Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Physics and chemistry on well-defined semiconductor and oxide surfaces

Thesis/Dissertation ·
OSTI ID:114786
High resolution electron energy loss spectroscopy (HREELS) and other surface spectroscopic techniques have been employed to investigate the following two classes of surface/interface phenomena on well-defined semiconductor and oxide surfaces: (i) the fundamental physical and chemical processes involved in gas-solid interaction on silicon single crystal surfaces, and (ii) the physical and chemical properties of metal-oxide interfaces. The particular systems reported in this dissertation are: NH{sub 3}, PH{sub 3} and B{sub 10}H{sub 14} on Si(111)-(7 x 7); NH{sub 3} on Si(100)-(2 x 1); atomic H on Si(111)-(7 x 7) and boron-modified Si(111); Al on Al{sub 2}O{sub 3} and Sn on SiO{sub 2}. On silicon surfaces, the surface dangling bonds function as the primary adsorption sites where surface chemical processes take place. The unambiguous identification of surface species by vibrational spectroscopy allow the elementary steps involved in these surface chemical processes to be followed on a molecular level. For adsorbate such as NH{sub 3} and PH{sub 3}, the nature of the initial low temperature (100-300 K) adsorption is found to be dissociative, while that for B{sub 10}H{sub 14} is non-dissociative. This has been deduced based upon the presence (or absence) of specific characteristic vibrational mode(s) on surface. By following the evolution of surface species as a function of temperature, the elementary steps leading to silicon nitride thin film growth and doping of silicon are elucidated. In the case of NH{sub 3} on Si(111)-(7 x7) and Si(100)-(2 x 1), a detailed understanding on the role of substrate surface structure is controlling the surface reactivity has been gained on the basis of a Si adatom backbond-strain relief mechanism on the Si(111)-(7 x 7). The electronic modification to Si(111) surface by subsurface boron doping has been shown to quench its surface chemistry, even for the most aggressive atomic H.
Research Organization:
Pittsburgh Univ., PA (United States)
OSTI ID:
114786
Country of Publication:
United States
Language:
English