skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compact nanomechanical plasmonic phase modulators [Ultracompact nano-mechanical plasmonic phase modulators]

Abstract

Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Here, such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.

Authors:
 [1];  [2];  [3];  [3];  [1]; ORCiD logo [4]
  1. Rutgers, the State Univ. of New Jersey, Piscataway, NJ (United States)
  2. Univ. of Colorado at Colorado Springs, Colorado, Springs, CO (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institute of Standards and Technology (NIST); US Air Force Office of Scientific Research (AFOSR); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1239326
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Photonics
Additional Journal Information:
Journal Volume: 9; Journal ID: ISSN 1749-4885
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Dennis, B. S., Haftel, M. I., Czaplewski, D. A., Lopez, D., Blumberg, G., and Aksyuk, Vladimir A. Compact nanomechanical plasmonic phase modulators [Ultracompact nano-mechanical plasmonic phase modulators]. United States: N. p., 2015. Web. doi:10.1038/NPHOTON.2015.40.
Dennis, B. S., Haftel, M. I., Czaplewski, D. A., Lopez, D., Blumberg, G., & Aksyuk, Vladimir A. Compact nanomechanical plasmonic phase modulators [Ultracompact nano-mechanical plasmonic phase modulators]. United States. doi:10.1038/NPHOTON.2015.40.
Dennis, B. S., Haftel, M. I., Czaplewski, D. A., Lopez, D., Blumberg, G., and Aksyuk, Vladimir A. Mon . "Compact nanomechanical plasmonic phase modulators [Ultracompact nano-mechanical plasmonic phase modulators]". United States. doi:10.1038/NPHOTON.2015.40. https://www.osti.gov/servlets/purl/1239326.
@article{osti_1239326,
title = {Compact nanomechanical plasmonic phase modulators [Ultracompact nano-mechanical plasmonic phase modulators]},
author = {Dennis, B. S. and Haftel, M. I. and Czaplewski, D. A. and Lopez, D. and Blumberg, G. and Aksyuk, Vladimir A.},
abstractNote = {Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Here, such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.},
doi = {10.1038/NPHOTON.2015.40},
journal = {Nature Photonics},
issn = {1749-4885},
number = ,
volume = 9,
place = {United States},
year = {2015},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Broadband nanoelectromechanical phase shifting of light on a chip
journal, February 2014

  • Poot, M.; Tang, H. X.
  • Applied Physics Letters, Vol. 104, Issue 6
  • DOI: 10.1063/1.4864257

Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides
journal, September 2006

  • Dionne, J. A.; Lezec, H. J.; Atwater, Harry A.
  • Nano Letters, Vol. 6, Issue 9
  • DOI: 10.1021/nl0610477

Modal analysis and coupling in metal-insulator-metal waveguides
journal, January 2009

  • Kocabaş, Şükrü Ekin; Veronis, Georgios; Miller, David A. B.
  • Physical Review B, Vol. 79, Issue 3
  • DOI: 10.1103/PhysRevB.79.035120

On long-range plasmonic modes in metallic gaps
journal, January 2007

  • Pile, David F. P.; Gramotnev, Dmitri K.; Oulton, Rupert F.
  • Optics Express, Vol. 15, Issue 21
  • DOI: 10.1364/OE.15.013669

Micrometre-scale silicon electro-optic modulator
journal, May 2005

  • Xu, Qianfan; Schmidt, Bradley; Pradhan, Sameer
  • Nature, Vol. 435, Issue 7040
  • DOI: 10.1038/nature03569

Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions
journal, January 2006


Negative Refraction at Visible Frequencies
journal, April 2007


Flat optics with designer metasurfaces
journal, February 2014

  • Yu, Nanfang; Capasso, Federico
  • Nature Materials, Vol. 13, Issue 2, p. 139-150
  • DOI: 10.1038/nmat3839

Guided subwavelength plasmonic mode supported by a slot in a thin metal film
journal, January 2005


Ultra-compact silicon nanophotonic modulator with broadband response
journal, January 2012

  • Sorger, Volker J.; Lanzillotti-Kimura, Norberto D.; Ma, Ren-Min
  • Nanophotonics, Vol. 1, Issue 1
  • DOI: 10.1515/nanoph-2012-0009

PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator
journal, February 2009

  • Dionne, Jennifer A.; Diest, Kenneth; Sweatlock, Luke A.
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl803868k

A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology
journal, January 2013


A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity
journal, November 2012

  • Sun, Xiankai; Zhang, Xufeng; Poot, Menno
  • Applied Physics Letters, Vol. 101, Issue 22
  • DOI: 10.1063/1.4769045

Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales
journal, May 2011

  • Sorger, Volker J.; Ye, Ziliang; Oulton, Rupert F.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1315

High-speed plasmonic phase modulators
journal, February 2014


A microelectromechanically controlled cavity optomechanical sensing system
journal, July 2012


The resonant gate transistor
journal, March 1967

  • Nathanson, H. C.; Newell, W. E.; Wickstrom, R. A.
  • IEEE Transactions on Electron Devices, Vol. 14, Issue 3
  • DOI: 10.1109/T-ED.1967.15912

Quantum conductivity for metal–insulator–metal nanostructures
journal, January 2014

  • Haus, Joseph W.; de Ceglia, Domenico; Vincenti, Maria Antonietta
  • Journal of the Optical Society of America B, Vol. 31, Issue 2
  • DOI: 10.1364/JOSAB.31.000259

Plasmon Nanomechanical Coupling for Nanoscale Transduction
journal, June 2013

  • Thijssen, Rutger; Verhagen, Ewold; Kippenberg, Tobias J.
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl4015028

Monolithic Silicon Integration of Scaled Photonic Switch Fabrics, CMOS Logic, and Device Driver Circuits
journal, February 2014

  • Lee, Benjamin G.; Rylyakov, Alexander V.; Green, William M. J.
  • Journal of Lightwave Technology, Vol. 32, Issue 4
  • DOI: 10.1109/JLT.2013.2280400

Giant Piezoresistive On/Off Ratios in Rare-Earth Chalcogenide Thin Films Enabling Nanomechanical Switching
journal, September 2013

  • Copel, M.; Kuroda, M. A.; Gordon, M. S.
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl401710f

Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides
journal, July 2006

  • Pile, D. F. P.; Gramotnev, D. K.
  • Applied Physics Letters, Vol. 89, Issue 4
  • DOI: 10.1063/1.2236219

High quality factor gigahertz frequencies in nanomechanical diamond resonators
journal, November 2007

  • Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj
  • Applied Physics Letters, Vol. 91, Issue 20
  • DOI: 10.1063/1.2804573

Giant Piezoelectricity on Si for Hyperactive MEMS
journal, November 2011


Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides
journal, January 2008

  • Chen, Jing; Smolyakov, Gennady A.; Brueck, Steven R.
  • Optics Express, Vol. 16, Issue 19
  • DOI: 10.1364/OE.16.014902

Plasmonics for extreme light concentration and manipulation
journal, February 2010

  • Schuller, Jon A.; Barnard, Edward S.; Cai, Wenshan
  • Nature Materials, Vol. 9, Issue 3
  • DOI: 10.1038/nmat2630

Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity
journal, March 2006


Slow-light photonic crystal switches and modulators
conference, February 2010

  • Beggs, Daryl M.; White, Thomas P.; Kampfrath, Tobias
  • OPTO, SPIE Proceedings
  • DOI: 10.1117/12.840948

The forces from coupled surface plasmon polaritons in planar waveguides
journal, January 2009

  • Woolf, David; Loncar, Marko; Capasso, Federico
  • Optics Express, Vol. 17, Issue 22
  • DOI: 10.1364/OE.17.019996

Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper
journal, November 2012

  • Choo, Hyuck; Kim, Myung-Ki; Staffaroni, Matteo
  • Nature Photonics, Vol. 6, Issue 12, p. 838-844
  • DOI: 10.1038/nphoton.2012.277

Two-dimensionally localized modes of a nanoscale gap plasmon waveguide
journal, December 2005

  • Pile, D. F. P.; Ogawa, T.; Gramotnev, D. K.
  • Applied Physics Letters, Vol. 87, Issue 26
  • DOI: 10.1063/1.2149971

A low-voltage high-speed electronic switch based on piezoelectric transduction
journal, April 2012

  • Newns, Dennis; Elmegreen, Bruce; Hu Liu, Xiao
  • Journal of Applied Physics, Vol. 111, Issue 8
  • DOI: 10.1063/1.4704391

Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy
journal, July 2009


Plasmonics beyond the diffraction limit
journal, January 2010

  • Gramotnev, Dmitri K.; Bozhevolnyi, Sergey I.
  • Nature Photonics, Vol. 4, Issue 2, p. 83-91
  • DOI: 10.1038/nphoton.2009.282

Nanoplasmonics: past, present, and glimpse into future
journal, January 2011


Novel surface plasmon waveguide for high integration
journal, January 2005


Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization
journal, January 2006


RF MEMS Switches With $\hbox{RuO}_{2}$ –$\hbox{Au}$ Contacts Cycled to 10 Billion Cycles
journal, June 2013

  • Czaplewski, David A.; Nordquist, Christopher D.; Patrizi, Gary A.
  • Journal of Microelectromechanical Systems, Vol. 22, Issue 3, p. 655-661
  • DOI: 10.1109/JMEMS.2013.2239256

Electronic Structure of the Si(111)2 × 1 Surface by Scanning-Tunneling Microscopy
journal, November 1986


Scaling for gap plasmon based waveguides
journal, January 2008


High-speed plasmonic Mach-Zehnder modulator in a waveguide
conference, September 2014

  • Haffner, C.; Ducry, F.; Kohl, M.
  • 2014 European Conference on Optical Communication (ECOC), 2014 The European Conference on Optical Communication (ECOC)
  • DOI: 10.1109/ECOC.2014.6964271

Toothed Mid-Infrared Metal-Insulator-Metal Waveguides
conference, January 2011

  • Anglin, K.; Adams, D. C.; Ribaudo, T.
  • CLEO: Science and Innovations, CLEO:2011 - Laser Applications to Photonic Applications
  • DOI: 10.1364/CLEO_SI.2011.CTuS4

Silicon Plasmonic Waveguides for the Infrared and Terahertz Regions
conference, January 2008

  • Soref, Richard; Peale, Robert E.; Buchwald, Walter
  • Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing
  • DOI: 10.1364/META_PLAS.2008.MTuD7

Design and modeling of an ultra-compact 2x2 nanomechanical plasmonic switch
journal, January 2015


    Works referencing / citing this record:

    Design and modeling of an ultra-compact 2x2 nanomechanical plasmonic switch
    journal, January 2015