skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling

Journal Article · · Acta Materialia

Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in aW-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
National Science Foundation (NSF); USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1239318
Journal Information:
Acta Materialia, Vol. 89; ISSN 1359-6454
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Similar Records

Swelling of SiC under helium implantation
Journal Article · Thu Dec 01 00:00:00 EST 2005 · Journal of Applied Physics · OSTI ID:1239318

Radiation-induced swelling and radiation-induced segregation & precipitation in dual beam irradiated Ferritic/Martensitic HT9 steel
Journal Article · Fri Dec 15 00:00:00 EST 2017 · Materials Characterization · OSTI ID:1239318

Swelling and Helium Bubble Morphology in a Cryogenically Treated FeCrNi Alloy with Martensitic Transformation and Reversion after Helium Implantation
Journal Article · Mon Sep 02 00:00:00 EDT 2019 · Materials · OSTI ID:1239318

Related Subjects