Chemical Solution Derived Planarization Layers for Highly Aligned IBAD MgO Templates
Journal Article
·
· Superconductor Science & Technology
- ORNL
- Los Alamos National Laboratory (LANL)
The main goal of this research is to develop a chemical solution derived planarization layer to fabricate highly aligned IBAD-MgO templates for the development of high temperature superconductor (HTS) based coated conductors. The standard IBAD-MgO template needs an additional electrochemical polishing step of the mechanically polished 50- m-thick Hastelloy C-276 substrates to ensure a flat and smooth surface for subsequent growth of multi-layer buffer architectures, which include: sputtered 80-nm Al2O3; sputtered 7-nm Y2O3; IBAD 10-nm MgO; sputtered 30-nm homo-epi MgO; and sputtered 30-nm LaMnO3 (LMO) layers. We have successfully developed a solution planarization layer that removes the electrochemical polishing step and also acts as a barrier layer. Crack-free, smooth Al2O3 layers were prepared on mechanically polished Hastelloy substrates using a chemical solution process. A nearly 10-15-nm thick Al2O3 layer was formed with each coating and the coating was repeated several times to achieve the desired film thickness with intermediate heat-treatments after each coating. The Al2O3 planarization layer significantly reduced the surface roughness of the substrate. The average surface roughness value, Ra for a starting substrate was 9-10 nm. After 8 coatings of Al2O3 layer, the Ra was reduced to 2 nm. Highly aligned IBAD-MgO layers with out-of-plane and in-plane textures comparable to the standard IBAD-MgO layers were successfully deposited on top of the solution planarization Al2O3 layers with an Y2O3 nucleation layer using a reel-to-reel ion-beam sputtering system. Both homo-epi MgO and LMO layers were subsequently deposited on the IBAD-MgO layers using rf sputtering to complete the buffer stack required for the growth of HTS films. YBa2Cu3O7- (YBCO) films with a thickness of 0.8 m deposited on these IBAD-MgO templates by pulsed laser deposition showed a high self-field critical current density, Jc of 3.04 MA/cm2 at 77 K and 6.05 MA/cm2 at 65 K. These results demonstrate that a low-cost chemical-solution-based, high-throughput Al2O3 planarization layer can remove the electro-polishing step and replace sputtered Al2O3 layers for the production of high Jc YBCO-coated conductors.
- Research Organization:
- Oak Ridge National Laboratory (ORNL)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1130424
- Journal Information:
- Superconductor Science & Technology, Journal Name: Superconductor Science & Technology Journal Issue: 2 Vol. 27; ISSN 0953-2048
- Country of Publication:
- United States
- Language:
- English
Similar Records
Properties of YBCO on LaMnO3-capped IBAD MgO-templates without Homo-epitaxial MgO layer.
Strategic Research on Performance Optimization of YBa2Cu3O7 Coated Conductors
An evaluation of phase separated, self-assembled LaMnO3-MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa2YCu3O7-& coated conductors
Journal Article
·
Wed Dec 31 23:00:00 EST 2008
· IEEE Transactions on Applied Superconductivity
·
OSTI ID:963681
Strategic Research on Performance Optimization of YBa2Cu3O7 Coated Conductors
Conference
·
Mon Dec 31 23:00:00 EST 2007
·
OSTI ID:1021967
An evaluation of phase separated, self-assembled LaMnO3-MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa2YCu3O7-& coated conductors
Journal Article
·
Thu Dec 31 23:00:00 EST 2009
· Journal of Materials Research
·
OSTI ID:1021971