skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes

Journal Article · · IEEE Transactions on Power Systems

In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system is closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1389319
Journal Information:
IEEE Transactions on Power Systems, Vol. 32; ISSN 0885-8950
Publisher:
IEEE
Country of Publication:
United States
Language:
English