Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Ultrananocrystalline and nanocrystalline diamond thin films for NEMS/MEMS applications.

Journal Article · · MRS Bulletin
DOI:https://doi.org/10.1557/mrs2010.550· OSTI ID:1035756

There has been a tireless quest by the designers of micro- and nanoelectro mechanical systems (MEMS/NEMS) to find a suitable material alternative to conventional silicon. This is needed to develop robust, reliable, and long-endurance MEMS/NEMS with capabilities for working under demanding conditions, including harsh environments, high stresses, or with contacting and sliding surfaces. Diamond is one of the most promising candidates for this because of its superior physical, chemical, and tribomechanical properties. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) thin films, the two most studied forms of diamond films in the last decade, have distinct growth processes and nanostructures but complementary properties. This article reviews the fundamental and applied science performed to understand key aspects of UNCD and NCD films, including the nucleation and growth, tribomechanical properties, electronic properties, and applied studies on integration with piezoelectric materials and CMOS technology. Several emerging diamond-based MEMS/NEMS applications, including high-frequency resonators, radio frequency MEMS and photonic switches, and the first commercial diamond MEMS product - monolithic diamond atomic force microscopy probes - are discussed.

Research Organization:
Argonne National Laboratory (ANL)
Sponsoring Organization:
SC; DOD
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1035756
Report Number(s):
ANL/CNM/JA-65619
Journal Information:
MRS Bulletin, Journal Name: MRS Bulletin Journal Issue: 4 Vol. 35; ISSN MRSBEA; ISSN 0883-7694
Country of Publication:
United States
Language:
ENGLISH