Solution deposition planarization for ion beam texturing of long-length flexible substrates
- Los Alamos National Laboratory
We present the results of a study of solution deposition planarization (SDP) for preparing smooth flexible substrates in long lengths. Roll to roll fabrication of electronic and power devices with single-crystal properties are desired for inexpensive production. Using the SDP process we have achieved 0.5 nm RMS roughness from a starting roughness of over 20 nm on 5 {micro}m areas. We model the surface roughness reduction as governed by the amount of film shrinkage during solution deposition, number of coatings, solution composition and a residual roughness based on film thickness. This process is extremely well suited for ion-beam texturing of MgO. By utilizing solution deposition of a-Y{sub 2}O{sub 3} to planarize the substrate we create the required surface for in-plane MgO texturing using assisted ion-beam deposition. We have achieved in-plane texture FWHM of 4{sup o} on the SDP substrates. Using an appropriate simple layer architecture for superconducting coated conductors we attained critical currents in excess of 3 MA/cm{sup 2} at 75 K for 1-1.2 {micro}m thick YBa{sub 2}Cu{sub 3}O{sub y} films.
- Research Organization:
- Los Alamos National Laboratory (LANL)
- Sponsoring Organization:
- DOE
- DOE Contract Number:
- AC52-06NA25396
- OSTI ID:
- 1042971
- Report Number(s):
- LA-UR-10-07958; LA-UR-10-7958
- Country of Publication:
- United States
- Language:
- English
Similar Records
Texture development of MgO buffer layers grown by inclined substrate deposition.
Epitaxial growth of gadolinium oxide on roll-textured nickel using a solution growth technique