sp3-hybridized framework structure of group-14 elements discovered by genetic algorithm
- Ames Laboratory
Group-14 elements, including C, Si, Ge, and Sn, can form various stable and metastable structures. Finding new metastable structures of group-14 elements with desirable physical properties for new technological applications has attracted a lot of interest. Using a genetic algorithm, we discovered a new low-energy metastable distorted sp3-hybridized framework structure of the group-14 elements. It has P42/mnm symmetry with 12 atoms per unit cell. The void volume of this structure is as large as 139.7Å3 for Si P42/mnm, and it can be used for gas or metal-atom encapsulation. Band-structure calculations show that P42/mnm structures of Si and Ge are semiconducting with energy band gaps close to the optimal values for optoelectronic or photovoltaic applications. With metal-atom encapsulation, the P42/mnm structure would also be a candidate for rattling-mediated superconducting or used as thermoelectric materials.
- Research Organization:
- Ames Laboratory (AMES), Ames, IA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- DOE Contract Number:
- AC02-07CH11358
- OSTI ID:
- 1159288
- Report Number(s):
- IS-J 8376; ArticleNumber: 184112
- Journal Information:
- Physical Review. B, Condensed Matter and Materials Physics, Journal Name: Physical Review. B, Condensed Matter and Materials Physics Journal Issue: 18 Vol. 89; ISSN 1098-0121; ISSN PRBMDO
- Publisher:
- American Physical Society (APS)
- Country of Publication:
- United States
- Language:
- English
Similar Records
Fermi-level depinning and contact resistance reduction in metal/n-Ge junctions by insertion of W-encapsulating Si cluster films