Enhanced adhesion buffer layer for deep x-ray lithography using hard x-rays.
The first step in the fabrication of microstructure using deep x-ray lithography (DXRL) is the irradiation of a x-ray sensitive resist like polymethylmethacrylate (PMMA) by hard x-rays. At the Advanced Photon Source, a dedicated beamline allows the proper exposure of very thick (several mm) resists. To fabricate electroformed metal microstructure with heights of several mm, a PMMA sheet is glued onto a metallic plating base. An important requirement is that the PMMA layer must adhere well to the plating base. The adhesion is greatly reduced by the penetration of even a small fraction of hard x-rays through the mask absorber into the substrate. In this work we will show a novel technique to improve the adhesion of PMMA onto high-Z substrates for DXRL. Results of the improved adhesion are shown for different exposure/substrate conditions.
- Research Organization:
- Argonne National Lab., IL (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- W-31109-ENG-38
- OSTI ID:
- 10614
- Report Number(s):
- ANL/XFD/CP-95506
- Country of Publication:
- United States
- Language:
- English
Similar Records
Fabrication of mm-wave undulator/linear accelerator cavities, using deep x-ray lithography.
Fabrication of mm-wave undulator cavities using deep x-ray lithography