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CHAPTER 1. Introduction

A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponen-

tially with the distance from the surface on both sides of the surface and propagates at the surface.

The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal

surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect

structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT)

and beaming are two examples and they are the subjects I am studying in this thesis.

EOT means the transmission through holes in an opaque screen can be much larger than the geo-

metrical optics limitation. Based on our everyday experience about shadows, the transmission equals

the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that

the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor

(PEC) film converges to zero when the hole’s dimension is much smaller than the wavelength (40).

Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes

at some special wavelengths (41). This cannot be explained by conventional theories, so it is called

extraordinary transmission.

It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a

periodic subwavelength hole array in a metallic film. The common theories in literatures are based on

these arguments. The surface plasmons cannot be excited by incident plane waves directly because of

momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the

momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited.

Then these surface plasmons will collect the energy along the input surface and carry them to the

holes. So the transmission can be bigger than the filling ratio. Based on this picture, they deduced

naturally that when surface plasmons’ momentum-matching condition is satisfied, the surface plasmons
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are excited sufficiently and the transmission reaches its peak.

I present a new theory from first principles to explain EOT through one-dimensional periodic sub-

wavelength metallic slits in this thesis. This theory can also be extended to 2D hole arrays. I define the

incident wavelengths that satisfy the momentum-matching condition as surface resonant wavelengths.

I proved analytically that the transmission is actually zero at the surface resonant wavelengths. The

correct logic is: When the momentum-matching condition is satisfied, the surface plasmons excited by

each slit interfere constructively with each other, the total surface plasmons will go to infinity. But the

law of nature forbids the infinity. The only solution is the surface plasmon excited by one slit is zero

and all the energy is reflected.

In my theory, the term corresponding to surface plasmons appear explicitly in the equations. So it

confirms the importance of surface plasmons without any doubt. The theory divides the transmission

process into two steps: energy collection process along the input surface and the propagation process in

the slits. In the first process, the surface plasmons collect the energy along the input surface and carry

them to the slits. This process happens efficiently at any wavelength other than the surface resonant

wavelengths. So EOT can happen at almost any wavelength. After the energy enter the slits, the Fabry-

Pérot interference between the input and output surface decides how much energy is emitted from the

slits. So the EOT wavelengths are decided by the Fabry-Pérot resonances.

I also use my theory to explain the data in literatures. The transmission spectra through 1D slits

or 2D hole arrays in literatures agree with my theory very well. The new theory can explain a lot of

experimental results published recently, such as the transmission through randomized hole arrays, the

strong influence of the hole shape on the transmission peaks, and so on.

Beaming is another far-field effect resulting from surface modes. Normally light coming from a

subwavelength waveguide is diffracted to all angles. With the help of surface modes, we can confine

the output field in a small angle interval. This phenomenon is called beaming (46).

The principle of the beaming has been explained clearly in literatures (47). To achieve good beam-

ing, a photonic crystal waveguide need a surface layer to support surface modes and a grating layer

to coupling the evanescent surface modes into propagation modes. A metallic beaming structure is

generally a subwavelength waveguide surrounded by periodic structures such as grooves or dielectric
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gratings (53; 54). The flat metal surface supports the surface mode, so additional surface layer is not

necessary. The periodic structures work as the grating layer.

We discovered that a single layer of dielectric rods can support surface modes (39). Thus I design a

very simple beaming structure: two-layer dielectric-rod structure. The first layer is used to support the

surface modes and the second couples the surface modes into propagation modes. The photonic crystal

waveguide is not a required component of a beaming structure.

Numeric simulations show clearly one two-layer dielectric-rod structure converges the incident

Gaussian beam and two structures in series achieve good beaming and full transmission simultaneously.

By repeating periodically this two-layer structure one can obtain excellent beaming and enhanced trans-

mission for very long distances. Theoretically this simple beaming structure confirms the importance

of surface modes in beaming. In practice, I design a novel waveguide for Gaussian beams.

Beside the research on forward beaming , oblique beaming was also demonstrated using either

metallic structures (75; 76) or photonic crystals (77) in literatures. I developed an efficient method to

design a structure that can achieve oblique beaming at any angle between 0 and 70 degrees.

The structure is a subwavelength metallic slits surrounded by upper and lower periodic grooves at

the output surface. The output surface is equivalent to several point sources. By changing the geometry

parameters of the grooves, I can control the fields, specially the phases of the fields, of the point

sources, and control the output field distributions furthermore. I find the period of the grooves decides

the beaming angle and the distance between the slit and the grooves decides the beaming intensity. By

adjusting the geometry parameters of the upper and lower grooves, I can tilt the beam to any angle

and have very good beaming quality. I find surprisingly the best beaming happens not at the forward

direction but an oblique direction. I also design a frequency splitter: the beaming angles of two close

wavelengths deviate with each very much.

The rest chapters in this thesis are organized in this way:

In the second chapter I prove the existence of the surface modes at a metal-dielectric interface or a

photonic crystal surface with a surface layer. I also briefly review the EOT phenomenon and beaming

phenomenon.

In the third chapter, I calculate the surface waves along a metal-dielectric interface with an inden-



4

tation analytically. The surface waves is basically surface plasmons with some residual waves. The

complete description of the surface wave sets up a solid foundation to understand EOT and beaming.

In the fourth chapter, I present my theory about EOT. In the fifth chapter, I discuss two beaming

structures: the two-layer dielectric-rod structure and the metallic oblique beaming structure.

Then in the appendix, I discuss how to simulate the waveguide with infinite length numerically.
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CHAPTER 2. Fundamentals

A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponen-

tially with the distance from the surface on both sides of the surface and propagates at the surface.

Surface modes exist at metallic surfaces and photonic crystal surfaces. In this thesis, I will study the

properties of the two kinds of surface modes and two phenomena strongly connected to surface modes:

extraordinary transmission (EOT) and beaming.

2.1 Surface plasmons

Surface plasmons are surface modes trapped at a metallic surface through their interaction with

the free electrons of the metal (1). The fundamentals and applications of surface plasmons are nicely

reviewed in some books (2).

2.1.1 Surface plasmons at an interface

Over a wide frequency range, the relative permittivity of a metal can be described by the Drude

model (3; 4)

ε(ω) = 1 −
ω2

p

ω(ω + iωc)
. (2.1)

Here ωc is the damping frequency and

ω2
p =

ne2

ε0me f f

is the plasma frequency, where n is the electron density, e is the electron charge and me f f is the effective

optical mass of an electron. Noble metals have extremely high plasma frequencies. For example, sliver

has ωp = 2π × 2184 THz and ωc = 2π × 4.35 THz (5). When ω is smaller than the plasma frequency,

the metal’s permittivity has negative real part. Comparing to the electric fields, the interactions between

the magnetic fields and the electrons are weak. So the relative permeability µ(ω) ≈ 1.
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y = 0
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Ey
Hzx

yMetal, ǫm

Dielectric, ǫd

Figure 2.1 Schematic representation of a flat metal-dielectric interface. The inter-
face is y = 0 and the fields are TM polarized.

The simplest structure supporting surface plasmons is a flat metal-dielectric interface. Fig. 2.1

shows an interface at y = 0. The fields are TM polarized. So the fields in the dielectric region are

Hz(x, y) = A exp[iβx] exp[−kdy];

Ex(x, y) = −i
kd

ωε0εd
A exp[iβx] exp[−kdy];

Ey(x, y) =
β

ωε0εd
A exp[iβx] exp[−kdy].

and the fields in the metal region are

Hz(x, y) = A exp[iβx] exp[kmy];

Ex(x, y) = i
km

ωε0εm
A exp[iβx] exp[−kdy];

Ey(x, y) =
β

ωε0εm
A exp[iβx] exp[−kdy].

Here εm and εd are the relative permittivities of the dielectric and metal.

Hz is continuous along the y = 0 interface, so the magnitude of the magnetic field A and the x

component of the wave vector β are the same in the two regions. Because of the continuity of Ex along

the interface, we get
km

kd
= −
εm
εd
.

The relative permittivities satisfy Re(εm) < 0 and εd > 0. So there is a solution making Re(km) > 0 and

Re(kd) > 0, which is the surface plasmon solution.
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Figure 2.2 Dispersion relation of the surface plasmons at a silver-air interface.
The black line is the light line. The silver is described by the Drude
model. 1 PHz = 1015 Hz.

The fields in the dielectric and metal have to fulfill the dispersion relations of the media, so

ω2

c2 εd = β
2 − k2

d;

ω2

c2 εm = β
2 − k2

m.

Then we get the dispersion relation of the surface plasmons propagating along the interface

β =
ω

c

√
εmεd
εm + εd

. (2.2)

Fig. 2.2 shows the Dispersion relation of the surface plasmons at a silver-air interface, where the

relative permittivity of the silver is calculated form Eq. (2.1). Hz distributions of the surface plasmon

is plotted in Fig. 2.2 when εm = −2 and εm = 1. We can clearly see the fields decay exponentially on

the both sides of the interface.

If we neglect the damping frequency in Eq. (2.1), then

εm(ω) ≈ 1 − ω2
p/ω

2.
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Metal εm = −2

Dielectric εd = 1

1

Figure 2.3 Hz distributions of the surface plasmon when εm = −2 and εd = 1.

When ω approaches the surface plasmon frequency

ωsp =

√
ωp

1 + εd
,

εm + εd → 0 and β goes to infinity. Fig. 2.2 shows the converging property.

Suppose the real and imaginary parts of εm are ε′ and ε′′ respectively and |ε′| � |ε′′|. Then β =

β′ + iβ′′ with

β′ =
ω

c

(
ε′εd
ε′ + εd

)1/2
;

β′′ =
ω

c

(
ε′εd
ε′ + εd

)3/2 ε′′

2(ε′)2 .

The surface plasmon can be characterized by three lengths:

1. The propagation length of the surface plasmon L = (2β′′)−1;

2. The skin depth in the dielectric

ẑd =
1
|kd |
≈
λ

2π

(
ε′ + εd

−ε2d

)1/2
;

3. The skin depth in the metal

ẑm =
1
|km|
≈
λ

2π

(
ε′ + εd

−(ε′)2

)1/2
;

When the frequency is much smaller than the surface plasmon frequency, ε′ is very negative and β

is close to the light line of the dielectric. So ẑd is big, the surface plasmons extend into the dielectric.

When ω approaches ωsp, ẑd → 0 and ẑm → 0. So the energy is confined in a very small area. We

can use this property to design surface plasmon waveguides.



9

Ex

Ey
Hz

x
y

ǫ1

ǫ2

ǫ2
W

Figure 2.4 Schematic representation of a symmetrical three layer structure. The
middle layer has relative permittivity ε1 the upper and lower layers
have the relative permittivity ε2. The thickness of the middle layer is
W. The fields are TM polarized.

2.1.2 Surface plasmons of multilayer systems

Now I begin to study the the multilayer structures composed by alternative metal and dielectric

layers. Every metal-dielectric interface supports surface plasmons. When the layer is very thin, the

surface plasmons at neighboring interfaces will interact with each other and bring us new physics

(12; 13; 14).

Here I only study the simplest multiple layer structures: symmetrical three layer structures. The

top and bottom layers are half-infinite with the same relative permittivity ε2. In the middle is a layer

with relative permittivity ε1 and width W. y = 0 is the middle line of the middle layer. I only consider

TM polarization here.

Given β as the wavevector along x direction, the field in the middle region is

Hz = eiβx(Ae−k1y + Bek1y);

k1 =

√
β2 − ε1k2

0.

Here k0 = ω/c is the wavevector in free space.

Hz in the upper and lower layers are

Hz = Ceiβxe−k2y when y > W/2;

Hz = Deiβxeik2y when y < −W/2.

k2 =

√
β2 − ε2k2

0, Re(k2) > 0.
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Hz and Ex are continuous along the interfaces x = ±W/2. So

Ae−k1W/2 + Bek1W/2 = Ce−k2W/2; (2.3)

k1/ε1(Ae−k1W/2 − Bek1W/2) = k2/ε2Ce−k2W/2; (2.4)

Aek1W/2 + Be−k1W/2 = De−k2W/2; (2.5)

k1/ε1(Aek1W/2 − Be−k1W/2) = −k2/ε2De−k2W/2. (2.6)

Form Eq. (2.3) and Eq. (2.4), we get

Ae−k1W/2 + Bek1W/2

Ae−k1W/2 − Bek1W/2 =
ε2k1

ε1k2
. (2.7)

Form Eq. (2.5) and Eq. (2.6), we get

−
Aek1W/2 + Be−k1W/2

Aek1W/2 − Be−k1W/2 =
ε2k1

ε1k2
. (2.8)

Put the two equations together, we have

Ae−k1W/2 + Bek1W/2

Ae−k1W/2 − Bek1W/2 = −
Aek1W/2 + Be−k1W/2

Aek1W/2 − Be−k1W/2 . (2.9)

It is easy to verify this equation is equivalent to A2 = B2. So the dispersion relation is

ε2k1

ε1k2
=

e−k1W/2 + ek1W/2

e−k1W/2 − ek1W/2 or (2.10)

ε2k1

ε1k2
=

e−k1W/2 − ek1W/2

e−k1W/2 + ek1W/2 . (2.11)

Eq. (2.10) describes the odd modes and Eq. (2.11) describes the even modes in the system. When

W → ∞, the two equations become

ε22k2
1 = ε

2
1k2

2

and the dispersion relation returns to Eq. (2.2). The two interfaces decouple.

Fig. 2.5 shows the dispersion relation of an air-silver-air multilayer structure. ε1 is calculated from

a Drude model and ε2 = 1.

The odd modes of the dielectric-metal-dielectric multilayer structure have a special property: when

the thickness of metal layer decreases, the coupled surface plasmons tend to stay out of the metal. Since

absorption happens in the metal, the odd modes have longer propagation length (15). The even modes

have the opposite property: they tend to stay in the metal, which reduce the propagation length.
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Figure 2.5 Dispersion relation of the coupled surface plasmon mode for an air-sil-
ver-air multilayer structure. The thickness of the silver layer is 50 nm.
The dispersion relation of a single silver-air interface is plotted too
with the label “Single interface”. The black line is the light line.
The silver is described by the Drude model with negligible damping.
1 PHz = 1015 Hz.
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Figure 2.6 Dispersion relation of the basic mode of an silver-air-silver multilayer
structure. The dispersion relation of a single silver-air interface is plot-
ted too with the label “Single interface”. The black line is the light line.
The silver is described by the Drude model with negligible damping.
1 PHz = 1015 Hz.
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Figure 2.7 Schematic representation of a homogeneous subwavelength sphere il-
luminated by an incident plane wave. The sphere has radius R and rel-
ative permittivity εm surrounded by a homogeneous, lossless medium
with relative permittivity εd.

I now move to the metal-dielectric-metal multilayer structure. The dispersion relation of the basic

mode of an silver-air-silver multilayer structure is shown in Fig. 2.6 for three different thickness of the

air layer. The basic mode is interesting because the energy of the basic mode is mostly confined in the

air layer. No matter how narrow the dielectric layer is, the basic mode is a propagation mode inside the

dielectric layer. We can find that β of the mode changes with W, which give us a possible way to control

the fields (16). when W is very small, β is big even at ω much smaller than ωsp, which is impossible

for a single interface. Big β insures the energy is confined in a very small region, even much smaller

than the wavelength, so the metal-dielectric-metal multilayer structures works perfectly as waveguides

(17; 18; 19).

2.1.3 Localized surface plasmons around subwavelength metal particles

Surface plasmons can also be excited at the surfaces of subwavelength metallic particles. The

surface plasmons enhance fields around the small particles .

The localized surface plasmons around a subwavelength metal sphere in a plane wave can be calcu-

lated analytically. Fig. 2.7 shows the system under study: the sphere has radius R, relative permittivity

εm and is surrounded by a homogeneous, lossless medium with relative permittivity εd.

When the size of the sphere is much smaller than the incident wavelength, we can neglect the phase

oscillation and assume the sphere locates in a electrostatic field. This is called quasi-static approxima-

tion (20). Then the Maxwell’s equations are simplified to the Laplace equation of the potential ∇2Φ = 0

and the electric field is ~E = −∇Φ. The external field becomes ~E = E0ẑ.
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Because of the azimuthal symmetry of the system, the Laplace equation has the general solution is

(20)

Φ(r, θ) =
∞∑

l=0

[
Alrl + Blr−(l+1)]Pl(cos θ).

Here Pl(cos θ) are the Legendre polynomials, r is the length of the position vector ~r and θ is the zenith

angle.

Because the potential is finite at the origin, the potentials inside and outside the sphere are

Φin(r, θ) =
∞∑

l=0

AlrlPl(cos θ) when r ≤ R; (2.12)

Φout(r, θ) =
∞∑

l=0

[
Blrl +Clr−(l+1)]Pl(cos θ) when r > R. (2.13)

Al, Bl and Cl are decided by the boundary conditions. First when r → ∞, Φout converges to −E0z. So

Bl = −E0δl1 where δl1 is the Kronecker delta. Next considering the continuity of the potential function

and the tangential components of the electric field at the surface of the sphere, finally we can get

Φin(r, θ) = −
3εd

εm + 2εd
E0r cos θ; (2.14)

Φout(r, θ) = −E0r cos θ +
εm − εd
εm + 2εd

R3

r2 E0 cos θ. (2.15)

The potential outside the sphere is basically the superposition of the external field and the field of a

dipole located at the origin. Define the dipole moment

~p = 4πε0εdR3 εm − εd
εm + 2εd

~E0.

Then

Φout(r, θ) = −E0r cos θ +
~p · ~r

4πε0εdr3 .

Electric fields can be calculated from ~E = −∇Φ:

~Ein =
3εd

εm + 2εd
~E0;

~Eout = ~E0 +
3~n(~n · ~p) − ~p

4πε0εdr3

We can define the polarizability α as ~p = ε0εdα~E0, then

α = 4πR3 εm − εd
εm + 2εd

. (2.16)
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set at 0.8 �m, which is the plasmon resonance wavelength

of small silver particles embedded in silicon, as we will

show later. Note the radius R of the outer shell is normal-

ized to the radius of the sphere. At R= a, the enhancement

factors for all particles are zero (not shown in the figure

due to the log scale) because the imaginary silicon spher-

ical shell has zero thickness. When R increases to a large

value, the near field effect diminishes and the enhance-

ment factors for all cases approach 1. In the intermediate

range of R, the enhancement factors reach maximum for

all particles except the 200 nm one, which increases mono-

tonically with R and never exceeds 1. As shown in the

figure, smaller particles lead to larger enhancement. How-

ever, the dependence of the enhancement factor on the par-

ticle radius does not follow a monotonic trend. The 10 nm

particle gives the maximum enhancement while the larger

20 nm and smaller 5 nm particles yield less enhancement.

The peaks for the 5 nm and 10 nm particles are both at

R = 1,26a, which suggests that the field enhancement is

concentrated in a spherical shell with a thickness of 0.26a.

At the wavelength of 0.8 �m, the distribution of the

normalized field, or field enhancement (given by Eq. (5)),

outside the 100 nm, 10 nm and 5 nm (radius) particles at

the y= 0 plane is shown in Figures 3(a–c). Note 0.8 �m is

the wavelength in vacuum and it is around 0.22 �m in sil-

icon. The field pattern around the 100 nm particle clearly

shows the retardation effects of the electric field, which

is anticipated because the wavelength is smaller than the

particle diameter such that the interference of the scattered

light is strong. As shown in the figure, the field enhance-

ment for the 100 nm particle is rather limited and scatters

around the particle surface, which is mainly due to the

interference effects. Compared to the 100 nm particle, the

fields around the 10 nm and 5 nm particles show a typical

pattern of a dipole field and have much higher enhance-

ment factor. The electric field is concentrated around the

top and bottom of the particles where the vector of the

electric field of the incident wave has the maximum com-

ponent along the surface normal.

An interesting observation from Figures 3(b and c) is

that the fields around the small particles (with radii of

5 nm and 10 nm) share similar distribution patterns that

differ only in magnitude. Since for the 5 nm and 10 nm

particles, the wavelength is more than 10 times larger than

the particle diameters, the dipole model is considered to

be a reasonable approximation. The field of an oscillating

dipole is given by20

⇀
E =

ejk2r

4�)2)0

{

k2
2�êr ×

⇀
p�× êr
r

+ !3êr�êr ·
⇀
p�−

⇀
p$

×

(

1

r3
−

jk2

r2

)}

(12)

where )0 is the permittivity of vacuum, )2 is the rel-

ative permittivity of silicon, and êr is unit vector in

the r direction. The dipole moment of the particle is

expressed as

⇀
p = pêx = 4�)0)2E0a

3 )1 −)2

)1 +2)2

êx (13)

where )1 is the relative permittivity of the silver parti-

cle. Since � ≫ a, the field near the particle surface is

dominated by the near field terms and Eq. (12) can be
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Fig. 3. The field distributions outside the silver particles at the y = 0

plane. The field distributions are normalized to the incident plane wave as

defined in Eq. (5). (a) 100 nm particle (b) 10 nm particle (c) 5 nm particle.

J. Comput. Theor. Nanosci. 5, 2096–2101, 2008 2099

Figure 2.8 Figure excerpted from the paper J. Comput. Theor. Naonosci. 5, 2096
(2008) by L. Hu et al.. The field distributions around the silver sphere
with radius a = 10 nm embedded in silicon. The field distributions are
normalized to the incident plane wave with λ = 800 nm, which is the
surface plasmon wavelength of silver spheres embedded in silicon.

The polarizability experiences a resonance when

Re(εm) = −2εd. (2.17)

This relation is named as the Fröhlich condition and the frequency satisfying this condition is called

the surface plasmon frequency of a metal sphere.

Now I will use the electrostatics calculation results above to time-harmonic electromagnetic fields.

When the incident wave is ~E(r, t) = ~E0 exp[−iωt] and R � λ, the dipole representation is sill valid and

~p(t) = ε0εdα~E0 exp[−iωt]. Then corresponding scattering and absorbing cross sections of a sphere are

(21)

Csca =
k4

6π
|α|2;

Cabs = kIm(α).

So the scattering and absorption of a metallic sphere are strongly enhanced at the surface plasmon

frequency.
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Figure 1: Simple examples of one-, two-, and three-dimensional photonic crystals. The

different colors represent materials with different dielectric constants. The defining feature of

a photonic crystal is the periodicity of dielectric material along one or more axes.

case of one-dimensional crystals, and proceeding to the more intricate and useful
properties of two- and three-dimensional systems (see figure 1). After equipping
ourselves with the appropriate theoretical tools, we attempt to convey a useful
intuition about which structures yield what properties, and why?

This textbook is designed for a broad audience. The only prerequisites are a
familiarity with the macroscopic Maxwell equations and the notion of harmonic
modes (which are often referred to by other names, such as eigenmodes, normal
modes, and Fourier modes). From these building blocks, we develop all of the
needed mathematical and physical tools. We hope that interested undergraduates
will find the text approachable, and that professional researchers will find our
heuristics and results to be useful in designing photonic crystals for their own
applications.

Readers who are familiar with quantum mechanics and solid-state physics are
at some advantage, because our formalism owes a great deal to the techniques
and nomenclature of those fields. Appendix A explores this analogy in detail.
Photonic crystals are a marriage of solid-state physics and electromagnetism.
Crystal structures are citizens of solid-state physics, but in photonic crystals the
electrons are replaced by electromagnetic waves. Accordingly, we present the
basic concepts of both subjects before launching into an analysis of photonic
crystals. In chapter 2, we discuss the macroscopic Maxwell equations as they apply
to dielectric media. These equations are cast as a single Hermitian differential
equation, a form in which many useful properties become easy to demonstrate: the
orthogonality of modes, the electromagnetic variational theorem, and the scaling
laws of dielectric systems.

Chapter 3 presents some basic concepts of solid-state physics and symmetry
theory as they apply to photonic crystals. It is common to apply symmetry
arguments to understand the propagation of electrons in a periodic crystal
potential. Similar arguments also apply to the case of light propagating in
a photonic crystal. We examine the consequences of translational, rotational,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

Figure 2.9 Figure excerpted from the book ”Photonic crystals: Molding the Flow
of Light” by J. D. Joannopoulos et al.. Simple examples of photonic
crystals. The different colors represent materials with different refrac-
tive indices.

Fig. 2.8 shows the the field distributions around the silver sphere with radius a = 10 nm when

λ = 800 nm (22). The fields are normalized to the incident plane wave. We can find the fields around

the particle are much bigger than the incident fields. These strong localized fields are very useful to

generate Raman scattering (23; 24), fluorescence (25) and other nonlinear phenomena (26).

When the particle becomes bigger, the quasi-static approximation fails and we have to use a rigor-

ous electrodynamics approach. The field distribution then follows Mie solution (21; 27).

2.2 Surface waves at photonic crystal surfaces

2.2.1 Introduction to photonic crystals

Photonic crystals provide powerful ways to manipulate electromagnetic fields. Some comprehen-

sive books were published recently addressing this topic (6; 7; 8). Here I just give a simple introduction

of photonic crystal.

Simply speaking, photonic crystals are just periodic arrays of materials with different refractive

indices (6). Some simple examples of photonic crystals are shown in Fig. 2.9.

When the period of the photonic crystal (or lattice constant) is much bigger than the wavelength,

we can neglect the wavelength and use geometrical optics (9). The electromagnetic waves become light

rays. When the wavelength is much larger than the lattice constant, we can neglect the details in one
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unit cell of the photonic crystal and treat the photonic crystal as a homogeneous medium. Actually the

normal homogeneous materials are not homogeneous at the level of atoms.

The distance between two neighboring atoms in a crystal is several angstroms. With the develop-

ment of nanotechnology, persons can make structures around or even smaller than 100 nm (10). These

structures are much larger than atoms, which gives scientists a lot of freedom to design them. These

structures are also much smaller than the wavelength of infrared and even visible lights, so they are

regard as effective materials. These artificial structures are called metamaterials, which can exhibit

exceptional properties not readily observed in nature (11).

Photonic crystals mostly focus on the region between the two limitations where the wavelengths

are of the same order of the lattice constants. Both the approximation to rays and the approximation to

homogeneous media fail. We have to solve the Maxwell’s equations and use band structure to describe

photonic crystals.

2.2.2 Band structures of photonic crystals

Similar to the crystals, we can also use the band structure to describe the electromagnetic field

distributions supported by photonic crystals.

Suppose the photonic crystal is characterized by the periodic relative permittivity ε(~r) and the rela-

tive permeability is µ = 1. ~ai where i = 1, 2, 3 are the primitive vectors of the unit cell of the photonic

crystal. The periodicity of ε(~r) implies

ε(~r + ~ai) = ε(~r) for i = 1, 2, 3.

From the Maxwell’s equations

∇ × ~E(~r, t) = −µ0
∂

∂t
~H(~r, t);

∇ × ~H(~r, t) = ε(~r)ε0
∂

∂t
~E(~r, t);

∇ ·
[
ε(~r)~E(~r, t)

]
= 0;

∇ · ~H(~r, t) = 0,
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We will get

1
ε(~r)
∇ ×

(
∇ × ~E(~r, t)

)
= −

1
c2

∂2

∂t2
~E(~r, t);

∇ ×

( 1
ε(~r)
∇ × ~H(~r, t)

)
= −

1
c2

∂2

∂t2
~H(~r, t).

Suppose ~E(~r, t) and ~H(~r, t) are the time-harmonic fields with the form ~E(~r, t) = ~E(~r) exp[−iωt]

and ~H(~r, t) = ~H(~r) exp[−iωt]. Then ~E(~r) and ~H(~r) are the eigenfunctions of the operators LE and LH

defined below:

LE ~E(~r) ,
1
ε(~r)
∇ ×

(
∇ × ~E(~r)

)
=
ω2

c2
~E(~r); (2.18)

LH ~H(~r) , ∇ ×
( 1
ε(~r)
∇ × ~H(~r, t)

)
=
ω2

c2
~H(~r). (2.19)

Then we can use Bloch’s theorem to Eq. (2.18) and Eq. (2.19). The solutions of the two equations

are then characterized by a wavevector ~k and a band index n and have the form

~E~kn(~r) = u~kn(~r) exp[i~k · ~r];

~H~kn(~r) = v~kn(~r) exp[i~k · ~r].

and u~kn(~r) and v~kn(~r) are periodic functions with the same unit cell as ε(~r). The band structures describe

the relations between the wavevector ~k and the corresponding eigenfrequency ω.

An example of the photonic band structure is shown in Fig. 2.10. The photonic crystal is a two-

dimensional one composed by a square array of square alumina rods embedded in air. The rods are of

dimension d = 3.1 mm with relative permittivity ε = 9.8. The lattice constant is a = 11 mm.

One important property of the band structure is the existence of band gap under TM polarization

(electric field parallel with the rods). No eigenmode exists when the frequency is between 9.54 Hz

and 12.81 GHz. So the waves with these frequencies can not propagate in the photonic crystal. The

complete photonic band gap for any propagation directions and any polarizations has been found with

3D photonic crystals (28; 29).

Photonic crystals offer us the opportunities to “design” the band structures. A lot of applications

come from the unusual band structures of photonic crystals. For example, the band gap leads to the pho-

tonic crystal waveguides directly (30; 31). Other applications includes superprisms (32) and superlens

(33).
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Figure 2.10 The photonic band structure of a 2D photonic crystal. (a) the cross–
sectional view of the photonic crystal in one unit cell. The pho-
tonic crystal is a square array of square alumina rods embedded in
air with side length d = 3.1 mm and ε = 9.8 . The lattice constant is
a = 11 mm. (b) The Brillouin zone. (c) The photonic band structure.
The blue lines represent TM modes and the red represent TM modes.
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2.2.3 Surface modes at photonic crystal surfaces

The existence of the surface modes at photonic crystal surfaces has been verified theoretically

(34; 35; 36) and experimentally(37; 38; 39). It was found that the surface modes are sensitive to the

surface termination and the bear photonic crystal surface don’t support surface modes. Further research

is necessary to understand this behavior.

To study surface modes, we can employ that supercell method. Supercell is a cell containing more

than one unit cells of a photonic crystal. The band structures based on the supercell method are shown

in Fig. 2.11.

The photonic crystal used here is the same what used in Fig. 2.10. Fig. 2.11(a) shows the band

structure calculated based on the unit cell of the photonic crystal. This band structure is equivalent

the band structure in Fig. 2.10. I calculate the eigenfrequencies for different (kx, ky) but only show the

corresponding ky in the figure. The gray stripe in the band structure figure shows the band gap. In

Fig. 2.11(b), I calculate the eigenfrequencies based on the supercell. The supercell contains 20 unit cell

of the photonic crystal. The diagram shows only 6 of them for simplicity. I set that the fields along

the left boundary equal the fields along the right boundary; the fields along the bottom boundary has

a phase difference exp[ikya] with the fields along the top boundary (a is the lattice constant). Since

the supercell has 20 unit cells along x direction, exp[ikx × 20a] = 1 means exp[ikx × a] can have

20 different values. So one time eigenfrequency calculation based on supercell is equivalent to 20

times calculations using different kx values based on a unit cell. So I get the same band structure in

Fig. 2.11(b) as in Fig. 2.11(a).

In Fig. 2.11(c) I add an air layer between photonic crystals. The supercell contains 20 unit cells

of the photonic crystals in the middle (only 6 are shown in the diagram of Fig. 2.11(c) and air layers

with length 10a at both ends. Repeating the supercell along x and y directions, we can not get a

perfect photonic crystal but the alternative air and photonic crystal layers. So the band structure here is

different from the band structure of the perfect photonic crystal shown in Fig. 2.11(a) and Fig. 2.11(b).

For example some bands exist in the band gap of the photonic crystal. These modes will stay in the air

layers.

In Fig. 2.11(d) I add surface layers at both ends of the photonic crystal. The surface layers is
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(d)

Figure 2.11 Band structures based on the supercell method. The top figures in
(abcd) show the calculation area. The photonic crystal is the sames
as the one in Fig. 2.10. The lattice constant is a = 11 mm. The bottom
figures are the band structures. The gray stripe shows the band gap.
In (bcd), the supercell contains 20 photonic crystal layers, only 6 are
shown in the diagram. In (c), the length of the air layers at both ends
of the photonic crystal is 10a. In (d) the length of the air layers is 9a
and circular rods with radius r = 1.83 mm and relative permittivity
ε = 9.8 are added at both ends of the photonic crystal. The black line
is the light line.
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Figure 2.12 Band structure of one layer of dielectric rods. The top figure shows
the calculation area with size of 220 mm×11 mm. The rods have cir-
cular cross section with radius r = 1.83 mm and relative permittivity
ε = 9.8. The bottom shows the band structures based on the supercell
method. The black line is the light line.

composed by circular rods with radius r = 1.83 mm and relative permittivity ε = 9.8. We can find

new modes appearing below the light line in the band gap. They are below the light line, so they are

evanescent waves in air; they are in the band gap, so they are evanescent wave in the photonic crystal.

So these modes are surface modes. Since the surface modes decay in both the air and the photonic

crystal layers, if the two layers are wide enough, the surface modes along different surfaces will not

interact with each other. So though we are simulating a system with infinite number of surfaces, the

surface modes converges to the surface modes along a single surface. If I change the length of the

photonic crystal layer or air layer in the supercell, the locations of other modes may changes in the

band structures but the locations of surface modes will stay stable.
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2.2.4 Surface modes along a layer of dielectric rods

Using the same supercell method, we can find surface modes exist along a layer of dielectric rods.

Fig. 2.12 shows an example. The dielectric rods have circular cross section with radius r = 1.83 mm

and relative permittivity ε = 9.8. The distance between the adjacent rods is a = 11 mm. The supercell

is a 20a × a rectangle with one rod in the middle. We can find a band under the light line in Fig. 2.12.

These modes are evanescent in air, so they are the surface modes.

2.3 Extraordinary transmission and beaming

In previous sections I have demonstrated the localized property of surface modes. However surface

modes can also influence the far field since they can propagate at the surface and connect the structures

at the surface. Extraordinary transmission (EOT) and beaming are two examples.

2.3.1 Extraordinary transmission

Considering an opaque screen with some open area, the extraordinary transmission means the nor-

malized transmission is larger than 1. The normalized transmission means the transmission which is

normalized to the opening area. Suppose the incident intensity is Iin with unit W/m2. If the open area

has finite area A, the total transmitted power is Pout with unit W. Then the normalized transmission

Tnorm is

Tnorm =
Pout

IinA
.

If the open area is a period structure, suppose the area of one unit cell is U and the the area of the open

area in one unit cell is A, then the transmission is described by the transmitted intensity Iout and the

normalized transmission is

Tnorm =
IoutU
IinA
.

When the dimension of the holes are much larger than the wavelength, we enter the region of

geometrical optics. Based on our everyday experience about shadows, we know Tnorm ≈ 1 in this case.
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Figure 2.13 Figure excerpted from the paper Nature 445, 39 (2007) by C. Genet
and T. W. Ebbesen. The normalized transmission spectrum through
a 225 nm-thick Au film with a triangle lattice of circular holes under
normal incidence. The hole diameter is 170 nm and the lattice con-
stant is 520 nm. Before and after the film are the glass substrate and
index-matching liquid. η is the normalized transmission.
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The optical transmission through a subwavelength aperture in a metal film is strongly enhanced when the
incident light is resonant with surface plasmons at the corrugated metal surface surrounding the aperture.
Conversely, the aperture acts as a novel probe of the surface plasmons, yielding useful insights for optimizing
the transmission enhancement. For the optimal corrugation geometry, a set of concentric circular grooves,
three times more light is transmitted through the central subwavelength aperture than directly impinges
upon it. This effect is useful in the fabrication of near-field optical devices with extremely high optical
throughput. © 2001 Optical Society of America

OCIS codes: 230.3990, 240.6680, 180.5810, 210.0210.

The usefulness of near-f ield optical devices,1 which
owe their extremely high resolution to the presence of
an aperture of size d ,, l, where l is the optical wave-
length, is limited by their extremely low transmission
efficiencies.2 Transmission T of a subwavelength
aperture in an ideal-metal sheet, normalized to the
area of the aperture, is predicted3 to follow the formula
T�f � �d�l�.4 A large transmission enhancement
is observed when the metal surface surrounding the
aperture has periodic corrugations,4,5 which permit
grating coupling of the incident light with surface
plasmon (SP) modes at the metal surface.6 –8 At reso-
nance, a large enhancement of the oscillating electric
field at the hole causes the transmission to be unusu-
ally high despite the fact that the propagation of light
through the subwavelength hole is evanescent.9 The
transmission enhancement can have a large effect on
such fields as near-f ield microscopy and high-density
data storage.5

Conversely, the single aperture acts as a novel probe
of the SP modes on the metal surface, elucidating the
properties of the SP and allowing us to tailor the sur-
face corrugation to maximize enhancement factor FSP ,
the ratio of the transmission of a single hole with and
without surface corrugation. We find the highest FSP

for a set of concentric circular grooves surrounding the
hole with depth h � 75 nm.

The structures that we study here were fabricated
in a free-standing Ni film10 of thickness 300 nm,
coated on one side with a 100-nm Ag layer. We used
a Micrion Model 9500 focused ion beam machine
(5-nm resolution) to mill a single circular aperture,
surrounded by surface topography on the Ni side
(Fig. 1, insets); the corrugation depth was determined
by normalizing to the ion dose required for milling
through the thickness of the metal f ilm. Subse-
quently a 30-nm layer of Ag was rf sputtered over the
Ni surface.10 Transmission spectra were measured

with illumination from a tungsten halogen lamp
system at normal incidence and with a divergence less
than 3±.

Figure 1(A) shows T�f of a single hole �d � 440 nm�
surrounded by a set of concentric circular grooves
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Fig. 1. Transmission spectra of a single aperture �d �

440 nm� surrounded by (A) rings with sinusoidal cross sec-
tion and (B) a square array of dimples �h � 180 nm�. Left
insets, focused ion beam images of typical samples; right
insets, cross sections of the hole and corrugation. Illumi-
nation is on the corrugated surface. Thin solid curves are
fits to the data.

0146-9592/01/241972-03$15.00/0 © 2001 Optical Society of America

Figure 2.14 Figure excerpted from the paper Opt. Lett. 26,1972 (2001) by T
Thio et al.. The normalized transmission spectrum through a Ag hole
surrounded by (A) rings and (B) a square lattice of dimples. The rings
have sinusoidal cross section. The mean radii is Rk = kP, P = 750 nm
and k = 1, 2, · · · , 10. The peak-to-peak amplitude is h. The dimples
have lattice constant 750 nm and depth h = 180 nm.
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In 1944, Bethe (40) has studied the transmission through a subwavelength circular hole with radius

r in an infinitely thin perfect electric conductor (PEC) film. He predicted that

Tnorm =
64(kr)4

27π2 .

So the normalized transmission should be very small when the wavelength is much bigger than the

dimension of the holes.

However, it is found the normalized transmission through subwavelength metallic holes can be

bigger than 1 recently (41). This phenomenon can not be explain by conventional theories, so it is

named as extraordinary transmission. It is generally believed that surface plasmons play important role

here to carry energy to the holes along the surface.

Fig. 2.13 shows the normalized transmission spectrum through a 225 nm-thick Au film with a

triangle lattice of circular holes (42). EOT happens at some special wavelengths. A common expla-

nation links the peak wavelengths to the momentum-matching condition(43; 44) . The logic is when

the momentum-matching condition is satisfied, the surface plasmons are strongly excited and help the

transmission. In this thesis, I will analyze this explanation carefully.

EOT through a single hole was also observed (45). As insets of Fig. 2.14 show, the hole is sur-

rounded by rings or dimples, which will excite surface plasmons and enhance the transmission.

2.3.2 Beaming

Grooves at the input surface result in EOT; grooves at the output surface also result in a special

phenomenon, beaming: light emerging from a subwavelength aperture is compressed into a narrow

beam. (46).

The principle of the beaming can be explained clearly using photonic crystals (47). The top row

of Fig. 2.15 shows the field distribution after a photonic crystal waveguide. Since the waveguide is

narrow, the exit of the waveguide is similar to a point source and the output fields are diffracted to all

angles. A possible way to converging the field is to use surface modes to generate a “big” source. In the

middle row of Fig. 2.15 a surface layer is added after the photonic crystal to support the surface mode.

We can see clearly surface modes are excited and propagate along the surface layer. So a big source is

achieved. But the surface waves are evanescent waves, they won’t influence the far field distribution.
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ture 4 in Fig. 10. For this structure, the two chosen frequen-

cies are both beaming frequencies. As shown in both the

experimental and the simulation results the beaming at

11.85 GHz for this structure is more pronounced than that of

structures 4 �Fig. 10�. For the frequency of 12.47 GHz the

field strength shows a second beaming as the power flow

results given in Fig. 8 have predicted its existence. There-

fore, a small change in the geometry of the structure results

in a very interesting property, namely an increase of 20% for

the beaming at the frequency of 11.85 GHz and the appear-

ance of a second beaming at 11.47 GHz. Once again, the

agreement between experiment and simulation is quite good.

The above-mentioned results are also presented in an ani-

mation that displays the distribution of the electric field for

the five structures �structures 1–5� in five parallel panels. The

movie is generated for 800 frequencies ranging from

10 to 13 GHz. For all the results displayed in the movie, the

incident beam comes first from an air part, passes through

the PC, and ends in a second air part �see Fig. 1�. In order to

observe the directionality, the height of the second air part is

chosen to be five times higher than the PC’s height. Some

frames for the different cases of the animation have been

plotted in Fig. 12 for frequencies that are of interest. The

frequency of the source was selected to be in the gap. There-

fore, nothing propagates inside the PC except in the wave-

guide in which strong localization of the field is shown in the

channel along the propagation direction and decays in the

lateral direction. For all the frequencies of the incident beam,

the aperture is smaller than the wavelength of the incident

beam and the aperture transmits very poorly and diffracts

light in all directions. This is clearly seen in the case of the

first panel, which displays the distribution of the electric field

for the waveguide PC without any extra layers. For this case,

the surface of the PC does not support any surface waves.

For the other cases in which other layers are added, the trans-

mission is no longer the same. The reason is the extra layers

with different geometrical parameters added to the PC that

disturb the dispersion and enable surface waves to be ex-

cited. Since the surface modes lie below the light line, they

cannot be excited by an incident plane wave. The presence of

extra layers helps the excited surface waves to couple to the

free propagating EM waves. Even though the grating layer in

the second panel of the movie does not fulfill completely the

transformation of the wave vector, we could see some en-

hancement of the wave at the interface around 11.90 and

12.45 GHz. For the second panel �structure 2�, the transmis-

sion is suppressed until the frequency of 11 GHz, after which
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Distance from PC (cm)

A
lo

n
g

P
C

s
u
rf

a
c
e

(c
m

)

0 10 20 30 40 50 60 70

−10

0

10

� � � f=11.85GHz

Distance from PC (cm)

A
lo

n
g

P
C

s
u
rf

a
c
e

(c
m

)

0 10 20 30 40 50 60 70

−10

0

10

� � �

f=12.47GHz

Distance from PC (cm)

A
lo

n
g

P
C

s
u
rf

a
c
e

(c
m

)

0 10 20 30 40 50 60 70

−10

0

10

� 
 � f=12.47GHz

Distance from PC (cm)

A
lo

n
g

P
C

s
u
rf

a
c
e

(c
m

)

0 10 20 30 40 50 60 70

−10

0

10

� � �

FIG. 11. �Color online� A 2D plot of the strength of the outgoing electric field for the case of structure 5. �a� and �b� are the experimental

and the simulation results, respectively, at frequency f =11.85 GHz. �c� and �d� are the experimental and the simulation results, respectively,

at frequency f =12.47 GHz.

FIG. 12. �Color online� Frames picked from the movie. �a�

shows the electric field distribution of structure 1 �only waveguide�

at frequency f =11.97 GHz, �b� shows the electric field distribution

of structure 2 �waveguide and grating� at frequency f =11.85 GHz,

�c� shows the electric field distribution of structure 3 �waveguide

and modified surface layers� at frequency f =11.97 GHz, and �d�

shows the electric field distribution of structure 4 �waveguide with

modified surface and grating layers� at frequency f =11.85 GHz.
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ture 4 in Fig. 10. For this structure, the two chosen frequen-

cies are both beaming frequencies. As shown in both the

experimental and the simulation results the beaming at

11.85 GHz for this structure is more pronounced than that of

structures 4 �Fig. 10�. For the frequency of 12.47 GHz the

field strength shows a second beaming as the power flow

results given in Fig. 8 have predicted its existence. There-

fore, a small change in the geometry of the structure results

in a very interesting property, namely an increase of 20% for

the beaming at the frequency of 11.85 GHz and the appear-

ance of a second beaming at 11.47 GHz. Once again, the

agreement between experiment and simulation is quite good.

The above-mentioned results are also presented in an ani-

mation that displays the distribution of the electric field for

the five structures �structures 1–5� in five parallel panels. The

movie is generated for 800 frequencies ranging from

10 to 13 GHz. For all the results displayed in the movie, the

incident beam comes first from an air part, passes through

the PC, and ends in a second air part �see Fig. 1�. In order to

observe the directionality, the height of the second air part is

chosen to be five times higher than the PC’s height. Some

frames for the different cases of the animation have been

plotted in Fig. 12 for frequencies that are of interest. The

frequency of the source was selected to be in the gap. There-

fore, nothing propagates inside the PC except in the wave-

guide in which strong localization of the field is shown in the

channel along the propagation direction and decays in the

lateral direction. For all the frequencies of the incident beam,

the aperture is smaller than the wavelength of the incident

beam and the aperture transmits very poorly and diffracts

light in all directions. This is clearly seen in the case of the

first panel, which displays the distribution of the electric field

for the waveguide PC without any extra layers. For this case,

the surface of the PC does not support any surface waves.

For the other cases in which other layers are added, the trans-

mission is no longer the same. The reason is the extra layers

with different geometrical parameters added to the PC that

disturb the dispersion and enable surface waves to be ex-

cited. Since the surface modes lie below the light line, they

cannot be excited by an incident plane wave. The presence of

extra layers helps the excited surface waves to couple to the

free propagating EM waves. Even though the grating layer in

the second panel of the movie does not fulfill completely the

transformation of the wave vector, we could see some en-

hancement of the wave at the interface around 11.90 and

12.45 GHz. For the second panel �structure 2�, the transmis-

sion is suppressed until the frequency of 11 GHz, after which
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FIG. 11. �Color online� A 2D plot of the strength of the outgoing electric field for the case of structure 5. �a� and �b� are the experimental

and the simulation results, respectively, at frequency f =11.85 GHz. �c� and �d� are the experimental and the simulation results, respectively,

at frequency f =12.47 GHz.

FIG. 12. �Color online� Frames picked from the movie. �a�

shows the electric field distribution of structure 1 �only waveguide�

at frequency f =11.97 GHz, �b� shows the electric field distribution

of structure 2 �waveguide and grating� at frequency f =11.85 GHz,

�c� shows the electric field distribution of structure 3 �waveguide

and modified surface layers� at frequency f =11.97 GHz, and �d�

shows the electric field distribution of structure 4 �waveguide with

modified surface and grating layers� at frequency f =11.85 GHz.
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ture 4 in Fig. 10. For this structure, the two chosen frequen-

cies are both beaming frequencies. As shown in both the

experimental and the simulation results the beaming at

11.85 GHz for this structure is more pronounced than that of

structures 4 �Fig. 10�. For the frequency of 12.47 GHz the

field strength shows a second beaming as the power flow

results given in Fig. 8 have predicted its existence. There-

fore, a small change in the geometry of the structure results

in a very interesting property, namely an increase of 20% for

the beaming at the frequency of 11.85 GHz and the appear-

ance of a second beaming at 11.47 GHz. Once again, the

agreement between experiment and simulation is quite good.

The above-mentioned results are also presented in an ani-

mation that displays the distribution of the electric field for

the five structures �structures 1–5� in five parallel panels. The

movie is generated for 800 frequencies ranging from

10 to 13 GHz. For all the results displayed in the movie, the

incident beam comes first from an air part, passes through

the PC, and ends in a second air part �see Fig. 1�. In order to

observe the directionality, the height of the second air part is

chosen to be five times higher than the PC’s height. Some

frames for the different cases of the animation have been

plotted in Fig. 12 for frequencies that are of interest. The

frequency of the source was selected to be in the gap. There-

fore, nothing propagates inside the PC except in the wave-

guide in which strong localization of the field is shown in the

channel along the propagation direction and decays in the

lateral direction. For all the frequencies of the incident beam,

the aperture is smaller than the wavelength of the incident

beam and the aperture transmits very poorly and diffracts

light in all directions. This is clearly seen in the case of the

first panel, which displays the distribution of the electric field

for the waveguide PC without any extra layers. For this case,

the surface of the PC does not support any surface waves.

For the other cases in which other layers are added, the trans-

mission is no longer the same. The reason is the extra layers

with different geometrical parameters added to the PC that

disturb the dispersion and enable surface waves to be ex-

cited. Since the surface modes lie below the light line, they

cannot be excited by an incident plane wave. The presence of

extra layers helps the excited surface waves to couple to the

free propagating EM waves. Even though the grating layer in

the second panel of the movie does not fulfill completely the

transformation of the wave vector, we could see some en-

hancement of the wave at the interface around 11.90 and

12.45 GHz. For the second panel �structure 2�, the transmis-

sion is suppressed until the frequency of 11 GHz, after which
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and the simulation results, respectively, at frequency f =11.85 GHz. �c� and �d� are the experimental and the simulation results, respectively,

at frequency f =12.47 GHz.

FIG. 12. �Color online� Frames picked from the movie. �a�

shows the electric field distribution of structure 1 �only waveguide�

at frequency f =11.97 GHz, �b� shows the electric field distribution

of structure 2 �waveguide and grating� at frequency f =11.85 GHz,

�c� shows the electric field distribution of structure 3 �waveguide

and modified surface layers� at frequency f =11.97 GHz, and �d�

shows the electric field distribution of structure 4 �waveguide with

modified surface and grating layers� at frequency f =11.85 GHz.
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Figure 2.15 Figure excerpted from the paper Phys. Rev. B 76, 235417 (2007)
by R. Moussa et al. partially. Left column shows the exit surface
of a photonic crystal. From top to bottom: a bare photonic crystal, a
photonic crystal with a surface layer, a photonic crystal with a surface
layer and grating layer. The right column shows the field distribution
after the waveguide.
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So another grating layer is necessary to coupling the evanescent wave into propagation wave. As shown

in the bottom row of Fig. 2.15, a nice beam is formed after the surface layer and the grating layer. Good

beaming can also be achieved by different designs based on the photonic crystals (48; 49; 50; 51; 52).

The metallic beaming structures are also studied experimentally(53; 54) and theoretically(55; 56).

They are basically a subwavelength metallic surrounded by periodic structures such as grooves or

dielectric gratings along the surface. The flat metal surface supports the surface mode, so additional

surface layer is not necessary. The periodic structures works as the grating layer.
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CHAPTER 3. Surface Waves Along a Metal-Dielectric Interface with Defects

3.1 Background

In the previous chapter I have proved the existence of surface plasmons at a flat metal-dielectric

interface. But the perfect flat metal-dielectric interface rarely exists in reality. A nature question is

what the special properties the defects at the surface will bring to the surface waves.

Before the in-depth discussion, I want to clarify two nomenclatures. In this thesis, “surface mode”

is a term describing specially the electromagnetic waves bounded at a surface and decaying off expo-

nentially normal to the surface; “surface wave” is a general phrase which just represents the fields along

a surface.

Surface plasmons at a flat interface can not be excited by incident plane waves directly because of

momentum mismatch (1; 2). Introducing defects at the interface is an efficient method to excite surface

plasmons. But the inner mechanics still need be clarified. The existence of the surface plasmons

doesn’t necessarily mean it will be excited. Zero field is always another existing eigenmode. Even

we are convinced the excitation of the surface plasmons, we still want to understand the phase and

amplitude of the excited surface plasmons. All these arguments make the analytic deduction form

Maxwell’s equations valuable.

In 2006, two papers published in Nature Physics tried to explain the same data by two different

theories (57; 58). They studied the transmission through a subwavelength slit assisted by a groove. The

geometry is shown in the inset of Fig. 3.1. This is 2 two-dimensional system. The inset shows the x− y

plane and the system is invariable along z direction. The incident wave is TE polarized.

The experimental, numerical and analytical transmission curves are shown in Fig. 3.1. The exper-

imental curve oscillates with d, the distance between the slit and the groove, which can be explained

by the excitation of surface waves. The first order process is: When the incident wave hits the groove,
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Figure 3.1 Figure excerpted from the paper Nature Phys. 2, 551 (2006) by P.
Lalanne and J. P. Hugonin. The transmission through the subwave-
length metallic slit accompanied by a grooves gotten from experi-
ments, numerical simulations and analytic calculations. Blue circles:
experimental data. Solid blue line: analytic results based on CDEW
model. Solid black line: numerical data computed by the fully vecto-
rial modal method. Red dots: analytic results based on surface plas-
mon mode. The Inset: the geometry of the metallic slit-groove struc-
ture.
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the surface wave is excited, propagates at the metal surface and interferes with the field at the slit’s

entrance. So the transmission is modulated with d. More careful analysis will consider the surfaces

wave excited by the slit and the reflected surface wave by the slit and groove. The multiple scattering

process will introduce the similar d dependence.

To get good fitting results when d is small, Gay et al. (57) gave up the surface plasmon explanation

and developed the composite diffracted evanescent waves (CDEW) mode. In the theory, the surface

wave excited by an indentation is called CDEW with the form Hz(y) ∝ (κ/y + µ) cos(ksur f y + φ) (the

indentation locates at y = 0).

In the other paper (58), the authors insisted in the surface plasmon explanation. They simulates the

same structure numerically and used the surface plasmon mode to fit the transmission. The fitting is

very good when b is big but fails when d is small. Further theory work decomposed (58; 59; 60; 61)

the surface wave into two parts: Hz = Hsp + Hc. Hsp is the surface plasmon and Hc is the residual

quasicylindrical wave. It was verified numerically that |Hc| ∝ 1/y1/2 when y is small (58; 59).

In this chapter, I calculate the surface wave along the metal-dielectric interface with indentations

from Maxwell’s equations analytically. I support the decomposition Hz = Hsp + Hc and study the

asymptotic behavior of the quasicylindrical wave. I also explain the connection between the surface

waves along the metal surface and PEC surface.

3.2 Surface impedance boundary conditions

Since fields decay rapidly inside a metal, we don’t care what in the metal and we can use a boundary

condition to “replace” it. When the permittivity of the metal is very negative, surface impedance

boundary condition can be used to describe the metal-dielectric interface. This boundary condition

says the fields on the interface satisfy (20)

~E∥ = Zmn̂ × ~H∥

Here n̂ is a unit vector normal to the interface pointing into the dielectric; Zm is the impedance of the

metal and Zm =
√
µmµ0/εmε0; µm and εm are the relative permittivity and permeability of the metal.
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Figure 3.2 Schematic representation of light incidence at a metal-dielectric inter-
face under (a) TE polarization and (b) TM polarization.

3.2.1 Validity of SIBC

In two-dimensional space, we can verify SIBC analytically. Now we consider the plane wave in-

cidence at a metal-dielectric interface and Fig. 3.2 shows the system analyzed. y = 0 is the metal-

dielectric interface. The relative permittivity and permeability of the dielectric are εd and µd; of

the dielectric are εm and µm. The refractive indexes of the dielectric and metal are nd =
√
εdµd

and nm =
√
εmµm. The impedance of the dielectric and metal are Zd =

√
µdµ0/εdε0 and Zm =√

µmµ0/εmε0. The incident plane wave is ~E exp[i(k cos θx + k sin θy − ωt)] and the reflected wave is

~E′′ exp[i(k cos θx−k sin θy−ωt)]; the corresponding magnetic fields are ~H exp[i(k cos θx+k sin θy−ωt)]

and ~H′′ exp[i(k cos θx − k sin θy − ωt)]. θ is the incident angle. k is the wavevector in the dielectric and

k = ω
√
εdε0µdµ0.

We first consider TE polarization as shown in Fig. 3.2(a). Now ~E = −E cos θx̂ + E sin θŷ, ~E′′ =

E′′ cos θx̂ + E′′ sin θŷ, ~H = Hzẑ, ~H′′ = H′′z ẑ. Here n̂ = −ŷ, so the parallel components are along x and z

directions. Consider the boundary conditions along the interface (20), we can get

E′′

E
=

(µd/µm)n2
m cos θ − nd

√
n2

m − n2
d sin2 θ

(µd/µm)n2
m cos θ + nd

√
n2

m − n2
d sin2 θ

; (3.1)

Ex = −E cos θ; E′′x = E′′ cos θ (3.2)

Hz = E/Zd; H′′z = E′′/Zd (3.3)
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If µm = µd = 1 and εm is very negative, which means |εm| � |εd |, we have n2
m − n2

d sin2 θ ≈ n2
m.

At the interface

~E∥ = −x̂(E − E′′) cos θ; ~H∥ = ẑ(E + E′′)/Zd. (3.4)

We have n̂ × ẑ = −x̂ and

(E − E′′) cos θ
(Ez + E′′z )/Zd

= Zd cos θ
nd

√
n2

m − n2
d sin2 θ

n2
m cos θ

≈
Zdndnm

n2
m
= Zm.

So we proved SIBC is correct under TE polarization.

When the electric field is perpendicular to the incident plane, we have ~E = Ezẑ, ~E′′ = E′′z ẑ, ~H =

Hx x̂ + Hyŷ, ~H′′ = H′′x x̂ + H′′y ŷ and

E′′z
Ez
=

nd cos θ − (µd/µm)
√

n2
m − n2

d sin2 θ

nd cos θ + (µd/µm)
√

n2
m − n2

d sin2 θ

; (3.5)

Hx = Ez cos θ/Zd; H′′x = −E′′z cos θ/Zd (3.6)

At the interface

~E∥ = ẑ(Ez + E′′z ); ~H∥ = x̂(Ez − E′′z ) cos θ/Zd; (3.7)

n̂ = −ŷ. (3.8)

We have ẑ = n̂ × x̂ and

Ez + E′′z
(Ez − E′′z ) cos θ/Zd

=
Zd

cos θ
nd cos θ

(µd/µm)
√

n2
m − n2

d sin2 θ

≈
Zdnd

(µd/µm)n2
m
= Zm.

So we proved SIBC is also correct under TM polarization. In two-dimensional space, fields are decou-

pled to TE and TM polarizations. So we verified SIBC is a good approximation for any incident wave

in two-dimensional space.
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3.2.2 Surface plasmons based on SIBC

We have verified the existence of surface plasmons at a metal-dielectric interface. Now we will try

to find surface modes when the metal is replaced by the surface impedance boundary condition.

Considering the two-dimensional x− y plane. Suppose y = 0 is the metal-dielectric interface. y > 0

is the dielectric area. Hz, Ex, Ey are the three non-zero components of electromagnetic waves for TE

polarization. Define the magnetic field in the dielectric as

Hz = ei(kx x+kyy). (3.9)

Then

Ex = −
ky

εdε0ω
Hz. (3.10)

SIBC says

Ex x̂ =
√
µ0

εmε0
ŷ × Hzẑ. (3.11)

So we get

ky = −
ω

c
εd
√
εm

; (3.12)

kx =
ω

c
(
εd −

ε2d
εm

)1/2. (3.13)

The rigid expression of the dispersion relation is

kx =
ω

c
( εdεm
εd + εm

)1/2 (3.14)

When |εd/εm| � 1, we have
εdεm
εd + εm

≈ εd −
ε2d
εm
. (3.15)

So the dispersion relation of SIBC is the first-order approximation of the dispersion relation of real

surface plasmons.

In conclusion SIBC also supports surface plasmons.

3.2.3 Waveguide modes based SIBC

Now we begin to study the eigenmode in a two-dimensional waveguide bounded by metal. Fig. 3.3

shows the metallic waveguide we are studying. The width of the waveguide is W; y = 0 is the central
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Figure 3.3 Schematic representation of a two-dimensional metallic waveguide.

line of the waveguide; y = ±W/2 are the two metal-dielectric interfaces. µm = µd = 1. Only TE mode

is studied here.

In the previous chapter, I have gotten the dispersion relations of the modes for the waveguide:

ε2k1

ε1k2
=

e−k1W/2 + ek1W/2

e−k1W/2 − ek1W/2 or
ε2k1

ε1k2
=

e−k1W/2 − ek1W/2

e−k1W/2 + ek1W/2 .

Then I replace the metal with SIBC. Then the calculation is simpler. Suppose the field in the

waveguide is

Hz = eiβx(Ae−kdy + Bekdy);

kd =

√
β2 − εdk2

0.

Then

Ex = −
1

iεdε0ω
∂Hz

∂y
= −

ikd

εdε0ω
eiβy(Ae−kd x − Bekd x). (3.16)

At the upper interface y = W/2, SIBC is Ex = −ZmHz, so

i
√
εmkd

εdk0
=

Ae−kdW/2 + BekdW/2

Ae−kdW/2 − BekdW/2 . (3.17)

At the lower interface y = −W/2, SIBC is Ex = ZmHz, so

i
√
εmkd

εdk0
= −

AekdW/2 + Be−kdW/2

AekdW/2 − Be−kdW/2 . (3.18)
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Repeat the calculation about the metal-dielectric-metal multilayer structure and we get the disper-

sion relation
i
√
εmkd

εdk0
=

e−kdW/2 + ekdW/2

e−kdW/2 − ekdW/2 or
i
√
εmkd

εdk0
=

e−kdW/2 − ekdW/2

e−kdW/2 + ekdW/2 . (3.19)

When β �
√
εdk0, these modes are high-order evanescent modes of the waveguide which decay

very quickly. We focus the basic mode which satisfies β /
√
εdk0. If |εm| � |εd |, we have

km =

√
β2 − εmk2

0 ≈ −i
√
εmk0 =⇒

εmkd

εdkm
≈

i
√
εmkd

εdk0
. (3.20)

I choose
√
−1 = −i here to ensure Re(km) > 0. So the dispersion relation of the basic mode in a SIBC

waveguide converges to real metal waveguide when εm is very negative.

In the next chapter I will study the transmission through metallic waveguides. The knowledge about

these eigenmodes will be very useful.

3.2.4 Summary of SIBC

As the calculation above shows, SIBC is a good approximation to describe metal-dielectric inter-

faces when |εmµm| � |εdµd | . It makes analytic deduction simpler and saves the calculating area of

numeric simulations. When |εm| goes to infinity, the fields calculated from SIBC converge to the real

fields.

3.3 Green’s function

3.3.1 Surface wave at a metal-dielectric interface with defects

Fig. 3.4 shows the structure we are studying: a dielectric-metal interface with grooves and slits.

The blue area is metal and the white area is dielectric. x = 0 is the metal-dielectric interface with some

subwavelength indentations. The relative permittivity and permeability of the dielectric are εd and µd;

The relative permittivity and permeability of the metal are εm and µm. Normally µd = µm = 1. Define

ε0 and µ0 as the permittivity and permeability of vacuum. Then the impedance of the dielectric and

metal are Zd =
√
µdµ0/εdε0 and Zm =

√
µmµ0/εmε0.

Surface impedance boundary condition is used to describe the metal-dielectric interface. At the

metal-dielectric interface x = 0 in Fig. 3.4, the boundary condition is expressed as Ey+ZmHz = 0 when
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Figure 3.4 Schematic representation of a dielectric-metal interface with indenta-
tions in a two-dimensional space.

the fields are TE polarized. I have shown SIBC is precise when |εmµm| � |εdµd |. Silver has relative

permittivity εm = −8.5 + 0.76i at λ = 500 nm (λ is the wavelength in free space) (62). So the silver-air

interface can be described by SIBC up to 500 nm. When λ becomes smaller, |εm| becomes smaller and

we have to give up the approximation. When λ increases, |εm| increases rapidly and the fields calculated

from SIBC converge to the real fields.

Suppose no incident waves coming from the dielectric side in Fig. 3.4, using the mode expansion

method (63), we can prove the surface fields along x = 0 satisfy

Hz(y) =
1

Zdλd

∫ ∞

−∞

dy′
(
Ey(y′) + ZmHz(y′)

)
G(y, y′). (3.21)

The Green’s function is

G(y, y′) = G(y − y′) =
∫ ∞

−∞

dk
eik(y−y′)

kx + Zskd
. (3.22)

Here Zs = Zm/Zd and Zd =
√
µdµ0/εdε0, arg(Zs) ∈ (−π/2,−π/4) . Zs = 0 when the metal is PEC. kd

and λd is the wave vector and the wavelength in the dielectric. kx is the x component of the wave vector

of the plane waves in the x > 0 half-plane. The plane waves propagate or decay along +x direction, so

kx =


√

k2
d − k2 if kd ≥ k

i
√

k2 − k2
d if kd < k

(3.23)

Since Ey(y′) + ZmHz(y′) = 0 at the metal surface, Eq. (3.21) is equivalent to the expression

Hz(y) =
1

Zdλd

∫
Indentation

dy′
(
Ey(y′) + ZmHz(y′)

)
G(y, y′). (3.24)
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So the surface wave is decided by the fields in the indentations. When the width of an indentation is

much smaller than the wavelength, the fields at the exit of the indentation are close to a delta function.

Then the Green’s function describes the surface wave excited by the indentation. If the indentation

is wide, we have to know the fields inside the indentation to calculate the surface wave. Though the

surface wave around the indentation is complex, the Green’s function still describes the surface wave

in the region more than several widths away from the indentation.

Above we have shown the surface wave along the output surface of slits. It is easy to prove the fields

along the input surface have the similar form. They are the summation of the surface wave excited by

indentations plus some terms related to the incident and reflected waves. The surface wave excited by

indentations can also be calculated by other methods (64), but the Green’s function method uses less

assumptions and gets precise results. We have no need to assume the existence of surface plasmons

beforehand. They will emerge from the Green’s function automatically.

3.3.2 Simplification of the Green’s function

Define y = sλd, k = hkd, then

G(y) = g(y/λ) = g(s) =
∫ ∞

−∞

dh
ei2πhs

√
1 − h2 + Zs

.

Now let’s focus on the non-dimensional Green’s function g(s). The square root function is defined as

arg(
√

1 − h2) ∈ (−π/2, π/2] because of Eq. (3.23). g(s) is an even function. We choose s > 0 here.

When s→ 0, g(s) diverges but∫ ∞

−∞

dh
( ei2πhs

√
1 − h2 + Zs

−
ei2πhs

√
1 − h2

)
does not. So

g(s)→ πH(1)
2πs when s→ 0. (3.25)

We moves to the complex space of h to do the integral in g(s). The integration path is shown in

Fig. 3.5 as the red curves. The blue lines are the branch cut to make
√

1 − h2 single-valued. The

function
√

1 − h2 is not continuous along the the path Im(h) = 0 at the point h = 1 under this branch

cut. So the integration path has two loops.
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Figure 3.5 Integration path of the non-dimensional Green’s function in the com-
plex space of h. The red curves are the integration path and the blue
lines are the branch cut.

Using Cauchy’s integral formula to the left and right loops, we get∫ 1

−∞

dh
ei2πhs

√
1 − h2 + Zs

+

∫ ∞

0
dq

iei2πse−2πqs√
q2 − 2qi + Zs

= 0;∫ 0

∞

dq
iei2πse−2πqs

−
√

q2 − 2qi + Zs
+

∫ ∞

1
dh

ei2πhs

√
1 − h2 + Zs

= 2πi
Zs

hp
ei2πhp s

Here hp is a pole:
√

1 − h2
p+Zs = 0. The integral variable is changed from h to q along the vertical parts

of the path, h = 1+qi and q ∈ [0,∞). Again arg(
√

1 − h2) ∈ (−π/2, π/2], arg(
√

q2 − 2qi) ∈ (−π/2, π/2].

Then

g(s) = 2πi
Zs

hp
ei2πhp s + 2iei2πs

∫ ∞

0
dqe−2πqs

√
q2 − 2qi

Z2
s − q2 + 2qi

.

In the second term, the integrand contributes significantly only when q ∈ (0, 1/s). So we neglect q2

when s & 1. Then

g(s) ≈ 2πi
Zs

hp
ei2πhp s + 2iei2πs

∫ ∞

0
dqe−2πqs

√
−2qi

Z2
s + 2qi

. (3.26)

All the calculations below base on the approximation expression of Eq. (3.26), which is good when

s > 1. But our numeric simulation results show the approximation works very well even when s is

smaller than 1. We will also prove that Eq. (3.26) gives the same asymptotic result as Eq. (3.25) when

s is very small. So the approximation in Eq. (3.26) is precise for almost any s.
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The first term in Eq. (3.26) is the well-understood surface plasmon gS P(s). The second is the

residual quasicylindrical wave gC(s) (61), which need further study. Define

I(s) =
∫ ∞

0
dqe−2πqs

√
q/Y

Y + q
; Y = Z2

s /(2i). (3.27)

Then

I(s) =

√
1

2Y s
− πe2πY sErfc(

√
2πY s); (3.28)

gC(s) =
√

Y(1 − i)ei2πsI(s). (3.29)

Here arg(
√

Y) ∈ (π/4, π/2); Erfc is the complementary error function; |I(s)| describes the envelope of

the quasicylindrical wave.

The integrand of I(s) in Eq. (3.27) contributes significantly only when 0 < q . 1/s. When |Y |s � 1,

q in the interval (0, 1/s) satisfies

1
Y + q

≈
1
Y

(1 −
q
Y

)

⇒I(s) ≈
1

4
√

2π

1
(Y s)3/2 −

1

16
√

2π2

1
(Y s)5/2 .

When |Y |s is small, I(s) can be simplified by the Taylor expansion of eu2
Erfc(u),

eu2
Erfc(u) = 1 −

2
√
π

u + u2 + · · ·

We can call |Y |s as the surface distance because it describes how the envelope of the quasicylindrical

wave evolves during the propagation. The piecewise function below gives good estimation about I(s).

I(s) ≈



√
1/2Y s if |Y |s < 0.002

√
1/2Y s − π if |Y |s < 0.02

1/
[
4
√

2π(Y s)3/2] if |Y |s > 1

When 0.02 < |Y |s < 1, we have to include more terms of the Taylor expansion or we can calculate Erfc

function directly.

We now compare the amplitude of gS P and gC . Since gS P decays exponentially, gC will be stronger

for sure when s is very big. But in practice, hp is close to 1 with a very small imaginary part for good
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Figure 3.6 |gC(s)/gS P(s)| along a metal-air interface when the metal permittivity
is εm = −31.39 + 2.22i.

noble metals. So |gS P(s)/gC(s)| ≈ |I(s)/2π|. Fig. 3.6 shows |gS P(s)/gC(s)| along a metal-air interface

when εm = −31.39 + 2.22i, which is the relative permittivity of silver at λ = 852 nm (62). If the

metal is lossless, I(s) is a function of |Y |s, which is the horizontal axis in Fig. 3.6. We can find the

quasicylindrical wave is negligible when |Y |s > 0.1.

3.3.3 Discussion

Put the results together, we have

gS P(s) = 2πi
Zs

hp
ei2πhp s;

gC0(s) = (1 − i)ei2πs 1
√

2s

gC1(s) = −iπZsei2πs

gCB(s) = Zs
i

4
√

2π

ei2πs

(Y s)3/2
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The piecewise function below gives good approximation about the Green’s function.

g(s) ≈



gS P(s) + gC0(s) if |Y |s < 0.002

gS P(s) + gC0(s) + gC1(s) if |Y |s < 0.02

gS P(s) + gCB(s) if |Y |s > 0.1

The metal-dielectric interface is divided into three regions based on the surface distance: the near region

(|Y |s < 0.02), the intermediate region (0.02 < |Y |s < 0.1) and the far region (|Y |s > 0.1).

If the metal is nearly lossless, gS P dominates in the far region. If the metal is a PEC, Zs = 0 and

Y = 0. The whole surface belongs to the near region and

g(s) ≈ gC0 = (1 − i)ei2πs 1
√

2s
.

It agrees with the PEC’s Green’s function with Hankel function form (65). When s is very small,

|gC0| � |gS P|, we can neglect gS P and return to the result in Eq. (3.25).

The fields along a metal-air interface are calculated numerically using the commercial finite element

method software COMSOL Multiphysics. The simulation area is similar to Fig. 5.9 but without the

groove. The incident wave comes through the slit in +x direction. The fields along the output surface

are recorded and compared with analytic results in Fig. 3.7 and 3.8. The slit width is 0.05λ. The relative

error of the simulations is around 2%. The analytic results in the figures are calculated by Eq. (3.24) by

replacing G(y, y′) with the different simplified forms of the Green’s function shown in the legends. We

assume that Ey(y′) + ZHz(y′) is constant at the exit of the slit and the value is taken from the numerical

simulations. There is no fitting parameters in the analytic calculations.

In Fig. 3.7 and 3.8, the real and imaginary parts of Hz are plotted in the range y ∈ (0.1λ, 40λ) at

two incident wavelengths. We always plot the simulation results along with the analytic results from

gS P + gC and the two curves always overlap. It shows the approximation in Eq. (3.26) is good in the

region y > 0.1λ.

Fig. 3.7 shows the fields when λ = 3000 nm and εm = −329 + 47.5i. The near region is the area

y . 12λ. The analytic results from gS P + gC0 + gC1 agree with the simulation results very well in

this region and gC1 component do improve the analytic results. When s enters the intermediate region,

results from gS P + gC0 and gS P + gC0 + gC1 have visible difference from the simulation results. The
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Figure 3.7 Real and imaginary parts of Hz along a silver-air interface in the re-
gions y ∈ (0.1λ, 10λ) and y ∈ (20λ, 30λ) when λ = 3000 nm and
εm = −329+47.5i. The simulation results are calculated by COMSOL
Multiphysics, a commercial finite element method software. The other
curves are calculated analytically using different simplified forms of
the Green’s function shown in the legends.
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Figure 3.8 Real and imaginary parts of Hz along a metal-air interface in the re-
gions y ∈ (0.1λ, 10λ) and y ∈ (30λ, 40λ) when λ = 500 nm and
εm = −8.50+6.00i. The simulation results are calculated by COMSOL
Multiphysics. The other curves are calculated analytically using dif-
ferent simplified forms of the Green’s function shown in the legends.
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difference looks small here because gS P is strong. In Fig. 3.8, the incident wavelength is λ = 500 nm.

The permittivity of the metal is set as εm = −8.50 + 6.00i with a big imaginary part to suppress the

the surface plasmon in the far region. Since |Y | is big here, the near and intermediate regions are short.

gS P + gCB gives good analytic results when y > 2λ. Fig. 3.8 shows clearly that the quasicylindrical

wave decays as y−3/2 in the far region.

Our analytic calculation also proves gS P(s) + gC0(s) is a very good approximation of g(s) for a

good noble metal at visible wavelengths (59; 60; 61). It is the approximation we used in the near

region. In the far region, we have proved gC(s) is negligible, so is gC0(s). In the intermediate region,

this approximation is poor. But the intermediate region is short and it is difficult to notice the fitting

error.

In EOT research, the interesting surface area is normally between λ/2 and 100λ. For a good noble

metal at visible wavelengths, the area belongs to the far region and surface plasmon dominates. When

wavelength increases and εm is more negative, the metal surface converges to the PEC surface in two

ways:(i)the near region becomes longer and (ii)gC0 becomes stronger comparing with gS P in the near

region. The whole surface works like a mixture of PEC and metal surfaces and |Y | servers as a good

index to describe the mixture state. The reference (58) shows the converging process graphically.

Both metal and PEC surfaces support the strong slow-decaying surface waves, so they have similar

phenomena such as EOT.

3.3.4 Conclusion

In this section, we have analyzed the surface wave along metal-dielectric interface with an indenta-

tion. We get the asymptotic forms of the wave far away from and close to the indentation. Based on the

surface distance |Y |s, the interface is divided into several regions and the surface wave behaves differ-

ently in every region. The complete description of the surface wave would give us deeper understanding

about light transmission mechanics through metallic apertures.



46

CHAPTER 4. Theory of Extraordinary Transmission

4.1 Background

In the previous chapters I have introduce EOT through a 2D periodic subwavelength hole arrays or a

single subwavelength hole surrounded by structures. Served as a simpler model, EOT through 1D slits

have also been demonstrated for both periodic slits (66; 67; 68) and one slits surrounded by grooves

(69). The common explanation linking the transmission peaks with the momentum-matching condition

is also used to explain the transmission peaks here (66). But another paper verified numerically that

when the momentum-matching condition is fulfilled, the transmission has dips actually (67).

In this section I will present an theory about the transmission through 1D subwavelength peri-

odic metallic slits by first principles. I will prove analytically that transmission dips appear when

momentum-matching condition is satisfied. I will also study the relations between transmission peaks

and geometry parameters.

4.2 Mode expansion method

Mode expansion method is used to calculate the transmission. In this section I study the plane wave

incidence to infinitely-long slits and use it as a example to demonstrate the method. Fig. 4.1 shows the

schematic picture we will study. The whole system is a two-dimensional structure. The x < 0 half-

plane is free space and the x > 0 half-plane is metal with several infinitely-long slits. For simplicity

the medium in the slits is air too. To excite the surface plasmons along the metal surface, the incident

plane wave is TE polarized.

The fields in the free space include the incident plane wave and reflected waves. The incident wave
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Figure 4.1 Schematic picture to study the transmission into infinitely-long slits.

is

HInc
z (x, y) = exp[i(k⊥x + k∥y)];

k⊥ = k0 cos θ; k∥ = k0 sin θ.

Here k0 is the wavevector of the incident wave in free space and θ is the incident angle.

The reflected wave is expressed as the superposition of all possible plane waves.

HRe f
z =

∫ ∞

−∞

dkρ(k) exp[i(−kxx + ky)];

kx =


√

k2
0 − k2 if k0 ≥ k

i
√

k2 − k2
0 if k0 < k

The reflected plane waves either propagates along −x direction or decay along −x direction, so kx is

either positive real number or pure imaginary number with positive imaginary part.

So the fields in the free space are

Hz(x, y) = exp[i(k⊥x + k∥y)] +
∫ ∞

−∞

dkρ(k) exp[i(−kxx + ky)];

Ey(x, y) =
1
ε0ω

(
k⊥ exp[i(k⊥x + k∥y)] −

∫ ∞

−∞

dkkxρ(k) exp[i(−kxx + ky)]
)
.

The field in the slits can be expressed as the summation of eigenmodes of the slits. SupposeΦi j(x, y)

is the magnetic field of the jth eigenmodes in the ith slit. Then

Φi j(x, y) = φi j(y) exp[iβi jx].
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The eigenmodes in a metallic slit have been calculated in the previous chapter. Normally

φi j(y) = A exp[iαi j(y − yi)] + B exp[−iαi j(y − yi)] and α2
i j + β

2
i j =

ω2

ε20µ
2
0

.

Here A and B are two complex coefficients; y = yi is the central line of the slit. If the metal is lossless,

αi j and βi j are real numbers or pure imaginary numbers. Since the slits are infinitely long, there is no

output surface and obviously no reflection wave in the slits. So the eigenmodes either propagate in +x

direction or decays in +x direction. So βi j is either a positive real number or a pure imaginary number

with positive imaginary part.

So the fields in the slits are

Hz(x, y) =
∑

i

∑
j

Ai jφi j(y) exp[iβi jx];

Ey(x, y) =
1
ε0ω

∑
i

∑
j

Ai jβi jφi j(y) exp[iβi jx].

Next step I will use the boundary conditions along x = 0 to calculate the unknown coefficients ρ(k)

and Ai j.

Using the field distribution in free space, Ey − ZHz at (0, y) is

Ey(0, y) − ZmHz(0, y) =
( k⊥
ε0ω
− Zm

)
exp[ik∥y] −

∫ ∞

−∞

dk
( kx

ε0ω
+ Zm

)
ρ(k) exp[iky].

Using the field distribution in the slit, we can get Ey − ZHz at the entrance of a slit is

Ey(0, y) − ZmHz(0, y) =
∑

i

∑
j

Ai j
( βi j

ε0ω
− Zm

)
φi j(y).

Hz and Ey are continuous at the entrances of the slits, so is Ey − ZHz. So when (0, y) is at the

entrance of a slit, we have

( k⊥
ε0ω
− Zm

)
exp[ik∥y] −

∫ ∞

−∞

dk
( kx

ε0ω
+ Zm

)
ρ(k) exp[iky] =

∑
i

∑
j

Ai j
( βi j

ε0ω
− Zm

)
φi j(y).

Surface impedance boundary condition requires Ey−ZmHz = 0 at the metal surface. So when (0, y)

is at the metal surface,

( k⊥
ε0ω
− Zm

)
exp[ik∥y] −

∫ ∞

−∞

dk
( kx

ε0ω
+ Zm

)
ρ(k) exp[iky] = 0.
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We can define naturally φi j(y) = 0 when the point (0, y) is not in the ith slit. So the equation

( k⊥
ε0ω
− Zm

)
exp[ik∥y] −

∫ ∞

−∞

dk
( kx

ε0ω
+ Zm

)
ρ(k) exp[iky] =

∑
i

∑
j

Ai j
( βi j

ε0ω
− Zm

)
φi j(y).

is correct for any y.

Using inverse Fourier transformation, we will get the expression of ρ(k).

( kx

ε0ω
+ Zm

)
ρ(k) =

( k⊥
ε0ω
− Zm

)
δ(k − k∥) −

1
2π

∑
i

∑
j

Ai j
( βi j

ε0ω
− Zm

) ∫ ∞

−∞

dyφi j(y) exp[−iky] (4.1)

Hz is continuous at the entrance of the slits, so when (0, y) at the entrance of a slit,

exp[ik∥y] +
∫ ∞

−∞

dkρ(k) exp[iky] =
∑

i

∑
j

Ai jφi j(y). (4.2)

Now considering an eigenmode in the i′th slit Φi′ j′ = φi′ j′(y) exp[iβi′ j′ x]. Suppose the upper and

lower boundaries of the i′th slit is y = w1 and y = w2. Obviously when y ∈ (w2,w1), Eq. (4.2) is correct.

So ∫ w2

w1

φ∗i′ j′(y)
(
exp[ik∥y] +

∫ ∞

−∞

dkρ(k) exp[iky]
)
dy =

∫ w2

w1

φ∗i′ j′(y)
(∑

i

∑
j

Ai jφi j(y)
)
dy.

Since we have defined φi′ j′(y) = 0 when y < (w2,w1), we can extend the integral interval to (−∞,∞).∫ ∞

−∞

φ∗i′ j′(y) exp[ik∥y]dy +
∫ ∞

−∞

dy
∫ ∞

−∞

dkρ(k)φ∗i′ j′(y) exp[iky] =
∑

i

∑
j

Ai j

∫ ∞

−∞

φ∗i′ j′(y)φi j(y)dy. (4.3)

The eigenmodes are orthogonal with each other,∫ ∞

−∞

φ∗i′ j′(y)φi j(y)dy = 0 if i , i′ or j , j′.

When i , i′, the two slits don’t overlap, so φ∗i′ j′(y) = 0 when φ∗i j(y) is not zero and vice versa. When

i = i′, it is because of the orthogonality of eigenmodes of a waveguide. So the right term of Eq. (4.3)

equals ∑
i

∑
j

Ai j

∫ ∞

−∞

φ∗i′ j′(y)φi j(y)dy = Ai′ j′Pi′ j′ ;

and here Pi′ j′ is the norm square of φi′ j′(y)∫ ∞

−∞

φ∗i′ j′(y)φi′ j′(y)dy = Pi′ j′ ;
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Now let’s focus on the second term in Eq. (4.3). Using Eq. (4.1) to replace ρ(k) in this term and

adjusting the order of the integration, we will get∫ ∞

−∞

dy
∫ ∞

−∞

dkρ(k)φ∗i′ j′(y) exp[iky] =
k⊥ − Zmε0ω

k⊥ + Zmε0ω

∫ ∞

−∞

φ∗i′ j′(y) exp[ik∥y]dy

−
∑

i

∑
j

Ai j(βi j − Zmε0ω)
1

2π

∫ ∞

−∞

dy
∫ ∞

−∞

dy′φ∗i′ j′(y)φi j(y)
∫ ∞

−∞

dk
exp[ik(y − y′)]

kx + Zmε0ω

It is easy to verify Zmε0ω = Zsk0.

Finally for the jth eigenmode in the ith slit, Eq. (4.3) becomes

F0Ii j −
∑

i′

∑
j′

Ai′ j′(βi′ j′ − Zsk0)Gi j,i′ j′ = Ai jPi j. (4.4)

Here I exchange the notations of i, j and i′, j′ and

F0 =
2k⊥

k⊥ + Zsk0
;

Ii j =

∫ ∞

−∞

φ∗i j(y) exp[ik∥y]dy;

Pi j =

∫ ∞

−∞

φ∗i j(y)φi j(y)dy;

Gi j,i′ j′ =
1

2π

∫ ∞

−∞

dy
∫ ∞

−∞

dy′φ∗i′ j′(y
′)φi j(y)G(y, y′);

G(y, y′) = G(y − y′) =
∫ ∞

−∞

dk
exp[ik(y − y′)]

kx + Zsk0
.

Eq. (4.4) is the key equations from the mode expansion method, which is a self-consistent linear

equations about Ai j. There are infinite eigenmodes in a slit. Theoretically we have to include all

the eigenmodes and the summation of j′ goes from 0 to ∞. In practice we can only include finite

eigenmodes in Eq. (4.4). For every eigenmode we consider, we can write a corresponding equation.

Then we can solve the coefficients of such eigenmodes by Eq. (4.4) and get the field in the slits. The

field in the free space can be calculated by Eq. (4.1) furthermore.

For the equation corresponding to the eigenmode φi j in Eq. (4.4), the first term is the influence of

the incident wave; the term on the right describe the property of the eigenmode itself. The second term

is the most interesting one. I have shown the Green’s function G(y − y′) describes the surface wave

excited by an indentation in the previous chapter. So the second term describes the interaction between

two eigenmodes through the surface waves. This term confirms the key role of surface waves in the

transmission explicitly.
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The dynamic picture of surface waves is like this: the incident wave comes to the a defect at the

metal-dielectric interface and a surface wave is excited; then the surface wave propagates along the the

surface and evolves continuously; then the surface wave hits another defect and change the field distri-

bution in the second defect; some surface wave is scattered, some is reflected and the rest goes through

the defect and continue to propagate forwards; then the reflected and transmitted surface wave will

meet other defects and this process repeats. Actually Eq. (4.4) describes the multiple scattering process

of surface waves. The surface waves propagates forward and backward between defects. Finally they

will reach a stable state and Eq. (4.4) is the conditions that the equilibrium state satisfies.

4.3 Transmission into a 1D subwavelength grating with infinite length

4.3.1 Simplification of the general equations

In the previous section we have gotten the self-consistent linear equations about the field inside the

slits. These equations are quite general, regardless the widths and locations of the slits. If there are

m slits and we consider n eigenmodes in each slit. We have m × n unknown coefficients and Eq. (4.4)

provides m × n equations.

In this section I will study the transmission through a one-dimensional subwavelength grating illu-

minated by a normal incident plane wave. Suppose the period of the grating is a and the width of the

slits is W. We can simplify Eq. (4.4) dramatically in this special situation.

For a general case with m slits and n eigenmodes in each slit, there are m× n equations in Eq. (4.4).

A grating has an infinite number of slits. But they are all equivalent with each other under normal

incidence. The fields in one slit equal the field in all the other slits. So we only need write down the

equations corresponding the eigenmodes in one slit, which are n equations. We choose to study the

fields in the zeroth slit here.



52

The incident angle is θ = 0◦, so k⊥ = k0 and k∥ = 0. Then

F0 =
2

1 + Zs
;

I0 j =

∫ ∞

−∞

φ∗0 j(y)dy;

P0 j =

∫ ∞

−∞

φ∗0 j(y)φ0 j(y)dy;

G0 j,i′ j′ =
1

2π

∫ ∞

−∞

dy
∫ ∞

−∞

dy′φ∗0 j′
(
(y′ − a(i′ − 1)

)
φ0 j(y)G(y, y′).

I neglect the first subscript of these variables which represents the index of the slits, and define

A j = A0 j, β j = β0 j, I j = I0 j and P j = Pi j, then for the jth eigenmode in the slit, Eq. (4.4) becomes

F0I j −

∞∑
i′=−∞

n−1∑
j′=0

A j′(β j′ − Zsk0)G0 j,i′ j′ = A jP j. (4.5)

In Eq. (4.5), i′ goes from −∞ to ∞ since a grating has an infinite number of slits. I consider the

first n eigenmodes in a slit, so j′ goes from 0 to n − 1 and there are n equations in Eq. (4.5). Here I am

studying the subwavelength slits. The slit is very narrow and there is only one propagation mode in the

slit. I will only consider the propagation mode here. n = 1 and j′ changes from 0 to 0. Define

Gi′ = G00,i′0 =
1

2π

∫ ∞

−∞

dy
∫ ∞

−∞

dy′φ∗00
(
(y′ − i′a

)
φ00(y)G(y, y′).

Then Eq. (4.5) becomes

F0I0 − A0(β0 − Zsk0)
∞∑

i′=−∞

Gi′ = A0P0. (4.6)

Eq. (4.6) includes only one equation and one unknown coefficient A0, which can be solved directly.

A0 =
F0I0

P0 − (β0 − Zsk0)
∑∞

n=−∞Gn
(4.7)

Here i′ is a dummy variable, so I change it to n for simplicity.

The first eigenmode of a slit isΦ0(x, y) = φ0(y) exp[iβ0x]. When the slit is bounded by PEC, β0 = k0

and φ0(y) is a constant; I set φ0(y) = 1 here. For a SIBC slit, if the slit is very narrow comparing with

the wavelength, φ0(y) equals a constant approximately. If the metal is lossless, β0 > k0; otherwise it is

a complex number. In summary, suppose the central line of the zeroth slit is y = 0, we can assume the

basic eigenmode of a very narrow slit has

φ0(y) =


1 when|y| ≤ W/2;

0 otherwise.
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Then

I0 =

∫ W/2

−W/2
dy = W;

P0 =

∫ W/2

−W/2
dy = W;

Gn =
1

2π

∫ W/2

−W/2
dy

∫ W/2

−W/2
dy′G(y − y′ + an);

G(y) =
∫ ∞

−∞

dk
exp[ik(y − y′)]

kx + Zsk0
.

We have analyzed G(y) detailed in the previous section. G(y) is an even function, so Gn = G−n.

G(y) diverges when y goes to 0. So G0 is an integration around infinity. When y is away from 0, G(y) is

a smooth function and changes slowly. The variable of G(y) function changes from na −W to na +W

in the integration range of Gn. If n , 0, W � λ, we can assume G(y) ≈ G(na) in this range. So

Gn ≈
W2

2π
G(an) when n , 0.

and
∞∑

n=−∞

Gi = G0 + 2
∞∑

n=1

Gn ≈ G0 +
W2

π

∞∑
n=1

G(na).

4.3.2 The PEC grating

In the previous section, I studied the properties of the non-dimensional Green’s function. Define

s = y/λ, the non-dimensional Green’s function

g(s) = G(sλ) = G(y).

When the grating is made by PEC, we have Zs = 0 and the Green’s function is

g(s) =
∫ ∞

−∞

dk
exp[iky]√

k2
0 − k2

= πH(1)
0 (2πs) ≈ (1 − i)ei2πs 1

√
2s
.

So
∞∑

n=1

G(na) ≈ (1 − i)
∞∑

n=1

ei2πna/λ 1
√

2na/λ
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When a = λ,
∞∑

n=1

G(nλ) ≈ (1 − i)
∞∑

n=1

1
√

2n
;

We know
∞∑

n=1

1
√

2n
= ∞, so

∣∣∣∣ ∞∑
n=1

G(nλ)
∣∣∣∣ = ∞.

The coefficient of the basic eigenmode is

A0 =
F0I0

P0 − β0
[
G0 +W2/π

∑∞
n=1 G(na)

] (4.8)

Obviously, when a = λ, the denominator goes to infinity and A0 = 0. So no field in the slit and the

transmission is 0.

Fig. 4.2 shows the normalized transmission into a SIBC subwavelength grating with infinite length

illuminated by a normal incident plane wave. The incident wavelength is λ = 560 nm and the slit width

of the grating is W = 30 nm. The transmission for different grating periods a is calculated. The analytic

results are calculated using Eq. (4.8) and the simulation results are obtained by COMSOL Multiphysics

simulations. We can find clearly when a/λ is an integer, the transmission has a dip. For most of periods,

the normalized transmission is bigger than 1, which means EOT.

4.3.3 The SIBC grating

When the grating is made by real metal, I use SIBC to replace the metal. The surface wave along the

metal surface has two parts: the surface plasmon and the residue quasicylindrical wave. The Green’s

function is

g(s) =
∫ ∞

−∞

dk
exp[iky]√

k2
0 − k2 + Zsk0

≈ gS P(s) + gC(s).

gS P(s) and gC(s) represent the surface plasmon and the residue quasicylindrical wave.

gS P(s) = 2πi
Zs

hp
ei2πhp s

gC(s) =
√

Y(1 − i)ei2πs
(√ 1

2Y s
− πe2πY sErfc(

√
2πY s)

)
Here hp is a pole satisfying

√
1 − h2

p + Zs = 0, Y = Z2
s /(2i), Erfc is the complementary error function.

When s is big,

gC(s) ≈ gCB(s) = Zs
i

4
√

2π

ei2πs

(Y s)3/2 .
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Figure 4.2 The normalized transmission into a PEC subwavelength grating with
infinite length illuminated by a normal incident plane wave. The in-
cident wavelength is λ = 560 nm and the slit width of the grating is
W = 30 nm.
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If the metal is lossless, hp is a real number bigger than 1. Define λS P = λ/hp as the wavelength of

the surface plasmon. When a = λS P,

∞∑
n=1

G(na) =
∞∑

n=1

G(nλS P) ≈ 2πi
Zs

hp

∞∑
n=1

1 +
∞∑

n=1

gC(nssp).

The first term on the right side of the approximation diverges obviously. To study the convergence

property of the second term, we can use the asymptotic expression of gC(s). Actually

∞∑
n=1

ei2πnssp

(nY ssp)3/2

always converges. So summation on the right of the approximation diverges. Then the transmission is

zero.

Fig. 4.3 shows the normalized transmission into a SIBC subwavelength grating with infinite length

illuminated by a normal incident plane wave. The geometry is the same as the PEC grating in Fig. 4.2;

the slit width is 30 nm and the grating period a changes. The simulation results in the upper and lower

figures of Fig. 4.3 are the same. The analytic curve in the upper figure of Fig. 4.3 is calculated used

the precise approximation g(s) ≈ gS P(s) + gC(s), which agrees with the simulation curve very well. In

the lower figure, I neglect the residue quasicylindrical wave and assume the surface wave equals the

surface plasmon. When a is big, the distance between two neighboring slit is big; gC(s) becomes small

comparing with the surface plasmon in the far region; so the simulation and analytic curves agree with

each. When a is small, the distance between two neighboring slits is in near region; gC(s) becomes big

and the analytic results without gC(s) have big error. All the curves have dips and the curves agree with

each other very well. The dips are because the summation of the surface plasmon terms diverges. So

we can neglect gC(s) safely around the dips. At the dips a = nλS P; n is an integer.

Combining the results of the PEC and SIBC gratings, I can define the resonant wavelength of the

input surface of a metal grating as

λR =
a
n

√
1 − Z2

s ; n is an integer.

Then the basic conclusion here is at the resonant wavelengths, the transmission is 0. Actually the the

resonant wavelengths are the wavelength that fulfill the momentum-matching conditions (42).
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Figure 4.3 The normalized transmission into a SIBC subwavelength grating with
infinite length illuminated by a normal incident plane wave. The inci-
dent wavelength is λ = 560 nm, the relative permittivity of the metal is
εm = −7.92, and the slit width of the grating is W = 30 nm. The upper
and lower figures have the same simulation curve. In the upper curve,
the analytic curve is calculated using the approximation of the Green’s
function g(s) ≈ gS P(s) + gC(s). The analytic curve in the lower figure
is calculated using the approximation g(s) ≈ gS P(s).
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Figure 4.4 Schematic picture to of a metallic grating with a finite length.

4.4 Transmission through a 1D subwavelength grating with finite length

In reality a grating always has finite length. I will study these gratings in the section. I will study

not only the transmission dips but also peaks.

The schematic picture of the grating is shown in Fig. 4.4. a and W are the grating period and the

slit width, the same as in the previous sections. The slits are subwavelength, so W � λ. d is the length

of the grating.

4.4.1 The input surface

I study the input surface first. I also use the mode expansion method. The fields before the grating

in free space are the same as the grating with an infinite length . The fields in the slits are different. We

have to consider the wave reflected by the output surface. We can assume the magnetic field in the slits

as

Hz(x, y) = A0φ0(y) exp[iβ0x] + B0φ0(y) exp[−iβ0x]. (4.9)
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This expression includes the forward- and backwards-propagating basic eigenmode of the slit. A0 and

B0 are unknown coefficients.

Considering the fields Hz and Ey+ZmHz along the input surface and repeating the analytic deduction

in the previous sections, we can get a similar equation about A0 and B0.

F0I0 −
[
(A0 − B0)β0 − (A0 + B0)Zsk0)

]∑
n

Gn = (A0 + B0)P0. (4.10)

At the resonant wavelengths of the input surface,
∑

n Gn diverges.[
(A0 − B0)β0 − (A0 + B0)Zsk0)

]
= 0

is the only choice for Eq. (4.10). So at the resonant wavelengths, A0 and B0 satisfy

B0

A0
=
β0 − Zsk0

β0 + Zsk0
. (4.11)

If the metal is lossless, Zs is a pure imaginary number and β0 is a positive real number. So

|B0/A0| = 1. It means the energy moving forward equals the energy moving backward. There is

no net transmission in the slits. So we get the same conclusion as the grating with an infinite length:

the transmission curve has dips at the resonant wavelengths.

I want to extend my analytic calculation to two-dimensional hole arrays in the future. A big dif-

ference between a one-dimensional grating and a two-dimensional hole array is that there exists at

least one propagation mode in a 1D slit but probably no propagation mode exists in a 2D hole. I will

calculate the net power flux carried by evanescent waves here.

Suppose Hz is the only non-zero component of the magnetic field in a hole and

Hz(x, y, z) = A0φ0(y, z) exp[iβ0x] + B0φ0(y, z) exp[−iβ0x].

β0 is a pure imaginary number here. Then Ey is

Ey(x, y, z) =
β0

ε0ω

(
A0φ0(y, z) exp[iβ0x] − B0φ0(y, z) exp[−iβ0x]

)
.

The x component of the time-average Poynting vector is

< S x > =
1
2

Re(Ey × H∗z )

=
1

2ε0ω
|φ0(y, z)|2

(
|A0|

2 − |B0)|2
)
Re[β0]+

1
2ε0ω

|φ0(y, z)|2 exp[2iβ0x]Re[β0A0B∗0] +
1

2ε0ω
|φ0(y, z)|2 exp[−2iβ0x]Re[β0A∗0B0].
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These terms 1/2ε0ω, |φ0(y, z)|2,
(
|A0|

2 − |B0)|2
)
, exp[2iβ0x] and exp[−2iβ0x] are real, so I take them out

of the Re function. We also have Re[β0] = 0. So

< S x > =
1

2ε0ω
|φ0(y, z)|2 exp[2iβ0x]Re[β0A0B∗0] +

1
2ε0ω

|φ0(y, z)|2 exp[−2iβ0x]Re[β0A∗0B0].

At the resonant wavelengths, A0 and B0 satisfy Eq. (4.11). Now β0 and Zs are pure imaginary

numbers and k0 is a real number. Therefore B0/A0 is a real number, so are A0B∗0 and A∗0B0. Then we

have Re[β0A0B∗0] = 0, Re[β0A∗0B0] = 0, and finally < S x >= 0. I proved here that the transmission

curve has dips at the resonant wavelength even there are only evanescent modes existing in the holes of

a 2D hole arrays.

4.4.2 The output surface

Now I begin to study the output surface. The magnetic filed in the slit is

Hz(x, y) = C0φ0(y) exp[iβ0x] + D0φ0(y) exp[−iβ0x]

and the field in the free space after the grating is

Hz(x, y) =
∫ ∞

−∞

dkρ(k) exp[i(kxx + ky)].

I move the origin to the output surface and consider the boundary conditions along the surface, then

I get the similar equation again

[
(C0 − D0)β0 + (C0 + D0)Zsk0

]∑
n

G0n = (C0 + D0)P0. (4.12)

At the resonant wavelengths of the output surface, C0 and D0 satisfy

D0

C0
=
β0 + Zsk0

β0 − Zsk0
.

So the transmission is 0 at the resonant wavelengths again.

In this section I assume the medium before and after the grating is air, so the input surface and out-

put surface have the same resonant wavelengths. It is possible the two surfaces have different resonant

wavelengths. For example there is a subtract before the grating. I proved here the transmission is zero

at the resonant wavelengths of both the input and the output surfaces.
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4.4.3 Transmission through a finite-length grating

I have gotten the equations about the coefficients of the eigenmodes in the slit at the input and output

surface and discussed the transmission at the resonant wavelengths. Now I will put them together and

calculate the transmission at any wavelengths.

Define

R =
(β0 + Zsk0)

∑
n G0n − P0

(β0 − Zsk0)
∑

n G0n + P0
(4.13)

T =
F0I0

(β0 − Zsk0)
∑

n G0n + P0
(4.14)

Then

A0 − RB0 = T ; (4.15)

C0R = D0; (4.16)

C0 = A0 exp[iβ0d]; (4.17)

D0 = B0 exp[−iβ0d]. (4.18)

Eq. (4.15) is equivalent to Eq. (4.10) and Eq. (4.16) is equivalent to Eq. (4.12). Eq. (4.17) connects A0

and C0 since I move the origin when I deduce Eq. (4.12), so does Eq. (4.18).

Solve these equations and I get the transmission through the finite-length grating is

Transmission =
|T |2

1 − |R|2
β0W
k0a

∣∣∣∣∣ 1 − |R|2

1 − e2idβ0R2

∣∣∣∣∣2. (4.19)

T and R are functions of Zs, a and W, which are the surface parameters. The only term contain the

grating length d is the term at the end of the expression between the absolute value function, which is

a typical term of the Fabry-Pérot oscillation term. Its value oscillates with d between 1 and a positive

number smaller than 1. Fixing the surface parameters and the incident wavelength, the maximum

transmission a grating can reach by changing the grating length is

Maximum transmission =
|T |2

1 − |R|2
β0W
k0a
. (4.20)

From now on, the maximum transmission is defined as the maximum transmission which can be

reached by scanning the grating length and fixing all other parameters. Fig. 4.5 shows the maximum
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Figure 4.5 The maximum transmission a PEC grating can reach by changing the
grating length at different grating periods, The slit width is W = 30 nm
and the incident wavelength is λ = 560 nm.
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Figure 4.6 The analytic maximum transmission a PEC grating can reach by
changing the grating length. The incident wavelength is λ = 560 nm.
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Figure 4.7 The COMSOL Multiphysics simulation results of the maximum trans-
mission a SIBC grating can reach by changing the grating length at
different grating periods, The slit width is W = 30 nm and the incident
wavelength is λ = 560 nm. The relative permittivity of the metal is
εm = −7.92
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transmission of a PEC grating. The analytic curve is calculated by Eq. (4.20). To get the simulation

results, I fixed a and W and did many simulations for different d and picked the maximum transmission.

When a < λ, the maximum transmission is 1 and don’t change with a. When λ = a, the incident

wavelength is a resonant wavelength of the surfaces; the transmission is always 0 regardless the grating

length, so the maximum transmission is 0, which is verified by the analytic and simulation results in

Fig. 4.5.

When a > λ, the maximum transmission increases with a smoothly and stabilizes at 0.3. λ = a

is also a Rayleigh wavelength of the grating at normal incidence (70; 71). The Rayleigh wavelengths

is the wavelengths that the diffracted wave at another order grazes the surface of the grating. Suppose

the medium around the grating is air and the incident plane wave has parallel wavevector k∥ (parallel

with the grating surface), the parallel wavevector of the nth order diffracted wave is k∥ + n2π/a. The

nth diffracted wave grazes the grating surface when k∥ + n2π/a = 2π/λ, which defines the Rayleigh

wavelengths. Obviously λ = a is a Rayleigh wavelength at normal incidence. When a > λ, the reflected

fields have more than one propagation modes. More possible channels open for incident energy, so the

maximum transmission becomes small.

Fig. 4.6 shows the analytical maximum transmission of PEC grating with different slit widths.

When the gratings period increase to a resonant wavelength, the maximum transmission keeps stable.

At the resonant wavelength, the maximum transmission jumps sharply to 0. Then it increases smoothly

and reach another stable value until the period reaches another resonant wavelengths. The stable values

decrease with the increment of the grating period because of the emergence of the new propagation

modes.

The most interesting property in Fig. 4.6 is that the maximum transmission doesn’t change with the

slit width. The curve of W = 30 nm overlaps with the curve W = 5 nm at any grating period. So we

can use very narrow slit to boost the normalized transmission to an arbitrarily big value. So EOT can

happen at any wavelengths other than the resonant wavelengths of the input and output surfaces

Fig. 4.7 shows the maximum transmission through a SIBC grating. The resonant wavelengths are

different from the Rayleigh wavelength here. At the resonant wavelength, the maximum transmission

is 0. At the Rayleigh wavelength, the maximum transmission jumps sharply to a smaller but non-zero
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Figure 4.8 Analytic transmission through a PEC grating with a finite length.The
incident wavelength is λ = 560 nm.

value. The difference between the two kinds of wavelengths is very clear here.

4.4.4 Effect of hole shapes

Fig. 4.6 shows the maximum transmission doesn’t change with the slit width and when a < λ, it

doesn’t change with the grating period too. But the curves of the transmission vs. the grating length do

change with a and W. I plot four transmission curves through a PEC grating in Fig. 4.8. Through the

height of the transmission peak is 1 for each curve, the locations of the peaks changes with a and W.

Based on Eq. (4.20), the location of the peak is decided by R, and more precisely, the phase of R.

R is defined in Eq. (4.13).

R =
(β0 + Zsk0)

∑
n G0n − P0

(β0 − Zsk0)
∑

n G0n + P0
=

k0
∑

n G0n −W
k0

∑
n G0n +W
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and ∑
n

Gn ≈
1

2π

∫ W/2

−W/2

∫ W/2

−W/2
G(y − y′)dydy′ +

W2

π

∞∑
n=1

G(na).

Here I use a subwavelength PEC grating, so P0 = W, Zs = 0 and β0 = k0.

When I change a and fix W, the only thing changed in the expression of R is
∑∞

n=1 G(na). When a

is away from the resonant wavelengths, this summation converges and its order of magnitude is around

or smaller than 1. When W decreases, both terms in the expression of
∑

n Gn decrease with W. But

the second term deceases quickly. So when W is very small, the location of the peak is not sensible to

a. Fig. 4.8 verifies it: The dashed lines have smaller W, so the distance between the peaks of the two

dashed lines is smaller than the distance of the peaks of the two solid lines.

When W changes, every term in the expressions of R and
∑∞

n=1 G(na) changes and they change as

different order of W. So the location of the peak changes with W.

4.4.5 Oblique incidence

All the discussion above is based on the normal incidence. Actually the mode expansion method

can be extended to oblique incidence easily.

I begin from the general equations about the coefficients of the eigenmodes in the slits of an

infinitely-long grating in section 4.2. For the nth eigenmode in the mth slit, we have the equation

F0Imn −

∞∑
m′=−∞

N−1∑
n′=0

Am′n′(βm′n′ − Zsk0)Gmn,m′n′ = AmnPmn. (4.21)

and

F0 =
2k⊥

k⊥ + Zsk0
;

Imn =

∫ ∞

−∞

φ∗mn(y) exp[ik∥y]dy;

Pmn =

∫ ∞

−∞

φ∗mn(y)φmn(y)dy;

Gmn,m′n′ =
1

2π

∫ ∞

−∞

dy
∫ ∞

−∞

dy′φ∗m′n′(y
′)φmn(y)G(y, y′);

G(y, y′) = G(y − y′) =
∫ ∞

−∞

dk
exp[ik(y − y′)]

kx + Zsk0
.

The slits are very narrow comparing with the incident wavelength, so N = 1 and φm0(y) = 1 when

y is inside the mth slit. Φm0(x, y) = φm0(y) exp[iβm0x] is the basic eigenmode in the mth slit. Since all
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the slits have the same shape, βm0 don’t change with m. It is easy to verify Pm0 is independent with m.

So I use β0 to replace βm0, P0 to replace Pm0. Define I00 = I0 and A00 = A0.

Im0 =

∫ ma+W/2

ma−W/2
exp[ik∥y]dy = exp[ik∥ma]I0.

and the coefficients of the eigenmodes satisfy Am0 = exp[ik∥ma]A0 because of Bloch’s theorem. Finally

Eq. (4.21) becomes an equation about A0

F0I0 − A0(β0 − Zsk0)
∞∑

m′=−∞

exp[ik∥m′a]G00,m′0 = A0P0. (4.22)

and

A0 =
F0I0

P0 + (β0 − Zsk0)
∑∞

m=−∞ exp[ik∥ma]G00,m0
. (4.23)

Define G00,m0 = Gm, then when m , 0 and Zs , 0,

Gm ≈
W2

2π
G(am) ≈

W2Zsi
hp

exp[i2πhp|m|a/λ].

I neglect the residue quasicylindrical wave term in the Green’s function of a metallic surface since its

summation always converges.

∞∑
m=−∞

exp[ik∥ma]Gm

= G0 +

∞∑
m=1

exp[ik∥ma]Gm +

∞∑
m=1

exp[−ik∥ma]Gm

≈ G0 +
W2Zsi

hp

∞∑
m=1

exp[i(k∥ + 2πhp/λ)ma] +
W2Zsi

hp

∞∑
m=1

exp[i(−k∥ + 2πhp/λ)ma]

The incident angle is θ, so k∥ = 2π sin θ/λ. When sin θ+hp = nλ/a (n is an integer), the summation

of the second term diverges; when − sin θ + hp = nλ/a, the third term diverges. So we can define λR,

the resonant wavelength of a grating surface at oblique incident as

λR = a(hp ± sin θ)/n; n is an integer.

Then the old conclusion is still correct: The transmission is 0 when the incident wavelength is a resonant

wavelength.

When the metal is an PEC, hp = 1. We can get the same conclusion by repeating the similar

calculations.
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We can continue to discuss the transmission through a finitely-long grating and study the locations

of the peaks. The maths is exactly the same and all the basic conclusions still hold. So I neglect further

discussion here.

4.4.6 Conclusion

In this section we developed a theory about extraordinary transmission through a subwavelength

metallic grating from the first principles using mode expansion method. The theory includes three

parts: the Green’s function expression of surface waves; multiple scattering of surface waves and the

Fabry-Pérot interference between input and output surfaces. The basic conclusions include

1. The transmission has dips at the resonant wavelengths of the input and output surfaces.

2. EOT can happen at any wavelengths other than the resonant wavelengths.

3. Surface waves connects the slits in the grating and play important roles at both transmission dips

and peaks.

4. The transmission peaks result from the Fabry-Pérot interference between the input and output

surfaces.

5. The peak wavelengths are decided by the details of the structures, such as the the grating period,

the slit width and the grating length.

4.5 Application of the extraordinary transmission theory

In the previous section I present a EOT theory. Now I will use my theory to explain the figures

from others’ papers.

In the previous section I always fix the incident wavelength plot the transmission versus a geometry

parameter. It is convenient for analytic calculations and it makes the physics underneath clear. In my

theory the slits are connected by the surface waves, which is decided by the surface parameters such as

a and W; the input and output surface are connected by the eigenmodes in the slit, which are decided

by W and d. So It is necessary to study the geometry parameters separately.
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However experimentalists prefer keeping the grating unchanged and running the wavelength scan.

Scaling law says that changing the wavelength is equivalent with fixing the wavelength and changing

all the geometry parameters proportionally, if we neglect the wavelength dependence of the relative

permittivity of the metal. So the surface resonance and the Fabry-Pérot resonance mix inevitably.

4.5.1 Phys. Rev. Lett. 83, 2845 (1999) by J. A. Porto el al.

The paper “Transmission Resonances on Metallic Gratings with Very Narrow Slits” by J. A. Porto,

F. J. Garcı́a-Vidal and J. B. Pendry presented a theoretical analysis about EOT through a metallic grating

(66). They calculated the transmission spectrum by using transfer matrix formalism based on the mode

expansion method. The key conclusion of he paper is that there are two kinds of transmission peaks:

the peak coming from the the excitation of coupled surface plasmon on both surfaces of the grating and

the peak coming from the excitation of waveguide resonances located in the slits.

Fig. 4.9 is excerpted from the the paper. The top part shows the grating under study. The authors

used different notations. In their paper, d is the period of the grating; a is the width of the slits; h is

the length of the grating or the thickness of the metallic film. The bottom part shows the transmission

spectra when the grating period is 3.5 µm, slit width is 0.5 µm. Their study focused on the transmission

peaks. For example, when the thickness of the film is 3 µm, the peak at λ ≈ 4 µm comes from

the coupled surface plasmon resonance and the the peak at λ ≈ 7.5 µm comes from the waveguide

resonance.

Now I will use my theory to explain the transmission spectra. First though the locations of the

peaks change with the thickness of the film, the locations of the dips don’t change. We can find dips at

λ ≈ 3.5 µm and λ ≈ 1.8 µm, which are the resonant wavelengths of the input and output surfaces.

Second let’s focus on the peaks. As I have discussed, the peaks appear when R exp[iβ0h] is a real

number. When λ changes, both R and β0 changes. β0 always changes smoothly with the wavelength.

We can assume exp[iβ0h] is a constant in a narrow region around the resonant wavelengths. But because

of the resonance, R changes rapidly in this region and cover a broad phase interval. So for most of h

value, the peak condition will be fulfilled around the resonant wavelength. So we can always find a

peak around the resonant wavelength. But it is still possible that no peak appears around the resonant
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FIG. 1. Top: Schematic view of the lamellar transmissionmetallic gratings studied in this paper (see text). Zero-ordertransmittance for a normal incident plane wave calculated bymeans of the transfer matrix formalism for lamellar metalgratings in vacuum (d ­ 3.5 mm, a ­ 0.5 mm) for differentvalues of the grating height shd, ranging from 0.2 to 4.0 mm.

plane wave. The grating height shd is varied in these calcu-lations from 0.2 to 4 mm. As can be seen in Fig. 1a, fordeep enough gratings sh $ 0.6 mmd a remarkable trans-mission peak appears for a wavelength slightly larger thanthe grating period (in this case, 3.5 mm). This transmis-sion peak moves to larger wavelengths as the grating heightincreases, whereas its linewidth is broadened. And, as il-lustrated in Fig. 1b, subsequent peaks emerge for deepergratings.In order to analyze the physical origin of these transmis-sion resonances, we have also developed an approximatedmodal method. We incorporate two main simplificationsto the exact modal method reported in [16]. First, as thefrequency regime we are interested in is below the plasmafrequency of the metal, surface-impedance boundary con-ditions [10] are imposed on the metallic boundaries, excepton the vertical walls of the slits which are treated as perfectmetal surfaces. Second, we consider only the fundamen-tal eigenmode in the modal expansion of the electric andmagnetic fields inside the slits, which is justified in the

limit where the wavelength of light is much larger than thewidth of the slits. Within this single-mode approximation,the two field amplitudes inside the slits (the one associatedwith the eik0z wave and the other with the e2ik0z wave) areproportional to 1yD, where the denominator D is given by
D ­ f1 2 s1 1 hdfg f1 2 s1 1 hdcgeik0h

2 f1 1 s1 2 hdfg f1 1 s1 2 hdcge2ik0h, (1)
with k0 ­ 2pyl, h ­ e

21y2

metal, and c given by the follow-ing sum:
c ­

a

d
e

X̀

m­2`

fsincs
k0gma

2 dg2

se 2 g2
md1y2 1 eh

, (2)
where e is the dielectric constant of the substrate,sincsjd ; sinsjdyj, and gm ­ sinu 1 m

l

d
is associatedwith the mth diffraction order. The quantity f is alsogiven by Eq. (2) but with e ­ 1. It can be shown thatzero-order transmittance is just inversely proportionalto jDj

2 and hence transmission spectrum of the gratingis completely governed by the behavior of the denomi-nator D. Moreover, we have found that there is aclose correspondence between the maxima of zero-ordertransmittance and spectral positions of the zeros of theimaginary part of D, IsDd. This result allows us to ana-lyze the nature of the electromagnetic modes responsiblefor the transmission resonances shown in Fig. 1 just bystudying the zeros of IsDd as given by Eq. (1). Also,by varying the angle of incidence u we can calculate thephotonic band structure, vskxd, of these surface excita-tions. In Fig. 2a we show the photonic band structurefor a grating in vacuum se ­ 1d and h ­ 0.6 mm (blackdots) and, for comparison, the energetic positions of theSPP excitation for a nearly flat metal surface (gray dots).Note that, due to the range of photon energies we areanalyzing, these SPP frequencies almost coincide withthe energetic positions of the Rayleigh anomalies [4]. Ascan be seen in the inset of Fig. 2a, a very narrow bandgap between the first and second bands appears in thespectrum. The lower branch at kx ­ 0 is associated withthe transmission peak at l close to d in Fig. 1a. Its closeproximity to the energy of SPP bands suggests that thistransmissive mode is associated with the excitation ofan electromagnetic mode with a SPP character in eachsurface (top and bottom) of the grating. From now on, wename this kind of resonances as coupled SPPs. As h isincreased, new bands, as we will show later are associatedwith waveguide modes of the slits, appear in the spec-trum. This can be seen in Fig. 2b which shows that for
h ­ 3 mm a flat band is present at v ­ 0.17 eV. Thislocalized mode is responsible for the transmission peaklocated at l ­ 7.5 mm (see Fig. 1b). The other trans-mission resonance obtained for h ­ 3 mm at l ø 4 mmcorresponds to the lower branch of the first band gap.Therefore we conclude that transmission resonancesappearing in Fig. 1 are due mainly to the excitation of twotypes of electromagnetic modes: coupled SPPs for l ø d

2846

Figure 4.9 Figures excerpted from PRL 83, 2845 (1999). (Top) Schematic rep-
resentation of the metallic grating studied in the paper. (Below)
Zero-order transmission through the grating vacuum at normal inci-
dence for different values of the grating length. The grating period is
d = 3.5 µm and the slit width is a = 0.5 µm.
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wavelength since the phase of R don’t cover the whole 2π interval. When h = 0.2 µm and 2 µm, there

is no peak around the resonant wavelength. When h is big, the phase interval covered by exp[iβ0h]

becomes bigger, so more peaks appear at the wavelengths away from the resonant wavelength.

Around the resonant wavelength, the phase of R changes very quickly with the wavelength, so

the linewidths of the peaks are very narrow. Away form resonant wavelength, both R and β0 changes

smoothly, so the linewidths of the peaks are wide.

The heights of the peaks also agree with my theory. The peak height increases when the peak wave-

length increases from the the resonant wavelength. Actually the peak reaches its full height quickly.

The transmission don’t reach 100% here is because the metal is lossy in this paper. When λ is smaller

than the grating period, the peaks become low.

In conclusion, the simulation results presented in this paper agree with my theory perfectly.

4.5.2 Phys. Rev. Lett. 92, 183901 (2004) by K. J. Klein Koerkamp el al.

The paper “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays

of Subwavelength Holes” by K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L.

Kuipers discussed the effect of hole shapes (72). The authors measured the transmission through the

periodic subwavelength hole arrays in a gold film. They verified, experimentally and numerically, that

the shape of the holes influence not only the heights but also the central wavelengths of the normalized

transmission peaks.

The top figures in Fig. 4.10 shows the focused ion beam images of two periodic subwavelength

hole arrays used in the experiments. The bottom figure of Fig. 4.10 is the normalized transmission

spectra calculated by the Fourier modal method. Three hole shapes were studied: circular holes with a

diameter of 190 nm, rectangles holes of 150 nm× 225 nm and of 75 nm× 225 nm. The lattice constant

is 452 nm × 425 nm. The films were deposited on glass substrate.

I have analyzed the effect of hole shapes analytically, so the main conclusion about the strong in-

fluence of holes shapes presented in this paper is not very surprising. Now let’s analyze the normalized

transmission curves in Fig. 4.10 quantitatively. Again, we find the transmission dips don’t change with
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where x and y are the coordinates along the directions of

periodicity of the grating and z is the coordinate along the

grating normal, � � x; y, and uq and dq are, respectively,

the amplitudes of the upward and downward propagating

or decaying modal fields (in our actual case all modes

are evanescent). The incident and transmitted fields above

and below the array are expanded in plane waves.

Frequency-dependent permittivities were taken from lit-

erature [25].

Figure 3 shows the calculated transmissivities through

the arrays used in the experiments for an incident polar-

ization perpendicular to the long axis of the rectangular

holes. It is clear that the transmissivity of all the peaks

strongly increases when the hole shape is changed from

circles to 150� 225 nm
2 and 75� 225 nm

2 rectangles.

The calculation reproduce the large redshifts of the

�1; 0� peak as the hole shape is changed from circular to

large rectangles (shift � 70 nm) and small rectangles

(shift � 110 nm). The calculated redshifts are slightly

smaller than those observed in the experiment. The

higher order peaks are less well resolved in the calcula-

tions than in the experiment. Overall the theoretical cal-

culations confirm the large effect of hole shape on the

extraordinary transmission.

The enhanced transmissivity is found to be strongly

polarization dependent. Both the measurements and the

calculations show that for the �1; 0� peak the transmission

for an incident polarization perpendicular to the long axis

of the holes is more than 3 orders of magnitude larger

than for an incident polarization along the long axis. A

similar polarization anisotropy has been observed in

the (enhanced) transmission of parallel arrays of slits

and wires, both in calculations and experiments (see,

e.g., [26,27]).

In order to investigate the role of hole shape on the

extraordinary transmission in greater detail, the trans-

missivity of isolated holes is measured. In order to obtain

a signal belonging to a single hole that is significantly

larger than the residual transmission of the 200 nm Au

film, samples are investigated in which a low density of

500 holes are positioned at random positions in an area of

20� 20 �m
2. The shape of the holes was the same as

those used in the periodic arrays. The relative positions of

the holes were equal for the three investigated hole

shapes. Figure 4 shows the transmissivity of the random

arrays for the different hole shapes used in this inves-

tigation. The monotonously decaying transmissivity as a

function of wavelength (� > 600 nm) for the random

array of circular holes is well characterized with the

Bethe-Bouwkamp theory [19,20]. The absence of any

resonant features in the transmission spectrum of this

array shows that intense collective and interference ef-

fects in these random arrays can be neglected with re-

spect to the transmission through the individual holes.

The total transmission of the random arrays is therefore

equal to the sum of the transmission through the isolated

holes, so that the transmissivity of an individual hole can

be determined. The polarization of the incoming light is

perpendicular to the long axis of the rectangular holes.

For wavelengths larger than 600 nm the rectangular holes

have a strong, broad transmissivity that is strongly in-

creased with respect to that of the circular holes.

We attribute the broad increase in transmissivity for the

rectangular holes with respect to the circular holes to the

existence of shape resonances in the rectangular holes.

We have found no evidence for shape resonances in the
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FIG. 3 (color online). Calculated transmissivity spectra for

three different subwavelength hole arrays. The spectra are

calculated for arrays consisting of circular holes (solid line),

150� 225 nm2 rectangles (dotted line), and 75� 225 nm2

rectangles (dashed line). The numbers between brackets specify

the order of the maxima. The polarization of the incoming light

was perpendicular to the long axis of the rectangles.
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FIG. 4 (color online). Measured transmissivity spectra for

patterns of randomly positioned subwavelength holes of differ-

ent shapes: circular (solid line), 150� 225 nm
2 rectangles

(dotted line), and 75� 225 nm2 rectangles (dashed line). The

polarization of the incoming light was perpendicular to the

long axis of the rectangles. The spectrum of the circular holes

is largely featureless and the drop in transmissivity obeys the

power law calculated by Bethe [19] and Bouwkamp [20]. For

the rectangular holes a broad increase in transmissivity is

visible at wavelengths of 600 nm and larger. The observed

increase in transmissivity is maximally 0.8.
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Figure 4.10 Figures excerpted from PRL 92, 183901 (2004). (Top) Images of
two periodic hole arrays used. Both arrays have period d = 425 nm.
(a) Circular holes with a diameter of 190 nm (b) Rectangular holes
of 75 nm × 225 nm. (Below) Calculated normalized transmission of
three different subwavelength periodic hole arrays. E field of the in-
cident wave was perpendicular to the long axis of the rectangles.
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the hole shapes. Since 2D hole array is used here instead of the 1D slits, the resonant wavelengths are

λR =
na√

i2 + j2

√
1 − Z2

s .

Here λR is the wavelength in free space; n is the refractive index of the substrate; a is the lattice constant

since the hole array has a square lattice. The first dip is at λ ≈ 700 nm. So the second dip should be

around 700 nm/
√

2 = 495 nm and we can find this dip in Fig. 4.10 too.

The height of the normalized transmission peaks doubles when the area of the rectangle holes is

halved. So the heights of the transmission peaks equal each other for the rectangle hole shapes, which

agrees with my theory. The height of the peaks of the circular holes is very low. The authors of the

paper contributed it to the absence of the shape resonances in the circular holes. Based on my theory,

another possible explanation is that the peak is too close to the resonance wavelengths of the surfaces.

Because no propagation modes exist in the holes, I can not assert which explanation is more reasonable.

Further study is necessary here. My theory cannot explain the heights of the peaks between 500 nm

and 700 nm.

In conclusion, the experimental and numerical work on the EOT through 2D subwavelength holes

in this paper confirms (1) the transmission is low at the resonant wavelengths of the input and output

surfaces and (2) the hole shapes influence the transmission peaks substantially in a complex way.

4.5.3 Phys. Rev. Lett. 96, 233901 (2006) by Z. Ruan and M. Qiu

The paper “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of

Localized Waveguide Resonances” by Z. Ruan and M. Qiu analyzed the transmission through a square

lattice of rectangle air holes in a free standing PEC film, which is shown in Fig. 4.11 (73). In this

paper, the holes are always 0.9a × 0.2a and the lattice constant d has three possible values: 1.0a,1.1a

and 1.2a. The thickness of the film is h = 0.2a. Here a is an arbitrary length unit. The incoming wave

is normal incident plane wave with electric field along the short edge of the rectangular holes. The

normalized transmission was calculated by the full-vectorial 3D finite-difference time-domain method

and is shown in Fig. 4.12.

As Fig. 4.11 shows, the rectangle holes are narrow along y direction and long along x direction, so

the open area is quite close to 2D slit. The cutoff wavelength of the basic mode in the hole is 1.8a and
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different hole shapes and parameters and we find that the

results obtained below are general.

The normalized transmission through the film was cal-

culated by the full-vectorial three-dimensional (3D) finite-

difference time-domain (FDTD) method [17]. In the

present Letter, we only consider the case of normal inci-

dence, and the electric field of the incident wave is polar-

ized along the short edge of the rectangular holes (the y

direction). The cases of three different lattice constants:

d � 1:0a, 1:1a, and 1:2a, are investigated here, and the

calculation results are shown in Fig. 2(a). In the fre-

quency range shown in the figure, there are two peaks of

enhanced transmission at the frequency 0:56�c=a� and

0:98�c=a� for d � 1:0a, where the normalized transmis-

sions are larger than 5.5. When the lattice constant in-

creases while the hole size is fixed, the lower frequency

peak does not move significantly while the high-frequency

peak is ‘‘redshifted’’ dramatically. The normalized trans-

missions are still very high and increasing as the lattice

constant increases.

To understand this phenomenon clearly, we calculate the

dispersion relation (the band structure) of the electromag-

netic state for the case of d � 1:0a shown in Fig. 2(b).

Since the structure is symmetric about the plane z � 0

crossing the center of the film, the resonant modes can be

classified as either the odd or even modes where Ez field is

antisymmetric or symmetric about z � 0. The resonant

frequencies corresponding to the Bloch wave vector k �
0 [ÿ point in Fig. 2(b)] coincide with the peaks of the

normalized transmission [cf. Fig. 2(a)]. Here we consider

the bands in the light cone [the white region in Fig. 2(b)],

which are the electromagnetic states radiating into free

space. Note that if each air hole is considered as a truncated

rectangular waveguide with four PEC walls and two sides

opened to free space, the truncated waveguide forms a

low-Q (quality factor) cavity resonator. The resonant fre-

quency of the lowest-order cavity mode is the same as the

cutoff frequency of the basic mode (TE10) in the rectangu-

lar waveguide, 0:556�c=a�. This resonant frequency is al-

most independent of the periodicity, and gives a flat band in

the electromagnetic band structures, as shown in Fig. 2(b).

We refer to this kind of resonance as the localized wave-

guide resonance, and the flat band is a signature of these

resonances associated with each air hole. Additionally, it is

observed that for the above two-dimensional periodic

structure, the localized waveguide resonances always exist

even if the metal film is very thin (considering that the

thickness of the metallic films is less than the long axis of

air holes). This differs from the case of one-dimensional

periodic structures, e.g., a metallic grating with slits [7]. To

understand this property, a typical Fabry-Perot expression

can be used to model the zero-order transmission coeffi-

cient (t00):

t00 �
tah exp�ÿi�h�tha

1ÿ r2ha exp�ÿi2�h�
; (2)
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FIG. 2 (color online). (a) The normalized transmission through

a PEC film with a square array of rectangular holes of size

0:9a� 0:2a (a is an arbitrary length unit) for different lattice

constants: d � 1:0a (solid line), 1:1a (dashed line), and

1:2a (dotted line). The thickness of the film is 0:2a. (b) The

band structure for the case of the lattice constant d � 1:0a. The

odd (even) mode is denoted by the line marked with

points (triangles). The white area is the region in the light cone.

FIG. 1 (color online). The schematic of a perfect conductor

film with a square array of rectangular air holes.
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different hole shapes and parameters and we find that the

results obtained below are general.

The normalized transmission through the film was cal-

culated by the full-vectorial three-dimensional (3D) finite-

difference time-domain (FDTD) method [17]. In the

present Letter, we only consider the case of normal inci-

dence, and the electric field of the incident wave is polar-

ized along the short edge of the rectangular holes (the y

direction). The cases of three different lattice constants:

d � 1:0a, 1:1a, and 1:2a, are investigated here, and the

calculation results are shown in Fig. 2(a). In the fre-

quency range shown in the figure, there are two peaks of

enhanced transmission at the frequency 0:56�c=a� and

0:98�c=a� for d � 1:0a, where the normalized transmis-

sions are larger than 5.5. When the lattice constant in-

creases while the hole size is fixed, the lower frequency

peak does not move significantly while the high-frequency

peak is ‘‘redshifted’’ dramatically. The normalized trans-

missions are still very high and increasing as the lattice

constant increases.

To understand this phenomenon clearly, we calculate the

dispersion relation (the band structure) of the electromag-

netic state for the case of d � 1:0a shown in Fig. 2(b).

Since the structure is symmetric about the plane z � 0

crossing the center of the film, the resonant modes can be

classified as either the odd or even modes where Ez field is

antisymmetric or symmetric about z � 0. The resonant

frequencies corresponding to the Bloch wave vector k �
0 [ÿ point in Fig. 2(b)] coincide with the peaks of the

normalized transmission [cf. Fig. 2(a)]. Here we consider

the bands in the light cone [the white region in Fig. 2(b)],

which are the electromagnetic states radiating into free

space. Note that if each air hole is considered as a truncated

rectangular waveguide with four PEC walls and two sides

opened to free space, the truncated waveguide forms a

low-Q (quality factor) cavity resonator. The resonant fre-

quency of the lowest-order cavity mode is the same as the

cutoff frequency of the basic mode (TE10) in the rectangu-

lar waveguide, 0:556�c=a�. This resonant frequency is al-

most independent of the periodicity, and gives a flat band in

the electromagnetic band structures, as shown in Fig. 2(b).

We refer to this kind of resonance as the localized wave-

guide resonance, and the flat band is a signature of these

resonances associated with each air hole. Additionally, it is

observed that for the above two-dimensional periodic

structure, the localized waveguide resonances always exist

even if the metal film is very thin (considering that the

thickness of the metallic films is less than the long axis of

air holes). This differs from the case of one-dimensional

periodic structures, e.g., a metallic grating with slits [7]. To

understand this property, a typical Fabry-Perot expression

can be used to model the zero-order transmission coeffi-

cient (t00):

t00 �
tah exp�ÿi�h�tha

1ÿ r2ha exp�ÿi2�h�
; (2)
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FIG. 2 (color online). (a) The normalized transmission through

a PEC film with a square array of rectangular holes of size

0:9a� 0:2a (a is an arbitrary length unit) for different lattice

constants: d � 1:0a (solid line), 1:1a (dashed line), and

1:2a (dotted line). The thickness of the film is 0:2a. (b) The

band structure for the case of the lattice constant d � 1:0a. The

odd (even) mode is denoted by the line marked with

points (triangles). The white area is the region in the light cone.

FIG. 1 (color online). The schematic of a perfect conductor

film with a square array of rectangular air holes.
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where tah is the transmission of the incident wave imping-

ing from free space onto the semi-infinite rectangul-

ar waveguide, tha (rha) is the transmission (reflection) of

the waveguide mode from the semi-infinite rectangular

waveguide into free space, and � is the propagation con-

stant of waveguide mode. Since the resonance frequency is

very close to the cutoff frequency, � is approximately

equal to 0, meaning that both exp�ÿi�h� � 1 and

exp�ÿi2�h� � 1. Therefore, t00 is almost independent of

h, and the transmission peaks do not change with h, even if

the PEC film is very thin.

Now let us consider the second band in the light cone. In

the optical regime, the mechanism for enhanced transmis-

sion through real metal films patterned with arrays of holes

has been well recognized as arising from the surface plas-

mons [6,7,10]. The periodicity in the array allows the light

impinging on the metal to excite the Bloch state with the

main component of surface wave on both surfaces of the

metallic film. This Bloch state can be reemitted freely into

propagating light on the exit side. Meanwhile, the photonic

band of the Bloch surface states is folded by the boundary

of the first Brillouin zone. The resonant frequencies at the

ÿ point are thus a function of the lattice constant. In

particular, the first resonant frequency is always around

the frequency c=d. Therefore, the transmission peak posi-

tion corresponding to this resonant frequency shall change

with the lattice constant, which coincides with our trans-

mission calculation results [cf. Fig. 2(a)]. It is worth noting

that the zero transmission at the wavelength corresponding

to the lattice constant (i.e., at the frequency c=d � 1) is due

to the Wood’s anomaly [11].

To verify that the frequency of the localized waveguide

resonance is mainly determined by the holes size and

almost independent of the periodicity, we calculate the

transmission through PEC films where the same size holes

(0:9a� 0:2a) are randomly distributed with the long axis

of the holes always along x direction. Figure 3 shows the

normalized transmission for four different calculation

square cell sizes: �5a�2, �7a�2, �9a�2, and �11a�2. The

spectrums are obtained by the mean value of five different

samples for each cell size (a further increase of the number

of samples almost has no influence on the mean value). To

maintain consistency in the comparison with the film with

a periodic array (the solid line in Fig. 3), the ratio of the

total holes area to the total cell area is equal to that in the

case of the periodic array, i.e., there are N2 holes in the

�Na�2 metallic film (e.g., the inset plots the positions of

25 holes in a 5a� 5a example). It is clear from Fig. 3 that

the random distribution of holes maintains a peak position

of the transmission near the frequency 0:56�c=a�, but re-

moves the higher frequency peak at the frequency

0:98�c=a� in the case of the periodic array of holes. This

confirms that the localized waveguide resonance results

from the electromagnetic field localized in the each hole

and the surface plasmon resonance is due to the periodicity.

The mean value of the normalized transmissions in the case

of randomly distributed holes is also larger than 3 around

the frequency 0:56�c=a�. This suggests that the localized

waveguide resonance in each hole can also result in en-

hanced transmission.

Similar behavior can also be expected in the optical

regime for a real metal. Here we also calculate the normal-

ized transmission through Au films with periodic array of

the aperture by the 3D FDTD method. The Au film with a

thickness of 200 nm is assumed to be on a glass substrate

(� � 2:117), as considered in Ref. [8]. The time-domain

auxiliary differential equation (ADE) approach is used to

implement FDTD models of dispersive materials [17],

where the discretization grid is 5 nm, and shows the con-

vergence in our calculation. The dimensions of the holes

are fixed at 225� 75 nm2 and the normalized transmission

through the Au films with periodic aperture arrays for the

different lattice constant d � 425; 450; 475 nm are calcu-

lated and shown in Fig. 4. The frequency-dependent per-

mittivities of Au are referred to the literature [18]. For

d � 425 nm, our result agrees well with the Fourier modal

method calculation result in Ref. [8] [cf. the dashed lines in

Fig. (3) of Ref. [8]]. The localized waveguide resonance

corresponds to the peaks in the normalized transmission

at the wavelength � � 836 nm, i.e., the frequency

0:508�c=a� when a � 425 nm, and it hardly moves with

differing lattice constants. It has been shown that for the

real metal in the optics regime, the cutoff wavelength of

metallic waveguides is increased significantly, and is much

larger than Rayleigh’s criterion for the PEC metallic wave-

guide [19,20]. Therefore, the cutoff wavelength for the

225� 75 nm2 aperture in the Au film is much larger

FIG. 3 (color online). The mean value of the normalized trans-

mission for the sample with different square cell size: �5a�2,

�7a�2, �9a�2, and �11a�2. For the comparison, the normalized

transmission for the case of the periodic array of holes (the lat-

tice constant d � 1:0a) is denoted by the solid line. The ratio of

the hole area to the cell area in the case of random distributed

holes is equal to that in the case of the periodic array. The inset

shows an example of 25 randomly distributed holes in a 5a� 5a

cell.
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Figure 4.11 A figure excerpted from PRL 96, 233901 (2006). Schematic repre-
sentation of a PEC film with a periodic square array consisting of
rectangular air holes studied in the paper.

the cutoff frequency is 0.556(c/a). So there exists propagate mode in the mode at resonant frequencies

of the surfaces, which is also similar to the case of slits. Then it is not surprising that they got the

similar normalized transmission curves at resonant frequencies. We can find a dip and a peak there

and their location are decided by the lattice constants. We can also find peaks away from the resonant

wavelengths and their locations are not sensitive to the lattice constants. Through the heights of the

normalized transmission peaks are different, the heights of the transmission peaks are all close to 1. All

these facts agree with my theory.

We should also the peaks away from the resonant frequencies are close to the cutoff frequencies.

This can also be explain be my theory. The peak condition is R exp[iβ0h] is real. When the wavelength

is far away the resonant wavelengths and A � λ2 (here A is the area of the hole), R ≈ −1. At the

cutoff wavelength, β0 = 0,. so R exp[iβ0h] ≈ −1 is a real number. Then we get a peak. When the long

edge of the rectangle hole becomes longer, the hole converges to a slit, the cutoff wavelength becomes

longer too, so the peak appear at longer wavelength and the transmission will increase monotonically

when the wavelength is not so large. The curves in Fig. 4.9 show the monotonic increment when

h = 0.2, 0.6, 1.2 µm.
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different hole shapes and parameters and we find that the

results obtained below are general.

The normalized transmission through the film was cal-

culated by the full-vectorial three-dimensional (3D) finite-

difference time-domain (FDTD) method [17]. In the

present Letter, we only consider the case of normal inci-

dence, and the electric field of the incident wave is polar-

ized along the short edge of the rectangular holes (the y

direction). The cases of three different lattice constants:

d � 1:0a, 1:1a, and 1:2a, are investigated here, and the

calculation results are shown in Fig. 2(a). In the fre-

quency range shown in the figure, there are two peaks of

enhanced transmission at the frequency 0:56�c=a� and

0:98�c=a� for d � 1:0a, where the normalized transmis-

sions are larger than 5.5. When the lattice constant in-

creases while the hole size is fixed, the lower frequency

peak does not move significantly while the high-frequency

peak is ‘‘redshifted’’ dramatically. The normalized trans-

missions are still very high and increasing as the lattice

constant increases.

To understand this phenomenon clearly, we calculate the

dispersion relation (the band structure) of the electromag-

netic state for the case of d � 1:0a shown in Fig. 2(b).

Since the structure is symmetric about the plane z � 0

crossing the center of the film, the resonant modes can be

classified as either the odd or even modes where Ez field is

antisymmetric or symmetric about z � 0. The resonant

frequencies corresponding to the Bloch wave vector k �
0 [ÿ point in Fig. 2(b)] coincide with the peaks of the

normalized transmission [cf. Fig. 2(a)]. Here we consider

the bands in the light cone [the white region in Fig. 2(b)],

which are the electromagnetic states radiating into free

space. Note that if each air hole is considered as a truncated

rectangular waveguide with four PEC walls and two sides

opened to free space, the truncated waveguide forms a

low-Q (quality factor) cavity resonator. The resonant fre-

quency of the lowest-order cavity mode is the same as the

cutoff frequency of the basic mode (TE10) in the rectangu-

lar waveguide, 0:556�c=a�. This resonant frequency is al-

most independent of the periodicity, and gives a flat band in

the electromagnetic band structures, as shown in Fig. 2(b).

We refer to this kind of resonance as the localized wave-

guide resonance, and the flat band is a signature of these

resonances associated with each air hole. Additionally, it is

observed that for the above two-dimensional periodic

structure, the localized waveguide resonances always exist

even if the metal film is very thin (considering that the

thickness of the metallic films is less than the long axis of

air holes). This differs from the case of one-dimensional

periodic structures, e.g., a metallic grating with slits [7]. To

understand this property, a typical Fabry-Perot expression

can be used to model the zero-order transmission coeffi-

cient (t00):

t00 �
tah exp�ÿi�h�tha

1ÿ r2ha exp�ÿi2�h�
; (2)
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FIG. 2 (color online). (a) The normalized transmission through

a PEC film with a square array of rectangular holes of size

0:9a� 0:2a (a is an arbitrary length unit) for different lattice

constants: d � 1:0a (solid line), 1:1a (dashed line), and

1:2a (dotted line). The thickness of the film is 0:2a. (b) The

band structure for the case of the lattice constant d � 1:0a. The

odd (even) mode is denoted by the line marked with

points (triangles). The white area is the region in the light cone.

FIG. 1 (color online). The schematic of a perfect conductor

film with a square array of rectangular air holes.
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different hole shapes and parameters and we find that the

results obtained below are general.

The normalized transmission through the film was cal-

culated by the full-vectorial three-dimensional (3D) finite-

difference time-domain (FDTD) method [17]. In the

present Letter, we only consider the case of normal inci-

dence, and the electric field of the incident wave is polar-

ized along the short edge of the rectangular holes (the y

direction). The cases of three different lattice constants:

d � 1:0a, 1:1a, and 1:2a, are investigated here, and the

calculation results are shown in Fig. 2(a). In the fre-

quency range shown in the figure, there are two peaks of

enhanced transmission at the frequency 0:56�c=a� and

0:98�c=a� for d � 1:0a, where the normalized transmis-

sions are larger than 5.5. When the lattice constant in-

creases while the hole size is fixed, the lower frequency

peak does not move significantly while the high-frequency

peak is ‘‘redshifted’’ dramatically. The normalized trans-

missions are still very high and increasing as the lattice

constant increases.

To understand this phenomenon clearly, we calculate the

dispersion relation (the band structure) of the electromag-

netic state for the case of d � 1:0a shown in Fig. 2(b).

Since the structure is symmetric about the plane z � 0

crossing the center of the film, the resonant modes can be

classified as either the odd or even modes where Ez field is

antisymmetric or symmetric about z � 0. The resonant

frequencies corresponding to the Bloch wave vector k �
0 [ÿ point in Fig. 2(b)] coincide with the peaks of the

normalized transmission [cf. Fig. 2(a)]. Here we consider

the bands in the light cone [the white region in Fig. 2(b)],

which are the electromagnetic states radiating into free

space. Note that if each air hole is considered as a truncated

rectangular waveguide with four PEC walls and two sides

opened to free space, the truncated waveguide forms a

low-Q (quality factor) cavity resonator. The resonant fre-

quency of the lowest-order cavity mode is the same as the

cutoff frequency of the basic mode (TE10) in the rectangu-

lar waveguide, 0:556�c=a�. This resonant frequency is al-

most independent of the periodicity, and gives a flat band in

the electromagnetic band structures, as shown in Fig. 2(b).

We refer to this kind of resonance as the localized wave-

guide resonance, and the flat band is a signature of these

resonances associated with each air hole. Additionally, it is

observed that for the above two-dimensional periodic

structure, the localized waveguide resonances always exist

even if the metal film is very thin (considering that the

thickness of the metallic films is less than the long axis of

air holes). This differs from the case of one-dimensional

periodic structures, e.g., a metallic grating with slits [7]. To

understand this property, a typical Fabry-Perot expression

can be used to model the zero-order transmission coeffi-

cient (t00):

t00 �
tah exp�ÿi�h�tha

1ÿ r2ha exp�ÿi2�h�
; (2)
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FIG. 2 (color online). (a) The normalized transmission through

a PEC film with a square array of rectangular holes of size

0:9a� 0:2a (a is an arbitrary length unit) for different lattice

constants: d � 1:0a (solid line), 1:1a (dashed line), and

1:2a (dotted line). The thickness of the film is 0:2a. (b) The

band structure for the case of the lattice constant d � 1:0a. The

odd (even) mode is denoted by the line marked with

points (triangles). The white area is the region in the light cone.

FIG. 1 (color online). The schematic of a perfect conductor

film with a square array of rectangular air holes.
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where tah is the transmission of the incident wave imping-

ing from free space onto the semi-infinite rectangul-

ar waveguide, tha (rha) is the transmission (reflection) of

the waveguide mode from the semi-infinite rectangular

waveguide into free space, and � is the propagation con-

stant of waveguide mode. Since the resonance frequency is

very close to the cutoff frequency, � is approximately

equal to 0, meaning that both exp�ÿi�h� � 1 and

exp�ÿi2�h� � 1. Therefore, t00 is almost independent of

h, and the transmission peaks do not change with h, even if

the PEC film is very thin.

Now let us consider the second band in the light cone. In

the optical regime, the mechanism for enhanced transmis-

sion through real metal films patterned with arrays of holes

has been well recognized as arising from the surface plas-

mons [6,7,10]. The periodicity in the array allows the light

impinging on the metal to excite the Bloch state with the

main component of surface wave on both surfaces of the

metallic film. This Bloch state can be reemitted freely into

propagating light on the exit side. Meanwhile, the photonic

band of the Bloch surface states is folded by the boundary

of the first Brillouin zone. The resonant frequencies at the

ÿ point are thus a function of the lattice constant. In

particular, the first resonant frequency is always around

the frequency c=d. Therefore, the transmission peak posi-

tion corresponding to this resonant frequency shall change

with the lattice constant, which coincides with our trans-

mission calculation results [cf. Fig. 2(a)]. It is worth noting

that the zero transmission at the wavelength corresponding

to the lattice constant (i.e., at the frequency c=d � 1) is due

to the Wood’s anomaly [11].

To verify that the frequency of the localized waveguide

resonance is mainly determined by the holes size and

almost independent of the periodicity, we calculate the

transmission through PEC films where the same size holes

(0:9a� 0:2a) are randomly distributed with the long axis

of the holes always along x direction. Figure 3 shows the

normalized transmission for four different calculation

square cell sizes: �5a�2, �7a�2, �9a�2, and �11a�2. The

spectrums are obtained by the mean value of five different

samples for each cell size (a further increase of the number

of samples almost has no influence on the mean value). To

maintain consistency in the comparison with the film with

a periodic array (the solid line in Fig. 3), the ratio of the

total holes area to the total cell area is equal to that in the

case of the periodic array, i.e., there are N2 holes in the

�Na�2 metallic film (e.g., the inset plots the positions of

25 holes in a 5a� 5a example). It is clear from Fig. 3 that

the random distribution of holes maintains a peak position

of the transmission near the frequency 0:56�c=a�, but re-

moves the higher frequency peak at the frequency

0:98�c=a� in the case of the periodic array of holes. This

confirms that the localized waveguide resonance results

from the electromagnetic field localized in the each hole

and the surface plasmon resonance is due to the periodicity.

The mean value of the normalized transmissions in the case

of randomly distributed holes is also larger than 3 around

the frequency 0:56�c=a�. This suggests that the localized

waveguide resonance in each hole can also result in en-

hanced transmission.

Similar behavior can also be expected in the optical

regime for a real metal. Here we also calculate the normal-

ized transmission through Au films with periodic array of

the aperture by the 3D FDTD method. The Au film with a

thickness of 200 nm is assumed to be on a glass substrate

(� � 2:117), as considered in Ref. [8]. The time-domain

auxiliary differential equation (ADE) approach is used to

implement FDTD models of dispersive materials [17],

where the discretization grid is 5 nm, and shows the con-

vergence in our calculation. The dimensions of the holes

are fixed at 225� 75 nm2 and the normalized transmission

through the Au films with periodic aperture arrays for the

different lattice constant d � 425; 450; 475 nm are calcu-

lated and shown in Fig. 4. The frequency-dependent per-

mittivities of Au are referred to the literature [18]. For

d � 425 nm, our result agrees well with the Fourier modal

method calculation result in Ref. [8] [cf. the dashed lines in

Fig. (3) of Ref. [8]]. The localized waveguide resonance

corresponds to the peaks in the normalized transmission

at the wavelength � � 836 nm, i.e., the frequency

0:508�c=a� when a � 425 nm, and it hardly moves with

differing lattice constants. It has been shown that for the

real metal in the optics regime, the cutoff wavelength of

metallic waveguides is increased significantly, and is much

larger than Rayleigh’s criterion for the PEC metallic wave-

guide [19,20]. Therefore, the cutoff wavelength for the

225� 75 nm2 aperture in the Au film is much larger

FIG. 3 (color online). The mean value of the normalized trans-

mission for the sample with different square cell size: �5a�2,

�7a�2, �9a�2, and �11a�2. For the comparison, the normalized

transmission for the case of the periodic array of holes (the lat-

tice constant d � 1:0a) is denoted by the solid line. The ratio of

the hole area to the cell area in the case of random distributed

holes is equal to that in the case of the periodic array. The inset

shows an example of 25 randomly distributed holes in a 5a� 5a

cell.
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Figure 4.12 Figures from excerpted PRL 96, 233901 (2006). (Top) Normalized
transmission through a PEC film with periodic hole arrays for differ-
ent lattice constants d. The thickness of the film is 0.2a. The size of
the hole is 0.9a × 0.2a. (Below) The mean value of the normalized
transmission of the random sample with different cell size. The solid
purple line shows the normalized transmission of the periodic hole
array with the lattice constant d = 1.0a. The hole size of the random
sample is still 0.9a × 0.2a. The filling ratio of the holes equal to that
of the periodic array. The inset shows a example of a sample with 25
randomly distributed holes in a 5a × 5a cell.



77

This paper also studied the transmission when the holes are randomly distributed. The normalized

transmission curves are shown in the bottom of Fig. 4.12. Comparing with the curve of the periodic

holes, the peak and the dip at resonant frequency disappear and the peak at the cutoff frequency remains.

This result is very easy to understand. When the holes distribute randomly, the summation of Green’s

function terms will not go to infinity. So the surface wave resonance disappears. When the area of the

holes is small, R is always close to 1, so the peak appear at the cutoff frequency only.

I have to emphasize here though the transmission peaks come from the Fabry-Pérot resonance of

the input and output surfaces, it doesn’t mean the surface waves are not important when the peaks are

away from the resonant wavelengths. Physically, surface waves collect the energy hitting the surface

and bring it to the holes. Mathematically, the maximum transmission is decided by T and R which has

strong relations with the surface waves. So surface wave is important. On the other side, the peak close

to the resonant wavelength also comes from the Fabry-Pérot resonance of the input and output surfaces.

The surface wave resonance will always bring a transmission dip.

4.5.4 Conclusion

In this section I used my EOT theory to explain the simulation results shown in literatures suc-

cessfully. In the future I like to extend my theory to 2D periodic holes cases. As the second paper I

analyzed in the section shows, the 2D periodic hole array will bring us new physics.
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CHAPTER 5. Beaming

5.1 Introduction of beaming

5.2 Beaming of two-layer dielectric rods

In the first chapter I have illuminated the principle of beaming using a photonic crystal with a sur-

face layer and a grating layer. However we have discovered that the photonic crystal is not necessary

for surface modes and a single dielectric layer support surface mode too (39). So theoretically a similar

beaming phenomenon will happen for a two-layer structure: one surface layer to support the surface

modes and one grating layer to couple the surface modes to radiation modes. In this section, I demon-

strate the converging property of the two-layer structure. Furthermore, by putting several two-layer

structure in series, we can sustain the beaming to long distances.

5.2.1 A two-layer structure

The 2D two-layer structure is shown in Fig. 5.1(a). The top layer is the surface layer. It consists of

41 circular rods with diameter D = 1.83 mm and lattice constant a = 11 mm. The bottom layer is the

grating layer with 21 square rods with the side length L = 3.15 mm; the lattice constant is b = 2a = 22

mm. The distance between the two layers is a. All the rods are made of alumina and the permittivity is

9.8.

The commercial finite element method software COMSOL Multiphysics was used to simulate the

system. The simulation area with n structures is shown in Fig. 5.1(b). A Gaussian beam with TM

polarization (the electric field parallel to the dielectric rods) is incident normally from the left boundary.

The waist of the Gaussian beam is 3λ. The power flow through the red lines given in Fig. 5.1(b) is

calculated by integrating the time average normal component of the Poynting vector along the lines.
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Figure 5.1 (a) A schematic drawing of the two-layer structure and (b) a schematic
drawing of the simulation area.

The power flow through the red line right after the ith structure is defined as Ti and the power flow

through the short red line on the right boundary as BEAM (see Fig. 5.1(b)). The length of the short red

line is 14a. Suppose the total input power is I. Tn/I describes the transmission after the n structures.

Then we define the distribution factor as

Distribution factor =
BEAM

Tn
.

The distribution factor definition is just a simple quantitative index of the directionality of the output

field through the n structures. The space between the last long red line and the right boundary, shown

in Fig. 5.1(b), is 99a × 54a for all the simulations. This way we can compare the distribution factors

between different simulations.

First the converging ability of a single two-layer structure is studied. We compare four cases: empty

simulation area, a surface layer only, a grating layer only and a two-layer structure. The simulation

results are shown in Fig. 5.2 when incident frequency is between 9 GHz to 13 GHz. The transmission

and the distribution factor curves are shown on the left column. When the frequency is above 13 GHz,

the transmission field has more than one beams, which is against my wish to improve the directionality.

When the frequency is below 9 GHz, the distribution factor curves after the rods converge to the empty
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area curve.In Fig. 5.2(a), the simulation area is empty, so the transmission is one. In Fig. 5.2(c), the

surface layer decreases the transmission a little bit but the distribution factor curve overlaps the empty

area curve. In Fig. 5.2(e), the distribution factor curve of the grating layer is close to the empty area

curve when the frequency is small. It has a dip when frequency is around 12.7 GHz. The corresponding

wavelength is 23.6 mm, which is close to b = 22 mm, the period of the grating layer. So the interaction

between the field and the rods is strong. But this interaction don’t improve the directionality of the

transmission field. The two-layer structure has a much different distribution factor curve (Fig. 5.2(g)).

The curve has two dips which are transmission dips too. The interesting frequency region is around 11.5

GHz. The transmission fields in this frequency region have big distribution factors. When f = 11.59

GHz, the distribution factor reach a maximum value of 0.863. The transmission is acceptable too, it’s

around 0.87.

To understand how the directionality is improved, the electric field along the z-axis, Ez, at the

red line after the rods (see Fig. 5.1(b)) at f = 11.59 GHz is plotted on the right column of Fig. 5.2.

The rods of the surface layer are located at y = −20a,−19a, · · · , 20a and of the grating layer are

y = −20a,−18a, · · · , 20a. The field on the right column of Fig. 5.2 is basically the superposition

of the transmission Gaussian beam and some quick oscillations. The field after the surface layer has

small oscillation. It means the interaction is weak. The oscillation is the surface state which decays

exponentially along x direction. Though the existence of the surface layer reduces the transmission a

little bit, it cannot change the distribution factor (see Fig. 5.2(c)). Fig. 5.2(f) and Fig. 5.2(h) shows the

strong interaction between the field and the rods. Comparing the Gaussian envelopes of the fields in

the two figures, we can find the envelope in Fig. 5.2(f) has the same width as the incident beam and

Fig. 5.2(h) is wider. It is because the surface layer of the two-layer structure supports the surface states.

The surface states will propagate along the surface layer and results in wider field distribution. This

wider field distribution will bring us better directionality.

The electric field distributions of the empty simulation area and the simulation area with the two-

layer structure at f = 11.59 GHz are shown in fig. 5.3. Fig.5.3(a) shows a typical 2D Gaussian beam

in free space. The beam waist is at the the input surface and the width of the beam grows during

the propagation. Comparing with Fig. 5.3(a), we can find that the width of the beam in fig.5.3(b)
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Figure 5.2 Simulation results of empty area (a, b), a surface layer only (c, d),
a grating layer only (e, f) and a two-layer structure (g, h). The left
column shows how the transmission and the distribution factor change
with frequency. The right column shows the electric field along the red
line right after the rods when f = 11.59 GHz.
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Figure 5.3 Ez distribution of the simulation area (a) without and (b) with a
two-layer structure when f = 11.59 GHz.
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almost doesn’t change during the propagation. We can also see the surface mode along the structure in

Fig. 5.3(b). The figure shows the converging ability of the two-layer structure clearly. The converging

ability does not seems very strong here. It is because that the Gaussian beam has good directionality

already.

The converging of oblique incident Gaussian beams is also studied. The distribution factors of the

fields after the two-layer structure when the incident angle φ equals 0◦, 5◦, 10◦ are shown in Fig. 5.4.

The two-layer structure improves the directionality of transmitted field when the incident angle is small.

The greatest improvement happens at normal incidence. The maximum distribution factors appear at

f =11.64 GHz, 10.92 GHz and 10.40 GHz respectively. The band structure of the surface layer is shown

in Fig. 5.5. When we fix the incident angle and scan the frequencies, the wave vector component of

the incident wave parallel with the two-layer structure is 2π f sin φ/c; here c is the speed of light in free

space. Considering the function of the grating layer, the wavevectors of the surface modes which can
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be excited by the incident wave are k∥ = π/a − 2π f sin φ/c. This relation at the three incident angles

is also plotted in Fig. 5.5. The frequencies of the crossing points are 11.97 GHz, 11.60 GHz and 11.06

GHz when φ = 0◦, 5◦, 10◦. These frequencies decease when the incident angles increase, same as the

maximum distribution factor frequencies. It supports the explanation that surface modes improve the

directionality. Actually the gaps between the two frequencies are around 0.3 GHz at the three incident

angles. We can contribute the gap to the influence of the grating layer; the band structure of the surface

layer is calculated without the grating layer.

From Fig. 5.4 we can find the maximum distribution factors decrease with the increasing incident

angles. The band structure of the surface layer provided a possible explanation. As Fig. 5.5 shows,

when incident angle increases, the crossing points come closer to the light line. It means that the surface

mode become flat along its decaying direction and difficult to be excited strongly. So the distribution

factors decease.

Fig. 5.4 also shows the distribution factors become small then the frequencies are big. It is because

more than one propagation modes existing after the two-layer structure when frequency is big. Given

incident angle φ, the second propagation mode emerges when

f =
c

2a
1

1 + sin φ
.

The critic frequencies at the three incident angle 0◦, 5◦, 10◦ are 13.6 GHz, 12.5 GHz and 11.6 GHz

respectively, which agree with the Fig. 5.4 quite well.

The transmission of the oblique Gaussian beam through the two-layer structure is shown in Fig. 5.6.

The transmission peak overlaps with the distribution factor peak only when φ = 0◦.

5.2.2 More two-layer structures

We have understood the converging ability of a two-layer structure. Now I begin to examine the

two two-layer structures in the simulation area. The working frequency is f = 11.59 GHz, the optimal

converging frequency of the single structure. Fig. 5.7 shows the transmission and the distribution factor

of the field as a function of the distance between the two structures d. The transmission curve is periodic

with a λ/2 period. The curve can be explained easily by the one mode assumption. Let’s consider the

simplest case: the incidence of a Gaussian beam to a single structure. Suppose the incidence, reflection
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tion of the transmission matrix theory.

and transmission electric fields are Φi(x, y), Φr(x, y) and Φt(x, y). The one mode assumption says that

Φi(x, y) ≈ φ(y) exp(ikx) and Φr(x, y) ≈ Aφ(y) exp(−ikx), Φt(x, y) ≈ Bφ(y) exp(ikx). Here k = 2π f /c

(c is the speed of light), the reflection A and transmission B coefficients are complex numbers. Only

one mode exists during the propagation, reflection and transmission. In fact, the Gaussian beam will

diverge slowly during the propagation. But if the free length of space is short, like 20λ, the divergence

is small and the lateral profile don’t change too much. So Φi(x, y) ≈ φ(y) exp(ikx). Then the Gaussian

beam hits the structure. The structure converges the beam and cancels the diverging trend during the

propagation. So the reflection and transmission fields have a similar profile.

Under the one mode assumption the transmission matrix of the system is a 2 × 2 matrix. Suppose
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the transmission matrix of one two-layer structure is M and the propagation transmission matrix is P,

M =

m11 m12

m21 m22

 ; P =

exp(ikd) 0

0 exp(−ikd)

 .
Then the transmission T after the two structures is (74)

T =
∣∣∣∣∣ 1
|m11|2 − 1 + m2

11 exp(2ikd)

∣∣∣∣∣2 (5.1)

Use this equation to fit the simulation transmission, we get m11 = 1.058−0.279i. The fitted transmission

is also shown in Fig. 5.7.

The distribution factor curve in Fig. 5.7 is a periodic function too. The interesting property of the

curve is that its oscillation amplitude is small. This is a natural result of the one mode assumption. The

field after the last structure is always proportional to φ(y) exp(ikx). So the distribution factor shouldn’t

change as we increase the distance d.

When d = 18.29λ, 18.79λ, 19.29λ, · · · , the transmission is close to 1. So the transmission field

is Φt(x, y) ≈ Bφ(y) exp(ikx) and |B| ≈ 1. The only difference between the transmission field and the

incident field is a phase factor. The two structures are transparent to the incident field. Then we can

put more structures after the transmission beam to repeat the pattern. A single mode waveguide for

the Gaussian beam is formed by the equidistant two-layer structures. Fig. 5.8 shows the time average

energy density distributions of the waveguide. We can see clearly that the width of the beam does

not change during the propagation. After 8 structures (which corresponds to distance of 191λ) , the

transmission is 0.930 and the distribution factor is 0.874. Some power is lost because of the surface

mode but most of the power is guided.

5.2.3 Conclusion

In previous studies, beaming is always referred to the directionality of the output field of a channel.

The channel could be a hole in a metal film(46), or a subwavelength metal slit(53; 54; 55; 56), or a line

defect in a 2D photonic crystal(48; 49; 50; 51; 52). In fact, beaming can have broader meaning based on

the source. Our design is a good example of Gaussian beam beaming; others’ designs work for channel

modes. The beaming light from a subwavelength channel is similar to a Gaussian beam(55; 48). The
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Figure 5.8 Time average energy density distribution when the simulation area has
2,4,6 and 8 two-layer structure. The frequency is f = 11.59 GHz and
the distance between two adjacent structure is d = 21.29λ.

two-layer structure provides a method to extend the beaming for long distances. Finding an effective

beaming device for a point source is an interesting problem.

Another problem of the beaming is the transmission. It is difficult to get high transmission and good

beaming simultaneously. In our design, a single structure gives us good beaming and the Fabry-Pérot

interference between two structures guarantees the total transmission. The two problems decouple.

We can solve them separately. The two-layer structure also has the advantage in theoretical analysis.

Comparing with the beaming of the photonic crystal channel, the two-layer structure gives similar

results with much fewer rods. The complex channel modes are replaced by the simple Gaussian beam.

The theoretical analysis will be much simpler.

In conclusion, we present a numerical analysis of the beaming and transmission of a Gaussian

beam through a two-layer structure. This structure does not allow the Gaussian beam to diverge, and

also gives a high transmission. By arranging several two-layer structures one can easily sustain the

beaming and the high transmission for very large distances, of the order of 200λ. This simple design of

beaming and transmission has advantage both in the theoretical analysis and in practical applications.
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5.3 Control of beaming angles

5.3.1 Oblique beaming

Beside the research on forward beaming mentioned above, oblique beaming was also demonstrated

using either metallic structures (75; 76) or photonic crystals (77). Control of the beaming angle is

important in beaming research, which will give us much more flexibility in applications. I will present

an efficient method to design a metallic structure which will steer the emitted field to any given angle

here. I find the best beaming actually happens not at the forward direction but an oblique direction.

5.3.2 Introduction of a metallic beaming structure

Fig. 5.9 shows the structure studied here: a metallic subwavelength slit surrounded by grooves. It is

an important plasmonic structure (78). As a two-dimensional structure, it can be solved analytically and

serves as a theoretical model to understand the physics of beaming (53). It is a multi-function beaming

structure. It can achieve both intermediate-field beaming (55) and far-field beaming (53) , specially

far-field oblique beaming which I study here. The near-field focusing was also implemented by similar

structures (79). Adding grooves along input surface will increase transmission dramatically (65; 80), so

this structure can improve transmission and directionality of the output field simultaneously. Recently

this structure was integrated with a semiconductor laser to converge the emitted fields (81).

Surface impedance boundary condition is used to replace the metal surface. Under TE polarization,

the SIBC along x = 0 in Fig. 5.9 becomes

Ey + ZHz = 0.

Define F = Ey + ZHz. From now on in this section, the word “field “ means Ey + ZHz. We can

define the far-field angular transmission P(θ) by the equation

P(θ) = lim
r→∞

r|~S (~r)|.

where ~S (~r) is the Poynting vector at the point ~r = (r sin θ, r cos θ). Given the field along x = 0, P(θ)

can be calculated as

P(θ) =
k0

2Z0

∣∣∣∣ cos θ
cos θ + Z/Z0

∣∣∣∣2 ∫ ∞

−∞

dy′F(0, y′)e−ik0 sin θy′ . (5.2)
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where k0 and Z0 are the wave vector and the impedance in free space. Then the total transmission T is

T =
∫ π/2

−π/2
P(θ)dθ;

and the normalized far-field angular transmission I(θ) = P(θ)/T is used to describe the far-field distri-

bution.

Because of the surface impedance boundary condition, the filed along x = 0 is zero except the

opening area of the slit and grooves. Since the widths of of the indentations (slit and grooves) are

much smaller than the incident wavelength, we assume the field is a constant inside an indentation and

Eq. (5.2) is basically the summation of several point sources. We notate the field at the ith grooves as

Fi; positive i means the groove above the slit, negative i means the groove below the slit and i = 0

represents the slit.

By changing the geometry parameters of the grooves, we can change the field inside the grooves

and control the output field distribution furthermore. It is impossible to exhaust all possible choices

of grooves. We focus on the periodic grooves here. As Fig. 5.9 shows, all the grooves have the same

shape with width Wg = 40 nm and depth h = 100 nm. The slit width is Ws = 40 nm. All the grooves

above the slit consist in the upper periodic grooves described by the initial location a1 and the period

d1. The grooves below the slit are also periodic and the corresponding parameters are a2 and b2. The

grooves are symmetric when a1 = a2, b1 = b2 and we will use a and b to replace a1, a2 and b1, b2. In

this paper we fix the wavelength λ = 560 nm and and try to find the best far-field oblique beaming at

any given angle by modifying a1, b1, a2 and b2. Under the restriction of periodic grooves, we find an

efficient algorithm to decide the parameters with explicit physical explanation.

5.3.3 Control of beaming angles

We begin our research by studying the fields at the opening area of the indentations when the

grooves are symmetric. Figures 5.10(a) and 5.10(b) show the field’s amplitude and phase when a =

b = 500 nm. All the fields are normalized to the field at the slit exit, so F0 = 1. We can find the field

at the slit is much stronger than the fields at the grooves. The fields at the grooves decay smoothly

with the distance to the slit and become very weak in the end. There are 56 grooves in each side of the
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Figure 5.10 (a)&(b) Amplitudes and phases of fields at symmetric grooves with
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slit in this simulation. Further simulations show adding more grooves will not influence the far-field

distribution much.

The most important property about the fields is the perfect straight line formed by the phases at the

upper and lower periodic grooves in Fig. 5.10(b). So we can use a linear function to fit the phases at

the upper half grooves. For a positive integer i, the location of the ith groove is yi = a+ (i− 1)b and the

phase is Φi = Arg(Fi), then

Φi = kyi + φ0. (5.3)

This linear relation can be explained by the single scattering approximation. The surface plasmons

are excited at the exit of the slit and propagate along the output surface. Then they will interact with

the groove they meet. The weak fields at grooves suggests the interaction is weak. Most of the energy

carried by the surface plasmons transmits through the grooves. It explains why the fields at grooves

decay smoothly. Some energy is scattered into the free space and the rest is is reflected. The single

scattering approximation neglects the reflected surface plasmons. The surface plasmons repeat their

propagation and interaction process, so the phase change between two neighboring grooves is constant.

The single scattering approximation suggests that the fitting results will not change with a. Our

simulations verified it. The fitting results are shown in Fig. 5.10(c) when b = 500 nm and a changes

200 nm to 1500 nm . We can see clearly that k is constant and the oscillation of φ0 is weak.

Next we fix a = 500 nm and change b from 100 nm to 1500 nm. The slopes of the phases are

shown is Fig. 5.10(d). The wavevector of the surface plasmons is ksp = 1.07k0. k0 is the wave vector

of the incident wave in free space. We can find k is close to but not equals ksp. It is because of the

small phase change introduced by the grooves. When b increases, which means less grooves along the

surface, k converges to ks.

The slope curve in Fig. 5.10(d) is not smooth when kb ≈ πn (n is an integer), which is because of

“collective surface modes” (53). When kb = πn, the reflected surface plasmons from the all the grooves

are in phase, so the single scattering approximation becomes weak. However, the single scattering

approximation still works even at the collective surface modes since k is only a little bit away .

Now we have understand the phase difference between two neighboring grooves is kb. If

kb − k0b sin θ = 2πn, (5.4)
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Figure 5.11 (a) Normalized far-field angular transmission when a = b = 500 nm;
(b) Constructive interference angles at different groove periods;
(c)&(d) Normalized far-field angular transmission when b = 446 nm
and b = 710 nm.

and n is an integer, all the grooves above the slit have constructive far-field interference at the angle

θ. Figure 5.4(b) shows the constructive interference angle of the upper periodic grooves with different

period calculated from Equation (5.4).

We also calculate I(θ) from the fields at the indentations and the results are shown in Fig. 5.11(a).

The normalized far-field angular transmission distribution curve has two peaks at ±6◦, which are the

constructive interference angles of the upper and lower half grooves.

Besides the two peaks, the transmission curve also has a smooth base. This is the contribution from

the slit. The existence of the base means the energy is diffracted to all the angles, which is against our

purpose of good directional emission. But it also give us the opportunity to control the peak heights,

as shown in Fig. 5.11(c) and (d). Considering the contributions from the slit and the upper periodic

grooves to the infinite at angle θ, the phase difference between them is φ0 + ka − k0a sin θ. So we can
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Figure 5.12 (a)&(b) Amplitudes and phases of fields at grooves above the
slit when the grooves are symmetric with a1 = a2 = 920 nm,
b1 = b2 = 446 nm and when there are only upper periodic grooves
with a1 = 920 nm, b1 = 446 nm; (c)&(d) Normalized far-field an-
gular transmission generate by the slit with upper periodic grooves
alone when b1 = 446 nm and b1 = 710 nm.

control the interference and the peak heights by changing a.

Fig. 5.11(c) also shows the beaming angle is independent from a. It is only decided by the construc-

tive interference angle of the upper and lower periodic grooves. In Fig. 5.11(d), b = 710 nm and there

are two constructive interference angles. The value of a decides which angle becomes the beaming

angle.

Until now we always use symmetric grooves, so the far-field distributions are also symmetric and

have two peaks. The ideal oblique beaming has only one peak. A nature idea is to remove all the

grooves on the one side of the slit and use only half grooves. Our simulations show this simple idea

works.

Fig. 5.12(a) and (b) show the amplitude and phase of the fields at grooves above the slit is accompa-
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Figure 5.13 (a) Normalized far-field angular transmission of a slit with upper pe-
riodic grooves alone when a1 = 980 nm, b1 = 446 nm and a slit with
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Normalized far-field angular transmission of a slit with asymmetric
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a2 = 860 nm, b2 = 710 nm.

nied by upper grooves only or by symmetric upper and lower grooves. The fields under the two groove

setting are very close to each other, specially the phase. The similarity suggests the independence

between the upper and lower periodic grooves. This independence is also a nature results of single

scattering approximation. Since we neglect the reflected surface plasmons, the upward plasmons have

no chance to reach the grooves below the slit, and vice versa. Fig. 5.12(c) and (d) show the far-field

distribution of upper grooves alone when b1 = 446 nm and b=710 nm. Comparing with Fig. 5.11(c)

and (d), we can find that removing the lower grooves will not influence the peaks generated by the

upper periodic grooves: the location, the height and and of the peaks keeps.

Fig. 5.11(b) shows the constructive interference angle changes from 0◦ to 90◦ when b1 changes

form 540 nm to 280 nm. Given any angle, the design of the beaming structure of a slit with half

grooves has two steps: first we check Fig. 5.11(b) to get the period of grooves b1 smaller than 540 nm;

then we fix the period and scan the initial location of the grooves a1 to maximize the transmission peak

height.

Fig. 5.11(b) also shows when b1 > 540 nm, the upper periodic grooves have several constructive

interference angles and some of them are positive. It also means the lower periodic grooves with period

b2 > 540 nm can have negative constructive interference angles. The upper periodic grooves with
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Figure 5.14 (a) Heights and (b) full-widths at half-maximum of the highest far–
field transmission peak at different angles generated by upper peri-
odic grooves only and asymmetric upper and lower periodic grooves.

b1 = 446 nm and the lower periodic grooves with b2 = 710 nm both have the constructive interference

angle at −14◦. We can choose appropriate initial locations to maximize the peaks at the angle and

the far-field distributions of the half grooves are shown in Fig. 5.13(a). Then we put the upper and

lower periodic grooves together and the far-field distribution of the asymmetric full grooves is shown

in Fig. 5.13(b). Now all the three components, the upper periodic grooves, the lower periodic grooves

and the slit, interfere constructively. So we get a very strong far-field transmission peak at θ = −14◦.

Fig. 5.14 shows the properties of the highest transmission peaks we can achieve at different beaming

angle using upper periodic grooves only or using asymmetric upper and lower periodic grooves. Adding

grooves below the slit improves the transmission peaks. The highest peaks are achieved round 20◦.

When the beaming angle is small, the surface waves enter the collective surface modes; when the

beaming angle is big, cos θ in the numerator of Eq. (5.2) suppresses the peaks.

5.3.4 Frequency splitter

We can also design a frequency splitter using asymmetric grooves: two wavelengths enter the slit

and leave at different angles. We have understood the upper periodic groove has only one possible

beaming angle when its period is smaller than the wavelength and the angle satisfies

kb − k0b sin θ = 2π. (5.5)
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Figure 5.15 Normalized far-field angular transmission at two frequencies when
(a) a1 = 600 nm, b1 = 500 nm, a2 = 400 nm, b2 = 500 nm and (b)
a1 = 540 nm, b1 = 450 nm, a2 = 360 nm, b2 = 450 nm. The groove
depth is h = 500 nm.

The phase difference between the upper periodic grooves and the slit at the beaming angle is

ka + φ0 − k0a sin θ = 2πa/b + φ0. (5.6)

We can find two frequencies λ1 and λ2 satisfying φ(λ1) − φ(λ2) = π. When the upper grooves

and slit have constructive interference and result in a enhanced transmission peak at one wavelength,

the grooves and the slit have destructive interference and suppress the transmission peak at the other

wavelength.

In Fig. 5.15(a), the two frequencies are 650 nm and 695 nm. When the depth of grooves is h =

100 nm, the difference between φ0 at the two wavelengths is 1.7. To get bigger difference, we have

to increase h to 500 nm. The period of the upper periodic grooves is b1 = 500 nm. The constructive

interference angles of the upper grooves are around −17◦ for both frequencies. But because of the

interference between the grooves and slit, only the field with λ = 650 nm has a transmission peak at

its constructive interference angle. b2 = b1 in Fig. 5.15(a), so the constructive interference angles of

the lower periodic grooves are around 17◦. We choose a different a2 to enhance the peak of the field

with λ = 695 nm. Though the two incident wavelengths are quite close to each other, the angular

transmission peaks are 34◦ away from each other.

Based on Eq. (5.5) and (5.6), if we change b but keep a/b unchanged, the locations of the peaks

changes but the phase difference between the grooves and the slit keeps. In Fig. 5.15(b), a1, a2, b1
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and b2 are 10% smaller then the corresponding values in Fig. 5.15(a). The structure still works as a

frequency splitter and the output peaks are 52◦ away.

5.3.5 Conclusion

I have shown that a metallic slit surrounding by grooves is a good oblique beaming structure. I

implement good oblique beaming at any angle in the range of ±70◦ using a metallic subwavelength slit

with one-side periodic grooves and better oblique beaming at an angle between ±40◦ using a slit sur-

rounded by upper and lower periodic grooves. I also design a frequency splitter based on the structure.
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APPENDIX A. Simulations of infinitely long waveguides

A.1 Perfect matched layer

Computers can not simulate an area with finite size. But sometimes we need simulate the interaction

between electromagnetic waves and objects located in an unbounded region. For these problems, we

have to use absorbing boundary conditions (ABC) to terminate the simulation area (82).

Perfect matched layer (PML) is one kind of absorbing boundary conditions. The basic idea is to

use a lossy medium surrounding the simulation area and ideally the lossy medium will absorb incident

waves without any reflections regardless the incident angles, frequnencies and polarizations. Compar-

ing with other analytic absrorbing boundary conditions, PML ABS uses a litter bit larger simulation

area to contain the lossy medium but generally reflects less energy back. Normally the thickless of

PML is about several wavelengths.

Below I will introduces an implementation of PML ABC: a uniaxial PML (UPML), which me-

chanics can be proved analytically from Maxwell’e equations (83). Fig. A.1 shows the schematic of

the problem: the x < 0 half-plane is the unbounded simulation area and contains isotropic dielectric; the

x > 0 half-plane is the perfect matched layer. We will study the wave propagation from the dielectric

to the UPML. The dielectirc has scalar permittivity ε1 and permeability µ1. The UPML is comprised of

a uniaxial anistropic medium and has the permittivity and permeability tensor

¯̄ε2 = ε1 ¯̄s; ¯̄µ2 = µ1 ¯̄s; ¯̄s =


s−1

x 0 0

0 sx 0

0 0 sx

 ; sx = 1 + iσx/ωε1. (A.1)

Suppose a plane waves in the UPML has magnetic fields as

~H2 = ~H0 exp [i(k2xx + k2yy − ωt)]. (A.2)
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Figure A.1 Schematic representation of incidence from isotropic dielectric in
x < 0 half-plane to perfect matched layer in x > 0 half-plane.

Then the electric fields are

~E2 = ~E0 exp [i(k2xx + k2yy − ωt)]. (A.3)

and ~E0 and ~H0 satisfy

~k2 × ~E2 = ω ¯̄µ2 ~H0; ~k2 × ~H2 = −ω ¯̄ε2 ~E0. (A.4)

~k2 = k2x x̂ + k2yŷ. (A.5)

I use TE polarization as a example here, so Hz, Ex and Ey are the only three non-zero components

of electromagnetic waves. The equations about TM polarization are very similar.

Then the magnetic fields of the plane wave in the UPML under TE polarization become

~H0 = H0ẑ. (A.6)

Based on the second equation of Eq. (A.4), we have

~E0 = (−
k2ysx

ωε1
H0,

k2x

ωε1sx
H0, 0). (A.7)

Put the expression of ~E0 back to the first equation of Eq. (A.4), we get the dispersion relation of the

plane waves in the UPML:

k2
2x = s2

x(ω2ε1µ1 − k2
2y). (A.8)
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The plane wave in the UPML is excited by the incident waves from dielectric side. Suppose the

incident wave in the dielectric is

~Hinc = ẑHi exp[i(k1xx + k1yy − ωt)]. (A.9)

Then the reflected wave is

~Hre f = ẑRHi exp[i(−k1xx + k1yy − ωt)]. (A.10)

(R is the reflection coefficient) and the total fields in the dielectric are

~H1 = ~Hinc + ~Hre f = ẑHi exp[i(k1xx + k1yy − ωt)] + ẑRHi exp[i(−k1xx + k1yy − ωt)]. (A.11)

The electric fields in the dielectric are

~E1x = −
k1y

ε1ω

(
Hi exp[i(k1xx + k1yy − ωt)] + RHi exp[i(−k1xx + k1yy − ωt)]

)
; (A.12)

~E1y =
k1x

ε1ω

(
Hi exp[i(k1xx + k1yy − ωt)] − RHi exp[i(−k1xx + k1yy − ωt)]

)
; (A.13)

~E1z = 0. (A.14)

Hz and Ey are continuous along the interface x = 0. So k2y = k1y and k2x is decided by the dispersion

relation of Eq. (A.8). Then the fields along x = 0 are

H1z(0, y) = (1 + R)Hi exp[i(k1yy)]; (A.15)

H2z(0, y) = H0 exp[i(k1yy)]; (A.16)

E1y(0, y) =
k1x

ε1ω
(1 − R)Hi exp[i(k1yy)]; (A.17)

E2y(0, y) =
k2x

ε1ωsx
H0 exp[i(k1yy)]. (A.18)

and the dispersion relations are

k2
1x = ω

2ε1µ1 − k2
1y; k2

2x = s2
x(ω2ε1µ1 − k2

1y). (A.19)

From H1z(0, y) = H2z(0, y), we get (1+R)Hi = H0. From E1z(0, y) = E2z(0, y), we get (1−R)2H2
i =

H2
0 . Obviously R = 0 is the only choice to make the two equations correct and when R = 0, H0 = Hi,

k2x = k1xsx, the continuities of Hz and Ey along x = 0 are correct for any frequency and incident
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angle. So we proved the UPML perfectly matches the dielectric and generates no reflection for any

frequencies and incident angles.

When incident angle is θ, we have

k1x = k cos θ, k1y = k sin θ, k = ω
√
ε1µ1, θ ∈ (−π/2, π/2). (A.20)

The incident wave is

~H1 = ẑHi exp[i(k cos θx + k sin θy − ωt)]; (A.21)

~E1 =
(
−x̂Zd sin θ + ŷZd cos θ

)
Hi exp[i(k cos θx + k sin θy − ωt)]; (A.22)

Zd =
√
µ1/ε1. (A.23)

and the fields in the UPML is

~H2 = ẑHi exp[i(k cos θx + k sin θy − ωt)] exp[−σxZd cos θx]; (A.24)

~E2 =
(
−x̂sxZd sin θ + ŷZd cos θ

)
Hi exp[i(k cos θx + k sin θy − ωt)] exp[−σxZd cos θx]. (A.25)

When σx > 0, the UPML is lossy and the fields decay exponentially inside. The perfect matching

property and the lossy property make UMPL a ideal choice to truncate the unbounded simulation area.

A.2 Perfect electric conductor waveguide

In the previous section we have introduced UPML for unbounded simulation area. Now we begin to

study waveguides with infinite length, which is partially unbounded. The diagram is shown in Fig. A.2.

The two-dimensional waveguide is bounded by two PEC surfaces along y direction and the waveguide

width is W. Now I will prove inserting UPML in the waveguide will make the waveguide infinite along

x direction.

The fields in a waveguide are the summation of the eigenmodes. Suppose ~H1 is a eigenmode in the

waveguide propagating at +x direction. I consider only TE mode here. So

~H1 = ẑ(A exp[ikyy] + B exp[−ikyy]) exp[i(kxx − ωt)]. (A.26)

The eigonmode in the waveguide is always the summation of two plane waves. Based on the

knowledege of UPML (Eq. (A.21) to Eq. (A.25)) in the previous section, we know the field distributions
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Figure A.2 Schematic representation of a UPML in a PEC or a SIBC waveguide.

below ( ~H1 and ~H1 are the fields in the dielectric; ~H2 and ~H2 are the fields in the dielectric;) satisfy the

boundary condition along x = 0, which is the interface between the dielectric and UPML.

~H1 = Aẑ exp[i(kxx + kyy − ωt)] + Bẑ exp[i(kxx − kyy − ωt)]; (A.27)

~E1 = A
(
−x̂Zdky/k + ŷZdkx/k

)
exp[i(kxx + kyy − ωt)]

+ B
(
x̂Zdky/k + ŷZdkx/k

)
exp[i(kxx − kyy − ωt)];

(A.28)

~H2 = Aẑ exp[i(kxx + kyy − ωt)] exp[−σxZdkxx/k]

+ B exp[i(kxx − kyy − ωt)] exp[−σxZdkxx/k];
(A.29)

~E2 = A
(
−x̂sxZdky/k + ŷZdkx/k

)
exp[i(kxx + kyy − ωt)] exp[−σxZdkxx/k]

+ B
(
x̂sxZdky/k + ŷZdkx/k

)
exp[i(kxx − kyy − ωt)] exp[−σxZdkxx/k];

(A.30)

Here k =
√

k2
x + k2

y .

At a PEC boundary, the electric fields are perpendicular to the boundary. So the eigenmode in the

PEC waveguide satisfies

A exp[ikyW/2] − B exp[−ikyW/2] = 0;

A exp[−ikyW/2] − B exp[ikyW/2] = 0.
(A.31)

Given boundary conditions Eq. (A.31), it is easy to verify the electric fields in UPML are also

perpendicular to the boundaries. So Eq. (A.27) to Eq. (A.30) are a possible field distribution of UPML

in the PEC waveguide if the incident wave is ~H1. Becuse of the uniqueness theorem of the field

distribution, they are the only solution. Obviously there isn’t any reflected wave in the solution and the



106

fields in UPML decay exponentially. So inserting UPML in a PEC waveguide makes the waveguide

infinitely long.

A.3 Metallic waveguide

Now I study how to implement an infinitely-long metallic waveguide. The geometry is the same

as the PEC waveguide shown in Fig. A.2. The difference is now the waveguide is bounded by surface

impedance boundaries.

Using the same method shown in the previous section, I begin from an eigenmode in the waveg-

uide and Eq. (A.27) to Eq. (A.27) are a field distribution satisfying the boundary condition along the

dielectric-UPML interface.

Now let’s consider the boundary conditions along the waveguide boundaries. SIBC requires the

eigenmode satisfies
E1x(x,W/2)
H1z(x,W/2)

= −Zm and
E1x(x,−W/2)
H1z(x,−W/2)

= Zm.

Here Zm is the surface impedance. So I getA and B satisfy

A exp[ikyW/2] − B exp[−ikyW/2]
A exp[ikyW/2] + B exp[−ikyW/2]

=
Zmk
Zdky

;

A exp[−ikyW/2] − B exp[ikyW/2]
A exp[−ikyW/2] + B exp[ikyW/2]

= −
Zmk
Zdky
.

Then the fields in the UPML at the boundaries satisfy

E2x(x,W/2)
H2z(x,W/2)

=
−AsxZdky/k exp[ikyW/2] + BsxZdky/k exp[−ikyW/2]

A exp[ikyW/2] + B exp[−ikyw/2]

= −
sxZdky

k
A exp[ikyW/2] − B exp[−ikyw/2]
A exp[ikyW/2] + B exp[−ikyw/2]

= −sxZm;

E2x(x,−W/2)
H2z(x,−W/2)

=
−AsxZdky/k exp[−ikyW/2] + BsxZdky/k exp[ikyw/2]

A exp[−ikyW/2] + B exp[ikyw/2]

= −
sxZdky

k
A exp[−ikyW/2] − B exp[ikyw/2]
A exp[−ikyW/2] + B exp[ikyw/2]

= sxZm;

So the fields in the UPML also satisfy SIBC at the waveguide boundaries but the surface impedance is

sxZm.

In conclusion, inserting UPML in a SIBC waveguide with surface impedance Zm and changing

the surface impedance of boundaries bounding UPML to sxZm makes the waveguide infinitely long.
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Figure A.3 Schematic representation of a two-dimensional photonic crystal
waveguide with infinite length. The left region is an ordinary photonic
crystal (PC) waveguide; the right blue region is the PC-based uniaxial
perfectly matched layer (UPML). x = 0 is the PC-UPML interface.

When Zs = 0, SIBC becomes PEC and the corresponding UPML boundaries is PEC too, which is the

conclusion of the previous section.

A.4 Photonic waveguide

In previous section, I have implemented PEC or SIBC waveguides with infinite length by intserting

UPML in the waveguide and proved the inserted UPML absorbs the incident wave without reflection

analytically. UPML can also be used to simulated the infinitely-long photonic crystal waveguide (84;

85).

Fig. A.3 shows an example of a photonic crystal waveguide followed by a PC-based UPML. The
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UPML begins from x = 0. The region on the left of the x = 0 line is an ordinary two-dimensional

photonic crystal waveguide. In this example, the photonic crystal is composed by a suqare arrry of rods

in air. A line defect is introduced into the photonic crystal to form the waveguide. The region on the

right of the x = 0 line is the UPML. Instead of the homogeneous UPML used to terminate a PEC or

SIBC waveguide, here the UPML keeps the geometry of the PC waveguide before it. The UPML in the

rods have the permittivity and permeability tensor ¯̄εrod = εdε0 ¯̄s and ¯̄µrod = µ0 ¯̄s; the UPML around the

rods are ¯̄εair = ε0 ¯̄s and ¯̄µair = µ0 ¯̄s. Here εd is the relative permittivity of the rods of the photonic crystal

and

¯̄s =


s−1

x 0 0

0 sx 0

0 0 sx

 (A.32)

The UPML in the rods perfectly matches the rods of the ordinary PC and the UPML surronding the

rods perfectly matches the air. This UPML is called PC-based UPML.

To suppress the reflection, sx is a function of the location. sx can change continuously. But for

simplicity, it changes discreetly in my simulations. As shown in Fig. A.3, the UPML is cut into several

layers and each layer is numbered form left to right. sx keeps constant in one layer and changes with

the layer number. Nomally the function is

sx(n) = 1 + iM(n/N)p.

Here n is the layer number; N is the total number of UPML layers; p is a postive integer.

Besides the infinitely-long photonic crystal, the PC-based UPML can be used to simulate any in-

finite PC structures with translation symmetry. In Fig. A.5 and Fig. A.6, I study the transmissio into

a photonic crystal grating with infinite length, which is shown in Fig. A.4. The photonic crystal is a

square array of square alumina rods. The lattice constant is a = 11 mm. The square rods are with side

length d = 3.1mm and relative permittivity εd = 9.8. This photonic crystal has a band gap between

9.43 and 12.78 GHz under TE polization. There are periodic slits inside the photonic crystal every four

columns of rods. The width of the slits is W = 15 mm. The grating is illuminated by normal incident

plane wave with frequency f = 9.6 GHz, which is in the band gap. The total number of layes of the

photonic crystal changes from 20 to 40. The total number of layers of the UPML is N = 20.
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Figure A.4 Schematic representation of a two-dimensional photonic crystal grat-
ing with infinite length. The left region is the ordinary photonic crystal
(PC) grating; the right blue region is the PC-based uniaxial perfectly
matched layer (UPML). x = 0 is the PC-UPML interface. The inci-
dent wave is TM polarized.
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Figure A.5 Transmsission into a photonic crystal grating followed by free space,
a homogeneous UPML and a PC-based UPML. The homogeneous
UPML has ¯̄εrod = ¯̄εair = ε0 ¯̄s and sx = 1 + 0.3i. The PC-based UPML
has N = 20,M = 0.3, p = 0. The total number of layers of the graing
changes from 20 to 40.
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Figure A.6 Transmsission into a photonic crystal grating followed by
PC-based UPMLs. The parameters of the PC-based UPMLs are
N = 20,M = 0.3, p = 1 and N = 20,M = 0.3, p = 2. The total
number of layers of the graing changes from 20 to 40.
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In Fig. A.5, I show the transmission into the grating followed by air and homogeneous UPML. The

homogeneous UPML means the permittivity tensor of the rods in UPML is the same as the tensor of the

UPML around it; ¯̄εrod = ¯̄εair = ε0 ¯̄s and sx = 1 + 0.3i. The two curves overlap with each other. It shows

the homogeneous UPML is equivalent to free space. The transmission curve oscillates with the total

number of layers of the ordinary photonic crystal. It is because of the Fabry-Pérot interference between

the input and output surfaces of the photonic crystal grating. The oscillation amplitude descirbes the

reflection from the output surface. Then I put a PC-based UPML with M = 0.3, p = 0 after the grating.

The oscillation amplitude decreases dramatically, which means the UPML matches the grating very

well. We should notice that this mathc is not perfect.

To get better simulation results, we have to consider two things; First the permittivity and per-

meability difference between two adjacent layers should be mall to suppress the reflection since the

match isn’t perfect; second, sx in the UPML should be big to absort the incident wave efficiently. So in

Fig. A.6, I increse sx slowly. I put the PC-based UPML with M = 0.3, p = 1 and with M = 0.3, p = 2

after the grating. The oscillation amplitude becomes very small, specially when p = 2. So the grating

followed by a PC-based UPML is equivalent to a grating with infinite length. We can continue to try

differet function of sx to get the optimal results.
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