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Deep-­‐subwavelength	
  confinement1-­‐5	
  of	
  the	
  optical	
  energy	
  in	
  plasmonic	
  devices6,7	
  is	
  advancing	
  
miniaturization	
  in	
  photonics.	
  However,	
  for	
  mode	
  sizes	
  approaching	
  ≈	
  10	
  nm,	
  the	
  energy	
  in-­‐
creasingly	
  shifts	
  into	
  metal8,	
  raising	
  losses	
  and	
  hindering	
  active	
  phase-­‐modulation.	
  Here	
  we	
  
propose	
  a	
  nano-­‐electromechanical	
  phase-­‐modulation	
  principle	
  exploiting	
  the	
  extraordinarily	
  
strong	
  dependence	
  of	
  the	
  phase	
  velocity	
  of	
  metal-­‐insulator-­‐metal	
  (MIM)9	
  gap	
  plasmons	
  on	
  
dynamically	
  variable	
  gap	
  size.10,11	
  We	
  demonstrate	
  a	
  23	
  μm	
  long	
  non-­‐resonant	
  modulator	
  
having	
  1.5	
  π	
  rad	
  range	
  with	
  1.7	
  dB	
  excess	
  loss	
  at	
  780	
  nm.	
  Analysis	
  shows	
  an	
  ultracompact	
  
1μm2-­‐footprint	
  π rad	
  phase	
  modulator	
  can	
  be	
  realized,	
  more	
  than	
  an	
  order	
  of	
  magnitude	
  
smaller	
  than	
  any	
  previously	
  shown.	
  Remarkably,	
  this	
  size	
  reduction	
  is	
  achieved	
  without	
  incur-­‐
ring	
  extra	
  loss,	
  since	
  for	
  plasmons	
  confined	
  in	
  a	
  decreasing	
  gap,	
  the	
  increasing	
  phase-­‐
modulation	
  strength	
  offsets	
  rising	
  propagation	
  losses.	
  Such	
  small,	
  high	
  density	
  electrically	
  
controllable	
  components	
  may	
  find	
  applications	
  in	
  optical	
  switch	
  fabrics12	
  and	
  reconfigurable	
  
flat	
  plasmonic	
  optics13.	
  

Phase modulators, often used as active elements in photonic switches, enable flexible 
provisioning of communication channels and reconfiguration of networks at the physical layer. 
The application requirements for switches are distinct from those of data modulators: switching 
can be slower than data modulation rates, with a premium put on compactness, low power con-
sumption, wide optical bandwidth and low optical losses. As nanophotonic optical communica-
tion architectures and technologies are being developed in response to inter-chip and on-chip 
electronic bottlenecks, more compact, low-power optical switch fabrics, with 1 µs to 10 ns 
switching times, would enable new functionality, such as flexible signal routing and dynamic 
reconfiguration of the optical layer, architecturally analogous to electronic field-programmable 
gate arrays.  

Several different modulation principles have been proposed and used to realize a variety 
of compact phase modulators. Because most of them are aimed at data modulation, none directly 
explore the ultimate limits of size scaling, with the smallest footprint ≈ 30 µm2. The non-
resonant devices have limited phase modulation strength per area and include thermo-optical de-
vices14 with large power dissipation, very fast slot plasmon electro-optical devices,15,16 where 
device size is limited by the Pockels effect, and electro-mechanical devices.17 Resonant electro-
optical18 and electro-mechanical19,20 devices achieve higher phase-modulation strength at the ex-
pense of reduced optical bandwidth. Semiconductor and plasmonic devices21,22 based on carrier 
concentration change tend to have large absorption modulation that results in high excess loss for 
phase modulation. These, as well as optomechanical plasmonic-resonance devices23, work well 
as intensity modulators, which are not suitable for realizing passive 1x2, 1xN or NxN switch fab-
rics. 
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In this letter, we propose and demonstrate a gap plasmon phase modulator (GPPM), 
where the effective refractive index for in-plane gap plasmon (GP) modes varies strongly with 
applied voltage squared, exhibiting an effective Kerr nonlinearity [Supplementary]. GPs are 
broadband optical propagating modes9,11 that can be vertically and laterally confined to 
sub 100 nm gaps between two metal layers, forming some of the smallest known optical wave-
guides and resulting in significant field enhancements.1,3,24,25 Low loss coupling into such small 
GP waveguides has been demonstrated3,26, enabling efficient connections to conventional dielec-
tric waveguides for long distance interconnects.  

The GPPM exploits the high sensitivity of the GP phase velocity to changes in the gap 
size by making one of the metal layers mechanically moveable via electrostatic actuation. No 
optical resonator is used to enhance the phase modulation and there is no low-frequency guided 
mode cutoff,27 making the modulation principle optically broadband, capable of operating from 
the visible to the far-infrared.10,28-30 The phase modulation strength per area of our experimental-
ly demonstrated GPPM is comparable to that of resonant devices and an order of magnitude bet-
ter than that achieved in mechanically-tuned dielectric slot waveguides.17  While in dielectric 
slots the effective index tends to a fixed value as the gap is reduced, in GP it continues to in-
crease steeply, underlying the unique GPPM scalability. 

The nature of confined energy modes at optical frequencies in plasmonic devices can it-
self be understood as electro-mechanical31 as opposed to electro-magnetic, with the kinetic ener-
gy of electrons, together with the Coulomb energy, playing a critical role and enabling localiza-
tion at much smaller scales. This confinement comes at the expense of increased losses through 
inelastic electron scattering, which may impose fundamental limitations on scaling of any plas-
monic device and thus should be thoroughly understood. We present an analytical investigation 
showing, remarkably, that our GPPMs can be scaled down by at least a factor of 100 in area to a 
sub 1 µm2 footprint, while maintaining the > π rad  modulation depth and ≈ 5 dB optical loss. 
The optomechanical modulation strength increases with decreasing gap, and the propagation 
losses can be kept constant by shortening the device length. 

The details of the GPPM are shown in Fig. 1, where Fig. 1a shows the GPPM located in a 
Mach-Zehnder interferometer (see Methods). A close-up shows the GPPM as an electrostatically 
tunable gold-air-gold waveguide fabricated from a gold-SiO2-gold MIM stack (see Methods) 
with a device dependent initial air gap, g0 ≡ g(V=0), between 270 nm and 280 nm. The top gold 
film is patterned into eleven suspended deformable metal bridges, each 23.0 ± 0.5 µm in length 
and 1.50 ± 0.07 µm wide supported at both ends by SiO2 pillars. A GP, launched via grating 
coupling with a focused free-space excitation laser, propagates underneath and along the bridges. 
A focused reference beam, split from the excitation laser and incident at 13.2°, interferes with the 
plasmon at the out-coupler slit. Light is collected from below and imaged onto a camera. As 
shown in Figs. 1 c-e, when a voltage is applied, the electrostatic force deforms the bridges down 
into an approximately parabolic shape, narrowing the MIM gap at the bridge center, g(V),by 
about 80 nm (device dependent) as the voltage increases up to a maximum of 7 V and phase-
retards the GP. To avoid electrostatic “pull-in”32 where the top gold bridges snap-down to the 
bottom gold surface, the bridges are not actuated beyond one-third of g0.To measure the GPPM 
optical performance, a 780 nm wavelength Gaussian laser beam is focused from above onto an 
in-coupler grating cut into the top film at the GPPM input, launching a collimated Gaussian GP 
mode into the device propagating in the x-direction. An out-coupler slit parallel to the y-direction 
at the output of the GPPM is used to sample the modulated plasmon using a microscope from 
below. A window in the top gold film above the out-coupler slit allows introduction of a tilted-
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reference optical beam for phase-sensitive imaging of the modulated plasmon. Using a Mach-
Zehnder type interferometer with the reference split off from the excitation laser, both the GP 
phase retardation and optical loss are measured as a function of  g(V) by electrostatically control-
ling the GPPM bridge displacements (see Fig. 1 and Supplementary). We collect optical micro-
graphs of the out-coupled GP light with and without the reference optical beam at different ap-
plied DC voltages. The interference and GP-only intensity profiles are extracted by integrating 
the micrograph data in the direction normal to the slit (see Fig 2a, top for a representative inter-
ference micrograph). 

Fig. 2 shows these profiles at different applied voltages for one of the devices. The inter-
ference patterns shift to the right as the GP phase is retarded with the increased voltage, while in 
the absence of the reference beam the main change is a slight decrease in the plasmon intensity. 
The GP-only profile shapes (Fig. 2b) are fit by a common Gaussian profile with intensity as the 
only adjustable parameter for each voltage, as they are created by the Gaussian excitation beam 
focused on the in-coupler grating. The interference profiles (Fig. 2a) are fit well by the expected 
interference pattern34 between the known, common reference Gaussian beam and the measured 
GP-only intensity data for the particular voltage from Fig 2b. The good agreement indicates that 
the GP remains collimated with a flat wavefront and no phase distortion is introduced by the 
GPPM. The GP phase relative to the reference beam is the only adjustable parameter for each 
profile fit, while the intensity of the reference Gaussian is a single extra adjustable parameter that 
is common for all the interference micrographs for a given device. All other parameters includ-
ing the reference Gaussian width, center and the wavefront angle are separately measured and 
fixed (see Methods). 

Fig. 3a shows the phase change induced by the GPPM with 0.0 V to 7.0 V applied, as a 
function of g(V), which is measured at the narrowest point at the center of the device. The excess 
optical power loss, caused by the narrowed gap under the actuated bridges can be seen in 
Fig. 3b, which plots the integrated areas of Gaussian intensity fits from Fig. 2b normalized by 
that of the unactuated device. A phase shift exceeding 5 rad is achieved, while the corresponding 
excess loss is near 30 % (1.7 dB) (gold data points in Fig. 3) when the g(V) is tuned by approx-
imately 30 %, from 270 nm to 190 nm.   

The GPPM has an average optomechanical modulation strength of 52 mrad/nm ± 4 
mrad/nm, producing a maximum !!

!
 rad phase shift, which can be compared to the !

!
 rad shift 

demonstrated in a 170 µm long optomechanical dielectric device.15 A modulation range in ex-
cess of π radians is required by many practical switching and modulation applications. To under-
stand the GPPM performance, we developed  semi-analytical models of one dimensional GP 
propagation as well as a comparison to electro-optic modulation [Supplementary]. The analytic 
results of GP phase shift and intensity calculations agree well with measured data (Fig. 3a, b sol-
id line). The calculated intrinsic insertion loss, through an unactuated device is 5.3 dB.  

Unlike dielectric waveguides, MIM waveguides support a guided mode for any frequency 
below the surface plasmon (SP) resonance and for gaps down to the single nanometer range, 
where below that, local classical theory begins to break down.35 The effective index increases 
and the GP wavelength decreases dramatically in small gaps.1,10 Moreover, the strength of the 
phase modulation in this geometry increases (inset of Fig. 3a) approximately inversely with the 
square of g0, so that dφ/dg ~ 1/g0

2, in agreement with previous theoretical analysis,10 making it 
particularly appealing for nanoscale motion sensing and on-chip optical actuation in applications 
where strong yet broadband optomechanical coupling is required. Decreasing g0 increases optical 
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propagation losses, as a larger fraction of the optical power travels inside the metal. If the bridge 
length (optical travel distance) is also decreased, for each length there is a corresponding g0 
(Fig. 4a inset) such that the insertion loss (loss through an unactuated device) remains constant, 
e.g. at 1/e power (4.3 dB) with length scaling ~  g0

0.8. The striking result shown in Fig. 4a,b is 
that if we scale down the GPPM dimensions in this way, we will maintain the phase modulation 
range without incurring a loss penalty while simultaneously reducing both the length and g0, by 
an order of magnitude or more, as the calculated phase and excess loss vs. g(V) plots illustrate. 
In fact, the phase modulation range stays constant with miniaturization for a given optical loss. 
For g0 much smaller than the SP evanescent decay distance, universal scaling emerges between 
the phase shift and the excess loss such that they are linearly related regardless of g0, e.g. as g(V) 
is decreased to 72 % of g0, the phase modulation stays constant at π radians and there is a small 
excess loss of 0.8 dB (Fig. 4b inset) independent of the device scale.  

For static MIM devices it has already been shown that the lateral dimensions can be 
scaled down together with g0 and that low-loss coupling from larger mode waveguides suitable 
for long-distance signal transmission can be achieved.2,3 Coupling efficiency > 70 % was 
demonstrated, coupling from a waveguide 500 nm wide x 200 nm high to an 80 nm x 17 nm 
waveguide using a 29° linear coupling taper.3 As long as the device width is larger than g0, the 
optical mode remains well-confined in the gap under the bridge.3 Our GPPM model is quantita-
tively valid for device widths larger than approximately half the GP wavelength (estimated as 
710 nm in the experiment, neff ≈ 1.1). As the effective index increases and GP wavelength de-
creases with g0 (≈ 370 nm and neff ≈ 2.1 for g0 = 17 nm), the width of the device can be reduced 
further as well. By way of example, approximately 10x linear downscaling keeps losses near 
5 dB in a broadband, non-resonant modulator with a footprint < 1 µm2 (g0 =17 nm, 400 nm 
bridge width and 2 µm bridge length). In such a scaled GPPM the optomechanical modulation 
strength is increased approximately inversely with g0 to about 560 mrad/nm, despite the length 
decrease. Importantly, the electrostatic actuation amplitude also scales favorably with miniaturi-
zation. Within the applicability of linear bridge -bending theory without in-plane stress the shape 
of the deformation remains self-similar, and the same percentage gap actuation can be achieved 
stably, without electrostatic pull-in, with voltage that scales as V2 ~ g0

3/L4t3 where L is bridge 
length and t is bridge thickness (see Methods). The displacement available before pull-in is al-
ways sufficient for π phase modulation, since both scale inversely with g0. Given the bridge -
length/ g0 combinations chosen according to the chosen scaling constraint of Fig. 4a inset, V ~ t 
3/2 is constant at fixed bridge thickness, and approximately independent of the bridge length and 
g0. If necessary, the bridge thickness can easily be scaled down by a factor of 4 or more (while 
staying well above the optical skin depth of approximately 25 nm), reducing the actuation volt-
age below 1 V, to a level compatible with low voltage CMOS circuitry. 

The inset of Fig. 1e shows that the realized GPPM has resonance frequency of 812 
kHz ± 6 kHz, an air-damping-dominated quality factor of 2.74 ± 0.14, and was actuated at a 
drive frequency up to 1 MHz. While we emphasize that very high modulation frequency is not 
required for the envisioned on chip optical switching and reconfiguration applications, the me-
chanical resonance frequency scales as ~ t/L2 and is able to increase up to ≈ 100 MHz with fixed 
bridge thickness and drive voltage. The expected lifetime of the devices should far exceed Au 
bodied micromechanical switches that have achieved over 10B cycles because the GPPM avoids 
contacting surfaces that are the main failure mechanism of the switches36,37. Furthermore, non-
plasmonic nanomechanical cantilever devices of similar dimensions have been made operating 
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up to 1 GHz with careful material choice, 38,39 and such a fast, yet ultrasmall modulator can po-
tentially operate at low voltage with the use of piezoelectric actuation.40-42 

Considering the negligible power dissipation of its electrostatic-drive, actuation voltages 
at the level of the smallest high speed transistors, its length scale and feature size at the level of 
CMOS metallization layers, its broadband optical operation and its reasonable speed, we argue 
that a GPPM can play a unique and important role as a building block for optoelectronic integra-
tion. A device with these features is particularly well suited as an element for on chip reconfigu-
rable switch fabrics for future dynamic inter- and intra-chip optical communication architectures.  

Passive 3 dB couplers and single mode waveguides can be implemented in a narrow gap 
MIM together with phase modulators to form for example Mach-Zehnder 2x2 switches43.It is 
possible to array modulators side-by-side to form spatial plasmon modulators and implement, for 
example, single-stage 1xN switching and arbitrary multiport beam splitting: functionalities 
demonstrated using spatial light modulators in free space. Reconfigurable routing of photonic 
signals or reconfigurable flat plasmonic optics, where local phase modulation across an extended 
GP wavefront could be used to shape, focus or guide GP propagation via independent actuation 
of multiple adjacent modulators. The authors chose a multiple- bridge GPPM as a step in that 
direction when a single bridge device would have sufficed. 

In summary we have experimentally demonstrated exceptionally strong optomechanical 
transduction with low optical losses in electrostatically actuated nanoscale gap MIM plasmon 
modulators. The 23 µm long GPPMs, with an average optomechanical modulation strength of 
52 mrad/nm at 780 nm, achieved a maximum of 5 radians of phase modulation with low inser-
tion and excess losses. An analytical model in good agreement with the measurements argues for 
direct miniaturization of these devices to sub 1 µm2 footprint without degradation in optical per-
formance and with an increase in speed and decrease in actuation voltage. This new concept ena-
bles a new class of on chip optical switching and optical circuit reconfiguration functionality. 

 
Methods	
  
	
  
Nano-fabrication and operation. A gold-SiO2-gold stack with sputtered Au and PECVD 
(plasma enhanced chemical vapor deposition) SiO2 layers, all three 220 ± 5 nm thick, was de-
posited onto nominal 500 µm thick borosilicate glass with ≈ 10 nm Cr adhesion layer located 
between the substrate and bottom Au layer and ≈ 2 nm thick Ti adhesion layer between the SiO2 
and Au layers. All device features, except the out-coupler slit, were lithographically written with 
EBL (e-beam lithography) using ≈ 500 nm PMMA (poly methyl methacrylate) e-beam resist. 
After resist development, device components were Ar ion milled into the top Au layer. The 
bridges were released by wet etching of the underlying SiO2 in 6:1 BOE (buffered oxide etch) 
with subsequent CO2 critical-point drying. The SiO2 was completely removed everywhere below 
the lithographic patterns leaving a lateral undercut of ≈ 2.5 µm. After release, the SiO2 pillars 
supporting the bridges at their ends were ≈ 3 µm wide in the direction of GP propagation. The 
out-coupler slits were ≈ 150 nm wide by ≈ 20 µm long and were cut with a focused ion beam 
(FIB). The suspended in-coupler gratings composed of strips ≈ 18 µm long and ≈ 400 nm wide 
with periods of ≈ 720 nm and ≈ 760 nm were electrically grounded to avoid unintended actua-
tion. 

An electrically isolating 2 µm wide trench in the top Au layer surrounded the GPPM 
components (partial-view in Fig. 1b). A narrow wire nano-fuse connected the area inside the 
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trench to that outside to allow charging to dissipate during scanning electron microscopy and 
FIB. The nano-fuses were electrically severed before electrostatic bridge actuation. The actuation 
voltage between the bridges and the bottom gold film was applied via probes electrically con-
nected to the top and bottom films. 

The GP-only intensity profiles seen in Fig. 2a exhibit some non-Gaussian behavior that 
we attribute to small fluctuations in the heights (gaps) of individual bridges when stress was re-
lieved in the top gold and PMMA during release. This effect varied from device to device and 
can be seen in the intensity variations as the gap is narrowed (Fig. 3b).  

 
Interferometer. A Mach-Zehnder-type interferometer was used to measure the phase shift be-
tween a GP and a reference laser beam. It consists of an inverted microscope custom fitted with a 
top excitation objective and beam steering optics. Laser light (λ = 780 nm, linewidth < 200 kHz 
and power ≈ 0.2 mW) was fiber-coupled to the top, collimated to about 1.5 mm, and incident up-
on a 50/50 beamsplitting cube. Half of the light was directed to the objective while the other half 
formed a reference beam, circling back on itself using adjustable mirrors over a ≈ 20 cm path 
length before also travelling into the 10x excitation objective. The excitation beam, an 8 µm di-
ameter focused spot, was placed onto the in-coupler grating, directly launching a GP through the 
waveguide. The reference beam was focused onto the out-coupler slit at a 13.2 ± 0.05° angle 
with respect to the normal. Near the out-coupler slit the top gold film was removed and the GP 
from the device continued to propagate as an SP on the gold-air interface. The propagation dis-
tance between the in-coupler and out-coupler is 60 µm << 165 µm, the estimated Rayleigh range 
of the plasmon.  At the slit, the reference beam interference with the propagating SP developed 
into fringes. Gap narrowing by electrostatic beam actuation causes GP phase velocity retardation, 
and thus shifts the interference fringes compared with their initial positions. The angled reference 
beam was chosen to show multiple interference fringes across the out-coupler slit. For each de-
vice the reference beam intensity is adjusted to maximize interference visibility before voltages 
are applied. 

The reference incidence angle was measured with no device in place by analyzing a se-
ries of images of the reference laser spot as it moved across the microscope objective focal plane 
as the objective was translated vertically by a known amount.  

 
 
Static and dynamic displacement measurement. A commercial white light optical profiler 
with diffraction limited in-plane resolution and below 1 nm out-of-plane resolution was used to 
measure vertical bridge displacements. The dynamic mechanical response of the GPPM was 
measured with a strobed white light using harmonic actuation voltages (1.5 V peak-to-peak sine 
wave with a 0.75 V DC bias) up to 1 MHz. The strobed pulses were phase delayed for a phase 
sensitive motion measurement. The response amplitude can be seen in Fig. 1e where it is fit by a 
dampened harmonic oscillator model.  
 
Gaussian interference fits. The phase difference between the GP and reference laser was ex-
tracted from Gaussian interference fits of the measured interference profiles seen in Fig. 2a and 
is the only variable used. The fits use: 1) GP-only intensity profile data like that seen in Fig. 2b; 
2) Gaussian reference beam parameters (width, peak position and integrated area) extracted from 
measured interference profiles with the reference beam intensity maximized; and 3) independent-
ly measured reference incidence angle (Fig. 2a). Fits from the data of one device can be seen 
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plotted in Fig. 2a. The results in Fig. 3 from several devices are the same within the experimental 
error when adjusted for the initial phase differences caused by slightly different unactuated gaps.  
Uncertainty. The uncertainties reported throughout the manuscript represent one standard devia-
tion statistical uncertainties, unless otherwise indicated. The uncertainty in device sizes is given 
by a conservative estimate of the scale calibration accuracy of the electron microscope used. The 
uncertainties in the g(V) values are the standard deviations of g(V) under different bridges in a 
single device under a given applied voltage, likely due to mechanical variations from bridge to 
bridge. The measurement imprecision and errors in actuation repeatability are much smaller. The 
uncertainty in the phase measurement is dominated by the slow drift of the optical wavelength, 
which results in a phase drift between excitation and reference beam going through unequal 
paths. Therefore we make separate reference unactuated phase measurements before and after 
each nonzero voltage phase measurement. We use the variation in the unactuated measurements 
to establish the statistical phase measurement uncertainty reported, while the statistical uncertain-
ty of the fitting procedure for each individual interferogram is much smaller. 
 
Theory. To theoretically understand the GPPM performance, we developed a semi-analytical 
model of one dimensional GP propagation, assuming an infinitely-wide plane wave GP, quadrat-
ic bridge profiles, semi-infinite MIM gold layers and vacuum in the gap. The device was broken 
into 1 nm intervals in the direction of GP propagation with each interval assigned a gap-
dependent effective refractive index and the corresponding wavenumber. Using continuity 
boundary conditions from Maxwell’s equations, the phase shift and intensity was cumulatively 
calculated. The analytic results of GP phase shift and intensity calculations agree well with 
measured data (Fig. 3a, b solid line) [Supplementary]. While the modeling procedure includes 
both forward and backward propagating waves, under the experimental conditions the gap 
changes adiabatically and the back-propagating power was found to be negligible throughout the 
model 
 
Mechanics. The electrostatic pressure P at the cantilever bottom is proportional to P ~ (V/g)2. 
Within the applicability of linear elastic bridge bending theory without in-plane stress the shape 
of the deformation remains self-similar with size scaling, and the magnitude is proportional to 
z ~ P·L4/t3, thus if we require z ~ g, then g ~ (V/g)2⋅L4/t3 or V2 ~ g3t3/L4. 
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Figure	
  1	
  |	
  GPPM.	
  a,	
  Schematic:	
  Laser	
  light	
  was	
  split	
  into	
  excitation	
  and	
  reference	
  paths	
  and	
  
coupled	
  through	
  the	
  top	
  objective	
  to	
  the	
  in-­‐coupler	
  grating	
  and	
  out-­‐coupler	
  slit,	
  forming	
  a	
  
Mach-­‐Zehnder	
  interferometer.	
  GPPM	
  zoom-­‐in:	
  MIM	
  gap	
  plasmons	
  are	
  directly	
  launched	
  via	
  
grating	
  coupling	
  with	
  a	
  focused	
  free-­‐space	
  excitation	
  laser,	
  propagate	
  under	
  the	
  eleven	
  gold	
  
bridges	
  and	
  exit	
  as	
  surface	
  plasmons33	
  to	
  the	
  bottom	
  gold/air	
  interface.	
  A	
  focused	
  reference	
  
beam,	
  split	
  from	
  the	
  excitation	
  laser	
  and	
  incident	
  in	
  the	
  yz	
  plane	
  at	
  13.2°,	
  interferes	
  with	
  the	
  
plasmon	
  at	
  the	
  out-­‐coupler	
  slit.	
  Light	
  is	
  collected	
  from	
  below	
  and	
  imaged	
  onto	
  a	
  camera.	
  Elec-­‐
trostatic	
  actuation	
  of	
  the	
  bridges	
  towards	
  the	
  substrate	
  phase-­‐retards	
  the	
  GP.	
  g(V)	
  is	
  the	
  mini-­‐
mum	
  gap	
  when	
  the	
  bridge	
  is	
  actuated.	
  b,	
  Scanning	
  electron	
  micrograph	
  of	
  the	
  GPPM	
  with	
  car-­‐
toon	
  overlays	
  of	
  the	
  excitation	
  and	
  tilted	
  reference	
  lasers,	
  propagating	
  GP	
  and	
  interference	
  
fringes	
  at	
  the	
  out-­‐coupler.	
  The	
  11	
  bridges	
  are	
  1.5 µm	
  wide	
  separated	
  by	
  150 nm.	
  c,	
  Interfero-­‐
metric	
  micrograph	
  showing	
  GPPM	
  bridges	
  actuated	
  towards	
  the	
  substrate	
  with	
  6.5	
  V.	
  Depth	
  
exaggerated	
  and	
  color	
  coded	
  for	
  clarity	
  (see	
  Methods).	
  	
  d,	
  Electrostatically	
  actuated	
  bridge	
  dis-­‐
placement	
  profiles.	
  e,	
  Bridge	
  displacement	
  at	
  the	
  middle	
  vs.	
  actuation	
  voltage.	
  The	
  solid	
  red	
  
line	
  is	
  a	
  guide	
  for	
  the	
  eye.	
  Inset:	
  Bridge’s	
  displacement	
  amplitude	
  vs.	
  the	
  frequency	
  of	
  applied	
  
harmonic	
  electrostatic	
  excitation.	
  Line	
  is	
  a	
  simple	
  harmonic	
  oscillator	
  fit.	
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Figure	
  2	
  |	
  Measured	
  out-­‐coupler	
  intensity	
  profiles.	
  a,	
  Evolution	
  of	
  the	
  interference	
  fringes	
  with	
  
actuation	
  voltage.	
  Points	
  are	
  raw	
  data	
  and	
  solid	
  lines	
  are	
  interference	
  fits	
  with	
  varying	
  phase.	
  
Note	
  that	
  peaks	
  at	
  0.0 V	
  (red)	
  become	
  troughs	
  at	
  7.0 V	
  (magenta).	
  The	
  actual	
  phase	
  shift	
  ex-­‐
tracted	
  from	
  this	
  data,	
  seen	
  in	
  Fig.	
  3a	
  (red),	
  accounts	
  for	
  a	
  slight	
  interferometric	
  phase	
  drift	
  
(Methods).	
  Inset	
  (top):	
  Color	
  mapped	
  image	
  of	
  the	
  interference	
  fringes	
  seen	
  at	
  the	
  out-­‐coupler	
  
slit	
  at	
  7.0 V.	
  The	
  dark	
  magenta	
  regions	
  correspond	
  to	
  the	
  interference	
  peaks	
  directly	
  below.	
  The	
  
intensity	
  profiles	
  were	
  obtained	
  by	
  vertical	
  integration	
  along	
  x	
  of	
  the	
  pixel	
  intensities	
  between	
  
the	
  dashed	
  lines.	
  The	
  diffractive	
  spread	
  of	
  the	
  out-­‐coupled	
  light	
  is	
  shown.	
  	
  b,	
  GP	
  intensity	
  with-­‐
out	
  the	
  reference	
  beam	
  vs.	
  relative	
  position	
  across	
  the	
  out-­‐coupler	
  slit.	
  Solid	
  lines	
  are	
  Gaussian	
  
fits.	
  All	
  plots	
  in	
  this	
  figure	
  are	
  vertically	
  shifted	
  for	
  clarity. 
       
        
 



10 
 

                    
 
Figure	
  3	
  |	
  GPPM	
  phase	
  modulation	
  and	
  excess	
  optical	
  loss	
  a,	
  Plasmon	
  phase	
  shift	
  ΔΦ	
  relative	
  
to	
  the	
  unactuated	
  device	
  state	
  vs.	
  gap.	
  Green	
  line	
  is	
  a	
  calculation	
  and	
  points	
  are	
  measured	
  
(three	
  devices	
  are	
  the	
  same	
  within	
  the	
  experimental	
  error	
  when	
  adjusted	
  for	
  the	
  initial	
  phase	
  
differences	
  caused	
  by	
  slightly	
  different	
  unactuated	
  gaps).	
  g(V)	
  is	
  the	
  minimum	
  gap	
  created	
  
when	
  a	
  bridge	
  is	
  actuated.	
  The	
  vertical	
  error	
  bars	
  are	
  ± the	
  standard	
  deviation	
  due	
  to	
  random	
  
interferometer	
  phase	
  drift.	
  Horizontal	
  error	
  bars	
  are	
  ± the	
  standard	
  deviation	
  of	
  the	
  displace-­‐
ment	
  of	
  multiple	
  individual	
  bridges.	
  	
  Inset,	
  Extended	
  range	
  plot	
  showing	
  increased	
  phase	
  modu-­‐
lation	
  strength	
  and	
  effective	
  index	
  tuning	
  at	
  small	
  gaps.	
  	
  b,	
  Integrated	
  GP	
  intensity	
  Iv	
  vs.	
  g(V)	
  
from	
  Gaussian	
  fits	
  of	
  several	
  devices.	
  Analytical	
  (green	
  line)	
  and	
  data	
  points	
  are	
  normalized	
  to	
  
the	
  unactuated	
  GP	
  intensity	
  I0.	
  Vertical	
  error	
  bars	
  are	
  ±	
  the	
  standard	
  error	
  from	
  Gaussian	
  fits	
  of	
  
intensity	
  profiles.	
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Figure	
  4	
  |	
  GPPM	
  Scaling	
  	
  a,	
  Calculated	
  phase	
  shifts	
  vs.	
  gap	
  g(V)	
  for	
  initial	
  gaps	
  g0	
  varying	
  from	
  
280 nm	
  down	
  to	
  20 nm.	
  The	
  bridge	
  length	
  of	
  each	
  line	
  is	
  chosen	
  to	
  give	
  a	
  1/e (-­‐4.3 dB)	
  insertion	
  
loss	
  for	
  a	
  given	
  g0	
  (inset).	
  	
  The	
  lines	
  show	
  how	
  the	
  phase	
  changes	
  as	
  g(V)	
  is	
  actuated	
  down	
  from	
  
100 %	
  to	
  40 %	
  of	
  g0.	
  Identically-­‐colored	
  points	
  indicate	
  the	
  same	
  percent	
  bridge	
  actuation.	
  An	
  
actuation	
  depth	
  of	
  ≈ 72 %	
  results	
  in	
  a	
  phase	
  shift	
  of	
  π radians	
  (dashed	
  line)	
  and	
  avoids	
  pull-­‐in.	
  
Regardless	
  of	
  g0,	
  for	
  the	
  same	
  percent	
  actuation	
  depth,	
  the	
  phase	
  shift	
  is	
  almost	
  constant	
  as	
  
indicated	
  by	
  the	
  horizontal	
  rows	
  of	
  identically-­‐colored	
  points.	
  b,	
  Calculated	
  excess	
  loss	
  vs.	
  g(V)	
  
using	
  the	
  same	
  bridge	
  lengths	
  described.	
  Excess	
  loss	
  is	
  defined	
  relative	
  to	
  the	
  unactuated	
  state.	
  
The	
  same	
  universality	
  is	
  seen	
  here;	
  e.g.	
  ≈ 72	
  %	
  actuation	
  of	
  g0	
  gives	
  ≈ 0.8	
  dB	
  loss	
  (dashed	
  line).	
  	
  
Inset:	
  Phase	
  shift	
  vs.	
  excess	
  loss	
  is	
  linear	
  and	
  independent	
  of	
  device	
  scale.	
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Supplementary	
  Figure	
  S1	
  |	
  GPPM	
  details.	
  a,	
  Side	
  view	
  of	
  the	
  GPPM	
  shows	
  an	
  MIM	
  gap	
  plas-­‐
mon	
  launched	
  into	
  and	
  propagate	
  through	
  the	
  actuated	
  bridges	
  and	
  interfere	
  with	
  the	
  refer-­‐
ence	
  laser	
  at	
  the	
  out-­‐coupler	
  slit.	
  Bridges	
  can	
  be	
  pulled	
  down	
  to	
  one	
  third	
  of	
  the	
  gap	
  before	
  
electrostatic	
  actuation	
  instability	
  occurs.	
  End	
  view	
  shows	
  the	
  tilted	
  reference	
  laser	
  in	
  a	
  cross	
  
section	
  at	
  the	
  out-­‐coupler	
  slit.	
  	
  b,	
  electron	
  micrograph	
  of	
  the	
  Au/SiO2/Au	
  MIM	
  cross-­‐section.	
  
Vertical	
  arrows	
  are	
  220	
  nm.	
  Top	
  Pt	
  layer	
  added	
  for	
  protection	
  during	
  cross-­‐sectioning.	
  c,	
  All	
  
bridge	
  ends	
  had	
  an	
  additional	
  medial	
  slit	
  that	
  aided	
  in	
  smoothing	
  the	
  optical	
  surfaces	
  of	
  the	
  
SiO2	
  pillars	
  during	
  release.	
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1. GPPM Analytical Model 
 
To estimate the transmission and phase of a GP propagating in a GPPM (Fig. 1), a model is cho-
sen that consists of an MIM slot waveguide with a bottom flat gold surface, a gold bridge sus-
pended above the bottom gold surface, and vacuum in the gap between the bottom surface and 
the bridge. The thicknesses of the bottom layer and beam are taken to be semi-infinite, which is a 
good approximation if the thicknesses are much greater than the skin depth (≈ 25 nm). In the re-
sults that follow, we use constant heights and parabolic profiles, fit to the experimental devices. 
The vacuum gap has a height profile h(x) described by 
 
                                         h(x) = h0      (x < 0 or x > L)                                             (1a) 
                                         h(x) = ax2 + bx + c     (0 < x < L) ,                                  (1b)    
 
where a, b, and c are such that the parabolic form give h = h0 at x = 0 and x = L with a minimum 
height hmin at x = L/2, and L is the length of the parabolic region. Given that the GP propagating 
in the waveguide is incident at x = 0, the transmission and phase as it exits the variable gap re-
gion at x = L (and the reflection at x = 0) are determined. 

To estimate the GP field, GPs propagating in waveguides like those above with a con-
stant height profile h(x) = h0 for various gaps h0 are first considered. For such an infinitely long 
waveguide the spatial GP fields are given by 
 
                                  Hy(x,z) = exp(ikxx) [Al exp(ikzlz) + Bl exp(-ikzlz)]                      (2a) 
                                 Ex(x,z) =(kzl/k0)  exp(ikxx) [Al exp(ikzlz) – Bl exp(-ikzlz)]             (2b) 
                                 Ez(x,z) =(-kx/k0)  exp(ikxx) [Al exp(ikzlz) + Bl exp(-ikzlz)],           (2c) 
 
where l labels the layer (1 for bottom Au, 2 for vacuum, 3 for top Au) and 
 
                                                             kx

2 + kzl
2 = k0

2εl.                                              (2d) 
 
In Eq. (2), k0 = ω/c, x is the coordinate along the waveguide, z is the direction normal to the sur-
face and εl is the dielectric constant of layer l. The coefficients A and B are determined in each 
layer by the continuity boundary conditions of the tangential components Hy and Ex at the two 
gold-vacuum interfaces separated by the distance h0. For a GP mode, the field must be bounded 
in the z direction, i.e., the decay is in the negative z direction in layer one and in the positive z 
direction in layer three. This means the vertical layer (i.e., z direction) coefficients A1 = B3 = 0 
and kz1 and kz3 have positive imaginary parts. This condition is satisfied only for discrete values 
of kx, corresponding to guided modes. All modes but one have a low frequency cutoff, and for 
small vacuum gaps in gold, in the visible and near infrared, only one complex value of kx satis-
fies this condition and is propagating (Re(kx) >> Im(kx)). The wave number kx, which depends on 
h0, is denoted as kGP(h0). 

The strategy is to utilize a spatially dependent wave number kx(x), equated to kGP(h(x)),in 
integrating the fields in the x variable. Since only a constant kx(x) can be integrated analytically, 
we discretize the parabolic region of the x axis into N equally spaced intervals and set the wave 
number kx in each interval to a constant value kxm appropriate to the height at the midpoint of the 
interval, m, i.e., 
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                                                        kxm = kGP(h(xm)),                                                            (3) 
 
where xm  is the midpoint of interval m. From this interval-dependent wave number, we define an 
effective dielectric constant εeff m in interval m 
 
                                                  εeff m = kxm

2 / k0
2.                                                               (4) 

 
The accuracy of a discretization method increases as the intervals become smaller. Also, 

the discretization is more accurate if kx(x) is more slowly varying with x. The actual GPPM beam 
height profiles only dip several tens of nm over beam lengths measured in µm. Intervals of 50 
nm gave results that differed from using 10 nm intervals by about 1 %. Actual calculations used 
1 nm intervals. 

The final approximation replaces the GP with a plane wave normally incident on a stack 
of dielectric intervals with dielectric constants given by Eq. (4) (or wave numbers given by Eq. 
(3)). Specifically the fields to be integrated have the form in interval m 
 
                                   Hy

eff(x) = Cm exp(ikxmx) + Dm exp(-ikxmx)                                         (5a) 
                                   Ez

eff(x) = (-kxm/k0) [Cm exp(ikxmx) – Dm exp(-ikxmx)]                           (5b) 
 
where C and D are coefficients determined by demanding continuity at each interval boundary, 
subject to the outgoing wave boundary condition outside the last boundary and an incident plane 
wave before the first, i.e., 
                                                 C0 = 1                                                                              (6a) 
                                                DN+1 = 0.                                                                          (6b) 
                                                   
where N is the total number of intervals. The reflection coefficient is then simply R = |D0|2

 and 
the transmission coefficient T = |CN+1|2. One way to integrate Eq. (5) is to start with CN+1 = 1, 
DN+1 = 0, then determine Cm and Dm in each interval, proceeding backwards starting from m = N 
to m = 0, by demanding continuity in the fields of Eqs. (5a) and (5b) at the boundary of intervals 
m and m + 1. Doing this yields a value of C0 generally not equal to unity. Since all equations are 
linear, all the Cm and Dm are renormalized such that Eq. (6a) is satisfied. This method avoids ma-
trix operations. In addition to transmission and reflection coefficients, the full fields inside the 
parabolic region and on exiting are calculated, which means the amplitude and phase can be 
tracked throughout.  The main interest is in the phase shift Δφ and transmission intensity I as the 
GP exits the parabolic (or bridge??) region of length L, where the phase shift is the difference in 
phase between the exiting wave and that which would occur for a wave exiting this region when 
the height profile is a constant h(x) = h0. These quantities are given by 
                                         I = |CN+1|2 exp(-2 Im(kGP(h0)L))                                               (7)                                   
                                               Δφ = Arg(CN+1)                                                                (8) 
The exponential factor in Eq. (7) occurs because the GP wave number is generally complex and 
because the dielectric constant of gold is complex. Thus, even for a waveguide with planar sur-
faces separated by a constant height h0, losses determined by the exponential factor occur.  Eq. 
(8) determines the phase shift only to an integral multiple of 2π since the Arg function only takes 
on values between -π and π. (In the final analysis, the 2nπ differences have no physical conse-
quences for interference effects). To get the proper phase shift one needs to examine the phase 
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shift at the end of each interval and whenever a jump of (or close to) ± 2π occurs add (+ or -) 2π 
to the cumulative phase shift to make it (nearly) continuous. The overall phase shift is 

Δφ = Σm = 1,n  Δφm 

where Δφm  is the phase shift in the interval m. 
Δφm = Arg( Hy(xm)/[ Hy(xm-1) exp(kGP(h0)(xm – xm-1))]) + 2nmπ ,               (9) 

where xm =  m L/N  and  nm = -1, 0, or 1 if  Δφm  ~ 2π, 0, -2π, respectively, i.e., nm is such as to 
keep the cumulative phase shift continuous whenever there is a ± 2π jump from the Arg function.  

In Eq. (5) the z-dependence of the SP fields is suppressed, as well as the longitudinal Ex com-
ponent, which depends on the z-dependence of the magnetic field. One physical argument for 
this is that the energy transfer in the SP is determined by the real Poynting vector Sx, and this 
does not depend on the longitudinal component of the electric field. As for the z-dependence, it is 
not explicitly involved in Eq. (5), but implicitly comes into play in Eq.(2) as integration of this 
equation in the z direction determines kGP(h0) which eventually determines kxm in Eq.(5).  The 
local approximation for the longitudinal wave number (Eq. (3)) depends (much like an adiabatic 
approximation) on a slow variation in h(x), which largely holds for the devices considered.                                   

The gold dielectric constant we use in calculating kGP(h0) from Eq. (2) is determined by an 
analytic fit to the frequency dependence of the values measured by Johnson and Christy.1  In par-
ticular, for the wavelength of interest of 780 nm, the dielectric constant of gold used is ε(Au-780 
nm) =-22.4476 + 1.36505 i. The beam is divided into 1.0 nm layered segments and the boundary 
condition matching of Eeff and Heff is performed at each interface as in the discussion of Eq. (5). 
The resulting GP phase shifts and intensities throughout are in good agreement with experiment. 

 
2. GPPM vs. Electro-optic Phase Modulation at the Nanoscale 
 

We present a derivation of the effective wavevector 𝛽 for a parallel-plate uniform metal-
insulator-metal (MIM) geometry in order to elucidate the phase modulation performance of both 
mechanical gap modulation as well as electro-optic modulation by changing the dielectric index 
inside the gap.  
 
2.a Analytical description of MIM wavevector 

The equations2 relating 𝛽 and the two decay constants inside the dielectric (𝑘!) and the 
two metal (𝑘!) regions are: 
 

  
𝛽! = 𝑘!! + 𝑘!!𝜀! = 𝑘!! + 𝑘!!𝜀!

tanh 𝑘!𝑎 = − !!!!
!!!!

   (1) 

 
where 𝑘! = 2𝜋 𝜆! is the wavevector in vacuum, 𝜀! is the dielectric constant of the dielectric, 𝜀! 
is the dielectric constant of the metal and 𝑎 = 𝑔 2 is half the gap. These algebraic equations 
have exact numerical solutions, which we implement in a simple matlab function [Supplemen-
tary 2.c]. However, for small gaps compared to the decay rate inside the dielectric: 
 

tanh 𝑘!𝑎 ≈ 𝑘!𝑎 and 𝑘!!𝑎 = − !!
!!
𝑘!  

Noting that 𝑅𝑒 𝑘! > 0, to ensure fields decay into the metal toward infinity, 
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𝛽 = 𝑘!! + 𝑘!!𝜀! = 𝑘!!𝜀! + 2
!!
!!!

!
− !!!

!!!
!!
!!!

!
+ 𝑘!!(𝜀! − 𝜀!)    (2) 

is the explicit solution for the wavevector. 
By comparing with the exact solution, we see that for gaps below 200 nm the approxima-

tion is valid and the difference between the exact and the approximate solutions is under 5% and 
decreasing toward smaller gaps. Qualitatively, this formula is valid as long as the MIM gap is 
much smaller than the decay rate into the dielectric half-space for a surface plasmon (SP) on a 
single metal interface at the corresponding optical frequency. 

It is instructive to consider two limiting cases. In the limit of extremely small gaps such 
that 

𝑘!!(𝜀! − 𝜀!) ≪
𝜀!
𝜀!𝑔

!
 

equation (2) reduces to  
       𝛽 ≈ − !!!

!!!
                                                    (3) 

and    
𝑑𝛽
𝑑𝑔 ≈

2𝜀!
𝜀!𝑔!

 

 
In the opposite limit (larger gaps), but still smaller than the SP decay into dielectric:  

𝛽 ≈ −𝑘! 𝜀! 1− !!!!!
!!!!!

                                    (4) 
and 

𝑑𝛽
𝑑𝑔 ≈

𝜀! − 𝜀!
𝜀!𝑔!

 

 
In both cases β is inversely proportional to the gap to the leading order, and so are the effective 
index and the inverse loss distance. The phase modulation per unit modulator length for a fixed 
small change in gap is ∝ 𝑔!!. In practice, when the modulator is scaled down, we scale down the 
motion so it is a fixed fraction of the initial gap. Under these conditions the motion is linearly 
decreasing with smaller gap size, and the resulting modulation per unit length of the modulator 
grows ∝ 1 𝑔. 

In Fig. S2, we plot the phase modulation per 780 nm travel distance (modulator length) 
achieved via modulation of the gap from 100 % of an initial gap to 70 %, as a function of the ini-
tial gap. The wavelength of light is 780 nm, 𝜀! = 1, and 𝜀! = −22.4476+ 1.36505𝑖. The line is 
the exact theory without linearization (eq. 1). The two dotted lines illustrate the two linear limit-
ing cases (eq. 3,4). Symbols are results of an independent finite element calculation solving a 2D 
modal problem through a section of MIM with periodic boundary conditions using a commercial 
finite element solver. 
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Supplementary	
  Figure	
  S2	
  |	
  Phase	
  modulation	
  vs.	
  gap.	
  Phase	
  modulation	
  for	
  a	
  30%	
  gap	
  de-­‐
crease	
  from	
  the	
  initial	
  value	
  for	
  a	
  780	
  nm	
  MIM	
  travel	
  distance	
  for	
  780	
  nm	
  vacuum	
  wavelength	
  
gap	
  plasmon	
  traveling	
  in	
  a	
  gold-­‐air	
  -­‐gold	
  MIM	
  structure.	
  Solid	
  line	
  –	
  exact	
  theory,	
  dotted	
  lines	
  –	
  
limiting	
  cases	
  for	
  small	
  and	
  large	
  initial	
  gaps,	
  symbols	
  –	
  finite	
  element	
  calculation.	
  
 

We also note that this linear dependence of phase modulation on the gap is in agreement 
with the linear optical force dependence on the gap predicted in Woolf et al.3 The phase modula-
tion and the force are directly related.4 
 
2.b Comparison of mechanical and electro-optic modulation 
 

For illustration, we now compare mechanical modulation of the phase with electro-optic 
modulation. For the electro-optic case, we pick a state of the art electro-optic polymer5 and first 
calculate the maximum modulation of the dielectric index for this polymer. We use  

∆𝑛 =    !
!
𝑛!𝑟!!𝐸!"# 

where the 𝑛 = 1.83 is the initial index of refraction, the electro-optical coefficient is chosen as 
𝑟!! = 200 pm/V and, for the most generous possible estimate, we pick applied field 𝐸!"# =  200 
V/µm, exceeding the saturation field of the poling curves6 and much larger than the maximum 
applied fields reported7. These choices result in ∆𝑛 =   0.12 and, therefore, we compute the mod-
ulation that is achieved by changing the MIM dielectric index from 1.83 to 1.71. We use the 
same equations derived above, assuming the dielectric is fully and uniformly modulated, while 
the gap is not changed. 

A commonly used figure of merit for electro-optic modulators is Vπ, which can be used to 
calculate the amount of phase modulation for a given applied voltage. However, for phase modu-
lators, another important performance limiting number is loss, and therefore we consider the 
amount of modulation that can be achieved for a given insertion loss. As long as the voltage is 
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within a few volts and the modulation/switching speed is moderate, losses are the more im-
portant performance limiting factor for a large number of applications. 
As is the case in Fig. 4 in the main text, we plot in Fig. S3 the amount of modulation achieved 
with a 1/e power loss (4.3 dB): solid lines show the exact theory, while symbols illustrate finite-
element modeling for comparison, and dashed lines illustrate the low-gap limits as described 
above. It is apparent from the figure that the modulation range of the mechanical approach is ap-
proximately independent of the device size for gaps above 10 nm, while the amount of modula-
tion available from the electro-optic polymer example is decreasing substantially to well below π 
rad. 
 

 
Supplementary	
  Figure	
  S3	
  |	
  Scaling	
  of	
  phase	
  modulation	
  with	
  gap.	
  Achievable phase modula-
tion for a fixed insertion loss of 4.3 dB using 30% mechanical modulation of the gap or modula-
tion of the refractive index by 0.12 (from 1.71 to 1.83). Solid line – exact theory, symbols – 2D 
finite element numerical calculation of the GP mode and dashed lines – the theory in the limit of 
small gaps. 
  
2.c Matlab code: 
 
function [ beta ] = MIMbeta( lam, eps1, eps2, gap ) 
% MIMbeta(wavelength0, epsilonDielectric, epsilonMetal, gap)  
%   solves for wavevector beta of a MIM slot plasmon fundamental mode 
%   params should be scalar 
%   uses linearized tanh result as a starting point k1_ 0 
%   then numerically solves for k1 
 
    k0=2*pi/lam; 
 
    function F=myfun(x) 
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        % k1/k0 is a solution to F=0 
        F=x.^2.*(1-(eps2/eps1)^2*(tanh(gap/2*x*k0)).^2) + (eps1-eps2); 
    end; 
     
    eta2 = (0.5*eps2/eps1.*gap).^2; 
    % initial value based on linearized solution 
    k1_ 0 = sqrt((1+sqrt(1-4*eta2*k0^2*(eps2-eps1)))/2/eta2);  
    k1a_ 0 = k1_ 0*gap/2 % output k1*gap/2 initial value for checking 
    myfun(k1_ 0/k0) % output initial value of the function =! 0 
    [val,fval] = fsolve(@myfun,k1_ 0/k0); 
    k1=val*k0; 
    fval % output final value of the function, shoud be ~=0 
    k1a_solved = k1*gap/2 % output final value of k1*gap/2 for checking 
    beta = sqrt(k1^2+k0^2*eps1) % calculate and output the wavevector 
end 
 
3. Effective Kerr coefficient. 
 
We can obtain an estimate of the effective Kerr coefficient K for the GPPM by using the maxi-
mum actuation voltage and assuming the vertical size of the gap plasmon mode to be of order of 
the initial gap height. By definition, the change in the effective index is Δn = λ0K|E|2. The phase 
modulation is then Δφ = (2π/λ0) ·Δn·L = 2π L·K· |E|2 or K = Δφ/ (2π·L· |E|2) where E = V/gap. The 
GPPM had a maximum modulation of Δφ = 5 radians at 7 V over L = 23 µm with an initial gap = 
280 nm and electric field, E = 7 V/280 nm. Therefore K = 5.5 x 10-11 m/V2 which is over an or-
der of magnitude larger than the Kerr coefficient of materials commonly considered to have a 
“very large” Kerr coefficient, such as nitrobenzene, with K = 2.2 x 10-12 m/V2. 
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