as an efficient initial guess
to the SCF optimization procedure without breaking the
time-reversal symmetry; i.e.

ρsc(r, t) = SCF[n(r, t)]. (7)

The effect of using the extended Lagrangian approach can
be quite dramatic. Often no self-consistent mixing at all
between successive electron densities is necessary prior to
the nuclear force evaluation and only one diagonalization
per time step is needed, i.e. ρ(r) is given in a single step
directly from the occupied eigenstates of the Kohn-Sham
Hamiltonian H[n], which is calculated for the auxiliary
dynamical variable density n(r). In this limit of van-
ishing SCF convergence, the potential energy surface is
not uniquely defined and the Hellmann-Feynman ground
state condition for the electron density, which is required
in the force evaluation, is not fullfilled. However, by using
a linearized expression for the electron-electron interac-
tion it is possible to recover a highly accurate potential
energy surface with a computationally simple and fully
consistent expression for the forces17,18,35. The poten-
tial with the linearized electron-electron interation can
be seen as part of a shadow Hamiltonian. Instead of inte-
grating the equations of motion with approximately con-
verged forces for an exact Kohn-Sham density functional
dynamics, we integrate the approximate shadow dynam-
ics with exact forces18. In this way conserved properties,
such as the total energy and the phase-space area, can
be kept stable and a systematic drift can be avoided.
This concept of a backward analysis has previously been
used in geometric integration schemes of classical Hamil-
tonian dynamics. The velocity Verlet scheme is probably
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TABLE I: Coefficients ck, α and κ = ∆t2ω2 in the
modified Verlet scheme Eq. (8). The derivation
including a more complete set is given in Ref.19.

K κ α×10−3 c0 c1 c2 c3 c4 c5 c6 c7

5 1.82 18 -6 14 -8 -3 4 -1

6 1.84 5.5 -14 36 -27 -2 12 -6 1

7 1.86 1.6 -36 99 -88 11 32 -25 8 -1

the most familiar example. Here the same concept is ap-
plied to a potential energy surface that is generated from
a non-linear self-consistent field theory.

The integration of the nuclear coordinates in Eq. (5)
can be performed with the symplectic and time-reversible
Verlet scheme and for the integration of the electronic de-
grees of freedom in Eq. (6) a modified Verlet integration
scheme19 is typically used,

n̈(t+ ∆t) = 2n(t)− n(t−∆t)

+ ∆t2ω2n̈(t) + α

K∑
k=0

ckn(t− k∆t),
(8)

where the last term includes a weak dissipative force that
removes numerical noise to avoid long-term error accu-
mulation. This is of particular importance when approx-
imate linear scaling solvers are used20,21. Some of the op-
timized coefficients of the modified Verlet scheme above
are given in Table I.

III. THERMOSTATING EXTENDED
LAGRANGIAN BORN-OPPENHEIMER

MOLECULAR DYNAMICS

Thermostating has been developed based on the
extended-Lagrangian Born-Oppenheimer methodology
to sample the canonical ensemble. Three different al-
gorithms have been tested: (A) the Nosé thermostat22,
(B) the Andersen thermostat23, and (C) Langevin
dynamics24.

A. Nosé thermostat

1. Traditional Nosé thermostat

Consider the system (S) of interest with the La-
grangian

LS(R, Ṙ) =
1

2

∑
I

MIṘ
2
I − U(R) (9)

and with the constant of motion

ES =
∑
I

∂LS
∂ṘI

ṘI − LS . (10)

Let the Nosé bath (N) be represented by a particle on a
sliding plane with the Lagrangian

LN (γ, γ̇) =
1

2
Qγ̇2 − 2K0γ, (11)

with the constant of motion

EN =
∂LN
∂γ̇

γ̇ − LN . (12)

Here Q is a fictitious mass parameter and 2K0 is a con-
stant determining the slope of the Nosé potential, which
corresponds to twice the desired average kinetic energy
of the system. Connecting the system S to the Nosé bath
N through the extended Lagrangian gives

Lx(R, Ṙ, γ, γ̇) = eγ (LS + LN + ES + EN ) , (13)

which has the constant of motion

Ex =
∑
I

∂Lx
∂ṘI

ṘI +
∂Lx
∂γ̇

γ̇ − Lx = 0. (14)

The Euler-Lagrange equations of motion of the combined
system in Lx are given by

d

dt

(
∂Lx
∂ṘI

)
=
∂Lx
∂RI

, (15)

and

d

dt

(
∂Lx
∂γ̇

)
=
∂Lx
∂γ

. (16)

Some straightforward algebra using Noether’s theorem,
i.e. the relations in Eqs. (10), (12) and (14), gives the
equations of motion

d

dt

(
∂LS
∂ṘI

)
=
∂LS
∂RI

− γ̇ ∂LS
∂ṘI

, (17)

and

d

dt

(
∂LN
∂γ̇

)
=
∑
I

ṘI
∂LS
∂ṘI

+
∂LN
∂γ

. (18)

The equations of motion for the Nosé thermostated sys-
tem in a more explicit form are given by

MIR̈I = −∂U(R)

∂RI
− γ̇MIṘI , (19)
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and

Qγ̈ =
∑
I

MIṘ
2
I − 2K0. (20)

These equations correspond to an integrating reg-
ulator where the kinetic energy of the system,
K = (1/2)

∑
I MIṘ

2
I , is driven toward a desired kinetic

energy of K0 through a velocity dissipation term. The
coupling constant is determined by the inverse of the
Nosé mass parameter Q. If the system is sufficiently com-
plex and with Q chosen appropriately such that the sys-
tem is ergodic, it can be shown that the Nosé thermostat
recovers the canonical distribution22.

2. Nosé thermostat for extended Lagrangian
Born-Oppenheimer molecular dynamics

To apply the Nosé thermostat to extended Lagrangian
Born-Oppenheimer molecular dynamics we define the ex-
tended Nosé-Born-Oppenheimer Lagrangian

L(R, Ṙ, γ, γ̇, n, ṅ) = eγ (LS + LN + ES + EN )

+
1

2
µ

∫
ṅ2(r)dr− 1

2
µω2

∫
(ρsc(r)− n(r))

2
dr,

(21)

with Euler-Lagrange equations of motion

d

dt

(
∂LS
∂ṘI

)
=
∂LS
∂RI

− γ̇ ∂LS
∂ṘI

−1

2
µω2 ∂

∂RI

∫
(ρsc(r)− n(r))

2
dr,

(22)

d

dt

(
∂LN
∂γ̇

)
=
∑
I

ṘI
∂LS
∂ṘI

M

+
∂LN
∂γ

, (23)

µn̈(r) = µω2 (ρsc(r)− n(r)) . (24)

In the limit of µ→ 0 we obtain

MIR̈I = −∂U(R)

∂RI
− γ̇MIṘI , (25)

Qγ̈ =
∑
I

MIṘ
2
I − 2K0, (26)

n̈(r) = ω2 (ρsc(r)− n(r)) . (27)

The first two equations of motion above are equivalent to
regular Nosé dynamics and should thus yield a canonical
distribution. The last equation of motion for the aux-
iliary dynamical variable n(r) enables a time-reversible
integration of the electronic degrees of freedom in the
same way as in the original formulation of the extended
Lagrangian Born-Oppenheimer molecular dynamics.

3. Integration scheme

To integrate the equations of motion of the extended
Nosé-Born-Oppenheimer system, Eqs. (25 - 27), we use
Algorithm 1. It is a leap-frog like scheme that first takes
half a time step for the Nosé bath, then a full time step in-
cluding the dissipation for the system, thereafter a mod-
ified Verlet scheme for the extended auxiliary electronic
degrees of freedom, and finally the second half of the
time step for the Nosé bath. In the dissipative integra-
tion step of the nuclear coordinates we use the algorithm
by Melchionna26. The integration scheme preserves the
long-term stability of the combined energy

ES +EN =
1

2

∑
I

MIṘ
2
I + U(R) +

1

2
Qγ̇2 + 2K0γ. (28)

This would not be true for a straightforward implementa-
tion of the Nosé thermostat combined with regular Born-
Oppenheimer molecular dynamics.

Algorithm 1 Leap-frog like integration scheme for the
equations of motion, Eqs. (25 - 27), of Nosé

thermostated extended Lagrangian Born-Oppenheimer
molecular dynamics. The nuclear coordinates in the

interior loop are integrated with the scheme by
Melchionna26.

K = (1/2)
∑

I MIṘ
2
I

γ̇ = γ̇ + ∆tQ−1(K −K0)/2
γ = γ + ∆tγ̇/2
γ̇ = γ̇ + ∆tQ−1(K −K0)/2

ṘI = (1 + ∆tγ̇/2)−1
(
ṘI − (∆t/2)M−1

I ∂U/∂RI

)
RI = RI + ∆tṘI

n(t+∆t) = 2n(t)−n(t−∆t)+∆t2ω2n̈(t)+α
∑

k ckn(t−k∆t)

ṘI = (1 − ∆tγ̇/2) ṘI − (∆t/2)M−1
I ∂U/∂RI

K = (1/2)
∑

I MIṘ
2
I

γ̇ = γ̇ + ∆tQ−1(K −K0)/2
γ = γ + ∆tγ̇/2
γ̇ = γ̇ + ∆tQ−1(K −K0)/2

B. Andersen thermostat

In the stochastic-coupling method proposed by
Andersen23 the atomic velocities are conditionally re-
assigned from a Maxwell-Boltzmann distribution. The
time between two velocity reassignments for each atom
is sampled from the exponential probability distribution
p(τ) = α exp (−ατ), with α the thermostat coupling con-
stant. A random number in the interval [0, 1) is generated
for each atom at each time step. If the random number
is smaller than α∆t the atomic velocity is reassigned. In
the limit when α∆t � 1, the probability distribution
that describes this process is given by27

p(τ)∆t = (1− α∆t)
τ/∆t

α∆t (29)
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for the intervals τ without velocity rescaling. This implies

lnα−1p(τ) = (τ/∆t) ln (1− α∆t) = −ατ +O
[
(α∆t)

2
]

(30)
The equations of motion for the nuclear degrees of free-

dom are subsequently integrated using a time-reversible
symplectic velocity Verlet algorithm28, whereas Eq. (8)
is used for the extended electron density, with n̈(t) given
by the extended Langrangian Born-Oppenheimer equa-
tion of motion in Eq. (6).

C. Langevin thermostat

Langevin dynamics describes the evolution of a system
in which two extra force contributions are added, i.e.

MIR̈I = −∂U(R)

∂RI
− αṘI + βI(t). (31)

The extra force term, αṘI , is a friction term propor-
tional to the velocity and βI is a stochastic contribu-
tion that in order to satisfy the fluctuation-dissipation
theorem is assumed to be Gaussian distributed with
〈β(t)〉 = 0 and 〈β(t)β(t′)〉 = 2αkBTδ(t − t′), where kB
is the Boltzmann constant and T is the temperature.
Langevin dynamics have been implemented following the
development by Grønbech-Jensen and Farago29 with the
integration of the equations of motion given by

Rn+1
I = RnI + b∆tṘnI +

b∆t2

2MI
− ∂U(R)

∂RI

∣∣∣∣n +
b∆t

2MI
βn+1
I

Ṙn+1
I = aṘnI +

∆t

2MI

(
−a ∂U(R)

∂RI

∣∣∣∣n − ∂U(R)

∂RI

∣∣∣∣n+1
)

+
b

MI
βn+1
I (32)

where b ≡ [1 + α∆t/(2MI)]
−1 with α the friction coeffi-

cient, and a ≡ [1− α∆t/(2MI)] [1 + α∆t/(2MI)]
−1. For

the auxiliary dynamical variable n(r) the modified Ver-
let integration scheme presented in Eq. (8) is used, with
the acceleration n̈(r) given by the extended Lagrangian
Born-Oppenheimer molecular dynamics equation of mo-
tion in Eq. (6).

IV. APPLICATIONS AND DISCUSSION

We have systematically tested our implementations of
the Nosé, Andersen, and Langevin thermostats by run-
ning a series of 100 ps molecular dynamics simulations
of the molecular liquids nitromethane, CH3NO2 and iso-
cyanic acid, HNCO, using self-consistent charge trans-
fer tight binding theory30–33. Nitromethane is a heavily
studied explosive and isocyanic acid is the simplest sta-
ble compound that contains the elements H, C, N, and O.
Our nitromethane and isocyanic acid test systems were

prepared at the experimental values of the mass density
and comprised 32 and 24 molecules, respectively.

The interatomic forces and molecular dynamics trajec-
tories were computed using self-consistent charge transfer
tight binding theory (also known as density functional
tight binding theory) as implemented in the electronic
structure code latte20,34,35. Self-consistent tight bind-
ing theory is derived from a second-order expansion of
the Kohn-Sham energy with respect to fluctuations in
the charge density. The effective single particle Hamilto-
nian, H, is a sum of a Slater-Koster tight binding Hamil-
tonian, H0, that represents the overlap of free-atom-like
orbitals on neighboring atoms and an electrostatic poten-
tial arising from Mulliken charges, qi, centered on each
atom, H1. Since the Hamiltonian depends on the set of
Mulliken charges derived from the density matrix, P, the
electronic structure is solved self-consistently. All of the
calculations reported here employed an orthogonal basis
of free-atom like orbitals. The corresponding potential
energy and interatomic forces are,

U = 2Tr[(P−P0)H]− 1

2

N∑
i=1

N∑
j=1
j 6=i

qiqjγij + Epair, (33)

and

fk = −2Tr
[
P
∂H0

∂Rk

]
− 1

2

N∑
i=1

N∑
j=1

qiqj
∂γij
∂Rk

− ∂Epair

∂Rk
, (34)

respectively, where i and j label atoms, N is the total
number of atoms, Tr[X] denotes the trace of matrix X,
P0, is the density matrix for non-interacting atoms, γij
is a screened Coulomb potential30, and Epair is a sum of
atom-centered pair potentials that are strongly repulsive
at short range.

The latte package has been applied to extended La-
grangian Born-Oppenheimer molecular dynamics simu-
lations in the microcanonical ensemble with both linear
scaling, O(N), and regular O(N3) solvers for the den-
sity matrix20,36. The computational efficiency of semi-
empirical quantum-based models, such as self-consistent
tight binding, with respect to ab initio formalisms en-
ables the computation of long trajectories using even rel-
atively modest computational resources. Hence, it is an
excellent tool for assessing both the long-term accuracy
and stability of molecular dynamics trajectories.

Unless stated otherwise, all of our molecular dynamics
trajectories were computed with a time step of ∆t = 0.25
fs. The density matrix, P, was computed at zero elec-
tronic temperature in all simulations using the second or-
der spectral projection (SP2) algorithm of Niklasson20,37.
The SP2 algorithm is based on a recursive expansion
of the Fermi operator in a series of generalized matrix-
matrix multiplications. Despite being designed origi-
nally as a reduced complexity, O(N) solver, the SP2
method has been shown to provide excellent performance
and low errors compared to traditional algorithms based
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on matrix diagonalization even in the limit of O(N3)
algebra36. O(N) implementations of the SP2 algorithm
utilize sparse matrix algebra combined with discarding
matrix elements of absolute value less than a pre-defined
tolerance after each interation. It was shown that while
this approach inevitably leads to small errors in the po-
tential energy and interatomic forces, the total energy
is still conserved to a high tolerance in microcanonical
trajectories20. The number of required density matrix
calculations in the self-consistent computation of the set
of Mulliken charges, which dominates the computational
cost, are given in terms of the equivalent number of di-
agonalizations. The electrostatic interactions were com-
puted using traditional Ewald summation38.

First, we analyze the behavior of thermostated regular
Born-Oppenheimer molecular dynamics calculations to
subsequently investigate the performance based on the
extended Lagrangian Born-Oppenheimer framework in
the NVT ensemble.

A. Regular Born-Oppenheimer molecular
dynamics in the NVE and NVT ensembles

1. Total energy in the NVE ensemble

Regular Born-Oppenheimer molecular dynamics uses
the SCF-optimized density from the previous time step
as an initial guess for the next molecular dynamics step
as shown in Eq. (3). Unless the convergence is sufficiently
high a small but systematic drift in the total energy is
observed, which is avoided in extended Lagrangian Born-
Oppenheimer molecular dynamics simulations. Figure 1
shows the evolution of the kinetic temperature (a) and
total energy (b) of the (HNCO)24 system with an ini-
tial temperature of 300 K run in the NVE ensemble.
We observe that with the traditional Born-Oppenheimer
molecular dynamics scheme a drift in both temperature
and energy is present in the system. Even for as many
as eight SCF cycles (requiring nine diagonalizations or
density matrix constructions) per time step, a signif-
icant drift is still observed. On the other hand, the
extended Lagrangian Born-Oppenheimer molecular dy-
namics formalism gives a long-term energy conservation
even in the limit of a single diagonalization per time step.
The energy obtained with the linear scaling method20 is
compared with a regular O(N)3 diagonalization scheme
(dashed lines in Fig. 1(b)) where no significant difference
was found.

One of our questions is whether this long-term energy
conservation is significant when we use thermostats that
rescale the velocities or add stochastic noise to the forces.
A constant of motion does exist for the Nosé thermostat,
but even in that case it is not clear what would happen,
for example, with the thermal fluctuations if we have a
broken time-reversal symmetry of the underlying elec-
tronic degrees of freedom. For the Andersen and the
Langevin thermostats we do not have a constant of mo-
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FIG. 1: (Color online) a) (HNCO)24 system
temperature and; b) system energy as given by the
Extended-Lagrangian Born-Oppenheimer (XLBO)
formalism (blue), standard Born-Oppenheimer
molecular dynamics (BO) with 8 SCFs, i.e. 9

diagonalizations (orange), and with 5 SCFs, i.e. 6
diagonalization (black), with an initial temperature of
300 K in the microcanoncial NVE ensemble. Solid lines
were calculated using a linear scaling approach20 while

the dashed lines were obtained with a full
diagonalization method O(N3).

tion or a time-reversal symmetry to conserve. Moreover,
the noise from the statistical fluctuations for the Ander-
sen and the Langevin thermostats may be incompatible
with the deterministic extended Lagrangian formulation
of the time evolution of the underlying auxiliary electron
density n(r).

2. Constant of motion for the Nosé thermostat

Thermostats in a molecular dynamics simulation keep
the kinetic temperature around the target temperature.
However, if the forces are not sufficiently accurate the
thermal fluctuations and/or the constant of motion may
deviate from their canonical values and the system will
be driven out of equilibrium. Figure 2 shows the temper-
ature and constant of motion evolution of the (HNCO)24

system thermostated with the Nosé scheme combined
with traditional Born-Oppenheimer molecular dynam-
ics using six and nine diagonalizations (five and eight
SCF cycles) per time step and the extended Lagrangian
Born-Oppenheimer molecular dynamics formalism in the
limit of one diagonalization (zero SCF cycles) per time
step. The temperature shown in the upper panel remains
around the average. However, the constant of motion
clearly shows that the system deviates from the equi-
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with a target temperature of 300 K in the NVT
ensemble.

librium ensemble for the traditional Born-Oppenheimer
molecular dynamics, while it remains constant in the case
of the extended Lagrangian Born-Oppenheimer molecu-
lar dynamics scheme. In the case of the Andersen and
Langevin thermostats, where no constant of motion ex-
ists, it is harder to predict whether the system remains
in the canonical ensemble. In these cases, we can instead
use other measures, like the moments of the thermal fluc-
tuations, to verify the system behavior.

3. Converging the canonical distribution

Figure 3 shows the average temperature and its stan-
dard deviation, indicated by the bars (see Eq. (35) below)
for both (a) the (HNCO)24 and (b) the (CH3NO2)32 sys-
tems depending on the number of diagonalizations per
time step. The friction constat for the Andersen and
Langevin thermostats was chosen as 10−3 fs−1 for both
systems while the fictitious mass (Q) in the Nosé was set
to 10 eV·fs2 for the (HNCO)24 system and 100 eV·fs2 for
the (CH3NO2)32 system. Only in the limit of accurate
SCF convergence (∞ stands for ten or more SCF cy-
cles) does regular Born-Oppenheimer molecular dynam-
ics yield the correct theoretical result (indicated by T in
the horizontal axis in the figure). The underlying drift
in the energy corresponds to heat that is generated (or
removed), which increases (or decreases) the amplitude
of the thermal fluctuations. For the Andersen thermo-
stat and the Langevin dynamics, not even the average
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FIG. 3: (Color online) Average temperature and the
square-root of its second moment for (a) a (HNCO)24

system; and (b) a nitromethane system; with 500 K as
target temperature, showing dependence on the number

of diagonalizations per time step for different
thermostats. Runs were 100 ps long with an integration
time step of ∆t = 0.25 fs. XLBO stands for extended
Lagrangian Born-Oppenheimer molecular dynamics, ∞
for eleven or more diagonalizations per time step and T

for the theoretical values.

temperature is correct for low SCF convergence. The
molecular trajectories diverged when only one SCF cycle
(2 diagonalizations per time step) were used in the regu-
lar Born-Oppenheimer schemes. On the other hand, the
extended Lagrangian Born-Oppenheimer molecular dy-
namics formalism gives the correct distribution for both
systems and for all three thermostats even in the limit of
one single diagonalization per time step.

B. Thermostated extended Lagrangian
Born-Oppenheimer molecular dynamics

Figure 4 presents the temperature distribution for the
(HNCO) system at 300 K, 500 K and 700 K as target
temperatures using the three thermostated extended La-
grangian Born-Oppenheimer based schemes proposed in
this work. In both Andersen and Langevin thermostats
the friction constant was chosen as 10−3 fs−1, while for
the Nosé dynamics the fictitious mass was set to 100
eV·fs2. The temperature fluctuations in the canonical
ensemble are expected to follow the relation
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〈(δT )
2〉 =

2

d

〈T 〉2

N
(35)

where δT = T − 〈T 〉, d is the dimension and N is the
number of particles in the system39.

The first and second temperature moments with their
standard errors for the three thermostats at varying tem-
peratures and their comparison with the theoretical val-
ues are given in Table II for runs of 100 ps with temper-
atures sampled every 1 ps. The deviations with respect
to the theoretical values are not statistically significant.

The same methodology has been adopted for the ni-
tromethane system, with the results shown in Figure 5
and Table III. Again, the Nosé mass was set to 100 eV·fs2
and the same friction constant of 10−3 fs−1 was used for
the Andersen and Langevin thermostats. The same con-
clusions we drew for the (HNCO)24 system apply here,
with no significant deviations from the theoretical pre-
dictions in all three cases. Therefore, for both systems
studied and for the range of temperatures tested, the
extended Lagrangian Born-Oppenheimer molecular dy-
namics remains compatible with the thermostating algo-
rithms.

The third and fourth moments of the temperature dis-
tribution for the simulations discussed above were also
calculated. However, these require trajectories much

TABLE II: First and second moments of the
temperature distribution for 300 K, 500 K and 700 K as

given by theory and by simulation using different
thermostating algorithms for a system containing

HNCO molecules with 96 atoms.
µ1 = 〈T 〉, µ2 = 〈(δT )

2〉, with δT = T − 〈T 〉.

T (K) µ1 µ2

300

Theory 300 625.0

Andersen 301.8 ± 2.9 783.8 ± 118.2

Langevin 299.4 ± 2.5 605.5 ± 104.5

Nosé 300.5 ± 2.3 528.4 ± 123.1

500

Theory 500 1736.1

Andersen 494.8 ± 3.9 1441.2 ± 222.9

Langevin 497.6 ± 4.4 1817.3 ± 207.8

Nosé 497.2 ± 4.5 1910.4 ± 315.8

700

Theory 700 3402.8

Andersen 699.1 ± 5.9 3404.4 ± 521.3

Langevin 698.5 ± 0.4 3399.8 ± 384.6

Nosé 698.8 ± 5.4 2812.4 ± 605.2
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FIG. 5: (Color online) Temperature distribution for a
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given by the a) Andersen, b) Langevin and c) Nosé

thermostats.
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TABLE III: First and second moments of the
temperature distribution for 300 K, 500 K and 700 K as

given by theory and by simulation using different
thermostating algorithms for a system containing

nitromethane molecules with 224 atoms.
µ1 = 〈T 〉, µ2 = 〈(δT )

2〉, with δT = T − 〈T 〉.

T (K) µ1 µ2

300

Theory 300 267.9

Andersen 297.4 ± 1.3 252.1 ± 28.4

Langevin 303.6 ± 1.6 259.2 ± 30.0

Nosé 300.3 ± 1.7 267.5 ± 37.9

500

Theory 500 774.0

Andersen 505.1 ± 2.5 622.6 ± 73.7

Langevin 501.3 ± 2.6 676.6 ± 89.0

Nosé 500.6 ± 2.9 809.2 ± 160.5

700

Theory 700 1458.3

Andersen 698.8 ± 0.3 1343.8 ± 192.9

Langevin 702.8 ± 3.8 1365.5 ± 141.5

Nosé 698.6 ± 4.3 1809.4 ± 263.1

longer than 100 ps to reduce statistical errors to a reason-
able size. We have therefore run longer simulations for
two test cases to make sure the values of these third and
fourth moments are compatible with the theoretical pre-
dictions. We have run the system with the isocyanic acid
system at 700 K for 2 ns sampling the temperature ev-
ery picosecond with Langevin and Andersen thermostats,
taking independent intervals of 50 ps. The results are
shown in table IV. The theoretical values for the third
and fourth moments (skewness and kurtosis) are given as

〈(δT )
3〉

〈(δT )
2〉3/2

=

(
8

dN

)1/2

(36)

and

〈(δT )
4〉

〈(δT )
2〉2

= 3

(
1 +

4

dN

)
(37)

respectively. We observe that the moments are in good
agreement with the theoretical values.

Figure 6 shows the effect of the chosen integration time
step, ∆t, on the first and second moments of the temper-
ature. For both systems, (HNCO)24 and (CH3NO2)32,
the temperature remains accurate for a time step ∆t ≤
0.5 fs for all three thermostats. For ∆t > 0.5 fs, the av-
erage temperature starts to deviate from the target and
the square root of the second moment (indicated by the
bars) begins to depart from its theoretical value (given
by the dashed lines). The Nosé thermostat maintains the
average temperature adequately but the second moment
varies the most from the theoretical value for longer time
steps. In fact, the constant of motion of the Nosé thermo-
stat shows a systematic drift when ∆t > 0.5 fs for both

TABLE IV: Third and fourth moments of the
temperature distribution at 700 K as given by theory

and by simulation using Langevin and Andersen
thermostating algorithms for a system HNCO molecules
with 96 atoms. µ1 = 〈T 〉, µ2 = 〈(δT )

2〉, µ3 = 〈(δT )
3〉

and µ4 = 〈(δT )
4〉, with δT = T − 〈T 〉.

T (K) µ1 µ2 µ3 µ4

700

Theory 700 3402.8 33082.6 35219143.8

Andersen 699.8 3351.9 29730.6 32362020.7

±1.9 ±151.0 ±6337.3 ±2899720.0

Langevin 701.1 3322.0 29298.9 32563050.4

±1.8 ±172.0 ±5174.3 ±2878700.0

tested systems (not shown). The average temperature as
given by the Langevin thermostat deviates the most for
longer time steps, while the Andersen thermostat main-
tains the average temperature closer to the target.

In a recent study by Leimkuhler and Matthews40,
which contains an extensive and very clear presentation
and analysis of a number of Langevin integators, it is
demonstrated how step size dependent errors can be re-
duced with more optimal integration schemes that have
a lower bias compared to alternative methods. A reason
for this reduced time step error can be found in their
analysis of the harmonic oscillator, where they show how
the position distribution, 〈r2〉, has the correct thermody-
namic limit regardless of the size of the integration time
step. The same exact statistical distribution, indepen-
dent of time step, frequency or damping parameter, is
also fulfilled by the Langevin integrator used here in Eq.
(32)29. This exact property may not be fulfilled by our
Nosé scheme as shown in Alg. 1.

The three tested thermostats encompass a range of
methods, from stochastic to deterministic to local al-
gorithms. The results show how the systems are well-
behaved under a variety of thermostating conditions,
which gives us confidence that the extended Lagrangian
Born-Oppenheimer molecular dynamics methodology is
applicable also to a broad range of alternative thermo-
stating methods40–45. However, integrating the elec-
tronic degrees of freedom with higher-order splitting
schemes beyond a simple Verlet-like algorithm may cause
problems under numerically noisy conditions14,19. A
straightforward application of certain higher-order inte-
gration schemes is therefore not always possible46.

V. CONCLUSIONS

Extended Lagrangian Born-Oppenheimer molecular
dynamics has been developed and analyzed for simula-
tions in the canonical ensemble. Three different thermo-
stating algorithms have been implemented in conjunc-
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tion with the extended Lagrangian Born-Oppenheimer
molecular dynamics methodology, the Nosé and Ander-
sen thermostats and the Langevin dynamics. These three
approaches have well-known features that are character-
istic of a broad range of thermostats. We have shown how
the Nosé thermostat can be coupled to the extended La-
grangian formalism, rendering a simple implementation
and a constant of motion. We have studied first and sec-
ond moments of the temperature distribution and com-
pared the values with theoretical predictions for all three
thermostating methodologies, which we see to agree. We

have analyzed the effect of the size of the time step on
the average temperature and its second moment, con-
cluding that both (HNCO)24 and nitromethane systems
remain at equilibrium for time steps ≤ 0.5 fs. We can
now therefore answer the questions posed in the Intro-
duction, and state that the conservative forces and long-
term stability of the underlying extended Lagrangian
Born-Oppenheimer approach to the propagation of the
electronic degrees of freedom is of significant importance
to the simulation accuracy also for canonical ensembles
and that it is compatible with the noise associated with
the thermostats. While traditional Born-Oppenheimer
molecular dynamics requires a highly accurate SCF opti-
mization in each time step, leading to a significant over-
head in computational time, the extended Lagrangian
Born-Oppenheimer framework has proven robust and ac-
curate even with only one diagonalization per time step.
Unless good convergence is achieved with regular Born-
Oppenheimer approaches, the energy and temperature in
both NVE and NVT ensembles deviated from their the-
oretical values. Our thermostated extended Lagrangian
framework thus offers an accurate approach to sample
processes in the canonical ensemble at a fraction of the
computational cost of regular Born-Oppenheimer molec-
ular dynamics simulations.
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