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Deep-subwavelength confinement'® of the optical energy in plasmonic devices®’ is advancing
miniaturization in photonics. However, for mode sizes approaching = 10 nm, the energy in-
creasingly shifts into metal®, raising losses and hindering active phase-modulation. Here we
propose a nano-electromechanical phase-modulation principle exploiting the extraordinarily
strong dependence of the phase velocity of metal-insulator-metal (MIM)® gap plasmons on
dynamically variable gap size.'®"! We demonstrate a 23 pm long non-resonant modulator
having 1.5 it rad range with 1.7 dB excess loss at 780 nm. Analysis shows an ultracompact
1pm’-footprint it rad phase modulator can be realized, more than an order of magnitude
smaller than any previously shown. Remarkably, this size reduction is achieved without incur-
ring extra loss, since for plasmons confined in a decreasing gap, the increasing phase-
modulation strength offsets rising propagation losses. Such small, high density electrically
controllable components may find applications in optical switch fabrics'? and reconfigurable
flat plasmonic optics®.

Phase modulators, often used as active elements in photonic switches, enable flexible
provisioning of communication channels and reconfiguration of networks at the physical layer.
The application requirements for switches are distinct from those of data modulators: switching
can be slower than data modulation rates, with a premium put on compactness, low power con-
sumption, wide optical bandwidth and low optical losses. As nanophotonic optical communica-
tion architectures and technologies are being developed in response to inter-chip and on-chip
electronic bottlenecks, more compact, low-power optical switch fabrics, with 1 us to 10 ns
switching times, would enable new functionality, such as flexible signal routing and dynamic
reconfiguration of the optical layer, architecturally analogous to electronic field-programmable
gate arrays.

Several different modulation principles have been proposed and used to realize a variety
of compact phase modulators. Because most of them are aimed at data modulation, none directly
explore the ultimate limits of size scaling, with the smallest footprint ~ 30 pm?®. The non-
resonant devices have limited phase modulation strength per area and include thermo-optical de-
vices'* with large power dissipation, very fast slot plasmon electro-optical devices,'>'® where
device size is limited by the Pockels effect, and electro-mechanical devices.'” Resonant electro-
optical'® and electro-mechanical'’*° devices achieve higher phase-modulation strength at the ex-
pense of reduced optical bandwidth. Semiconductor and plasmonic devices®'** based on carrier
concentration change tend to have large absorption modulation that results in high excess loss for
phase modulation. These, as well as optomechanical plasmonic-resonance devices™, work well
as intensity modulators, which are not suitable for realizing passive 1x2, 1xN or NxN switch fab-
rics.



In this letter, we propose and demonstrate a gap plasmon phase modulator (GPPM),
where the effective refractive index for in-plane gap plasmon (GP) modes varies strongly with
applied voltage squared, exhibiting an effective Kerr nonlinearity [Supplementary]. GPs are
broadband optical propagating modes”'' that can be vertically and laterally confined to
sub 100 nm gaps between two metal layers, forming some of the smallest known optical wave-
guides and resulting in significant field enhancements.'”**** Low loss coupling into such small
GP waveguides has been demonstrated®>°, enabling efficient connections to conventional dielec-
tric waveguides for long distance interconnects.

The GPPM exploits the high sensitivity of the GP phase velocity to changes in the gap
size by making one of the metal layers mechanically moveable via electrostatic actuation. No
optical resonator is used to enhance the phase modulation and there is no low-frequency guided
mode cutoff,”” making the modulation principle optically broadband, capable of operating from
the visible to the far-infrared.'®**>° The phase modulation strength per area of our experimental-
ly demonstrated GPPM is comparable to that of resonant devices and an order of magnitude bet-
ter than that achieved in mechanically-tuned dielectric slot waveguides.'” While in dielectric
slots the effective index tends to a fixed value as the gap is reduced, in GP it continues to in-
crease steeply, underlying the unique GPPM scalability.

The nature of confined energy modes at optical frequencies in plasmonic devices can it-
self be understood as electro-mechanical®' as opposed to electro-magnetic, with the kinetic ener-
gy of electrons, together with the Coulomb energy, playing a critical role and enabling localiza-
tion at much smaller scales. This confinement comes at the expense of increased losses through
inelastic electron scattering, which may impose fundamental limitations on scaling of any plas-
monic device and thus should be thoroughly understood. We present an analytical investigation
showing, remarkably, that our GPPMs can be scaled down by at least a factor of 100 in area to a
sub 1 um’ footprint, while maintaining the > & rad modulation depth and =~ 5 dB optical loss.
The optomechanical modulation strength increases with decreasing gap, and the propagation
losses can be kept constant by shortening the device length.

The details of the GPPM are shown in Fig. 1, where Fig. 1a shows the GPPM located in a
Mach-Zehnder interferometer (see Methods). A close-up shows the GPPM as an electrostatically
tunable gold-air-gold waveguide fabricated from a gold-SiO,-gold MIM stack (see Methods)
with a device dependent initial air gap, go = g(V=0), between 270 nm and 280 nm. The top gold
film is patterned into eleven suspended deformable metal bridges, each 23.0 £ 0.5 um in length
and 1.50 £ 0.07 wm wide supported at both ends by SiO; pillars. A GP, launched via grating
coupling with a focused free-space excitation laser, propagates underneath and along the bridges.
A focused reference beam, split from the excitation laser and incident at 13.2°, interferes with the
plasmon at the out-coupler slit. Light is collected from below and imaged onto a camera. As
shown in Figs. 1 c-e, when a voltage is applied, the electrostatic force deforms the bridges down
into an approximately parabolic shape, narrowing the MIM gap at the bridge center, g(V),by
about 80 nm (device dependent) as the voltage increases up to a maximum of 7 V and phase-
retards the GP. To avoid electrostatic “pull-in”** where the top gold bridges snap-down to the
bottom gold surface, the bridges are not actuated beyond one-third of go.To measure the GPPM
optical performance, a 780 nm wavelength Gaussian laser beam is focused from above onto an
in-coupler grating cut into the top film at the GPPM input, launching a collimated Gaussian GP
mode into the device propagating in the x-direction. An out-coupler slit parallel to the y-direction
at the output of the GPPM is used to sample the modulated plasmon using a microscope from
below. A window in the top gold film above the out-coupler slit allows introduction of a tilted-
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reference optical beam for phase-sensitive imaging of the modulated plasmon. Using a Mach-
Zehnder type interferometer with the reference split off from the excitation laser, both the GP
phase retardation and optical loss are measured as a function of g(V) by electrostatically control-
ling the GPPM bridge displacements (see Fig. 1 and Supplementary). We collect optical micro-
graphs of the out-coupled GP light with and without the reference optical beam at different ap-
plied DC voltages. The interference and GP-only intensity profiles are extracted by integrating
the micrograph data in the direction normal to the slit (see Fig 2a, top for a representative inter-
ference micrograph).

Fig. 2 shows these profiles at different applied voltages for one of the devices. The inter-
ference patterns shift to the right as the GP phase is retarded with the increased voltage, while in
the absence of the reference beam the main change is a slight decrease in the plasmon intensity.
The GP-only profile shapes (Fig. 2b) are fit by a common Gaussian profile with intensity as the
only adjustable parameter for each voltage, as they are created by the Gaussian excitation beam
focused on the in-coupler grating. The interference profiles (Fig. 2a) are fit well by the expected
interference pattern®® between the known, common reference Gaussian beam and the measured
GP-only intensity data for the particular voltage from Fig 2b. The good agreement indicates that
the GP remains collimated with a flat wavefront and no phase distortion is introduced by the
GPPM. The GP phase relative to the reference beam is the only adjustable parameter for each
profile fit, while the intensity of the reference Gaussian is a single extra adjustable parameter that
is common for all the interference micrographs for a given device. All other parameters includ-
ing the reference Gaussian width, center and the wavefront angle are separately measured and
fixed (see Methods).

Fig. 3a shows the phase change induced by the GPPM with 0.0 V to 7.0 V applied, as a
function of g(V), which is measured at the narrowest point at the center of the device. The excess
optical power loss, caused by the narrowed gap under the actuated bridges can be seen in
Fig. 3b, which plots the integrated areas of Gaussian intensity fits from Fig. 2b normalized by
that of the unactuated device. A phase shift exceeding 5 rad is achieved, while the corresponding
excess loss is near 30 % (1.7 dB) (gold data points in Fig. 3) when the g(V) is tuned by approx-
imately 30 %, from 270 nm to 190 nm.

The GPPM has an average optomechanical modulation strength of 52 mrad/nm =+ 4

mrad/nm, producing a maximum 37” rad phase shift, which can be compared to the g rad shift

demonstrated in a 170 um long optomechanical dielectric device.” A modulation range in ex-
cess of i radians is required by many practical switching and modulation applications. To under-
stand the GPPM performance, we developed semi-analytical models of one dimensional GP
propagation as well as a comparison to electro-optic modulation [Supplementary]. The analytic
results of GP phase shift and intensity calculations agree well with measured data (Fig. 3a, b sol-
id line). The calculated intrinsic insertion loss, through an unactuated device is 5.3 dB.

Unlike dielectric waveguides, MIM waveguides support a guided mode for any frequency
below the surface plasmon (SP) resonance and for gaps down to the single nanometer range,
where below that, local classical theory begins to break down.>> The effective index increases
and the GP wavelength decreases dramatically in small gaps."'° Moreover, the strength of the
phase modulation in this geometry increases (inset of Fig. 3a) approximately inversely with the
square of gy, so that d¢/dg ~ 1/g°, in agreement with previous theoretical analysis,'® making it
particularly appealing for nanoscale motion sensing and on-chip optical actuation in applications
where strong yet broadband optomechanical coupling is required. Decreasing g, increases optical
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propagation losses, as a larger fraction of the optical power travels inside the metal. If the bridge
length (optical travel distance) is also decreased, for each length there is a corresponding g
(Fig. 4a inset) such that the insertion loss (loss through an unactuated device) remains constant,
e.g. at 1/e power (4.3 dB) with length scaling ~ go"*. The striking result shown in Fig. 4a,b is
that if we scale down the GPPM dimensions in this way, we will maintain the phase modulation
range without incurring a loss penalty while simultaneously reducing both the length and gy, by
an order of magnitude or more, as the calculated phase and excess loss vs. g(V) plots illustrate.
In fact, the phase modulation range stays constant with miniaturization for a given optical loss.
For gy much smaller than the SP evanescent decay distance, universal scaling emerges between
the phase shift and the excess loss such that they are linearly related regardless of gy, e.g. as g(V)
is decreased to 72 % of g, the phase modulation stays constant at it radians and there is a small
excess loss of 0.8 dB (Fig. 4b inset) independent of the device scale.

For static MIM devices it has already been shown that the lateral dimensions can be
scaled down together with gy and that low-loss coupling from larger mode waveguides suitable
for long-distance signal transmission can be achieved.>” Coupling efficiency > 70 % was
demonstrated, coupling from a waveguide 500 nm wide x 200 nm high to an 80 nm x 17 nm
waveguide using a 29° linear coupling taper.” As long as the device width is larger than gy, the
optical mode remains well-confined in the gap under the bridge.” Our GPPM model is quantita-
tively valid for device widths larger than approximately half the GP wavelength (estimated as
710 nm in the experiment, n.y = 1.1). As the effective index increases and GP wavelength de-
creases with go (= 370 nm and n.r = 2.1 for go- 17 nm), the width of the device can be reduced
further as well. By way of example, approximately 10x linear downscaling keeps losses near
5 dB in a broadband, non-resonant modulator with a footprint < 1 wm* (go-17 nm, 400 nm
bridge width and 2 wm bridge length). In such a scaled GPPM the optomechanical modulation
strength is increased approximately inversely with gy to about 560 mrad/nm, despite the length
decrease. Importantly, the electrostatic actuation amplitude also scales favorably with miniaturi-
zation. Within the applicability of linear bridge -bending theory without in-plane stress the shape
of the deformation remains self-similar, and the same percentage gap actuation can be achieved
stably, without electrostatic pull-in, with voltage that scales as ¥ ~ g’/L* where L is bridge
length and ¢ is bridge thickness (see Methods). The displacement available before pull-in is al-
ways sufficient for t phase modulation, since both scale inversely with gy. Given the bridge -
length/ gy combinations chosen according to the chosen scaling constraint of Fig. 4a inset, V' ~ ¢
2 is constant at fixed bridge thickness, and approximately independent of the bridge length and
go. If necessary, the bridge thickness can easily be scaled down by a factor of 4 or more (while
staying well above the optical skin depth of approximately 25 nm), reducing the actuation volt-
age below 1 V, to a level compatible with low voltage CMOS circuitry.

The inset of Fig. 1e shows that the realized GPPM has resonance frequency of 812
kHz + 6 kHz, an air-damping-dominated quality factor of 2.74 + 0.14, and was actuated at a
drive frequency up to I MHz. While we emphasize that very high modulation frequency is not
required for the envisioned on chip optical switching and reconfiguration applications, the me-
chanical resonance frequency scales as ~ #/L° and is able to increase up to =~ 100 MHz with fixed
bridge thickness and drive voltage. The expected lifetime of the devices should far exceed Au
bodied micromechanical switches that have achieved over 10B cycles because the GPPM avoids
contacting surfaces that are the main failure mechanism of the switches*®*’. Furthermore, non-
plasmonic nanomechanical cantilever devices of similar dimensions have been made operating
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up to 1 GHz with careful material choice, ***’

tentially operate at low voltage with the use of piezoelectric actuation.

Considering the negligible power dissipation of its electrostatic-drive, actuation voltages
at the level of the smallest high speed transistors, its length scale and feature size at the level of
CMOS metallization layers, its broadband optical operation and its reasonable speed, we argue
that a GPPM can play a unique and important role as a building block for optoelectronic integra-
tion. A device with these features is particularly well suited as an element for on chip reconfigu-
rable switch fabrics for future dynamic inter- and intra-chip optical communication architectures.

Passive 3 dB couplers and single mode waveguides can be implemented in a narrow gap
MIM together with phase modulators to form for example Mach-Zehnder 2x2 switches™ It is
possible to array modulators side-by-side to form spatial plasmon modulators and implement, for
example, single-stage 1xN switching and arbitrary multiport beam splitting: functionalities
demonstrated using spatial light modulators in free space. Reconfigurable routing of photonic
signals or reconfigurable flat plasmonic optics, where local phase modulation across an extended
GP wavefront could be used to shape, focus or guide GP propagation via independent actuation
of multiple adjacent modulators. The authors chose a multiple- bridge GPPM as a step in that
direction when a single bridge device would have sufficed.

In summary we have experimentally demonstrated exceptionally strong optomechanical
transduction with low optical losses in electrostatically actuated nanoscale gap MIM plasmon
modulators. The 23 um long GPPMs, with an average optomechanical modulation strength of
52 mrad/nm at 780 nm, achieved a maximum of 5 radians of phase modulation with low inser-
tion and excess losses. An analytical model in good agreement with the measurements argues for
direct miniaturization of these devices to sub 1 um?” footprint without degradation in optical per-
formance and with an increase in speed and decrease in actuation voltage. This new concept ena-
bles a new class of on chip optical switching and optical circuit reconfiguration functionality.

and such a fast, yet ultrasmall modulator can po-
40-42

Methods

Nano-fabrication and operation. A gold-Si0O,-gold stack with sputtered Au and PECVD
(plasma enhanced chemical vapor deposition) SiO, layers, all three 220 + 5 nm thick, was de-
posited onto nominal 500 pum thick borosilicate glass with = 10 nm Cr adhesion layer located
between the substrate and bottom Au layer and = 2 nm thick Ti adhesion layer between the SiO,
and Au layers. All device features, except the out-coupler slit, were lithographically written with
EBL (e-beam lithography) using = 500 nm PMMA (poly methyl methacrylate) e-beam resist.
After resist development, device components were Ar ion milled into the top Au layer. The
bridges were released by wet etching of the underlying SiO, in 6:1 BOE (buffered oxide etch)
with subsequent CO; critical-point drying. The SiO, was completely removed everywhere below
the lithographic patterns leaving a lateral undercut of = 2.5 um. After release, the SiO, pillars
supporting the bridges at their ends were ~ 3 um wide in the direction of GP propagation. The
out-coupler slits were = 150 nm wide by = 20 pm long and were cut with a focused ion beam
(FIB). The suspended in-coupler gratings composed of strips = 18 um long and = 400 nm wide
with periods of = 720 nm and = 760 nm were electrically grounded to avoid unintended actua-
tion.

An electrically isolating 2 um wide trench in the top Au layer surrounded the GPPM
components (partial-view in Fig. 1b). A narrow wire nano-fuse connected the area inside the



trench to that outside to allow charging to dissipate during scanning electron microscopy and
FIB. The nano-fuses were electrically severed before electrostatic bridge actuation. The actuation
voltage between the bridges and the bottom gold film was applied via probes electrically con-
nected to the top and bottom films.

The GP-only intensity profiles seen in Fig. 2a exhibit some non-Gaussian behavior that
we attribute to small fluctuations in the heights (gaps) of individual bridges when stress was re-
lieved in the top gold and PMMA during release. This effect varied from device to device and
can be seen in the intensity variations as the gap is narrowed (Fig. 3b).

Interferometer. A Mach-Zehnder-type interferometer was used to measure the phase shift be-
tween a GP and a reference laser beam. It consists of an inverted microscope custom fitted with a
top excitation objective and beam steering optics. Laser light (A = 780 nm, linewidth <200 kHz
and power ~ 0.2 mW) was fiber-coupled to the top, collimated to about 1.5 mm, and incident up-
on a 50/50 beamsplitting cube. Half of the light was directed to the objective while the other half
formed a reference beam, circling back on itself using adjustable mirrors over a = 20 cm path
length before also travelling into the 10x excitation objective. The excitation beam, an 8 um di-
ameter focused spot, was placed onto the in-coupler grating, directly launching a GP through the
waveguide. The reference beam was focused onto the out-coupler slit at a 13.2 + 0.05° angle
with respect to the normal. Near the out-coupler slit the top gold film was removed and the GP
from the device continued to propagate as an SP on the gold-air interface. The propagation dis-
tance between the in-coupler and out-coupler is 60 um << 165 wm, the estimated Rayleigh range
of the plasmon. At the slit, the reference beam interference with the propagating SP developed
into fringes. Gap narrowing by electrostatic beam actuation causes GP phase velocity retardation,
and thus shifts the interference fringes compared with their initial positions. The angled reference
beam was chosen to show multiple interference fringes across the out-coupler slit. For each de-
vice the reference beam intensity is adjusted to maximize interference visibility before voltages
are applied.

The reference incidence angle was measured with no device in place by analyzing a se-
ries of images of the reference laser spot as it moved across the microscope objective focal plane
as the objective was translated vertically by a known amount.

Static and dynamic displacement measurement. A commercial white light optical profiler
with diffraction limited in-plane resolution and below 1 nm out-of-plane resolution was used to
measure vertical bridge displacements. The dynamic mechanical response of the GPPM was
measured with a strobed white light using harmonic actuation voltages (1.5 V peak-to-peak sine
wave with a 0.75 V DC bias) up to 1 MHz. The strobed pulses were phase delayed for a phase
sensitive motion measurement. The response amplitude can be seen in Fig. le where it is fit by a
dampened harmonic oscillator model.

Gaussian interference fits. The phase difference between the GP and reference laser was ex-
tracted from Gaussian interference fits of the measured interference profiles seen in Fig. 2a and
is the only variable used. The fits use: 1) GP-only intensity profile data like that seen in Fig. 2b;
2) Gaussian reference beam parameters (width, peak position and integrated area) extracted from
measured interference profiles with the reference beam intensity maximized; and 3) independent-
ly measured reference incidence angle (Fig. 2a). Fits from the data of one device can be seen
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plotted in Fig. 2a. The results in Fig. 3 from several devices are the same within the experimental
error when adjusted for the initial phase differences caused by slightly different unactuated gaps.
Uncertainty. The uncertainties reported throughout the manuscript represent one standard devia-
tion statistical uncertainties, unless otherwise indicated. The uncertainty in device sizes is given
by a conservative estimate of the scale calibration accuracy of the electron microscope used. The
uncertainties in the g(V) values are the standard deviations of g(V) under different bridges in a
single device under a given applied voltage, likely due to mechanical variations from bridge to
bridge. The measurement imprecision and errors in actuation repeatability are much smaller. The
uncertainty in the phase measurement is dominated by the slow drift of the optical wavelength,
which results in a phase drift between excitation and reference beam going through unequal
paths. Therefore we make separate reference unactuated phase measurements before and after
each nonzero voltage phase measurement. We use the variation in the unactuated measurements
to establish the statistical phase measurement uncertainty reported, while the statistical uncertain-
ty of the fitting procedure for each individual interferogram is much smaller.

Theory. To theoretically understand the GPPM performance, we developed a semi-analytical
model of one dimensional GP propagation, assuming an infinitely-wide plane wave GP, quadrat-
ic bridge profiles, semi-infinite MIM gold layers and vacuum in the gap. The device was broken
into 1 nm intervals in the direction of GP propagation with each interval assigned a gap-
dependent effective refractive index and the corresponding wavenumber. Using continuity
boundary conditions from Maxwell’s equations, the phase shift and intensity was cumulatively
calculated. The analytic results of GP phase shift and intensity calculations agree well with
measured data (Fig. 3a, b solid line) [Supplementary]. While the modeling procedure includes
both forward and backward propagating waves, under the experimental conditions the gap
changes adiabatically and the back-propagating power was found to be negligible throughout the
model

Mechanics. The electrostatic pressure P at the cantilever bottom is proportional to P ~ (V/g)”.
Within the applicability of linear elastic bridge bending theory without in-plane stress the shape
of the deformation remains self-similar with size scaling, and the magnitude is proportional to
z~P-L*/F, thus if we require z ~ g, then g ~ (V/g)*-L*/¢ or V° ~ g’ /L".



Actuated bridge profiles

o

UOI1B1IIX

50+

, Displacement (nm)

“beam
splitte

objective| 10« |  gfdlllls N\ ________\N_____ ______
t | L8 Au o B0 ‘
GPPM bridges outcotpiEr % air mmy = o ]
L > S|02 ! % §sf  f=82KHz ]
objective| 4 PR inter- : g sol2 Q=27
ference [ & 8 oty
(] Frequency (MHz)
Il o
| .2
12 of
a) ! 1 2 3 4 5 6 7
‘l__x________________________Je Voltage (V)

Figure 1 | GPPM. a, Schematic: Laser light was split into excitation and reference paths and
coupled through the top objective to the in-coupler grating and out-coupler slit, forming a
Mach-Zehnder interferometer. GPPM zoom-in: MIM gap plasmons are directly launched via
grating coupling with a focused free-space excitation laser, propagate under the eleven gold
bridges and exit as surface plasmons>: to the bottom gold/air interface. A focused reference
beam, split from the excitation laser and incident in the yz plane at 13.2°, interferes with the
plasmon at the out-coupler slit. Light is collected from below and imaged onto a camera. Elec-
trostatic actuation of the bridges towards the substrate phase-retards the GP. g(V) is the mini-
mum gap when the bridge is actuated. b, Scanning electron micrograph of the GPPM with car-
toon overlays of the excitation and tilted reference lasers, propagating GP and interference
fringes at the out-coupler. The 11 bridges are 1.5 um wide separated by 150 nm. ¢, Interfero-
metric micrograph showing GPPM bridges actuated towards the substrate with 6.5 V. Depth
exaggerated and color coded for clarity (see Methods). d, Electrostatically actuated bridge dis-
placement profiles. e, Bridge displacement at the middle vs. actuation voltage. The solid red
line is a guide for the eye. Inset: Bridge’s displacement amplitude vs. the frequency of applied
harmonic electrostatic excitation. Line is a simple harmonic oscillator fit.
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Figure 2 | Measured out-coupler intensity profiles. a, Evolution of the interference fringes with
actuation voltage. Points are raw data and solid lines are interference fits with varying phase.
Note that peaks at 0.0 V (red) become troughs at 7.0 V (magenta). The actual phase shift ex-
tracted from this data, seen in Fig. 3a (red), accounts for a slight interferometric phase drift
(Methods). Inset (top): Color mapped image of the interference fringes seen at the out-coupler
slit at 7.0 V. The dark magenta regions correspond to the interference peaks directly below. The
intensity profiles were obtained by vertical integration along x of the pixel intensities between
the dashed lines. The diffractive spread of the out-coupled light is shown. b, GP intensity with-
out the reference beam vs. relative position across the out-coupler slit. Solid lines are Gaussian
fits. All plots in this figure are vertically shifted for clarity.
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Figure 3 | GPPM phase modulation and excess optical loss a, Plasmon phase shift A® relative
to the unactuated device state vs. gap. Green line is a calculation and points are measured
(three devices are the same within the experimental error when adjusted for the initial phase
differences caused by slightly different unactuated gaps). g(V) is the minimum gap created
when a bridge is actuated. The vertical error bars are * the standard deviation due to random
interferometer phase drift. Horizontal error bars are * the standard deviation of the displace-
ment of multiple individual bridges. Inset, Extended range plot showing increased phase modu-
lation strength and effective index tuning at small gaps. b, Integrated GP intensity I, vs. g(V)
from Gaussian fits of several devices. Analytical (green line) and data points are normalized to
the unactuated GP intensity lo. Vertical error bars are + the standard error from Gaussian fits of
intensity profiles.
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Figure 4 | GPPM Scaling a, Calculated phase shifts vs. gap g(V) for initial gaps go varying from
280 nm down to 20 nm. The bridge length of each line is chosen to give a 1/e (-4.3 dB) insertion
loss for a given gq (inset). The lines show how the phase changes as g(V) is actuated down from
100 % to 40 % of go. Identically-colored points indicate the same percent bridge actuation. An
actuation depth of = 72 % results in a phase shift of it radians (dashed line) and avoids pull-in.
Regardless of go, for the same percent actuation depth, the phase shift is almost constant as
indicated by the horizontal rows of identically-colored points. b, Calculated excess loss vs. g(V)
using the same bridge lengths described. Excess loss is defined relative to the unactuated state.
The same universality is seen here; e.g. = 72 % actuation of gq gives = 0.8 dB loss (dashed line).
Inset: Phase shift vs. excess loss is linear and independent of device scale.
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Supplementary Figure S1 | GPPM details. a, Side view of the GPPM shows an MIM gap plas-
mon launched into and propagate through the actuated bridges and interfere with the refer-
ence laser at the out-coupler slit. Bridges can be pulled down to one third of the gap before
electrostatic actuation instability occurs. End view shows the tilted reference laser in a cross
section at the out-coupler slit. b, electron micrograph of the Au/SiO,/Au MIM cross-section.
Vertical arrows are 220 nm. Top Pt layer added for protection during cross-sectioning. c, All
bridge ends had an additional medial slit that aided in smoothing the optical surfaces of the
SiO, pillars during release.
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1. GPPM Analytical Model

To estimate the transmission and phase of a GP propagating in a GPPM (Fig. 1), a model is cho-
sen that consists of an MIM slot waveguide with a bottom flat gold surface, a gold bridge sus-
pended above the bottom gold surface, and vacuum in the gap between the bottom surface and
the bridge. The thicknesses of the bottom layer and beam are taken to be semi-infinite, which is a
good approximation if the thicknesses are much greater than the skin depth (= 25 nm). In the re-
sults that follow, we use constant heights and parabolic profiles, fit to the experimental devices.
The vacuum gap has a height profile 4(x) described by

hix) =hy (x<0orx>1L) (1a)
hx) =ax’ +bx+c¢ (0<x<L), (1b)

where a, b, and ¢ are such that the parabolic form give & = hy at x = 0 and x = L with a minimum
height A,,, at x = L/2, and L is the length of the parabolic region. Given that the GP propagating
in the waveguide is incident at x = 0, the transmission and phase as it exits the variable gap re-
gion at x = L (and the reflection at x = () are determined.

To estimate the GP field, GPs propagating in waveguides like those above with a con-
stant height profile /(x) = hy for various gaps h are first considered. For such an infinitely long
waveguide the spatial GP fields are given by

H,(x,z) = exp(ikx) [A; exp(ik.iz) + Biexp(-ik.iz)] (2a)
Ex(x,z) =(k/ko) exp(ikix) [A; exp(ik-z) — Biexp(-ik.iz)] (2b)
E.(x,z) =(-kv/ky) exp(ikix) [A; exp(ik.iz) + By exp(-ik.iz)], (2¢)

where / labels the layer (1 for bottom Au, 2 for vacuum, 3 for top Au) and
ke + ki =ki'e. (2d)

In Eq. (2), kp = w/c, x is the coordinate along the waveguide, z is the direction normal to the sur-
face and ¢ is the dielectric constant of layer /. The coefficients 4 and B are determined in each
layer by the continuity boundary conditions of the tangential components H, and E, at the two
gold-vacuum interfaces separated by the distance /. For a GP mode, the field must be bounded
in the z direction, i.e., the decay is in the negative z direction in layer one and in the positive z
direction in layer three. This means the vertical layer (i.e., z direction) coefficients A; = B; = 0
and k.; and k.3 have positive imaginary parts. This condition is satisfied only for discrete values
of k,, corresponding to guided modes. All modes but one have a low frequency cutoff, and for
small vacuum gaps in gold, in the visible and near infrared, only one complex value of &, satis-
fies this condition and is propagating (Re(k,) >> Im(k,)). The wave number k,, which depends on
ho, is denoted as kgp(hy).

The strategy is to utilize a spatially dependent wave number £, (x), equated to kgp(h(x)),in
integrating the fields in the x variable. Since only a constant k,(x) can be integrated analytically,
we discretize the parabolic region of the x axis into N equally spaced intervals and set the wave
number £, in each interval to a constant value £,,, appropriate to the height at the midpoint of the
interval, m, i.e.,
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kxm = kGP(h (xm)): (3)

where x,, is the midpoint of interval m. From this interval-dependent wave number, we define an
effective dielectric constant €. in interval m

Eeffm = kxm2 / k02~ (4)

The accuracy of a discretization method increases as the intervals become smaller. Also,
the discretization is more accurate if k,(x) is more slowly varying with x. The actual GPPM beam
height profiles only dip several tens of nm over beam lengths measured in um. Intervals of 50
nm gave results that differed from using 10 nm intervals by about 1 %. Actual calculations used
1 nm intervals.

The final approximation replaces the GP with a plane wave normally incident on a stack
of dielectric intervals with dielectric constants given by Eq. (4) (or wave numbers given by Eq.
(3)). Specifically the fields to be integrated have the form in interval m

H,(x) = Cyy exp(ikanx) + Dy exp(-ikemx) (52)
E(x) = (“kan/ko) [Con €xp(ikanx) — Din exp(-ikn)] (5b)

where C and D are coefficients determined by demanding continuity at each interval boundary,
subject to the outgoing wave boundary condition outside the last boundary and an incident plane
wave before the first, i.e.,
Co=1 (6a)
Dy = 0. (6b)

where N is the total number of intervals. The reflection coefficient is then simply R = |Dy|” and
the transmission coefficient 7= |Cy+,|*. One way to integrate Eq. (5) is to start with Cy; = I,
Dy+; = 0, then determine C,, and D,, in each interval, proceeding backwards starting from m = N
to m = 0, by demanding continuity in the fields of Egs. (5a) and (5b) at the boundary of intervals
m and m + 1. Doing this yields a value of Cj generally not equal to unity. Since all equations are
linear, all the C,, and D,, are renormalized such that Eq. (6a) is satisfied. This method avoids ma-
trix operations. In addition to transmission and reflection coefficients, the full fields inside the
parabolic region and on exiting are calculated, which means the amplitude and phase can be
tracked throughout. The main interest is in the phase shift A¢ and transmission intensity / as the
GP exits the parabolic (or bridge??) region of length L, where the phase shift is the difference in
phase between the exiting wave and that which would occur for a wave exiting this region when
the height profile is a constant 4(x) = hy. These quantities are given by

I =|C+if exp(-2 Im(kgp(ho)L)) (7)

Ap = Arg(Cy+1) (®)

The exponential factor in Eq. (7) occurs because the GP wave number is generally complex and
because the dielectric constant of gold is complex. Thus, even for a waveguide with planar sur-
faces separated by a constant height 4, losses determined by the exponential factor occur. Eq.
(8) determines the phase shift only to an integral multiple of 277 since the Arg function only takes
on values between -7r and 7. (In the final analysis, the 2ns differences have no physical conse-
quences for interference effects). To get the proper phase shift one needs to examine the phase
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shift at the end of each interval and whenever a jump of (or close to) + 2 occurs add (+ or -) 27
to the cumulative phase shift to make it (nearly) continuous. The overall phase shift is

A¢ = Z"m =1In A¢m
where A¢,, is the phase shift in the interval m.

Apn = Arg( Hy(xw)/[ Hy(xm-1) exp(kep(ho) (Xm = Xm-1))]) + 2nmt , (€)]
where x,, = m L/N and n,, =-1,0, or 1 if A¢, ~2m, 0, -27w, respectively, i.e., n, is such as to
keep the cumulative phase shift continuous whenever there is a + 2st jump from the Arg function.

In Eq. (5) the z-dependence of the SP fields is suppressed, as well as the longitudinal £, com-
ponent, which depends on the z-dependence of the magnetic field. One physical argument for
this is that the energy transfer in the SP is determined by the real Poynting vector S, and this
does not depend on the longitudinal component of the electric field. As for the z-dependence, it is
not explicitly involved in Eq. (5), but implicitly comes into play in Eq.(2) as integration of this
equation in the z direction determines kgp(hg) which eventually determines k., in Eq.(5). The
local approximation for the longitudinal wave number (Eq. (3)) depends (much like an adiabatic
approximation) on a slow variation in 4(x), which largely holds for the devices considered.

The gold dielectric constant we use in calculating kgp(hg) from Eq. (2) is determined by an
analytic fit to the frequency dependence of the values measured by Johnson and Christy.' In par-
ticular, for the wavelength of interest of 780 nm, the dielectric constant of gold used is e(4u-780
nm) =-22.4476 + 1.36505 i. The beam is divided into 1.0 nm layered segments and the boundary
condition matching of E% and H* is performed at each interface as in the discussion of Eq. (5).
The resulting GP phase shifts and intensities throughout are in good agreement with experiment.

2. GPPM vs. Electro-optic Phase Modulation at the Nanoscale

We present a derivation of the effective wavevector 8 for a parallel-plate uniform metal-
insulator-metal (MIM) geometry in order to elucidate the phase modulation performance of both
mechanical gap modulation as well as electro-optic modulation by changing the dielectric index
inside the gap.

2.a Analytical description of MIM wavevector
The equations” relating 8 and the two decay constants inside the dielectric (k,) and the
two metal (k,) regions are:

ﬁZ = k% + kgé‘l = k% + kggz
_ k& (D
tanh kya = ks,
where k, = 21/ 2, is the wavevector in vacuum, & is the dielectric constant of the dielectric, &,
is the dielectric constant of the metal and a = g/2 is half the gap. These algebraic equations
have exact numerical solutions, which we implement in a simple matlab function [Supplemen-
tary 2.c]. However, for small gaps compared to the decay rate inside the dielectric:

tanh k,a = kya and k?a = —j—lkz

2

Noting that Re(k,) > 0, to ensure fields decay into the metal toward infinity,

18



B = k% + ke, = Jkgel +2 (;—g)2 - Zi\[("‘—l)2 +k2(ey — &) )

€29 €29

is the explicit solution for the wavevector.

By comparing with the exact solution, we see that for gaps below 200 nm the approxima-
tion is valid and the difference between the exact and the approximate solutions is under 5% and
decreasing toward smaller gaps. Qualitatively, this formula is valid as long as the MIM gap is
much smaller than the decay rate into the dielectric half-space for a surface plasmon (SP) on a
single metal interface at the corresponding optical frequency.

It is instructive to consider two limiting cases. In the limit of extremely small gaps such

(=)
&9

that

|k§ (61 — &2)] <

equation (2) reduces to
281

pr- 3)
and
dp  2&
dg ~ £,0°
In the opposite limit (larger gaps), but still smaller than the SP decay into dielectric:
~ — _Ya~é&
B~ —kover (1-22) 4
and
% _N&a—&
dg — &g?

In both cases P is inversely proportional to the gap to the leading order, and so are the effective
index and the inverse loss distance. The phase modulation per unit modulator length for a fixed
small change in gap is « g~2. In practice, when the modulator is scaled down, we scale down the
motion so it is a fixed fraction of the initial gap. Under these conditions the motion is linearly
decreasing with smaller gap size, and the resulting modulation per unit length of the modulator
grows « 1/ g-

In Fig. S2, we plot the phase modulation per 780 nm travel distance (modulator length)
achieved via modulation of the gap from 100 % of an initial gap to 70 %, as a function of the ini-
tial gap. The wavelength of light is 780 nm, &; = 1, and &, = —22.4476 + 1.36505i. The line is
the exact theory without linearization (eq. 1). The two dotted lines illustrate the two linear limit-
ing cases (eq. 3,4). Symbols are results of an independent finite element calculation solving a 2D
modal problem through a section of MIM with periodic boundary conditions using a commercial
finite element solver.
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Supplementary Figure S2 | Phase modulation vs. gap. Phase modulation for a 30% gap de-
crease from the initial value for a 780 nm MIM travel distance for 780 nm vacuum wavelength
gap plasmon traveling in a gold-air -gold MIM structure. Solid line — exact theory, dotted lines —
limiting cases for small and large initial gaps, symbols — finite element calculation.

We also note that this linear dependence of phase modulation on the gap is in agreement
with the linear optical force dependence on the gap predicted in Woolf et al.” The phase modula-
tion and the force are directly related.”

2.b Comparison of mechanical and electro-optic modulation

For illustration, we now compare mechanical modulation of the phase with electro-optic
modulation. For the electro-optic case, we pick a state of the art electro-optic polymer’ and first
calculate the maximum modulation of the dielectric index for this polymer. We use

An = %n3r33Emax
where the n = 1.83 is the initial index of refraction, the electro-optical coefficient is chosen as
133 = 200 pm/V and, for the most generous possible estimate, we pick applied field E,,,,,, = 200
V/um, exceeding the saturation field of the poling curves® and much larger than the maximum
applied fields reported’. These choices result in An = 0.12 and, therefore, we compute the mod-
ulation that is achieved by changing the MIM dielectric index from 1.83 to 1.71. We use the
same equations derived above, assuming the dielectric is fully and uniformly modulated, while
the gap is not changed.

A commonly used figure of merit for electro-optic modulators is V., which can be used to
calculate the amount of phase modulation for a given applied voltage. However, for phase modu-
lators, another important performance limiting number is loss, and therefore we consider the
amount of modulation that can be achieved for a given insertion loss. As long as the voltage is
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within a few volts and the modulation/switching speed is moderate, losses are the more im-
portant performance limiting factor for a large number of applications.

As is the case in Fig. 4 in the main text, we plot in Fig. S3 the amount of modulation achieved
with a 1/e power loss (4.3 dB): solid lines show the exact theory, while symbols illustrate finite-
element modeling for comparison, and dashed lines illustrate the low-gap limits as described
above. It is apparent from the figure that the modulation range of the mechanical approach is ap-
proximately independent of the device size for gaps above 10 nm, while the amount of modula-
tion available from the electro-optic polymer example is decreasing substantially to well below 1
rad.

Mechanical, finite element

4. ® Dielectric, finite element
Mechanical, exact theory
3 | —— Dielectric, exact theory
- - - - Mechnical, small gap limit
- - - - Dielectric, small gap limit
o 2 1
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Supplementary Figure S3 | Scaling of phase modulation with gap. Achievable phase modula-
tion for a fixed insertion loss of 4.3 dB using 30% mechanical modulation of the gap or modula-
tion of the refractive index by 0.12 (from 1.71 to 1.83). Solid line — exact theory, symbols — 2D
finite element numerical calculation of the GP mode and dashed lines — the theory in the limit of
small gaps.

2.c Matlab code:

function [ beta | = MIMbeta( lam, eps1, eps2, gap )

% MIMbeta(wavelengthO, epsilonDielectric, epsilonMetal, gap)

% solves for wavevector beta of a MIM slot plasmon fundamental mode
% params should be scalar

% uses linearized tanh result as a starting pointkl 0

% then numerically solves for k1

kO=2*pi/lam;
function F=myfun(x)
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% k1/k0 is a solution to F=0
F=x.2.*(1-(eps2/eps1)"2*(tanh(gap/2*x*k0)).”2) + (eps1-eps2);

end;

eta2 = (0.5*eps2/epsl.*gap).”2;

% initial value based on linearized solution

k1 0= sqrt((1+sqrt(1-4*eta2*k0"2*(eps2-epsl)))/2/eta2);

kla 0=kl 0*gap/2 % output k1*gap/2 initial value for checking
myfun(kl 0/k0) % output initial value of the function =! 0

[val,fval] = fsolve(@myfun,k1 0/k0);

k1=val*kO0;

fval % output final value of the function, shoud be ~=0

kla solved = kl1*gap/2 % output final value of k1*gap/2 for checking
beta = sqrt(k1°2+k0"2*eps1) % calculate and output the wavevector

end

3. Effective Kerr coefficient.

We can obtain an estimate of the effective Kerr coefficient K for the GPPM by using the maxi-
mum actuation voltage and assuming the vertical size of the gap plasmon mode to be of order of
the initial gap height. By definition, the change in the effective index is An = AoK|E”. The phase
modulation is then A¢ = (2/A,) ‘An-L = 2w L'K- |E[* or K = A¢/ 2L+ |E|*) where E = V/gap. The
GPPM had a maximum modulation of A¢ =5 radians at 7 V over L = 23 um with an initial gap =
280 nm and electric field, E =7 V/280 nm. Therefore K = 5.5 x 10”"" m/V? which is over an or-
der of magnitude larger than the Kerr coefficient of materials commonly considered to have a
“very large” Kerr coefficient, such as nitrobenzene, with K =2.2 x 10" m/V*,

Supplementary References.

D
2)
3)
4)
5)

6)

7)

Johnson, P. B. & Christy R. W. Optical Constants of the Noble Metals. Phys. Rev. B 6,
4370 (1972).

Maier, S. A. Plasmonics: Fundamentals and Applications. Springer Science+Business
Media, New York, NY (2007).

Woolf, D., Loncar, M. & Capasso, F. The forces from coupled surface plasmon polari-
tons in planar waveguides. Opt. Express 17, 19996-20011 (2009).

Rakich, P. T., Milos, A. P., Marin, S. & Ippen, E.P. Trapping, corralling and spectral
bonding of optical resonances through optically induced potentials. Nat. Phot. 1 (2007).
Haffner, C. et al. High-Speed Plasmonic Mach-Zehnder Modulator in a Waveguide. Eur.
Conf. Opt. Com. (ECOC) PD.2.6 (2014).

Palmer, R. et al. High-Speed Silicon-Organic Hybrid (SOH) Modulators with 230 pm/V
Electro-Optic Coefficient Using Advanced Materials. M3G.4.pdf OFC 2014 © OSA
2014.

Elder, D.L., Benight, S.J., Song, J., Robinson, B.H. & Dalton, L.R. Matrix-Assisted Pol-
ing of Monolithic Bridge-Disubstituted Organic NLO Chromophores. Chem. Mater. 26
pp. 872—874 (2014).

22



