skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear nanomechanical oscillators for ultrasensitive inertial detection

Abstract

A system for ultrasensitive mass and/or force detection of this invention includes a mechanical oscillator driven to oscillate in a nonlinear regime. The mechanical oscillator includes a piezoelectric base with at least one cantilever resonator etched into the piezoelectric base. The cantilever resonator is preferably a nonlinear resonator which is driven to oscillate with a frequency and an amplitude. The system of this invention detects an amplitude collapse of the cantilever resonator at a bifurcation frequency as the cantilever resonator stimulated over a frequency range. As mass and/or force is introduced to the cantilever resonator, the bifurcation frequency shifts along a frequency axis in proportion to the added mass.

Inventors:
;
Publication Date:
Research Org.:
ORNL (Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1093227
Patent Number(s):
8,505,382
Application Number:
13/024,797
Assignee:
UT-Battelle, LLC (Oak Ridge, TN) ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Datskos, Panagiotis George, and Lavrik, Nickolay V. Nonlinear nanomechanical oscillators for ultrasensitive inertial detection. United States: N. p., 2013. Web.
Datskos, Panagiotis George, & Lavrik, Nickolay V. Nonlinear nanomechanical oscillators for ultrasensitive inertial detection. United States.
Datskos, Panagiotis George, and Lavrik, Nickolay V. Tue . "Nonlinear nanomechanical oscillators for ultrasensitive inertial detection". United States. doi:. https://www.osti.gov/servlets/purl/1093227.
@article{osti_1093227,
title = {Nonlinear nanomechanical oscillators for ultrasensitive inertial detection},
author = {Datskos, Panagiotis George and Lavrik, Nickolay V},
abstractNote = {A system for ultrasensitive mass and/or force detection of this invention includes a mechanical oscillator driven to oscillate in a nonlinear regime. The mechanical oscillator includes a piezoelectric base with at least one cantilever resonator etched into the piezoelectric base. The cantilever resonator is preferably a nonlinear resonator which is driven to oscillate with a frequency and an amplitude. The system of this invention detects an amplitude collapse of the cantilever resonator at a bifurcation frequency as the cantilever resonator stimulated over a frequency range. As mass and/or force is introduced to the cantilever resonator, the bifurcation frequency shifts along a frequency axis in proportion to the added mass.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Aug 13 00:00:00 EDT 2013},
month = {Tue Aug 13 00:00:00 EDT 2013}
}

Patent:

Save / Share:
  • An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in themore » oscillator.« less
  • The magnetically soft, disk-shaped particles reveal a strong nonlinearity of the magnetization process due to irreversible transitions from the spin vortex to single-domain configuration, enabling their ultrasensitive detection in high-background environments.
  • A method for synthesizing I-III-VI.sub.2 compounds, including: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound under heat, with mixing, and/or via vapor transport. The Group III element is melted at a temperature of between about 200 degrees C. and about 700 degrees C. Preferably, the Group I element consists of a neutron absorber and the group III element consistsmore » of In or Ga. The Group VI element and the single phase I-III compound are heated to a temperature of between about 700 degrees C. and about 1000 degrees C. Preferably, the Group VI element consists of S, Se, or Te. Optionally, the method also includes doping with a Group IV element activator.« less
  • An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the targetmore » electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.« less
  • We propose a scheme for three-level cascade atoms to entangle two optomechanical oscillators as well as two-mode fields. We show that two movable mirrors and two-mode fields can be entangled even for bad cavity limits. We also study entanglement of the output of two-mode fields in the frequency domain. The results show that the frequency of the mirror oscillation and the injected atomic coherence affect the output entanglement of the two-mode fields.