skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison between blue lasers and light-emitting diodes for future solid-state lighting: Comparison between blue lasers and light-emitting diodes

Journal Article · · Laser & Photonics Reviews
 [1];  [1];  [2]
  1. Sandia National Laboratories, Albuquerque NM 87185 USA
  2. Corning Incorporated, One Science Center Dr., Corning NY 14831 USA

Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1068385
Report Number(s):
SAND2013-1956J
Journal Information:
Laser & Photonics Reviews, Vol. 7, Issue 6; ISSN 1863-8880
Publisher:
Wiley
Country of Publication:
United States
Language:
English

Similar Records

Enhancing the performance of blue GaN-based light emitting diodes with carrier concentration adjusting layer
Journal Article · Tue Mar 15 00:00:00 EDT 2016 · AIP Advances · OSTI ID:1068385

Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes
Journal Article · Mon Oct 27 00:00:00 EDT 2014 · Applied Physics Letters · OSTI ID:1068385

Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions
Journal Article · Mon Feb 03 00:00:00 EST 2014 · Applied Physics Letters · OSTI ID:1068385

Related Subjects