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CHAPTER 1. Introduction

A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponen-
tially with the distance from the surface on both sides of the surface and propagates at the surface.
The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal
surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect
structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT)
and beaming are two examples and they are the subjects I am studying in this thesis.

EOT means the transmission through holes in an opaque screen can be much larger than the geo-
metrical optics limitation. Based on our everyday experience about shadows, the transmission equals
the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that
the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor
(PEC) film converges to zero when the hole’s dimension is much smaller than the wavelength (40).
Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes
at some special wavelengths (41). This cannot be explained by conventional theories, so it is called
extraordinary transmission.

It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a
periodic subwavelength hole array in a metallic film. The common theories in literatures are based on
these arguments. The surface plasmons cannot be excited by incident plane waves directly because of
momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the
momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited.
Then these surface plasmons will collect the energy along the input surface and carry them to the
holes. So the transmission can be bigger than the filling ratio. Based on this picture, they deduced

naturally that when surface plasmons’ momentum-matching condition is satisfied, the surface plasmons



are excited sufficiently and the transmission reaches its peak.

I present a new theory from first principles to explain EOT through one-dimensional periodic sub-
wavelength metallic slits in this thesis. This theory can also be extended to 2D hole arrays. I define the
incident wavelengths that satisfy the momentum-matching condition as surface resonant wavelengths.
I proved analytically that the transmission is actually zero at the surface resonant wavelengths. The
correct logic is: When the momentum-matching condition is satisfied, the surface plasmons excited by
each slit interfere constructively with each other, the total surface plasmons will go to infinity. But the
law of nature forbids the infinity. The only solution is the surface plasmon excited by one slit is zero
and all the energy is reflected.

In my theory, the term corresponding to surface plasmons appear explicitly in the equations. So it
confirms the importance of surface plasmons without any doubt. The theory divides the transmission
process into two steps: energy collection process along the input surface and the propagation process in
the slits. In the first process, the surface plasmons collect the energy along the input surface and carry
them to the slits. This process happens efficiently at any wavelength other than the surface resonant
wavelengths. So EOT can happen at almost any wavelength. After the energy enter the slits, the Fabry-
Pérot interference between the input and output surface decides how much energy is emitted from the
slits. So the EOT wavelengths are decided by the Fabry-Pérot resonances.

I also use my theory to explain the data in literatures. The transmission spectra through 1D slits
or 2D hole arrays in literatures agree with my theory very well. The new theory can explain a lot of
experimental results published recently, such as the transmission through randomized hole arrays, the
strong influence of the hole shape on the transmission peaks, and so on.

Beaming is another far-field effect resulting from surface modes. Normally light coming from a
subwavelength waveguide is diffracted to all angles. With the help of surface modes, we can confine
the output field in a small angle interval. This phenomenon is called beaming (46).

The principle of the beaming has been explained clearly in literatures (47). To achieve good beam-
ing, a photonic crystal waveguide need a surface layer to support surface modes and a grating layer
to coupling the evanescent surface modes into propagation modes. A metallic beaming structure is

generally a subwavelength waveguide surrounded by periodic structures such as grooves or dielectric



gratings (53; 54). The flat metal surface supports the surface mode, so additional surface layer is not
necessary. The periodic structures work as the grating layer.

We discovered that a single layer of dielectric rods can support surface modes (39). Thus I design a
very simple beaming structure: two-layer dielectric-rod structure. The first layer is used to support the
surface modes and the second couples the surface modes into propagation modes. The photonic crystal
waveguide is not a required component of a beaming structure.

Numeric simulations show clearly one two-layer dielectric-rod structure converges the incident
Gaussian beam and two structures in series achieve good beaming and full transmission simultaneously.
By repeating periodically this two-layer structure one can obtain excellent beaming and enhanced trans-
mission for very long distances. Theoretically this simple beaming structure confirms the importance
of surface modes in beaming. In practice, I design a novel waveguide for Gaussian beams.

Beside the research on forward beaming , oblique beaming was also demonstrated using either
metallic structures (75; 76) or photonic crystals (77) in literatures. I developed an efficient method to
design a structure that can achieve oblique beaming at any angle between 0 and 70 degrees.

The structure is a subwavelength metallic slits surrounded by upper and lower periodic grooves at
the output surface. The output surface is equivalent to several point sources. By changing the geometry
parameters of the grooves, I can control the fields, specially the phases of the fields, of the point
sources, and control the output field distributions furthermore. I find the period of the grooves decides
the beaming angle and the distance between the slit and the grooves decides the beaming intensity. By
adjusting the geometry parameters of the upper and lower grooves, I can tilt the beam to any angle
and have very good beaming quality. I find surprisingly the best beaming happens not at the forward
direction but an oblique direction. I also design a frequency splitter: the beaming angles of two close
wavelengths deviate with each very much.

The rest chapters in this thesis are organized in this way:

In the second chapter I prove the existence of the surface modes at a metal-dielectric interface or a
photonic crystal surface with a surface layer. I also briefly review the EOT phenomenon and beaming
phenomenon.

In the third chapter, I calculate the surface waves along a metal-dielectric interface with an inden-



tation analytically. The surface waves is basically surface plasmons with some residual waves. The

complete description of the surface wave sets up a solid foundation to understand EOT and beaming.
In the fourth chapter, I present my theory about EOT. In the fifth chapter, I discuss two beaming

structures: the two-layer dielectric-rod structure and the metallic oblique beaming structure.

Then in the appendix, I discuss how to simulate the waveguide with infinite length numerically.



CHAPTER 2. Fundamentals

A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponen-
tially with the distance from the surface on both sides of the surface and propagates at the surface.
Surface modes exist at metallic surfaces and photonic crystal surfaces. In this thesis, I will study the
properties of the two kinds of surface modes and two phenomena strongly connected to surface modes:

extraordinary transmission (EOT) and beaming.

2.1 Surface plasmons

Surface plasmons are surface modes trapped at a metallic surface through their interaction with
the free electrons of the metal (1). The fundamentals and applications of surface plasmons are nicely
reviewed in some books (2).

2.1.1 Surface plasmons at an interface

Over a wide frequency range, the relative permittivity of a metal can be described by the Drude

model (3; 4)
2
w
=1-—2>2 2.1
€(w) w(w + iw,) @D
Here w, is the damping frequency and
2 n€2
w, =
€0meff

is the plasma frequency, where 7 is the electron density, e is the electron charge and m,; is the effective
optical mass of an electron. Noble metals have extremely high plasma frequencies. For example, sliver
has w, = 27 x 2184 THz and w. = 27 X 4.35 THz (5). When w is smaller than the plasma frequency,
the metal’s permittivity has negative real part. Comparing to the electric fields, the interactions between

the magnetic fields and the electrons are weak. So the relative permeability u(w) = 1.
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Figure 2.1 Schematic representation of a flat metal-dielectric interface. The inter-
face is y = 0 and the fields are TM polarized.

The simplest structure supporting surface plasmons is a flat metal-dielectric interface. Fig. 2.1

shows an interface at y = 0. The fields are TM polarized. So the fields in the dielectric region are

H(x,y) = AexpliBx] exp[—kayl;

kq
WEHEY

B
Ey(x, y) = WEHEY

E.(x,y)=-i A expliBx] expl—kay];

AexpliB] exp[—kay].

and the fields in the metal region are

H(x,y) = AexpliBx] explknyl;

kim

€0€m

Ex(x.y) = i———Aexplifx] exp[—kayl;

Ey(x,y) = AexpliBx] exp[—kay].

WEYE
Here ¢, and ¢, are the relative permittivities of the dielectric and metal.

H; is continuous along the y = 0 interface, so the magnitude of the magnetic field A and the x
component of the wave vector 8 are the same in the two regions. Because of the continuity of £, along

the interface, we get

The relative permittivities satisfy Re(e,,) < 0 and €; > 0. So there is a solution making Re(k;,) > 0 and

Re(ky) > 0, which is the surface plasmon solution.
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Figure 2.2 Dispersion relation of the surface plasmons at a silver-air interface.
The black line is the light line. The silver is described by the Drude
model. 1 PHz = 10" Hz.

The fields in the dielectric and metal have to fulfill the dispersion relations of the media, so

2

w 2 42
?Gd—ﬁ —kd,

w?

2 2
ZGm :B _km'

Then we get the dispersion relation of the surface plasmons propagating along the interface

B = @ [ Em&d 2.2)
c €En + €4

Fig. 2.2 shows the Dispersion relation of the surface plasmons at a silver-air interface, where the
relative permittivity of the silver is calculated form Eq. (2.1). H, distributions of the surface plasmon
is plotted in Fig. 2.2 when €, = —2 and ¢, = 1. We can clearly see the fields decay exponentially on
the both sides of the interface.

If we neglect the damping frequency in Eq. (2.1), then

en(w) =~ 1— w%/wZ.



Dielectric ¢; = 1

Metal ¢,, = -2

Figure 2.3 H, distributions of the surface plasmon when ¢, = —2 and ¢; = 1.

When w approaches the surface plasmon frequency

Wp

wsp =

B

1+¢

€n + €4 — 0 and B goes to infinity. Fig. 2.2 shows the converging property.

Suppose the real and imaginary parts of ¢, are € and € respectively and |¢’| > |€”’|. Then 8 =

B +iB” with

L w( €e 2
/3=—( ) ;

c\€e +¢
’ 3/2 77
ﬁ,l — 2( € €q ) 2 e
c\€ +¢) 2()?

The surface plasmon can be characterized by three lengths:

1. The propagation length of the surface plasmon L = (28”)"!;

2. The skin depth in the dielectric

3. The skin depth in the metal

When the frequency is much smaller than the surface plasmon frequency, €’ is very negative and 8
is close to the light line of the dielectric. So Z; is big, the surface plasmons extend into the dielectric.

When w approaches wg,, 24 — 0 and Z,, — 0. So the energy is confined in a very small area. We

can use this property to design surface plasmon waveguides.
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Figure 2.4 Schematic representation of a symmetrical three layer structure. The
middle layer has relative permittivity €; the upper and lower layers
have the relative permittivity ;. The thickness of the middle layer is
W. The fields are TM polarized.

2.1.2 Surface plasmons of multilayer systems

Now I begin to study the the multilayer structures composed by alternative metal and dielectric
layers. Every metal-dielectric interface supports surface plasmons. When the layer is very thin, the
surface plasmons at neighboring interfaces will interact with each other and bring us new physics
(12; 13; 14).

Here I only study the simplest multiple layer structures: symmetrical three layer structures. The
top and bottom layers are half-infinite with the same relative permittivity €. In the middle is a layer
with relative permittivity €; and width W. y = 0 is the middle line of the middle layer. I only consider
TM polarization here.

Given 3 as the wavevector along x direction, the field in the middle region is

H, = eP*(Ae™Y + BV,
— [ 2 2
kl = ﬁ — Elko.

Here ky = w/c is the wavevector in free space.

H in the upper and lower layers are

H, = CeP*e™ when y > W/2;

H, = De*e*Y when y < —W/2.

ko = B — &k2, Re(ks) > 0.
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H; and E, are continuous along the interfaces x = +W/2. So

Ae W2 4 BMWIZ = ceT W12, (2.3)
ki/er(Ae™MWIZ _ BkWI2y = ky ey Ce™ W12, (2.4)
AeW? 4 BeT W2 = Do W2, (2.5)
ki /el (AT Y2 — Be™MWI2y = _k, Je, De7 W12, (2.6)

Form Eq. (2.3) and Eq. (2.4), we get

Ae kW2 4 Bk WIZ ok,

AW B = ey (2.7)
Form Eq. (2.5) and Eq. (2.6), we get
A2 4 BeThWI2 gk
- =2 (2.8)
AekiWi2 — Be=kiWi2 ~ ¢k,
Put the two equations together, we have
Ae~kiW/2 4 pokiw/2 A2 L Be—kiW/2
AeKIW2 _ BokiW2 —  AkiW/2 _ Bo—kiW2' (2.9)
It is easy to verify this equation is equivalent to A> = B2. So the dispersion relation is
ekl e kW2 4 JaW2
21 - or (2.10)
eky e kW2 _ ghiW/2
ekl e W2 _ Jaw/2
21 @2.11)

eky e kW2 4 ghiW2"

Eq. (2.10) describes the odd modes and Eq. (2.11) describes the even modes in the system. When

W — oo, the two equations become
ezzk% = elzkg

and the dispersion relation returns to Eq. (2.2). The two interfaces decouple.

Fig. 2.5 shows the dispersion relation of an air-silver-air multilayer structure. € is calculated from
a Drude model and e, = 1.

The odd modes of the dielectric-metal-dielectric multilayer structure have a special property: when
the thickness of metal layer decreases, the coupled surface plasmons tend to stay out of the metal. Since
absorption happens in the metal, the odd modes have longer propagation length (15). The even modes

have the opposite property: they tend to stay in the metal, which reduce the propagation length.
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Figure 2.5 Dispersion relation of the coupled surface plasmon mode for an air-sil-
ver-air multilayer structure. The thickness of the silver layer is 50 nm.
The dispersion relation of a single silver-air interface is plotted too
with the label “Single interface”. The black line is the light line.
The silver is described by the Drude model with negligible damping.
1 PHz = 10" Hz.
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Figure 2.6 Dispersion relation of the basic mode of an silver-air-silver multilayer

structure. The dispersion relation of a single silver-air interface is plot-
ted too with the label “Single interface”. The black line is the light line.
The silver is described by the Drude model with negligible damping.
1 PHz = 10'° Hz.
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Figure 2.7 Schematic representation of a homogeneous subwavelength sphere il-
luminated by an incident plane wave. The sphere has radius R and rel-
ative permittivity €, surrounded by a homogeneous, lossless medium
with relative permittivity €.

I now move to the metal-dielectric-metal multilayer structure. The dispersion relation of the basic
mode of an silver-air-silver multilayer structure is shown in Fig. 2.6 for three different thickness of the
air layer. The basic mode is interesting because the energy of the basic mode is mostly confined in the
air layer. No matter how narrow the dielectric layer is, the basic mode is a propagation mode inside the
dielectric layer. We can find that 8 of the mode changes with W, which give us a possible way to control
the fields (16). when W is very small, 8 is big even at w much smaller than wy,, which is impossible
for a single interface. Big § insures the energy is confined in a very small region, even much smaller
than the wavelength, so the metal-dielectric-metal multilayer structures works perfectly as waveguides

(17; 18; 19).

2.1.3 Localized surface plasmons around subwavelength metal particles

Surface plasmons can also be excited at the surfaces of subwavelength metallic particles. The
surface plasmons enhance fields around the small particles .

The localized surface plasmons around a subwavelength metal sphere in a plane wave can be calcu-
lated analytically. Fig. 2.7 shows the system under study: the sphere has radius R, relative permittivity
€» and is surrounded by a homogeneous, lossless medium with relative permittivity €.

When the size of the sphere is much smaller than the incident wavelength, we can neglect the phase
oscillation and assume the sphere locates in a electrostatic field. This is called quasi-static approxima-
tion (20). Then the Maxwell’s equations are simplified to the Laplace equation of the potential V>® = 0

and the electric field is E = —V®. The external field becomes E = EoZ.
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Because of the azimuthal symmetry of the system, the Laplace equation has the general solution is

(20)

(o8]

O(r, 0) = Z[Alrl + By D] Py(cos 0).
=0

Here Pj(cos 0) are the Legendre polynomials, r is the length of the position vector 7 and 6 is the zenith
angle.

Because the potential is finite at the origin, the potentials inside and outside the sphere are

(1, 6) = Z Ai'P/(cos8)  when r < R; 2.12)
=0
(1, ) = Z[B,rl +Cr*D]Pycosd)  whenr > R. (2.13)
1=0

Ay, B; and Cy are decided by the boundary conditions. First when » — oo, @, converges to —Epz. So
B; = —Ey6;; where 9j; is the Kronecker delta. Next considering the continuity of the potential function

and the tangential components of the electric field at the surface of the sphere, finally we can get

©;,y(r, 0) = — Eorcos 6, (2.14)
€n + 2€4
m = R3
Dour(r, 6) = —Egreos 6+ ~2— LT g cosé. (2.15)
€n + 265 12

The potential outside the sphere is basically the superposition of the external field and the field of a

dipole located at the origin. Define the dipole moment

€ =

= drepe R’ .

P 0%d €n + 2€4 0
Then
@1, 6) = —Egrcos§ + —2- L
Ameye r
Electric fields can be calculated from E = —V®:

- 3€d -

in = 05

€n + 2€4
N L 3id@-p)-p
Eout = EO + —p3p
Arepeyr

We can define the polarizability « as g = eoedaﬁo, then

€n — €4
=431

. 2.16
€En + 2€d ( )
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Figure 2.8 Figure excerpted from the paper J. Comput. Theor. Naonosci. 5, 2096
(2008) by L. Hu et al.. The field distributions around the silver sphere
with radius a = 10 nm embedded in silicon. The field distributions are
normalized to the incident plane wave with 4 = 800 nm, which is the
surface plasmon wavelength of silver spheres embedded in silicon.

The polarizability experiences a resonance when
Re(ey) = —2¢,. (2.17)

This relation is named as the Frohlich condition and the frequency satisfying this condition is called
the surface plasmon frequency of a metal sphere.

Now I will use the electrostatics calculation results above to time-harmonic electromagnetic fields.
When the incident wave is E(r, 1) = Eg exp[—iwt] and R <« A, the dipole representation is sill valid and
pt) = cveaaEy exp[—iwt]. Then corresponding scattering and absorbing cross sections of a sphere are
21

k4
Csca = §|a|2;

Caps = kIm(a).

So the scattering and absorption of a metallic sphere are strongly enhanced at the surface plasmon

frequency.



16

/7

periodic in periodic in periodic in
one direction two directions three directions

Figure 2.9 Figure excerpted from the book “Photonic crystals: Molding the Flow
of Light” by J. D. Joannopoulos et al.. Simple examples of photonic
crystals. The different colors represent materials with different refrac-
tive indices.

Fig. 2.8 shows the the field distributions around the silver sphere with radius ¢ = 10 nm when
A = 800 nm (22). The fields are normalized to the incident plane wave. We can find the fields around
the particle are much bigger than the incident fields. These strong localized fields are very useful to
generate Raman scattering (23; 24), fluorescence (25) and other nonlinear phenomena (26).

When the particle becomes bigger, the quasi-static approximation fails and we have to use a rigor-

ous electrodynamics approach. The field distribution then follows Mie solution (21; 27).

2.2 Surface waves at photonic crystal surfaces

2.2.1 Introduction to photonic crystals

Photonic crystals provide powerful ways to manipulate electromagnetic fields. Some comprehen-
sive books were published recently addressing this topic (6; 7; 8). Here I just give a simple introduction
of photonic crystal.

Simply speaking, photonic crystals are just periodic arrays of materials with different refractive
indices (6). Some simple examples of photonic crystals are shown in Fig. 2.9.

When the period of the photonic crystal (or lattice constant) is much bigger than the wavelength,
we can neglect the wavelength and use geometrical optics (9). The electromagnetic waves become light

rays. When the wavelength is much larger than the lattice constant, we can neglect the details in one
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unit cell of the photonic crystal and treat the photonic crystal as a homogeneous medium. Actually the
normal homogeneous materials are not homogeneous at the level of atoms.

The distance between two neighboring atoms in a crystal is several angstroms. With the develop-
ment of nanotechnology, persons can make structures around or even smaller than 100 nm (10). These
structures are much larger than atoms, which gives scientists a lot of freedom to design them. These
structures are also much smaller than the wavelength of infrared and even visible lights, so they are
regard as effective materials. These artificial structures are called metamaterials, which can exhibit
exceptional properties not readily observed in nature (11).

Photonic crystals mostly focus on the region between the two limitations where the wavelengths
are of the same order of the lattice constants. Both the approximation to rays and the approximation to
homogeneous media fail. We have to solve the Maxwell’s equations and use band structure to describe

photonic crystals.

2.2.2 Band structures of photonic crystals

Similar to the crystals, we can also use the band structure to describe the electromagnetic field
distributions supported by photonic crystals.

Suppose the photonic crystal is characterized by the periodic relative permittivity e(7) and the rela-
tive permeability is u = 1. d; where i = 1,2, 3 are the primitive vectors of the unit cell of the photonic

crystal. The periodicity of e(7) implies
e(F+d;) =e(@ fori=1,23.
From the Maxwell’s equations
g — a - -
V X E(I", t) = _IuOEH(r’ t)7
- (9 =
VXH®,1) = 6(7)605E(?, 0;

V- [e(PEF 1)] = 0;

V-H@# ) =0,
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We will get
1 > 18 5
— VX (VXE®#1) =—-—-—E#1);
€(r) x (VX EG0) 2opt
1 - 10,
Vx (v o) = -4 S
5G) @9 c? or? *.2)

Suppose E(7, 1) and H(7, 1) are the time-harmonic fields with the form E(7,f) = E(7) exp[—iwt]

and H(#, 1) = H(® exp[—iwt]. Then E(?) and H(7) are the eigenfunctions of the operators Lz and Ly

defined below:
— 1 = (,l)2 -
LpE(P) £ —V x (Vx E®) = ZE®; (2.18)
€@ c?
LyH) 2V x (LV x H(F t)) = ‘“—Zﬁ(?) (2.19)
e(P) ' c? ' '

Then we can use Bloch’s theorem to Eq. (2.18) and Eq. (2.19). The solutions of the two equations

are then characterized by a wavevector K and a band index n and have the form

and u]?n(f’) and v];n(f’) are periodic functions with the same unit cell as e(7). The band structures describe
the relations between the wavevector k and the corresponding eigenfrequency w.

An example of the photonic band structure is shown in Fig. 2.10. The photonic crystal is a two-
dimensional one composed by a square array of square alumina rods embedded in air. The rods are of
dimension d = 3.1 mm with relative permittivity € = 9.8. The lattice constant is @ = 11 mm.

One important property of the band structure is the existence of band gap under TM polarization
(electric field parallel with the rods). No eigenmode exists when the frequency is between 9.54 Hz
and 12.81 GHz. So the waves with these frequencies can not propagate in the photonic crystal. The
complete photonic band gap for any propagation directions and any polarizations has been found with
3D photonic crystals (28; 29).

Photonic crystals offer us the opportunities to “design” the band structures. A lot of applications
come from the unusual band structures of photonic crystals. For example, the band gap leads to the pho-
tonic crystal waveguides directly (30; 31). Other applications includes superprisms (32) and superlens

(33).
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Figure 2.10 The photonic band structure of a 2D photonic crystal. (a) the cross—

sectional view of the photonic crystal in one unit cell. The pho-

tonic crystal is a square array of square alumina rods embedded in

air with side length d = 3.1 mm and € = 9.8 . The lattice constant is
a = 11 mm. (b) The Brillouin zone. (c) The photonic band structure.
The blue lines represent TM modes and the red represent TM modes.
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2.2.3 Surface modes at photonic crystal surfaces

The existence of the surface modes at photonic crystal surfaces has been verified theoretically
(34; 35; 36) and experimentally(37; 38; 39). It was found that the surface modes are sensitive to the
surface termination and the bear photonic crystal surface don’t support surface modes. Further research
is necessary to understand this behavior.

To study surface modes, we can employ that supercell method. Supercell is a cell containing more
than one unit cells of a photonic crystal. The band structures based on the supercell method are shown
in Fig. 2.11.

The photonic crystal used here is the same what used in Fig. 2.10. Fig. 2.11(a) shows the band
structure calculated based on the unit cell of the photonic crystal. This band structure is equivalent
the band structure in Fig. 2.10. I calculate the eigenfrequencies for different (k,, k;) but only show the
corresponding k, in the figure. The gray stripe in the band structure figure shows the band gap. In
Fig. 2.11(b), I calculate the eigenfrequencies based on the supercell. The supercell contains 20 unit cell
of the photonic crystal. The diagram shows only 6 of them for simplicity. I set that the fields along
the left boundary equal the fields along the right boundary; the fields along the bottom boundary has
a phase difference explikya] with the fields along the top boundary (a is the lattice constant). Since
the supercell has 20 unit cells along x direction, exp[ik, X 20a] = 1 means exp[ik, X a] can have
20 different values. So one time eigenfrequency calculation based on supercell is equivalent to 20
times calculations using different k, values based on a unit cell. So I get the same band structure in
Fig. 2.11(b) as in Fig. 2.11(a).

In Fig. 2.11(c) I add an air layer between photonic crystals. The supercell contains 20 unit cells
of the photonic crystals in the middle (only 6 are shown in the diagram of Fig. 2.11(c) and air layers
with length 10a at both ends. Repeating the supercell along x and y directions, we can not get a
perfect photonic crystal but the alternative air and photonic crystal layers. So the band structure here is
different from the band structure of the perfect photonic crystal shown in Fig. 2.11(a) and Fig. 2.11(b).
For example some bands exist in the band gap of the photonic crystal. These modes will stay in the air
layers.

In Fig. 2.11(d) I add surface layers at both ends of the photonic crystal. The surface layers is
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Figure 2.11 Band structures based on the supercell method. The top figures in

(abcd) show the calculation area. The photonic crystal is the sames
as the one in Fig. 2.10. The lattice constantis ¢ = 11 mm. The bottom
figures are the band structures. The gray stripe shows the band gap.
In (bcd), the supercell contains 20 photonic crystal layers, only 6 are
shown in the diagram. In (c), the length of the air layers at both ends
of the photonic crystal is 10a. In (d) the length of the air layers is 9a
and circular rods with radius » = 1.83 mm and relative permittivity
€ = 9.8 are added at both ends of the photonic crystal. The black line
is the light line.
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Figure 2.12 Band structure of one layer of dielectric rods. The top figure shows
the calculation area with size of 220 mm X 11 mm. The rods have cir-
cular cross section with radius » = 1.83 mm and relative permittivity
€ = 9.8. The bottom shows the band structures based on the supercell
method. The black line is the light line.

composed by circular rods with radius » = 1.83 mm and relative permittivity € = 9.8. We can find
new modes appearing below the light line in the band gap. They are below the light line, so they are
evanescent waves in air; they are in the band gap, so they are evanescent wave in the photonic crystal.
So these modes are surface modes. Since the surface modes decay in both the air and the photonic
crystal layers, if the two layers are wide enough, the surface modes along different surfaces will not
interact with each other. So though we are simulating a system with infinite number of surfaces, the
surface modes converges to the surface modes along a single surface. If I change the length of the
photonic crystal layer or air layer in the supercell, the locations of other modes may changes in the

band structures but the locations of surface modes will stay stable.
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2.2.4 Surface modes along a layer of dielectric rods

Using the same supercell method, we can find surface modes exist along a layer of dielectric rods.
Fig. 2.12 shows an example. The dielectric rods have circular cross section with radius » = 1.83 mm
and relative permittivity € = 9.8. The distance between the adjacent rods is @ = 11 mm. The supercell
is a 20a X a rectangle with one rod in the middle. We can find a band under the light line in Fig. 2.12.

These modes are evanescent in air, so they are the surface modes.

2.3 Extraordinary transmission and beaming

In previous sections I have demonstrated the localized property of surface modes. However surface
modes can also influence the far field since they can propagate at the surface and connect the structures

at the surface. Extraordinary transmission (EOT) and beaming are two examples.

2.3.1 Extraordinary transmission

Considering an opaque screen with some open area, the extraordinary transmission means the nor-
malized transmission is larger than 1. The normalized transmission means the transmission which is
normalized to the opening area. Suppose the incident intensity is I;, with unit W/m?. If the open area
has finite area A, the total transmitted power is P,,, with unit W. Then the normalized transmission

Trorm 18
_ Pout

norm — m
If the open area is a period structure, suppose the area of one unit cell is U and the the area of the open
area in one unit cell is A, then the transmission is described by the transmitted intensity /,,, and the

normalized transmission is
I out U

Thorm = .

Ii,A

When the dimension of the holes are much larger than the wavelength, we enter the region of

geometrical optics. Based on our everyday experience about shadows, we know T}, ~ 1 in this case.
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Figure 2.13 Figure excerpted from the paper Nature 445, 39 (2007) by C. Genet
and T. W. Ebbesen. The normalized transmission spectrum through
a 225 nm-thick Au film with a triangle lattice of circular holes under
normal incidence. The hole diameter is 170 nm and the lattice con-
stant is 520 nm. Before and after the film are the glass substrate and
index-matching liquid. 7 is the normalized transmission.
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Figure 2.14 Figure excerpted from the paper Opt. Lett. 26,1972 (2001) by T
Thio et al.. The normalized transmission spectrum through a Ag hole
surrounded by (A) rings and (B) a square lattice of dimples. The rings
have sinusoidal cross section. The mean radiiis Ry = kP, P = 750 nm
and k = 1,2,---,10. The peak-to-peak amplitude is 4. The dimples
have lattice constant 750 nm and depth /2 = 180 nm.
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In 1944, Bethe (40) has studied the transmission through a subwavelength circular hole with radius
r in an infinitely thin perfect electric conductor (PEC) film. He predicted that

64(kr)*
2772

Tnorm -

So the normalized transmission should be very small when the wavelength is much bigger than the
dimension of the holes.

However, it is found the normalized transmission through subwavelength metallic holes can be
bigger than 1 recently (41). This phenomenon can not be explain by conventional theories, so it is
named as extraordinary transmission. It is generally believed that surface plasmons play important role
here to carry energy to the holes along the surface.

Fig. 2.13 shows the normalized transmission spectrum through a 225 nm-thick Au film with a
triangle lattice of circular holes (42). EOT happens at some special wavelengths. A common expla-
nation links the peak wavelengths to the momentum-matching condition(43; 44) . The logic is when
the momentum-matching condition is satisfied, the surface plasmons are strongly excited and help the
transmission. In this thesis, I will analyze this explanation carefully.

EOT through a single hole was also observed (45). As insets of Fig. 2.14 show, the hole is sur-

rounded by rings or dimples, which will excite surface plasmons and enhance the transmission.

2.3.2 Beaming

Grooves at the input surface result in EOT; grooves at the output surface also result in a special
phenomenon, beaming: light emerging from a subwavelength aperture is compressed into a narrow
beam. (46).

The principle of the beaming can be explained clearly using photonic crystals (47). The top row
of Fig. 2.15 shows the field distribution after a photonic crystal waveguide. Since the waveguide is
narrow, the exit of the waveguide is similar to a point source and the output fields are diffracted to all
angles. A possible way to converging the field is to use surface modes to generate a “big” source. In the
middle row of Fig. 2.15 a surface layer is added after the photonic crystal to support the surface mode.
We can see clearly surface modes are excited and propagate along the surface layer. So a big source is

achieved. But the surface waves are evanescent waves, they won’t influence the far field distribution.
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Figure 2.15 Figure excerpted from the paper Phys. Rev. B 76, 235417 (2007)
by R. Moussa et al. partially. Left column shows the exit surface
of a photonic crystal. From top to bottom: a bare photonic crystal, a
photonic crystal with a surface layer, a photonic crystal with a surface
layer and grating layer. The right column shows the field distribution
after the waveguide.
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So another grating layer is necessary to coupling the evanescent wave into propagation wave. As shown
in the bottom row of Fig. 2.15, a nice beam is formed after the surface layer and the grating layer. Good
beaming can also be achieved by different designs based on the photonic crystals (48; 49; 50; 51; 52).
The metallic beaming structures are also studied experimentally(53; 54) and theoretically(55; 56).
They are basically a subwavelength metallic surrounded by periodic structures such as grooves or
dielectric gratings along the surface. The flat metal surface supports the surface mode, so additional

surface layer is not necessary. The periodic structures works as the grating layer.



29

CHAPTER 3. Surface Waves Along a Metal-Dielectric Interface with Defects

3.1 Background

In the previous chapter I have proved the existence of surface plasmons at a flat metal-dielectric
interface. But the perfect flat metal-dielectric interface rarely exists in reality. A nature question is
what the special properties the defects at the surface will bring to the surface waves.

Before the in-depth discussion, I want to clarify two nomenclatures. In this thesis, “surface mode”
is a term describing specially the electromagnetic waves bounded at a surface and decaying off expo-
nentially normal to the surface; “surface wave” is a general phrase which just represents the fields along
a surface.

Surface plasmons at a flat interface can not be excited by incident plane waves directly because of
momentum mismatch (1; 2). Introducing defects at the interface is an efficient method to excite surface
plasmons. But the inner mechanics still need be clarified. The existence of the surface plasmons
doesn’t necessarily mean it will be excited. Zero field is always another existing eigenmode. Even
we are convinced the excitation of the surface plasmons, we still want to understand the phase and
amplitude of the excited surface plasmons. All these arguments make the analytic deduction form
Maxwell’s equations valuable.

In 2006, two papers published in Nature Physics tried to explain the same data by two different
theories (57; 58). They studied the transmission through a subwavelength slit assisted by a groove. The
geometry is shown in the inset of Fig. 3.1. This is 2 two-dimensional system. The inset shows the x —y
plane and the system is invariable along z direction. The incident wave is TE polarized.

The experimental, numerical and analytical transmission curves are shown in Fig. 3.1. The exper-
imental curve oscillates with d, the distance between the slit and the groove, which can be explained

by the excitation of surface waves. The first order process is: When the incident wave hits the groove,
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Figure 3.1 Figure excerpted from the paper Nature Phys. 2, 551 (2006) by P.
Lalanne and J. P. Hugonin. The transmission through the subwave-
length metallic slit accompanied by a grooves gotten from experi-
ments, numerical simulations and analytic calculations. Blue circles:
experimental data. Solid blue line: analytic results based on CDEW
model. Solid black line: numerical data computed by the fully vecto-
rial modal method. Red dots: analytic results based on surface plas-
mon mode. The Inset: the geometry of the metallic slit-groove struc-
ture.
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the surface wave is excited, propagates at the metal surface and interferes with the field at the slit’s
entrance. So the transmission is modulated with d. More careful analysis will consider the surfaces
wave excited by the slit and the reflected surface wave by the slit and groove. The multiple scattering
process will introduce the similar d dependence.

To get good fitting results when d is small, Gay et al. (57) gave up the surface plasmon explanation
and developed the composite diffracted evanescent waves (CDEW) mode. In the theory, the surface
wave excited by an indentation is called CDEW with the form H,(y) « («/y + ) cos(kg,ry + ¢) (the
indentation locates at y = 0).

In the other paper (58), the authors insisted in the surface plasmon explanation. They simulates the
same structure numerically and used the surface plasmon mode to fit the transmission. The fitting is
very good when b is big but fails when d is small. Further theory work decomposed (58; 59; 60; 61)
the surface wave into two parts: H, = Hy, + H.. Hj, is the surface plasmon and H. is the residual
quasicylindrical wave. It was verified numerically that |H.| oc 1/ yl/ 2 when y is small (58; 59).

In this chapter, I calculate the surface wave along the metal-dielectric interface with indentations
from Maxwell’s equations analytically. I support the decomposition H, = H,, + H. and study the
asymptotic behavior of the quasicylindrical wave. I also explain the connection between the surface

waves along the metal surface and PEC surface.

3.2 Surface impedance boundary conditions

Since fields decay rapidly inside a metal, we don’t care what in the metal and we can use a boundary
condition to “replace” it. When the permittivity of the metal is very negative, surface impedance
boundary condition can be used to describe the metal-dielectric interface. This boundary condition

says the fields on the interface satisfy (20)
E /= Il X ﬁ J/

Here 71 is a unit vector normal to the interface pointing into the dielectric; Z,, is the impedance of the

metal and Z,, = \/umilo/ €n€o; tm and €, are the relative permittivity and permeability of the metal.
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Figure 3.2 Schematic representation of light incidence at a metal-dielectric inter-
face under (a) TE polarization and (b) TM polarization.

3.2.1 Validity of SIBC

In two-dimensional space, we can verify SIBC analytically. Now we consider the plane wave in-
cidence at a metal-dielectric interface and Fig. 3.2 shows the system analyzed. y = 0 is the metal-
dielectric interface. The relative permittivity and permeability of the dielectric are €; and py; of
the dielectric are €, and u,. The refractive indexes of the dielectric and metal are ng = +/ejua
and n, = +/€,u,. The impedance of the dielectric and metal are Z; = \/m and Z,, =
W. The incident plane wave is E expli(k cos 6x + ksinfy — wt)] and the reflected wave is
E" expli(k cos 8x—k sin 6y —wt)]; the corresponding magnetic fields are H expli(k cos Ox+k sin Oy —wt)]
and H"' expli(k cos 6x — k sin 6y — wt)]. 6 is the incident angle. k is the wavevector in the dielectric and
k = w +[ez€optapto.

We first consider TE polarization as shown in Fig. 3.2(a). Now E = —Ecos6% + E sin 69, E" =
E” cosO% + E” sin69, H = H.2, H" = H!’z. Here i = -9, so the parallel components are along x and z

directions. Consider the boundary conditions along the interface (20), we can get

E (Ua/ )2, cOS O — ng AN — ”421 sin? 6?‘

= " (3.1
E (,ud/,um)n%i cos 6 + ng 4 ln,%1 - ”421 sin @
E,=—-Ecost; E/ =E"cos6 (3.2)

H,=E/Z; H!=E"|Z (3.3)
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If wy = ug = 1 and ¢, is very negative, which means |e,,| > |e,4|, we have n

At the interface
Ej=-%E-E")cos0; Hjy=2E+E")/Z. (3.4)

We have 1 X Z = —X and

(E _ El/) cos 6 ng n% - ntzl Sin2 0
———— > = Z4cos0 5
(E;+ E)|Za nz, cos 6
Zangn
~ 5 n = Zm‘
nm

So we proved SIBC is correct under TE polarization.
When the electric field is perpendicular to the incident plane, we have E = E.z, E" = E’Z, H =

Hi &+ Hy9.H" = H)'% + H]'$ and

E/ Md cos 8 — (Uq/tm) 1/n,z,l - nczi sin® 0‘

== : (3.5)
z ndcose+(/1d/,um),/n,2n—n3 sin” @
H, = E cos0/Z;; H, =—E cos6/Z, (3.6)
At the interface
Ey=%E.+E); Hj=3E,-E/)cos/Zs; (3.7)
n=-9. (3.8)

E.+E”  Z ngcos 6
(E;—EY)cos6/Z; cosb (/i) /n,% B ”Ez sin2 0
Zang

(/Jd/,um)n%l
So we proved SIBC is also correct under TM polarization. In two-dimensional space, fields are decou-
pled to TE and TM polarizations. So we verified SIBC is a good approximation for any incident wave

in two-dimensional space.
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3.2.2 Surface plasmons based on SIBC

We have verified the existence of surface plasmons at a metal-dielectric interface. Now we will try
to find surface modes when the metal is replaced by the surface impedance boundary condition.

Considering the two-dimensional x — y plane. Suppose y = 0 is the metal-dielectric interface. y > 0
is the dielectric area. H, E,, E, are the three non-zero components of electromagnetic waves for TE

polarization. Define the magnetic field in the dielectric as

HZ — ei(kxx"'k)’y)' (39)
Then
ky
E =— H.. (3.10)
EJEQW
SIBC says
E.f = /P‘_nyHzg, (3.11)
€m€o
So we get
ky = -2 5L (3.12)
c \en
w N 2
kx = _(Ed - _) . (313)
c €

m

The rigid expression of the dispersion relation is

W, €&y (12

ky=—(——) (3.14)
C €+ €y
When |e;/€,| < 1, we have
2
€
Cdm_ ey— 2 (3.15)
€1+ €y €m

So the dispersion relation of SIBC is the first-order approximation of the dispersion relation of real
surface plasmons.

In conclusion SIBC also supports surface plasmons.

3.2.3 Waveguide modes based SIBC

Now we begin to study the eigenmode in a two-dimensional waveguide bounded by metal. Fig. 3.3

shows the metallic waveguide we are studying. The width of the waveguide is W; y = 0 is the central
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Figure 3.3 Schematic representation of a two-dimensional metallic waveguide.

line of the waveguide; y = £W/2 are the two metal-dielectric interfaces. y,, = uy = 1. Only TE mode
is studied here.
In the previous chapter, I have gotten the dispersion relations of the modes for the waveguide:

e—le/Z + ele/Z e—le/Z _ ele/Z

ek ek

= or = .
ek e kW2 Z W2 ek e kW2 { W2

Then I replace the metal with SIBC. Then the calculation is simpler. Suppose the field in the

waveguide is

H, = éP*(Ae™ ' + By,
kd = dﬁz - edkg.

Then

1 OH, kg
E.=-- S = - (aeher - ek (3.16)
i€gepw Oy €EJ60W

At the upper interface y = W/2, SIBC is E, = -Z,,H_, so

iveEnks Ae*kaWiZ 4 BekaWi2

etko  AekaWi2 — BekaW/2 (3.17)
At the lower interface y = —W/2, SIBC is E, = Z,,H., so
j k AekaWI2 4 Bo—kaWi2
e T (3.18)

etko  AekaW/2 _ Be—kaW/2
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Repeat the calculation about the metal-dielectric-metal multilayer structure and we get the disper-

sion relation

iNenky e kaWi2 4 gkaW/2 iNErky e kW2 _ gkaW/2 a19)
= or = ) .
Gdk() e—kaW/2 _ pkaW/2 fdkO e—kaW/2 . okaW/2

When S > +/esko, these modes are high-order evanescent modes of the waveguide which decay

very quickly. We focus the basic mode which satisfies 8 $ veiko. If |€,| > |egl, we have

k; ik
kon = \B? — €k ~ =i emko = 24 ~ i Venka (3.20)

€dkm €ako

I choose V—1 = —i here to ensure Re(k,;,) > 0. So the dispersion relation of the basic mode in a SIBC
waveguide converges to real metal waveguide when ¢, is very negative.
In the next chapter I will study the transmission through metallic waveguides. The knowledge about

these eigenmodes will be very useful.

3.2.4 Summary of SIBC

As the calculation above shows, SIBC is a good approximation to describe metal-dielectric inter-
faces when |€,,| > |esuq| . It makes analytic deduction simpler and saves the calculating area of
numeric simulations. When |e,| goes to infinity, the fields calculated from SIBC converge to the real

fields.

3.3 Green’s function

3.3.1 Surface wave at a metal-dielectric interface with defects

Fig. 3.4 shows the structure we are studying: a dielectric-metal interface with grooves and slits.
The blue area is metal and the white area is dielectric. x = 0 is the metal-dielectric interface with some
subwavelength indentations. The relative permittivity and permeability of the dielectric are €; and g;
The relative permittivity and permeability of the metal are €, and y,,. Normally py = p,, = 1. Define
€ and pg as the permittivity and permeability of vacuum. Then the impedance of the dielectric and
metal are Z; = \/IM and Z,, = m.

Surface impedance boundary condition is used to describe the metal-dielectric interface. At the

metal-dielectric interface x = 0 in Fig. 3.4, the boundary condition is expressed as E\, + Z,,H, = 0 when
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Figure 3.4 Schematic representation of a dielectric-metal interface with indenta-
tions in a two-dimensional space.

the fields are TE polarized. I have shown SIBC is precise when |€, | > |esuq|. Silver has relative
permittivity €, = —8.5 + 0.76i at A = 500 nm (A is the wavelength in free space) (62). So the silver-air
interface can be described by SIBC up to 500 nm. When A becomes smaller, |€,,| becomes smaller and
we have to give up the approximation. When A increases, |€,| increases rapidly and the fields calculated
from SIBC converge to the real fields.

Suppose no incident waves coming from the dielectric side in Fig. 3.4, using the mode expansion

method (63), we can prove the surface fields along x = O satisfy

1 « ’ ’ ’ 7’
H = o [ (B0 + ZuHO))G0) (321)

The Green’s function is

o0 k()
dk———.

o kx + Zskd

Here Z; = Z,,/Z; and Z; = +Juguo/€a€o, arg(Zy) € (—n/2,—n/4) . Z; = 0 when the metal is PEC. ky

Gy,y)=Gy-y)= I (3.22)

and Ay is the wave vector and the wavelength in the dielectric. k, is the x component of the wave vector

of the plane waves in the x > 0 half-plane. The plane waves propagate or decay along +x direction, so

JR—k ik >k
ky = (3.23)
ik =K ifkg <k

Since Ey(y') + Z,,H (y") = 0 at the metal surface, Eq. (3.21) is equivalent to the expression

1

Hz()’) - m jl‘ndentation dy’(Ey(y,) ’ ZmHZ(y,))G(y, yl). (324)
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So the surface wave is decided by the fields in the indentations. When the width of an indentation is
much smaller than the wavelength, the fields at the exit of the indentation are close to a delta function.
Then the Green’s function describes the surface wave excited by the indentation. If the indentation
is wide, we have to know the fields inside the indentation to calculate the surface wave. Though the
surface wave around the indentation is complex, the Green’s function still describes the surface wave
in the region more than several widths away from the indentation.

Above we have shown the surface wave along the output surface of slits. It is easy to prove the fields
along the input surface have the similar form. They are the summation of the surface wave excited by
indentations plus some terms related to the incident and reflected waves. The surface wave excited by
indentations can also be calculated by other methods (64), but the Green’s function method uses less
assumptions and gets precise results. We have no need to assume the existence of surface plasmons

beforehand. They will emerge from the Green’s function automatically.

3.3.2 Simplification of the Green’s function

Define y = sAy, k = hky, then

00 ei27rhs

dh——.
o V1 =-h2+2Z

Now let’s focus on the non-dimensional Green’s function g(s). The square root function is defined as

G(y) =g/ = g(s) =

arg( V1 — h?) € (-n/2, /2] because of Eq. (3.23). g(s) is an even function. We choose s > 0 here.

When s — 0, g(s) diverges but

foo ei27rhs ei2ﬂhs

dh( - )
—c0 Vi-h2+Z, ~N1-h?
does not. So

g(s) — HY) when s — 0. (3.25)

We moves to the complex space of & to do the integral in g(s). The integration path is shown in
Fig. 3.5 as the red curves. The blue lines are the branch cut to make V1 — h? single-valued. The
function V1 — A2 is not continuous along the the path Im(h) = 0 at the point & = 1 under this branch

cut. So the integration path has two loops.
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Figure 3.5 Integration path of the non-dimensional Green’s function in the com-
plex space of h. The red curves are the integration path and the blue
lines are the branch cut.

Using Cauchy’s integral formula to the left and right loops, we get

1 eiZnhs 00 iei27rse—27rqs
/P [ S
—o N1=-h2+Z; Jo G —2qgi + Z
0 - i21s ,—2nqs 00 i2rths
e e e Zs -
— 27_”_561271/11)5

dq + | dh—
o —A¢?-2qi+Z; Ji V1-h>+Z hy

Here h), is apole: /1 — hf, +Zs = 0. The integral variable is changed from £ to g along the vertical parts
of the path, 7 = 1+gi and g € [0, o). Again arg( V1 — h2) € (-r/2,7/2], arg(\/q* — 2qi) € (-n/2,7/2].
Then

Z - . [o'e} 2 — 2 -
g(s) = 2mi =2 4 et f dge2 ﬂ |
& 0 Z: — ¢* + 2qi

In the second term, the integrand contributes significantly only when g € (0, 1/s). So we neglect ¢°
when s 2 1. Then
—2qi

Z. . . oo
g(s) ~ 2mi—= ! 2™vs 4 jel?s f dge™ >
h, 0

All the calculations below base on the approximation expression of Eq. (3.26), which is good when
s > 1. But our numeric simulation results show the approximation works very well even when s is
smaller than 1. We will also prove that Eq. (3.26) gives the same asymptotic result as Eq. (3.25) when

s is very small. So the approximation in Eq. (3.26) is precise for almost any s.
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The first term in Eq. (3.26) is the well-understood surface plasmon ggp(s). The second is the

residual quasicylindrical wave gc(s) (61), which need further study. Define

I(s) = f ) dge 24 —“q/Y; Y = Z2/(2i). (3.27)
0 Y+gq
Then
1(s) = 4/ L ne” SErfe( V2rY s); (3.28)
2Ys
gc(s) = VY(1 = e I(s). (3.29)

Here arg( \VY) € (n/4,7/2); Erfc is the complementary error function; |/(s)| describes the envelope of
the quasicylindrical wave.
The integrand of I(s) in Eq. (3.27) contributes significantly only when 0 < g < 1/s. When |[Y]|s > 1,

g in the interval (0, 1/s) satisfies

1 1
=D
+qg Y Y
1 1 1 1
=I(s) =

A2 (Y52 16+am2 (Ys)5/2

When |Y|s is small, /(s) can be simplified by the Taylor expansion of " Erfe(u),
2 2
M EBrfc(u) =1 - —u+u>+---
() V=

We can call |Y]s as the surface distance because it describes how the envelope of the quasicylindrical

wave evolves during the propagation. The piecewise function below gives good estimation about /().

V1/2Ys if [Y]s < 0.002
I(s) ~ { V1/2Ys —n if |Y|s < 0.02
1/[4V2r(Y5)*/?] if |Y]s > 1

When 0.02 < |Y|s < 1, we have to include more terms of the Taylor expansion or we can calculate Erfc
function directly.
We now compare the amplitude of ggp and g¢. Since ggp decays exponentially, g¢ will be stronger

for sure when s is very big. But in practice, A, is close to 1 with a very small imaginary part for good
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Figure 3.6 |gc(s)/gsp(s)| along a metal-air interface when the metal permittivity
is €, = —31.39 + 2.22i.

noble metals. So |gsp(s)/gc(s)| = |I(s)/2n]|. Fig. 3.6 shows |gsp(s)/gc(s)| along a metal-air interface
when €, = —31.39 + 2.22i, which is the relative permittivity of silver at 4 = 852 nm (62). If the
metal is lossless, I(s) is a function of |Y|s, which is the horizontal axis in Fig. 3.6. We can find the

quasicylindrical wave is negligible when |Y|s > 0.1.

3.3.3 Discussion

Put the results together, we have

7. .
gsp(s) = 2mi— e’
hl7
. 1
gco(s) = (1 — i)™ —
V2s
gci(s) = —inZ,e™™
i ei27rs

gcB(s) = Zs—4 Vo ROEE
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The piecewise function below gives good approximation about the Green’s function.

gsp(s) + gco(s) if |Y]s < 0.002
8(5) ® Y gsp(s) + gco(s) + gc1(s) if |Y]s < 0.02
gsp(s) + gcp(s) if |Y]s > 0.1

The metal-dielectric interface is divided into three regions based on the surface distance: the near region
(IY]s < 0.02), the intermediate region (0.02 < |Y|s < 0.1) and the far region (|Y|s > 0.1).
If the metal is nearly lossless, gsp dominates in the far region. If the metal is a PEC, Z; = 0 and

Y = 0. The whole surface belongs to the near region and

. 1
g(s) ~ gco = (1 — D)™™ —.

V2s
It agrees with the PEC’s Green’s function with Hankel function form (65). When s is very small,
lgcol > |gs pl, we can neglect gs p and return to the result in Eq. (3.25).

The fields along a metal-air interface are calculated numerically using the commercial finite element
method software COMSOL Multiphysics. The simulation area is similar to Fig. 5.9 but without the
groove. The incident wave comes through the slit in +x direction. The fields along the output surface
are recorded and compared with analytic results in Fig. 3.7 and 3.8. The slit width is 0.054. The relative
error of the simulations is around 2%. The analytic results in the figures are calculated by Eq. (3.24) by
replacing G(y,y’) with the different simplified forms of the Green’s function shown in the legends. We
assume that E,(y") + ZH (y") is constant at the exit of the slit and the value is taken from the numerical
simulations. There is no fitting parameters in the analytic calculations.

In Fig. 3.7 and 3.8, the real and imaginary parts of H; are plotted in the range y € (0.14,401) at
two incident wavelengths. We always plot the simulation results along with the analytic results from
gsp + gc and the two curves always overlap. It shows the approximation in Eq. (3.26) is good in the
region y > 0.14.

Fig. 3.7 shows the fields when A4 = 3000 nm and €, = —329 + 47.5i. The near region is the area
y < 12A. The analytic results from gsp + gco + gc1 agree with the simulation results very well in
this region and gc; component do improve the analytic results. When s enters the intermediate region,

results from gsp + gco and gsp + gco + gc1 have visible difference from the simulation results. The
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Figure 3.7 Real and imaginary parts of H, along a silver-air interface in the re-

gions y € (0.14,104) and y € (204,304) when 4 = 3000 nm and
€n = —329 +47.5i. The simulation results are calculated by COMSOL
Multiphysics, a commercial finite element method software. The other
curves are calculated analytically using different simplified forms of
the Green’s function shown in the legends.
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Figure 3.8 Real and imaginary parts of H, along a metal-air interface in the re-
gions y € (0.14,104) and y € (304,401) when A = 500 nm and
€n = —8.50+6.00i. The simulation results are calculated by COMSOL
Multiphysics. The other curves are calculated analytically using dif-
ferent simplified forms of the Green’s function shown in the legends.
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difference looks small here because gsp is strong. In Fig. 3.8, the incident wavelength is A = 500 nm.
The permittivity of the metal is set as €, = —8.50 + 6.00i with a big imaginary part to suppress the
the surface plasmon in the far region. Since |Y] is big here, the near and intermediate regions are short.
gsp + gcp gives good analytic results when y > 21. Fig. 3.8 shows clearly that the quasicylindrical
wave decays as y~>/2 in the far region.

Our analytic calculation also proves gsp(s) + gco(s) is a very good approximation of g(s) for a
good noble metal at visible wavelengths (59; 60; 61). It is the approximation we used in the near
region. In the far region, we have proved gc(s) is negligible, so is gco(s). In the intermediate region,
this approximation is poor. But the intermediate region is short and it is difficult to notice the fitting
error.

In EOT research, the interesting surface area is normally between 4/2 and 1004. For a good noble
metal at visible wavelengths, the area belongs to the far region and surface plasmon dominates. When
wavelength increases and ¢, is more negative, the metal surface converges to the PEC surface in two
ways:(i)the near region becomes longer and (ii)gco becomes stronger comparing with gs p in the near
region. The whole surface works like a mixture of PEC and metal surfaces and |Y| servers as a good
index to describe the mixture state. The reference (58) shows the converging process graphically.
Both metal and PEC surfaces support the strong slow-decaying surface waves, so they have similar

phenomena such as EOT.

3.3.4 Conclusion

In this section, we have analyzed the surface wave along metal-dielectric interface with an indenta-
tion. We get the asymptotic forms of the wave far away from and close to the indentation. Based on the
surface distance |Y|s, the interface is divided into several regions and the surface wave behaves differ-
ently in every region. The complete description of the surface wave would give us deeper understanding

about light transmission mechanics through metallic apertures.
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CHAPTER 4. Theory of Extraordinary Transmission

4.1 Background

In the previous chapters I have introduce EOT through a 2D periodic subwavelength hole arrays or a
single subwavelength hole surrounded by structures. Served as a simpler model, EOT through 1D slits
have also been demonstrated for both periodic slits (66; 67; 68) and one slits surrounded by grooves
(69). The common explanation linking the transmission peaks with the momentum-matching condition
is also used to explain the transmission peaks here (66). But another paper verified numerically that
when the momentum-matching condition is fulfilled, the transmission has dips actually (67).

In this section I will present an theory about the transmission through 1D subwavelength peri-
odic metallic slits by first principles. I will prove analytically that transmission dips appear when
momentum-matching condition is satisfied. I will also study the relations between transmission peaks

and geometry parameters.

4.2 Mode expansion method

Mode expansion method is used to calculate the transmission. In this section I study the plane wave
incidence to infinitely-long slits and use it as a example to demonstrate the method. Fig. 4.1 shows the
schematic picture we will study. The whole system is a two-dimensional structure. The x < 0 half-
plane is free space and the x > 0 half-plane is metal with several infinitely-long slits. For simplicity
the medium in the slits is air too. To excite the surface plasmons along the metal surface, the incident
plane wave is TE polarized.

The fields in the free space include the incident plane wave and reflected waves. The incident wave
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Figure 4.1 Schematic picture to study the transmission into infinitely-long slits.

18

HI"(x,y) = expli(k,x + kyy)];

ki =kocosO; ky =kosiné.

Here k is the wavevector of the incident wave in free space and 6 is the incident angle.

The reflected wave is expressed as the superposition of all possible plane waves.

HY = f dkp(k) expli(—kyx + ky)];

(%)

Y- ifky >k
ky =
iJK2 =K ifko <k

The reflected plane waves either propagates along —x direction or decay along —x direction, so ky is
either positive real number or pure imaginary number with positive imaginary part.

So the fields in the free space are

H.(x,y) = expliCkox + k)] + f dep (k) expli(—kex + k)]:

1 (o)
Ey(x,y) = Eo_a)(kl expli(kLx + kyy)] — f dkkp(k) expli(—kyx + ky)]).

The field in the slits can be expressed as the summation of eigenmodes of the slits. Suppose @;;(x, y)

is the magnetic field of the jth eigenmodes in the ith slit. Then

O;(x,y) = ¢i;(y) expliBijx].
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The eigenmodes in a metallic slit have been calculated in the previous chapter. Normally
2
911(3) = A expliaij(y — y)] + Bexpl—iaijy — y)] and 2, + 55 = 5.
€Ho

Here A and B are two complex coeflicients; y = y; is the central line of the slit. If the metal is lossless,
«@;; and ;; are real numbers or pure imaginary numbers. Since the slits are infinitely long, there is no
output surface and obviously no reflection wave in the slits. So the eigenmodes either propagate in +x
direction or decays in +x direction. So f;; is either a positive real number or a pure imaginary number
with positive imaginary part.

So the fields in the slits are
H.(x,y) = Z Z A;joij(y) expliBijx];
i
1 .
Ey(x,y) = - Z Z A;jBij¢ij(y) expliB;x].
i

Next step I will use the boundary conditions along x = 0 to calculate the unknown coeflicients p(k)
and A,’ e

Using the field distribution in free space, E, — ZH; at (0,y) is

k . « ky ,
Ey(0,y) = ZnH:(0,y) =(EO—; — Zp) explikyy] - f dk( oo Zn)p(k) expliky].

Using the field distribution in the slit, we can get E, — ZH, at the entrance of a slit is
Ey(0,y) = ZuH.(0,9) = > > A; EL 7,060,
y L New J

H, and E, are continuous at the entrances of the slits, so is Ey, — ZH,. So when (0,y) is at the

entrance of a slit, we have

00

k : . ;
(E()_J_a) - Zm) exp[ik//y] - foo dk( + Zm)p(k) expliky] = Z ;Au(i—; - Zm)¢u(y)

k
_ )
Surface impedance boundary condition requires E\, — Z,,H, = 0 at the metal surface. So when (0, y)

is at the metal surface,

X

k .
+ Z)p(k) expliky] = 0.
_ €W

k . 0
(—l — Zy) explikyy] - f dk(
€W oo
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We can define naturally ¢;;(y) = 0 when the point (0, y) is not in the ith slit. So the equation

X

k . 0 k
(2L = Zyyenplityl - [ ak(
€W oo €W

+ Zn)p(k) explikyl = 3~ " Aij(f)_ii) = Zn)9ij ().
P

is correct for any y.

Using inverse Fourier transformation, we will get the expression of p(k).

(

€0

ky ke 1 Bij 0 .
o Znp) = (e = Zn)otk = kp) = 5 Z ;Aij(eo_w ) f _dygyexpl-iky]l @)
H. is continuous at the entrance of the slits, so when (0, y) at the entrance of a slit,
explikyy] + f dkp(k) explikyl = > " Aijij(). (4.2)
oo 5

Now considering an eigenmode in the i’th slit @y = ¢ () exp[iBy y x]. Suppose the upper and
lower boundaries of the #’th slitis y = wy and y = wy. Obviously when y € (w;, wy), Eq. (4.2) is correct.

So

W2

&7 0)(explikyy] + f * dkpk) explikyl)dy = f T, 0D Y A )dy.
- " £

wi —

Since we have defined ¢; 7 (y) = 0 when y ¢ (w, w1), we can extend the integral interval to (—oo, c0).
f ) ¢5 () explikyyldy + f "y f ) dkp(K); () explikyl = D" )" Aj; f g 70y, (4.3)
—oo —oo —oo ~ 5 —oo
The eigenmodes are orthogonal with each other,
[ apmmmar =0 itizros#

When i # i, the two slits don’t overlap, so ¢;ij,(y) = 0 when ¢l’.“j(y) is not zero and vice versa. When
i = 7, it is because of the orthogonality of eigenmodes of a waveguide. So the right term of Eq. (4.3)

equals
Z ZAijf Gy iy = A jr P jr;
i -

and here Py j is the norm square of ¢ j(y)

f_ ¢y iy (dy = Pi
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Now let’s focus on the second term in Eq. (4.3). Using Eq. (4.1) to replace p(k) in this term and
adjusting the order of the integration, we will get

mEQW

f dyf dkp(k)gbl](y)exp[zky] mf ¢l](y)exp[zk//y]d
00 'k _ /’
—ZZAij(ﬂij_meow)ﬂf dyf dy,‘ﬁ?y@)@j@)f dk%@q)};))]
i / —00 —00 —00 X m

It is easy to verify Z, eow = Zsko.
Finally for the jth eigenmode in the ith slit, Eq. (4.3) becomes
Folij - Z Z Apj By — Zsko)Gijirj = AijPij. (4.4)
il j/
Here I exchange the notations of i, j and i/, j* and

2%,
kJ_ + Zsk()’

lij = f ¢;,(v) explikyyldy;

Fo=

Pij = f ¢:;0)¢i(v)dy;
1 00 00
Gijiy = 5 I dy [ dy' ¢ ; 0")bij ()G, )

, , explik(y — y')]
G =G(y-y)= dk———_ ==
() o-=y) Lo ket Zoko

Eq. (4.4) is the key equations from the mode expansion method, which is a self-consistent linear
equations about A;;. There are infinite eigenmodes in a slit. Theoretically we have to include all
the eigenmodes and the summation of j° goes from O to co. In practice we can only include finite
eigenmodes in Eq. (4.4). For every eigenmode we consider, we can write a corresponding equation.
Then we can solve the coeflicients of such eigenmodes by Eq. (4.4) and get the field in the slits. The
field in the free space can be calculated by Eq. (4.1) furthermore.

For the equation corresponding to the eigenmode ¢;; in Eq. (4.4), the first term is the influence of
the incident wave; the term on the right describe the property of the eigenmode itself. The second term
is the most interesting one. I have shown the Green’s function G(y — y’) describes the surface wave
excited by an indentation in the previous chapter. So the second term describes the interaction between
two eigenmodes through the surface waves. This term confirms the key role of surface waves in the

transmission explicitly.
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The dynamic picture of surface waves is like this: the incident wave comes to the a defect at the
metal-dielectric interface and a surface wave is excited; then the surface wave propagates along the the
surface and evolves continuously; then the surface wave hits another defect and change the field distri-
bution in the second defect; some surface wave is scattered, some is reflected and the rest goes through
the defect and continue to propagate forwards; then the reflected and transmitted surface wave will
meet other defects and this process repeats. Actually Eq. (4.4) describes the multiple scattering process
of surface waves. The surface waves propagates forward and backward between defects. Finally they

will reach a stable state and Eq. (4.4) is the conditions that the equilibrium state satisfies.

4.3 Transmission into a 1D subwavelength grating with infinite length

4.3.1 Simplification of the general equations

In the previous section we have gotten the self-consistent linear equations about the field inside the
slits. These equations are quite general, regardless the widths and locations of the slits. If there are
m slits and we consider n eigenmodes in each slit. We have m X n unknown coefficients and Eq. (4.4)
provides m X n equations.

In this section I will study the transmission through a one-dimensional subwavelength grating illu-
minated by a normal incident plane wave. Suppose the period of the grating is a and the width of the
slits is W. We can simplify Eq. (4.4) dramatically in this special situation.

For a general case with m slits and n eigenmodes in each slit, there are m X n equations in Eq. (4.4).
A grating has an infinite number of slits. But they are all equivalent with each other under normal
incidence. The fields in one slit equal the field in all the other slits. So we only need write down the
equations corresponding the eigenmodes in one slit, which are n equations. We choose to study the

fields in the zeroth slit here.
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The incident angle is 8 = 0°, so k;, = ko and k; = 0. Then

— 2 .
1+ 7z

loj = f b0, (0dy;

Poy= [ 4,000y

Fo

1 ® “ e 7 4 7
Goiry =5 | dv [ e, (07 - ati = D)6
I neglect the first subscript of these variables which represents the index of the slits, and define

Aj=Ayj,Bj=Poj,1j = Ipj and P; = P;;, then for the jth eigenmode in the slit, Eq. (4.4) becomes

oo n—1

Folj— Z ZAj'(ﬁj' — Zko)Gojij = AjP;. (4.5)

i!=—o00 j'=

In Eq. (4.5), i’ goes from —oo to co since a grating has an infinite number of slits. I consider the
first n eigenmodes in a slit, so j* goes from 0 to n — 1 and there are n equations in Eq. (4.5). Here I am
studying the subwavelength slits. The slit is very narrow and there is only one propagation mode in the

slit. I will only consider the propagation mode here. n = 1 and j' changes from 0 to 0. Define

1 « « ! ok ’ «/ ’
Gy = Goo,i0 = o f dy f ay' ¢oo(( = 7' a)poo ()G, Y").
Then Eq. (4.5) becomes

Folo = Ao(Bo — Zko) ), Gy = AoPy. (4.6)

I/=—00

Eq. (4.6) includes only one equation and one unknown coefficient Ag, which can be solved directly.

~ Folo
Po — (Bo — Zsko) Y pe—co G

Here i’ is a dummy variable, so I change it to n for simplicity.

Ap

4.7)

The first eigenmode of a slit is @ (x, y) = ¢do(y) expliBox]. When the slit is bounded by PEC, 8y = kg
and ¢o(y) is a constant; I set ¢po(y) = 1 here. For a SIBC slit, if the slit is very narrow comparing with
the wavelength, ¢o(y) equals a constant approximately. If the metal is lossless, Sy > ko; otherwise it is
a complex number. In summary, suppose the central line of the zeroth slit is y = 0, we can assume the

basic eigenmode of a very narrow slit has

1 whenly| < W/2;
Po(y) =

0 otherwise.
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Then

w2
I() = f dy =
-W/2

W2
Py = f dy =W,

—W/2
w2 w2
G,=— dyf dy'G(y —y" + an);
)
eXP[lk(y )l
Gy = dk—————.
(y) foo kx + ZskO

We have analyzed G(y) detailed in the previous section. G(y) is an even function, so G, = G_,.
G(y) diverges when y goes to 0. So Gy is an integration around infinity. When y is away from 0, G(y) is
a smooth function and changes slowly. The variable of G(y) function changes from na — W to na + W
in the integration range of G,,. If n # 0, W <« A, we can assume G(y) = G(na) in this range. So

2

w
G, = —G(an) when n # 0.
2r

and

Z Gi = Go+2ZGn~G0+—ZG(na)

n=—o0o0

4.3.2 The PEC grating

In the previous section, I studied the properties of the non-dimensional Green’s function. Define

s = y/A, the non-dimensional Green’s function

g(s) = G(s) = G(y).
When the grating is made by PEC, we have Z; = 0 and the Green’s function is

k I
g(s) = f ke ZPE _ HOD rs) ~ (1 — e —
K2 — k2

§

So

ZG(na)z(l ’)Z f2mald zna/



Whena = A,

gG(n/l) ~(1- 2 \/—_

We know i \/? = 0o, SO |Z G(n/l)| =
n n=1

n=1
The coeflicient of the basic eigenmode is
Folo
Py — Bo[Go + W2/ 3.7 G(na)]

Ao = (4.8)

Obviously, when a = A, the denominator goes to infinity and Ag = 0. So no field in the slit and the
transmission is 0.

Fig. 4.2 shows the normalized transmission into a SIBC subwavelength grating with infinite length
illuminated by a normal incident plane wave. The incident wavelength is 4 = 560 nm and the slit width
of the grating is W = 30 nm. The transmission for different grating periods a is calculated. The analytic
results are calculated using Eq. (4.8) and the simulation results are obtained by COMSOL Multiphysics
simulations. We can find clearly when a/ A is an integer, the transmission has a dip. For most of periods,

the normalized transmission is bigger than 1, which means EOT.

4.3.3 The SIBC grating

When the grating is made by real metal, I use SIBC to replace the metal. The surface wave along the
metal surface has two parts: the surface plasmon and the residue quasicylindrical wave. The Green’s

function is

ky]
g(s) = f d—SPURIT o) + ge(s).

kS — k2 + Zkg

gs p(s) and gc(s) represent the surface plasmon and the residue quasicylindrical wave.

1271h,,s

Z
gsp(s) = 2mi— h
p

ge(s) = Vr(l - lz’ff(wlziys—ne2”Y~YErfc(\/2an))

Here h,, is a pole satisfying /1 — hf, +Z, =0, Y = Z2/(2i), Erfc is the complementary error function.

When s is big,

i ezZﬂ's

gc(s) =~ gcp(s) = Z; Vo on T
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Figure 4.2 The normalized transmission into a PEC subwavelength grating with
infinite length illuminated by a normal incident plane wave. The in-
cident wavelength is 4 = 560 nm and the slit width of the grating is
W =30 nm.
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If the metal is lossless, &, is a real number bigger than 1. Define Agp = A/h,, as the wavelength of

the surface plasmon. When a = Agp,

i G(na) = i Gnldgp) ~ 27ri% i 1+ i gc(nsgp).
n=1 n=1 P p=1 n=1

The first term on the right side of the approximation diverges obviously. To study the convergence
property of the second term, we can use the asymptotic expression of gc(s). Actually

x - i2mnss,

nZ (nYs;p)3/?
always converges. So summation on the right of the approximation diverges. Then the transmission is
Zero.

Fig. 4.3 shows the normalized transmission into a SIBC subwavelength grating with infinite length
illuminated by a normal incident plane wave. The geometry is the same as the PEC grating in Fig. 4.2;
the slit width is 30 nm and the grating period a changes. The simulation results in the upper and lower
figures of Fig. 4.3 are the same. The analytic curve in the upper figure of Fig. 4.3 is calculated used
the precise approximation g(s) ~ gsp(s) + gc(s), which agrees with the simulation curve very well. In
the lower figure, I neglect the residue quasicylindrical wave and assume the surface wave equals the
surface plasmon. When « is big, the distance between two neighboring slit is big; gc(s) becomes small
comparing with the surface plasmon in the far region; so the simulation and analytic curves agree with
each. When a is small, the distance between two neighboring slits is in near region; gc(s) becomes big
and the analytic results without gc(s) have big error. All the curves have dips and the curves agree with
each other very well. The dips are because the summation of the surface plasmon terms diverges. So
we can neglect gc(s) safely around the dips. At the dips a = ndgp; n is an integer.

Combining the results of the PEC and SIBC gratings, I can define the resonant wavelength of the

input surface of a metal grating as

a ..
Ar = —AJ1 =272 n is an integer.
n

Then the basic conclusion here is at the resonant wavelengths, the transmission is 0. Actually the the

resonant wavelengths are the wavelength that fulfill the momentum-matching conditions (42).
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Figure 4.3 The normalized transmission into a SIBC subwavelength grating with
infinite length illuminated by a normal incident plane wave. The inci-
dent wavelength is 4 = 560 nm, the relative permittivity of the metal is
€n = —7.92, and the slit width of the grating is W = 30 nm. The upper
and lower figures have the same simulation curve. In the upper curve,
the analytic curve is calculated using the approximation of the Green’s
function g(s) = gsp(s) + gc(s). The analytic curve in the lower figure
is calculated using the approximation g(s) ~ gs p(s).
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Figure 4.4 Schematic picture to of a metallic grating with a finite length.

4.4 Transmission through a 1D subwavelength grating with finite length

In reality a grating always has finite length. I will study these gratings in the section. I will study
not only the transmission dips but also peaks.

The schematic picture of the grating is shown in Fig. 4.4. a and W are the grating period and the
slit width, the same as in the previous sections. The slits are subwavelength, so W < A. d is the length

of the grating.

4.4.1 The input surface

I study the input surface first. I also use the mode expansion method. The fields before the grating
in free space are the same as the grating with an infinite length . The fields in the slits are different. We
have to consider the wave reflected by the output surface. We can assume the magnetic field in the slits

as

H_(x,y) = Aogo(y) expliBox] + Bogo(y) exp[—ifBox]. (4.9)
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This expression includes the forward- and backwards-propagating basic eigenmode of the slit. Ag and
By are unknown coefficients.
Considering the fields H, and E\,+Z,, H, along the input surface and repeating the analytic deduction

in the previous sections, we can get a similar equation about Ag and By.
Folo - [(Ag = Bo)Bo — (Ao + Bo)Zsko)| D Gy = (A + Bo)Po. (4.10)
n
At the resonant wavelengths of the input surface, };, G, diverges.
|(Ao — Bo)Bo — (Ao + Bo)Zsko)| = 0

is the only choice for Eq. (4.10). So at the resonant wavelengths, Ag and By satisfy

By _ Bo — Zsko
Ay Po+Zko

4.11)

If the metal is lossless, Z; is a pure imaginary number and Sy is a positive real number. So
|Bo/Agl = 1. It means the energy moving forward equals the energy moving backward. There is
no net transmission in the slits. So we get the same conclusion as the grating with an infinite length:
the transmission curve has dips at the resonant wavelengths.

I want to extend my analytic calculation to two-dimensional hole arrays in the future. A big dif-
ference between a one-dimensional grating and a two-dimensional hole array is that there exists at
least one propagation mode in a 1D slit but probably no propagation mode exists in a 2D hole. I will

calculate the net power flux carried by evanescent waves here.

Suppose H, is the only non-zero component of the magnetic field in a hole and

Hz(x’ Y, Z) = A0¢0(y’ Z) exp[iﬁ()x] + BO¢O(y’ Z) eXP[—iﬁox]-
Bo is a pure imaginary number here. Then E| is
Ey(x.3.2) = 2 {R0duty. 2 explibu] - Bug(r,2) expl-ifoxl),
The x component of the time-average Poynting vector is
1 ‘
<§S,>= ERe(Ey x H?)
1
= 51600, DI (14ol” ~ 1Bo)*)Reljfo]+
€W

1 . N 1 . .
——Io(y, 2)I* exp[2iBoxIRe[BoAoB}] + =———Ido(y, 2)I* exp[—2iBoxIRe[BoAg Bol.
26yw 2€6yw
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These terms 1/2€eyw, |¢o(y, 2%, (|Ao|2 - |BO)|2), exp[2iBox] and exp[—2iBpx] are real, so I take them out

of the Re function. We also have Re[By] = 0. So

1 . ) 1 . \
<Sy>=  ——lpo(y, 2)I* exp[2iBoxIRe[BoAoBj] + =———|po(y, 2)I* expl—2iBoxIRe[BoA Bol.
2€6yw 2epw

At the resonant wavelengths, Ay and By satisfy Eq. (4.11). Now Sy and Z; are pure imaginary
numbers and ko is a real number. Therefore By/Ay is a real number, so are AgB,, and AjBy. Then we
have Re[,BoAOBg] =0, Re[BOASBO] = 0, and finally < §', >= 0. I proved here that the transmission
curve has dips at the resonant wavelength even there are only evanescent modes existing in the holes of

a 2D hole arrays.

4.4.2 The output surface

Now I begin to study the output surface. The magnetic filed in the slit is

H,(x,y) = Cogo(y) expliBox] + Dodo(y) exp[—ifox]

and the field in the free space after the grating is

H (x,y) = f ) dkp(k) expli(kyx + ky)].

o0

I move the origin to the output surface and consider the boundary conditions along the surface, then

I get the similar equation again

[(Co = Do)Bo + (Co + Do)Zsko| Y Gow = (Co + Do)Po. (4.12)

At the resonant wavelengths of the output surface, Cy and Dy satisfy

Do _ Bo +Zsko
Co PBo—Zko

So the transmission is O at the resonant wavelengths again.

In this section I assume the medium before and after the grating is air, so the input surface and out-
put surface have the same resonant wavelengths. It is possible the two surfaces have different resonant
wavelengths. For example there is a subtract before the grating. I proved here the transmission is zero

at the resonant wavelengths of both the input and the output surfaces.
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4.4.3 Transmission through a finite-length grating

I have gotten the equations about the coefficients of the eigenmodes in the slit at the input and output
surface and discussed the transmission at the resonant wavelengths. Now I will put them together and

calculate the transmission at any wavelengths.

Define
Zsk 2 Gon — P

_ Bo+ 0) 2 Go 0 4.13)

(Bo — Zsko) X, Gon + Po

Foly

T = 4.14)

(Bo = Zsko) X, Gon + Po

Then

Ao - RBO =T; (415)
CoR = Do; (416)
Co = Ag expliBod]; “4.17)
Do = By expl—iBod]. (4.18)

Eq. (4.15) is equivalent to Eq. (4.10) and Eq. (4.16) is equivalent to Eq. (4.12). Eq. (4.17) connects Ag
and Cy since I move the origin when I deduce Eq. (4.12), so does Eq. (4.18).
Solve these equations and I get the transmission through the finite-length grating is

1_|R|2 2

1 - €2id'BOR2

I BoW
1— R koa

Transmission = 4.19)

T and R are functions of Z;, a and W, which are the surface parameters. The only term contain the
grating length d is the term at the end of the expression between the absolute value function, which is
a typical term of the Fabry-Pérot oscillation term. Its value oscillates with d between 1 and a positive
number smaller than 1. Fixing the surface parameters and the incident wavelength, the maximum

transmission a grating can reach by changing the grating length is

TP BoW
1-RP koa

Maximum transmission = (4.20)

From now on, the maximum transmission is defined as the maximum transmission which can be

reached by scanning the grating length and fixing all other parameters. Fig. 4.5 shows the maximum
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Figure 4.5 The maximum transmission a PEC grating can reach by changing the
grating length at different grating periods, The slit width is W = 30 nm
and the incident wavelength is 4 = 560 nm.
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Figure 4.6 The analytic maximum transmission a PEC grating can reach by
changing the grating length. The incident wavelength is 4 = 560 nm.
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Figure 4.7 The COMSOL Multiphysics simulation results of the maximum trans-
mission a SIBC grating can reach by changing the grating length at
different grating periods, The slit width is W = 30 nm and the incident
wavelength is 4 = 560 nm. The relative permittivity of the metal is
€n=—7192
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transmission of a PEC grating. The analytic curve is calculated by Eq. (4.20). To get the simulation
results, I fixed a and W and did many simulations for different d and picked the maximum transmission.

When a < A, the maximum transmission is 1 and don’t change with a. When A = a, the incident
wavelength is a resonant wavelength of the surfaces; the transmission is always O regardless the grating
length, so the maximum transmission is 0, which is verified by the analytic and simulation results in
Fig. 4.5.

When a > A, the maximum transmission increases with a smoothly and stabilizes at 0.3. A = a
is also a Rayleigh wavelength of the grating at normal incidence (70; 71). The Rayleigh wavelengths
is the wavelengths that the diffracted wave at another order grazes the surface of the grating. Suppose
the medium around the grating is air and the incident plane wave has parallel wavevector k; (parallel
with the grating surface), the parallel wavevector of the nth order diffracted wave is k; + n2m/a. The
nth diffracted wave grazes the grating surface when k; + n2x/a = 2rn/A, which defines the Rayleigh
wavelengths. Obviously A = a is a Rayleigh wavelength at normal incidence. When a > A, the reflected
fields have more than one propagation modes. More possible channels open for incident energy, so the
maximum transmission becomes small.

Fig. 4.6 shows the analytical maximum transmission of PEC grating with different slit widths.
When the gratings period increase to a resonant wavelength, the maximum transmission keeps stable.
At the resonant wavelength, the maximum transmission jumps sharply to 0. Then it increases smoothly
and reach another stable value until the period reaches another resonant wavelengths. The stable values
decrease with the increment of the grating period because of the emergence of the new propagation
modes.

The most interesting property in Fig. 4.6 is that the maximum transmission doesn’t change with the
slit width. The curve of W = 30 nm overlaps with the curve W = 5 nm at any grating period. So we
can use very narrow slit to boost the normalized transmission to an arbitrarily big value. So EOT can
happen at any wavelengths other than the resonant wavelengths of the input and output surfaces

Fig. 4.7 shows the maximum transmission through a SIBC grating. The resonant wavelengths are
different from the Rayleigh wavelength here. At the resonant wavelength, the maximum transmission

is 0. At the Rayleigh wavelength, the maximum transmission jumps sharply to a smaller but non-zero
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Figure 4.8 Analytic transmission through a PEC grating with a finite length.The
incident wavelength is 4 = 560 nm.

value. The difference between the two kinds of wavelengths is very clear here.

4.4.4 Effect of hole shapes

Fig. 4.6 shows the maximum transmission doesn’t change with the slit width and when a < 4, it
doesn’t change with the grating period too. But the curves of the transmission vs. the grating length do
change with a and W. I plot four transmission curves through a PEC grating in Fig. 4.8. Through the
height of the transmission peak is 1 for each curve, the locations of the peaks changes with a and W.

Based on Eq. (4.20), the location of the peak is decided by R, and more precisely, the phase of R.
R is defined in Eq. (4.13).

_ Bo + Zsko) 2.0 Gon — Po _ko 2nGon =W
Bo — Zsko) 20 Gon + Py ko 22, Gon + W
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and

w/2 w/2 W2 ©
Z G, f G(y —y)dydy + — Z G(na).
a n=1

-Wj2 w/2

Here I use a subwavelength PEC grating, so Pg = W, Z; = 0 and Sy = ko.

When I change a and fix W, the only thing changed in the expression of R is 3,7 | G(na). When a
is away from the resonant wavelengths, this summation converges and its order of magnitude is around
or smaller than 1. When W decreases, both terms in the expression of ), G, decrease with W. But
the second term deceases quickly. So when W is very small, the location of the peak is not sensible to
a. Fig. 4.8 verifies it: The dashed lines have smaller W, so the distance between the peaks of the two
dashed lines is smaller than the distance of the peaks of the two solid lines.

When W changes, every term in the expressions of R and }.7° | G(na) changes and they change as

different order of W. So the location of the peak changes with W.

4.4.5 Oblique incidence

All the discussion above is based on the normal incidence. Actually the mode expansion method
can be extended to oblique incidence easily.
I begin from the general equations about the coefficients of the eigenmodes in the slits of an

infinitely-long grating in section 4.2. For the nth eigenmode in the mth slit, we have the equation

o N-1

F Imn - Z Z Am/n’ (ﬁm’n' - ZskO)Gmn,m’n’ = Amann- (421)
m’=—co n’=0
and
2k
Fo=————
kJ_ + Zsk()

= [ G extityiay
Py = f Brn ) Dmn ()

1 « « ! gk ’ ’
Gmn,m’n' = %f dyf dy ¢m’n’(y YD (VG (Y, Y');

, , explik(y — y')]
- V) = dk——"_~ 72
Gy,Y)=Gly-Yy") LXJ ket Zok

The slits are very narrow comparing with the incident wavelength, so N = 1 and ¢,,,0(y) = 1 when

y is inside the mth slit. @,,0(x,y) = ¢,,0(y) expliBnox] is the basic eigenmode in the mth slit. Since all



68

the slits have the same shape, ,,0 don’t change with m. It is easy to verify P, is independent with m.
So I use Sy to replace S0, Po to replace P,,9. Define Iog = Ip and Agg = Ag.
ma+W/2
Lo = f explikyyldy = explikymally.
ma—W/2
and the coefficients of the eigenmodes satisfy A,,0 = exp[ikyma]Ag because of Bloch’s theorem. Finally

Eq. (4.21) becomes an equation about Ag

F()I() - Ao(ﬂo - Zsk()) Z exp[ik//m'a]Goo,m/O = A()P(). (4.22)

m’=—o0
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Define Gggmo = G, then when m # 0 and Z; # 0,

Ao (4.23)
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p

I neglect the residue quasicylindrical wave term in the Green’s function of a metallic surface since its

summation always converges.

[

Z explikymalG,,

m=—00

= Go+ ) explikymalGy + ) expl—ikymalGy
m=1 m=1
W2Z,i _ L
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The incident angle is 6, so ky = 2nsind/A. When sin @+ h, = nd/a (n is an integer), the summation
of the second term diverges; when —siné + h, = nd/a, the third term diverges. So we can define Ag,

the resonant wavelength of a grating surface at oblique incident as
Ag = a(h, £ sin6)/n; n is an integer.

Then the old conclusion is still correct: The transmission is 0 when the incident wavelength is a resonant

wavelength.

When the metal is an PEC, h, = 1. We can get the same conclusion by repeating the similar

calculations.



69

We can continue to discuss the transmission through a finitely-long grating and study the locations
of the peaks. The maths is exactly the same and all the basic conclusions still hold. So I neglect further

discussion here.

4.4.6 Conclusion

In this section we developed a theory about extraordinary transmission through a subwavelength
metallic grating from the first principles using mode expansion method. The theory includes three
parts: the Green’s function expression of surface waves; multiple scattering of surface waves and the

Fabry-Pérot interference between input and output surfaces. The basic conclusions include
1. The transmission has dips at the resonant wavelengths of the input and output surfaces.
2. EOT can happen at any wavelengths other than the resonant wavelengths.

3. Surface waves connects the slits in the grating and play important roles at both transmission dips

and peaks.

4. The transmission peaks result from the Fabry-Pérot interference between the input and output

surfaces.

5. The peak wavelengths are decided by the details of the structures, such as the the grating period,

the slit width and the grating length.

4.5 Application of the extraordinary transmission theory

In the previous section I present a EOT theory. Now I will use my theory to explain the figures
from others’ papers.

In the previous section I always fix the incident wavelength plot the transmission versus a geometry
parameter. It is convenient for analytic calculations and it makes the physics underneath clear. In my
theory the slits are connected by the surface waves, which is decided by the surface parameters such as
a and W; the input and output surface are connected by the eigenmodes in the slit, which are decided

by W and d. So It is necessary to study the geometry parameters separately.
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However experimentalists prefer keeping the grating unchanged and running the wavelength scan.
Scaling law says that changing the wavelength is equivalent with fixing the wavelength and changing
all the geometry parameters proportionally, if we neglect the wavelength dependence of the relative

permittivity of the metal. So the surface resonance and the Fabry-Pérot resonance mix inevitably.

4.5.1 Phys. Rev. Lett. 83, 2845 (1999) by J. A. Porto el al.

The paper “Transmission Resonances on Metallic Gratings with Very Narrow Slits” by J. A. Porto,
F.J. Garcia-Vidal and J. B. Pendry presented a theoretical analysis about EOT through a metallic grating
(66). They calculated the transmission spectrum by using transfer matrix formalism based on the mode
expansion method. The key conclusion of he paper is that there are two kinds of transmission peaks:
the peak coming from the the excitation of coupled surface plasmon on both surfaces of the grating and
the peak coming from the excitation of waveguide resonances located in the slits.

Fig. 4.9 is excerpted from the the paper. The top part shows the grating under study. The authors
used different notations. In their paper, d is the period of the grating; a is the width of the slits; 4 is
the length of the grating or the thickness of the metallic film. The bottom part shows the transmission
spectra when the grating period is 3.5 um, slit width is 0.5 um. Their study focused on the transmission
peaks. For example, when the thickness of the film is 3 um, the peak at 1 = 4 ym comes from
the coupled surface plasmon resonance and the the peak at 4 ~ 7.5 ym comes from the waveguide
resonance.

Now I will use my theory to explain the transmission spectra. First though the locations of the
peaks change with the thickness of the film, the locations of the dips don’t change. We can find dips at
A~ 3.5 umand A ~ 1.8 um, which are the resonant wavelengths of the input and output surfaces.

Second let’s focus on the peaks. As I have discussed, the peaks appear when R exp[ifoh] is a real
number. When A changes, both R and Sy changes. Sy always changes smoothly with the wavelength.
We can assume exp[iBoh] is a constant in a narrow region around the resonant wavelengths. But because
of the resonance, R changes rapidly in this region and cover a broad phase interval. So for most of 4
value, the peak condition will be fulfilled around the resonant wavelength. So we can always find a

peak around the resonant wavelength. But it is still possible that no peak appears around the resonant
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Figures excerpted from PRL 83, 2845 (1999). (Top) Schematic rep-
resentation of the metallic grating studied in the paper. (Below)
Zero-order transmission through the grating vacuum at normal inci-
dence for different values of the grating length. The grating period is
d = 3.5 um and the slit width is a = 0.5 um.
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wavelength since the phase of R don’t cover the whole 2r interval. When /2 = 0.2 ym and 2 um, there
is no peak around the resonant wavelength. When £ is big, the phase interval covered by exp[iBo/]
becomes bigger, so more peaks appear at the wavelengths away from the resonant wavelength.

Around the resonant wavelength, the phase of R changes very quickly with the wavelength, so
the linewidths of the peaks are very narrow. Away form resonant wavelength, both R and Sy changes
smoothly, so the linewidths of the peaks are wide.

The heights of the peaks also agree with my theory. The peak height increases when the peak wave-
length increases from the the resonant wavelength. Actually the peak reaches its full height quickly.
The transmission don’t reach 100% here is because the metal is lossy in this paper. When A is smaller
than the grating period, the peaks become low.

In conclusion, the simulation results presented in this paper agree with my theory perfectly.

4.5.2 Phys. Rev. Lett. 92, 183901 (2004) by K. J. Klein Koerkamp el al.

The paper “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays
of Subwavelength Holes” by K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L.
Kuipers discussed the effect of hole shapes (72). The authors measured the transmission through the
periodic subwavelength hole arrays in a gold film. They verified, experimentally and numerically, that
the shape of the holes influence not only the heights but also the central wavelengths of the normalized
transmission peaks.

The top figures in Fig. 4.10 shows the focused ion beam images of two periodic subwavelength
hole arrays used in the experiments. The bottom figure of Fig. 4.10 is the normalized transmission
spectra calculated by the Fourier modal method. Three hole shapes were studied: circular holes with a
diameter of 190 nm, rectangles holes of 150 nm X 225 nm and of 75 nm X 225 nm. The lattice constant
is 452 nm x 425 nm. The films were deposited on glass substrate.

I have analyzed the effect of hole shapes analytically, so the main conclusion about the strong in-
fluence of holes shapes presented in this paper is not very surprising. Now let’s analyze the normalized

transmission curves in Fig. 4.10 quantitatively. Again, we find the transmission dips don’t change with



73

L L

b b

array of
——circles
254 ... 150 x 225 nm* g | pol.
- S 75X 225NM°
S 2.0
17
D .
£ 1.5 &
= P
c o S
Q N ," E
0.5 S "
(1,1). (1,0
00/ N e
500 600 700 800

900 100
wavelength (nm)

Figure 4.10 Figures excerpted from PRL 92, 183901 (2004). (Top) Images of
two periodic hole arrays used. Both arrays have period d = 425 nm.
(a) Circular holes with a diameter of 190 nm (b) Rectangular holes
of 75 nm x 225 nm. (Below) Calculated normalized transmission of
three different subwavelength periodic hole arrays. E field of the in-
cident wave was perpendicular to the long axis of the rectangles.
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the hole shapes. Since 2D hole array is used here instead of the 1D slits, the resonant wavelengths are

= —2 _ J1-22
ViZ + 2

Here Ay is the wavelength in free space; n is the refractive index of the substrate; a is the lattice constant
since the hole array has a square lattice. The first dip is at 4 & 700 nm. So the second dip should be
around 700 nm/ V2 = 495 nm and we can find this dip in Fig. 4.10 too.

The height of the normalized transmission peaks doubles when the area of the rectangle holes is
halved. So the heights of the transmission peaks equal each other for the rectangle hole shapes, which
agrees with my theory. The height of the peaks of the circular holes is very low. The authors of the
paper contributed it to the absence of the shape resonances in the circular holes. Based on my theory,
another possible explanation is that the peak is too close to the resonance wavelengths of the surfaces.
Because no propagation modes exist in the holes, I can not assert which explanation is more reasonable.
Further study is necessary here. My theory cannot explain the heights of the peaks between 500 nm
and 700 nm.

In conclusion, the experimental and numerical work on the EOT through 2D subwavelength holes
in this paper confirms (1) the transmission is low at the resonant wavelengths of the input and output

surfaces and (2) the hole shapes influence the transmission peaks substantially in a complex way.

4.5.3 Phys. Rev. Lett. 96, 233901 (2006) by Z. Ruan and M. Qiu

The paper “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of
Localized Waveguide Resonances” by Z. Ruan and M. Qiu analyzed the transmission through a square
lattice of rectangle air holes in a free standing PEC film, which is shown in Fig. 4.11 (73). In this
paper, the holes are always 0.9a X 0.2a and the lattice constant d has three possible values: 1.0a,1.1a
and 1.2a. The thickness of the film is 7 = 0.2a. Here a is an arbitrary length unit. The incoming wave
is normal incident plane wave with electric field along the short edge of the rectangular holes. The
normalized transmission was calculated by the full-vectorial 3D finite-difference time-domain method
and is shown in Fig. 4.12.

As Fig. 4.11 shows, the rectangle holes are narrow along y direction and long along x direction, so

the open area is quite close to 2D slit. The cutoff wavelength of the basic mode in the hole is 1.8a and
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Figure 4.11 A figure excerpted from PRL 96, 233901 (2006). Schematic repre-
sentation of a PEC film with a periodic square array consisting of
rectangular air holes studied in the paper.

the cutoff frequency is 0.556(c/a). So there exists propagate mode in the mode at resonant frequencies
of the surfaces, which is also similar to the case of slits. Then it is not surprising that they got the
similar normalized transmission curves at resonant frequencies. We can find a dip and a peak there
and their location are decided by the lattice constants. We can also find peaks away from the resonant
wavelengths and their locations are not sensitive to the lattice constants. Through the heights of the
normalized transmission peaks are different, the heights of the transmission peaks are all close to 1. All
these facts agree with my theory.

We should also the peaks away from the resonant frequencies are close to the cutoff frequencies.
This can also be explain be my theory. The peak condition is R exp[iBo/] is real. When the wavelength
is far away the resonant wavelengths and A < A2 (here A is the area of the hole), R ~ —1. At the
cutoff wavelength, By = 0,. so Rexp[iBoh] ~ —1 is a real number. Then we get a peak. When the long
edge of the rectangle hole becomes longer, the hole converges to a slit, the cutoff wavelength becomes
longer too, so the peak appear at longer wavelength and the transmission will increase monotonically
when the wavelength is not so large. The curves in Fig. 4.9 show the monotonic increment when

h=0.2,0.6,1.2 um.
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Figure 4.12 Figures from excerpted PRL 96, 233901 (2006). (Top) Normalized
transmission through a PEC film with periodic hole arrays for differ-
ent lattice constants d. The thickness of the film is 0.2a. The size of
the hole is 0.9a x 0.2a. (Below) The mean value of the normalized
transmission of the random sample with different cell size. The solid
purple line shows the normalized transmission of the periodic hole
array with the lattice constant d = 1.0a. The hole size of the random
sample is still 0.9a x 0.2a. The filling ratio of the holes equal to that
of the periodic array. The inset shows a example of a sample with 25
randomly distributed holes in a 5a X 5a cell.
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This paper also studied the transmission when the holes are randomly distributed. The normalized
transmission curves are shown in the bottom of Fig. 4.12. Comparing with the curve of the periodic
holes, the peak and the dip at resonant frequency disappear and the peak at the cutoff frequency remains.
This result is very easy to understand. When the holes distribute randomly, the summation of Green’s
function terms will not go to infinity. So the surface wave resonance disappears. When the area of the
holes is small, R is always close to 1, so the peak appear at the cutoff frequency only.

I have to emphasize here though the transmission peaks come from the Fabry-Pérot resonance of
the input and output surfaces, it doesn’t mean the surface waves are not important when the peaks are
away from the resonant wavelengths. Physically, surface waves collect the energy hitting the surface
and bring it to the holes. Mathematically, the maximum transmission is decided by T and R which has
strong relations with the surface waves. So surface wave is important. On the other side, the peak close
to the resonant wavelength also comes from the Fabry-Pérot resonance of the input and output surfaces.

The surface wave resonance will always bring a transmission dip.

4.5.4 Conclusion

In this section I used my EOT theory to explain the simulation results shown in literatures suc-
cessfully. In the future I like to extend my theory to 2D periodic holes cases. As the second paper I

analyzed in the section shows, the 2D periodic hole array will bring us new physics.
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CHAPTER 5. Beaming

5.1 Introduction of beaming

5.2 Beaming of two-layer dielectric rods

In the first chapter I have illuminated the principle of beaming using a photonic crystal with a sur-
face layer and a grating layer. However we have discovered that the photonic crystal is not necessary
for surface modes and a single dielectric layer support surface mode too (39). So theoretically a similar
beaming phenomenon will happen for a two-layer structure: one surface layer to support the surface
modes and one grating layer to couple the surface modes to radiation modes. In this section, I demon-
strate the converging property of the two-layer structure. Furthermore, by putting several two-layer

structure in series, we can sustain the beaming to long distances.

5.2.1 A two-layer structure

The 2D two-layer structure is shown in Fig. 5.1(a). The top layer is the surface layer. It consists of
41 circular rods with diameter D = 1.83 mm and lattice constant a = 11 mm. The bottom layer is the
grating layer with 21 square rods with the side length L = 3.15 mm; the lattice constant is b = 2a = 22
mm. The distance between the two layers is a. All the rods are made of alumina and the permittivity is
9.8.

The commercial finite element method software COMSOL Multiphysics was used to simulate the
system. The simulation area with n structures is shown in Fig. 5.1(b). A Gaussian beam with TM
polarization (the electric field parallel to the dielectric rods) is incident normally from the left boundary.
The waist of the Gaussian beam is 34. The power flow through the red lines given in Fig. 5.1(b) is

calculated by integrating the time average normal component of the Poynting vector along the lines.
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Figure 5.1 (a) A schematic drawing of the two-layer structure and (b) a schematic
drawing of the simulation area.

The power flow through the red line right after the ith structure is defined as 7; and the power flow
through the short red line on the right boundary as BEAM (see Fig. 5.1(b)). The length of the short red
line is 14a. Suppose the total input power is I. T},/I describes the transmission after the n structures.

Then we define the distribution factor as

BEAM
Distribution factor = T

n

The distribution factor definition is just a simple quantitative index of the directionality of the output
field through the n structures. The space between the last long red line and the right boundary, shown
in Fig. 5.1(b), is 99a X 54a for all the simulations. This way we can compare the distribution factors
between different simulations.

First the converging ability of a single two-layer structure is studied. We compare four cases: empty
simulation area, a surface layer only, a grating layer only and a two-layer structure. The simulation
results are shown in Fig. 5.2 when incident frequency is between 9 GHz to 13 GHz. The transmission
and the distribution factor curves are shown on the left column. When the frequency is above 13 GHz,
the transmission field has more than one beams, which is against my wish to improve the directionality.

When the frequency is below 9 GHz, the distribution factor curves after the rods converge to the empty
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area curve.In Fig. 5.2(a), the simulation area is empty, so the transmission is one. In Fig. 5.2(c), the
surface layer decreases the transmission a little bit but the distribution factor curve overlaps the empty
area curve. In Fig. 5.2(e), the distribution factor curve of the grating layer is close to the empty area
curve when the frequency is small. It has a dip when frequency is around 12.7 GHz. The corresponding
wavelength is 23.6 mm, which is close to b = 22 mm, the period of the grating layer. So the interaction
between the field and the rods is strong. But this interaction don’t improve the directionality of the
transmission field. The two-layer structure has a much different distribution factor curve (Fig. 5.2(g)).
The curve has two dips which are transmission dips too. The interesting frequency region is around 11.5
GHz. The transmission fields in this frequency region have big distribution factors. When f = 11.59
GHz, the distribution factor reach a maximum value of 0.863. The transmission is acceptable too, it’s
around 0.87.

To understand how the directionality is improved, the electric field along the z-axis, E,, at the
red line after the rods (see Fig. 5.1(b)) at f = 11.59 GHz is plotted on the right column of Fig. 5.2.
The rods of the surface layer are located at y = —20a,—19a,--- ,20a and of the grating layer are
y = —20a,—18a,--- ,20a. The field on the right column of Fig. 5.2 is basically the superposition
of the transmission Gaussian beam and some quick oscillations. The field after the surface layer has
small oscillation. It means the interaction is weak. The oscillation is the surface state which decays
exponentially along x direction. Though the existence of the surface layer reduces the transmission a
little bit, it cannot change the distribution factor (see Fig. 5.2(c)). Fig. 5.2(f) and Fig. 5.2(h) shows the
strong interaction between the field and the rods. Comparing the Gaussian envelopes of the fields in
the two figures, we can find the envelope in Fig. 5.2(f) has the same width as the incident beam and
Fig. 5.2(h) is wider. It is because the surface layer of the two-layer structure supports the surface states.
The surface states will propagate along the surface layer and results in wider field distribution. This
wider field distribution will bring us better directionality.

The electric field distributions of the empty simulation area and the simulation area with the two-
layer structure at f = 11.59 GHz are shown in fig. 5.3. Fig.5.3(a) shows a typical 2D Gaussian beam
in free space. The beam waist is at the the input surface and the width of the beam grows during

the propagation. Comparing with Fig. 5.3(a), we can find that the width of the beam in fig.5.3(b)
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Figure 5.2 Simulation results of empty area (a, b), a surface layer only (c, d),
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column shows how the transmission and the distribution factor change
with frequency. The right column shows the electric field along the red
line right after the rods when f = 11.59 GHz.
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Figure 5.3 E, distribution of the simulation area (a) without and (b) with a
two-layer structure when f = 11.59 GHz.
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Figure 5.4 Distribution factors of fields after the two-layer structure illuminated
by by oblique Gaussian beams. ¢ is the incident angle.

almost doesn’t change during the propagation. We can also see the surface mode along the structure in
Fig. 5.3(b). The figure shows the converging ability of the two-layer structure clearly. The converging
ability does not seems very strong here. It is because that the Gaussian beam has good directionality
already.

The converging of oblique incident Gaussian beams is also studied. The distribution factors of the
fields after the two-layer structure when the incident angle ¢ equals 0°,5°, 10° are shown in Fig. 5.4.
The two-layer structure improves the directionality of transmitted field when the incident angle is small.
The greatest improvement happens at normal incidence. The maximum distribution factors appear at
f =11.64 GHz, 10.92 GHz and 10.40 GHz respectively. The band structure of the surface layer is shown
in Fig. 5.5. When we fix the incident angle and scan the frequencies, the wave vector component of
the incident wave parallel with the two-layer structure is 27 f sin ¢/ c; here c is the speed of light in free

space. Considering the function of the grating layer, the wavevectors of the surface modes which can
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be excited by the incident wave are ky = m/a — 2nf sin ¢/c. This relation at the three incident angles
is also plotted in Fig. 5.5. The frequencies of the crossing points are 11.97 GHz, 11.60 GHz and 11.06
GHz when ¢ = 0°,5°,10°. These frequencies decease when the incident angles increase, same as the
maximum distribution factor frequencies. It supports the explanation that surface modes improve the
directionality. Actually the gaps between the two frequencies are around 0.3 GHz at the three incident
angles. We can contribute the gap to the influence of the grating layer; the band structure of the surface
layer is calculated without the grating layer.

From Fig. 5.4 we can find the maximum distribution factors decrease with the increasing incident
angles. The band structure of the surface layer provided a possible explanation. As Fig. 5.5 shows,
when incident angle increases, the crossing points come closer to the light line. It means that the surface
mode become flat along its decaying direction and difficult to be excited strongly. So the distribution
factors decease.

Fig. 5.4 also shows the distribution factors become small then the frequencies are big. It is because
more than one propagation modes existing after the two-layer structure when frequency is big. Given
incident angle ¢, the second propagation mode emerges when

c 1
f = T
2a 1l +sin¢
The critic frequencies at the three incident angle 0°, 5°, 10° are 13.6 GHz, 12.5 GHz and 11.6 GHz
respectively, which agree with the Fig. 5.4 quite well.

The transmission of the oblique Gaussian beam through the two-layer structure is shown in Fig. 5.6.

The transmission peak overlaps with the distribution factor peak only when ¢ = 0°.

5.2.2 More two-layer structures

We have understood the converging ability of a two-layer structure. Now I begin to examine the
two two-layer structures in the simulation area. The working frequency is f = 11.59 GHz, the optimal
converging frequency of the single structure. Fig. 5.7 shows the transmission and the distribution factor
of the field as a function of the distance between the two structures d. The transmission curve is periodic
with a 4/2 period. The curve can be explained easily by the one mode assumption. Let’s consider the

simplest case: the incidence of a Gaussian beam to a single structure. Suppose the incidence, reflection
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and transmission electric fields are ®;(x,y), @,(x,y) and ®,(x,y). The one mode assumption says that
D;(x,y) = ¢(y)exp(ikx) and D,(x,y) = Ad(y) exp(—ikx), @;(x,y) = Bp(y) exp(ikx). Here k = 2nf/c
(c is the speed of light), the reflection A and transmission B coefficients are complex numbers. Only
one mode exists during the propagation, reflection and transmission. In fact, the Gaussian beam will
diverge slowly during the propagation. But if the free length of space is short, like 204, the divergence
is small and the lateral profile don’t change too much. So ®;(x,y) = ¢(y) exp(ikx). Then the Gaussian
beam hits the structure. The structure converges the beam and cancels the diverging trend during the
propagation. So the reflection and transmission fields have a similar profile.

Under the one mode assumption the transmission matrix of the system is a 2 X 2 matrix. Suppose
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the transmission matrix of one two-layer structure is M and the propagation transmission matrix is P,

mip mip exp(ikd) 0
M= P =

mpy My 0 exp(—ikd)

Then the transmission 7 after the two structures is (74)

mn = 1+ m?, exp(2ikd)

G.1D

Use this equation to fit the simulation transmission, we get mj; = 1.058—0.279i. The fitted transmission
is also shown in Fig. 5.7.

The distribution factor curve in Fig. 5.7 is a periodic function too. The interesting property of the
curve is that its oscillation amplitude is small. This is a natural result of the one mode assumption. The
field after the last structure is always proportional to ¢(y) exp(ikx). So the distribution factor shouldn’t
change as we increase the distance d.

When d = 18.294, 18.791,19.294, - - -, the transmission is close to 1. So the transmission field
is Oy(x,y) =~ Bp(y)exp(ikx) and |B| ~ 1. The only difference between the transmission field and the
incident field is a phase factor. The two structures are transparent to the incident field. Then we can
put more structures after the transmission beam to repeat the pattern. A single mode waveguide for
the Gaussian beam is formed by the equidistant two-layer structures. Fig. 5.8 shows the time average
energy density distributions of the waveguide. We can see clearly that the width of the beam does
not change during the propagation. After 8 structures (which corresponds to distance of 1914) , the
transmission is 0.930 and the distribution factor is 0.874. Some power is lost because of the surface

mode but most of the power is guided.

5.2.3 Conclusion

In previous studies, beaming is always referred to the directionality of the output field of a channel.
The channel could be a hole in a metal film(46), or a subwavelength metal slit(53; 54; 55; 56), or a line
defect in a 2D photonic crystal(48; 49; 50; 51; 52). In fact, beaming can have broader meaning based on
the source. Our design is a good example of Gaussian beam beaming; others’ designs work for channel

modes. The beaming light from a subwavelength channel is similar to a Gaussian beam(55; 48). The
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Figure 5.8 Time average energy density distribution when the simulation area has
2,4,6 and 8 two-layer structure. The frequency is f = 11.59 GHz and
the distance between two adjacent structure is d = 21.2941.

two-layer structure provides a method to extend the beaming for long distances. Finding an effective
beaming device for a point source is an interesting problem.

Another problem of the beaming is the transmission. It is difficult to get high transmission and good
beaming simultaneously. In our design, a single structure gives us good beaming and the Fabry-Pérot
interference between two structures guarantees the total transmission. The two problems decouple.
We can solve them separately. The two-layer structure also has the advantage in theoretical analysis.
Comparing with the beaming of the photonic crystal channel, the two-layer structure gives similar
results with much fewer rods. The complex channel modes are replaced by the simple Gaussian beam.
The theoretical analysis will be much simpler.

In conclusion, we present a numerical analysis of the beaming and transmission of a Gaussian
beam through a two-layer structure. This structure does not allow the Gaussian beam to diverge, and
also gives a high transmission. By arranging several two-layer structures one can easily sustain the
beaming and the high transmission for very large distances, of the order of 2004. This simple design of

beaming and transmission has advantage both in the theoretical analysis and in practical applications.
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5.3 Control of beaming angles

5.3.1 Oblique beaming

Beside the research on forward beaming mentioned above, oblique beaming was also demonstrated
using either metallic structures (75; 76) or photonic crystals (77). Control of the beaming angle is
important in beaming research, which will give us much more flexibility in applications. I will present
an efficient method to design a metallic structure which will steer the emitted field to any given angle

here. I find the best beaming actually happens not at the forward direction but an oblique direction.

5.3.2 Introduction of a metallic beaming structure

Fig. 5.9 shows the structure studied here: a metallic subwavelength slit surrounded by grooves. It is
an important plasmonic structure (78). As a two-dimensional structure, it can be solved analytically and
serves as a theoretical model to understand the physics of beaming (53). It is a multi-function beaming
structure. It can achieve both intermediate-field beaming (55) and far-field beaming (53) , specially
far-field oblique beaming which I study here. The near-field focusing was also implemented by similar
structures (79). Adding grooves along input surface will increase transmission dramatically (65; 80), so
this structure can improve transmission and directionality of the output field simultaneously. Recently
this structure was integrated with a semiconductor laser to converge the emitted fields (81).

Surface impedance boundary condition is used to replace the metal surface. Under TE polarization,

the SIBC along x = 0 in Fig. 5.9 becomes
Ey,+ZH, = 0.

Define F = E, + ZH,. From now on in this section, the word “field “ means E, + ZH,. We can

define the far-field angular transmission P(6) by the equation
P(9) = lim r|S ().
r—oo

where § (P is the Poynting vector at the point 7 = (rsin @, r cos 6). Given the field along x = 0, P(6)

can be calculated as

k 0
P(6) = ko cos

2 0 R . ,
sy AV F O, 7y, —ikg sin 6y’ . )
27 cosG+Z/Zo’ LO Y FQ©,Y)e (5-2)
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Figure 5.9 Schematic representation of the subwavelength metal slit surrounded
by upper and lower periodic grooves.
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where kg and Z; are the wave vector and the impedance in free space. Then the total transmission 7 is
/2
T = f P(6)do,
-n/2
and the normalized far-field angular transmission /(8) = P(6)/T is used to describe the far-field distri-
bution.

Because of the surface impedance boundary condition, the filed along x = 0 is zero except the
opening area of the slit and grooves. Since the widths of of the indentations (slit and grooves) are
much smaller than the incident wavelength, we assume the field is a constant inside an indentation and
Eq. (5.2) is basically the summation of several point sources. We notate the field at the ith grooves as
Fj; positive i means the groove above the slit, negative i means the groove below the slit and i = 0
represents the slit.

By changing the geometry parameters of the grooves, we can change the field inside the grooves
and control the output field distribution furthermore. It is impossible to exhaust all possible choices
of grooves. We focus on the periodic grooves here. As Fig. 5.9 shows, all the grooves have the same
shape with width W, = 40 nm and depth 2 = 100 nm. The slit width is Wy = 40 nm. All the grooves
above the slit consist in the upper periodic grooves described by the initial location a; and the period
di. The grooves below the slit are also periodic and the corresponding parameters are a, and b,. The
grooves are symmetric when a; = ap, by = b, and we will use a and b to replace a;, a; and by, by. In
this paper we fix the wavelength 4 = 560 nm and and try to find the best far-field oblique beaming at
any given angle by modifying a1, b1, a; and b,. Under the restriction of periodic grooves, we find an

efficient algorithm to decide the parameters with explicit physical explanation.

5.3.3 Control of beaming angles

We begin our research by studying the fields at the opening area of the indentations when the
grooves are symmetric. Figures 5.10(a) and 5.10(b) show the field’s amplitude and phase when a =
b = 500 nm. All the fields are normalized to the field at the slit exit, so Fp = 1. We can find the field
at the slit is much stronger than the fields at the grooves. The fields at the grooves decay smoothly

with the distance to the slit and become very weak in the end. There are 56 grooves in each side of the
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slit in this simulation. Further simulations show adding more grooves will not influence the far-field
distribution much.

The most important property about the fields is the perfect straight line formed by the phases at the
upper and lower periodic grooves in Fig. 5.10(b). So we can use a linear function to fit the phases at
the upper half grooves. For a positive integer i, the location of the ith groove is y; = a + (i — 1)b and the
phase is ®; = Arg(F;), then

®; = ky; + ¢o. (5.3)

This linear relation can be explained by the single scattering approximation. The surface plasmons
are excited at the exit of the slit and propagate along the output surface. Then they will interact with
the groove they meet. The weak fields at grooves suggests the interaction is weak. Most of the energy
carried by the surface plasmons transmits through the grooves. It explains why the fields at grooves
decay smoothly. Some energy is scattered into the free space and the rest is is reflected. The single
scattering approximation neglects the reflected surface plasmons. The surface plasmons repeat their
propagation and interaction process, so the phase change between two neighboring grooves is constant.

The single scattering approximation suggests that the fitting results will not change with a. Our
simulations verified it. The fitting results are shown in Fig. 5.10(c) when b = 500 nm and a changes
200 nm to 1500 nm . We can see clearly that & is constant and the oscillation of ¢ is weak.

Next we fix a = 500 nm and change b from 100 nm to 1500 nm. The slopes of the phases are
shown is Fig. 5.10(d). The wavevector of the surface plasmons is ks, = 1.07kg. ko is the wave vector
of the incident wave in free space. We can find k is close to but not equals kg,. It is because of the
small phase change introduced by the grooves. When b increases, which means less grooves along the
surface, k converges to k;.

The slope curve in Fig. 5.10(d) is not smooth when kb ~ 7n (n is an integer), which is because of
“collective surface modes” (53). When kb = nn, the reflected surface plasmons from the all the grooves
are in phase, so the single scattering approximation becomes weak. However, the single scattering
approximation still works even at the collective surface modes since £ is only a little bit away .

Now we have understand the phase difference between two neighboring grooves is kb. If

kb — kob sin 6 = 2nn, 5.4
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Figure 5.11 (a) Normalized far-field angular transmission when a = b = 500 nm;
(b) Constructive interference angles at different groove periods;
(c)&(d) Normalized far-field angular transmission when b = 446 nm
and b = 710 nm.

and n is an integer, all the grooves above the slit have constructive far-field interference at the angle
6. Figure 5.4(b) shows the constructive interference angle of the upper periodic grooves with different
period calculated from Equation (5.4).

We also calculate /() from the fields at the indentations and the results are shown in Fig. 5.11(a).
The normalized far-field angular transmission distribution curve has two peaks at +6°, which are the
constructive interference angles of the upper and lower half grooves.

Besides the two peaks, the transmission curve also has a smooth base. This is the contribution from
the slit. The existence of the base means the energy is diffracted to all the angles, which is against our
purpose of good directional emission. But it also give us the opportunity to control the peak heights,
as shown in Fig. 5.11(c) and (d). Considering the contributions from the slit and the upper periodic

grooves to the infinite at angle 6, the phase difference between them is ¢ + ka — kgpa sin6. So we can
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Figure 5.12 (a)&(b) Amplitudes and phases of fields at grooves above the
slit when the grooves are symmetric with @y = a; = 920 nm,
by = b, = 446 nm and when there are only upper periodic grooves
with a; = 920 nm, b; = 446 nm; (c)&(d) Normalized far-field an-
gular transmission generate by the slit with upper periodic grooves
alone when by = 446 nm and by = 710 nm.

control the interference and the peak heights by changing a.

Fig. 5.11(c) also shows the beaming angle is independent from a. It is only decided by the construc-
tive interference angle of the upper and lower periodic grooves. In Fig. 5.11(d), » = 710 nm and there
are two constructive interference angles. The value of a decides which angle becomes the beaming
angle.

Until now we always use symmetric grooves, so the far-field distributions are also symmetric and
have two peaks. The ideal oblique beaming has only one peak. A nature idea is to remove all the
grooves on the one side of the slit and use only half grooves. Our simulations show this simple idea
works.

Fig. 5.12(a) and (b) show the amplitude and phase of the fields at grooves above the slit is accompa-
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Figure 5.13 (a) Normalized far-field angular transmission of a slit with upper pe-
riodic grooves alone when a; = 980 nm, b; = 446 nm and a slit with
lower periodic grooves alone with a, = 860 nm, b, = 710 nm; (b)
Normalized far-field angular transmission of a slit with asymmetric
upper and lower periodic grooves when a; = 980 nm, b; = 446 nm,
ay = 860 nm, b, = 710 nm.

nied by upper grooves only or by symmetric upper and lower grooves. The fields under the two groove
setting are very close to each other, specially the phase. The similarity suggests the independence
between the upper and lower periodic grooves. This independence is also a nature results of single
scattering approximation. Since we neglect the reflected surface plasmons, the upward plasmons have
no chance to reach the grooves below the slit, and vice versa. Fig. 5.12(c) and (d) show the far-field
distribution of upper grooves alone when b; = 446 nm and »-710 nm. Comparing with Fig. 5.11(c)
and (d), we can find that removing the lower grooves will not influence the peaks generated by the
upper periodic grooves: the location, the height and and of the peaks keeps.

Fig. 5.11(b) shows the constructive interference angle changes from 0° to 90° when b; changes
form 540 nm to 280 nm. Given any angle, the design of the beaming structure of a slit with half
grooves has two steps: first we check Fig. 5.11(b) to get the period of grooves b smaller than 540 nm;
then we fix the period and scan the initial location of the grooves a; to maximize the transmission peak
height.

Fig. 5.11(b) also shows when b; > 540 nm, the upper periodic grooves have several constructive
interference angles and some of them are positive. It also means the lower periodic grooves with period

b> > 540 nm can have negative constructive interference angles. The upper periodic grooves with
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Figure 5.14 (a) Heights and (b) full-widths at half-maximum of the highest far—
field transmission peak at different angles generated by upper peri-
odic grooves only and asymmetric upper and lower periodic grooves.

by = 446 nm and the lower periodic grooves with b, = 710 nm both have the constructive interference
angle at —14°. We can choose appropriate initial locations to maximize the peaks at the angle and
the far-field distributions of the half grooves are shown in Fig. 5.13(a). Then we put the upper and
lower periodic grooves together and the far-field distribution of the asymmetric full grooves is shown
in Fig. 5.13(b). Now all the three components, the upper periodic grooves, the lower periodic grooves
and the slit, interfere constructively. So we get a very strong far-field transmission peak at 6§ = —14°.
Fig. 5.14 shows the properties of the highest transmission peaks we can achieve at different beaming
angle using upper periodic grooves only or using asymmetric upper and lower periodic grooves. Adding
grooves below the slit improves the transmission peaks. The highest peaks are achieved round 20°.
When the beaming angle is small, the surface waves enter the collective surface modes; when the

beaming angle is big, cos 8 in the numerator of Eq. (5.2) suppresses the peaks.

5.3.4 Frequency splitter

We can also design a frequency splitter using asymmetric grooves: two wavelengths enter the slit
and leave at different angles. We have understood the upper periodic groove has only one possible

beaming angle when its period is smaller than the wavelength and the angle satisfies

kb — kob sin 6 = 2. (5.5)
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Figure 5.15 Normalized far-field angular transmission at two frequencies when
(a) a; = 600 nm, by = 500 nm, a, = 400 nm, b, = 500 nm and (b)
a; = 540 nm, b; = 450 nm, a; = 360 nm, b, = 450 nm. The groove
depth is 2 = 500 nm.

The phase difference between the upper periodic grooves and the slit at the beaming angle is

ka + ¢o — koasin€ = 2xa/b + ¢y. (5.6)

We can find two frequencies A, and A, satisfying ¢(1;) — ¢(A;) = 7. When the upper grooves
and slit have constructive interference and result in a enhanced transmission peak at one wavelength,
the grooves and the slit have destructive interference and suppress the transmission peak at the other
wavelength.

In Fig. 5.15(a), the two frequencies are 650 nm and 695 nm. When the depth of grooves is h =
100 nm, the difference between ¢q at the two wavelengths is 1.7. To get bigger difference, we have
to increase i to 500 nm. The period of the upper periodic grooves is b; = 500 nm. The constructive
interference angles of the upper grooves are around —17° for both frequencies. But because of the
interference between the grooves and slit, only the field with 4 = 650 nm has a transmission peak at
its constructive interference angle. b, = by in Fig. 5.15(a), so the constructive interference angles of
the lower periodic grooves are around 17°. We choose a different a, to enhance the peak of the field
with 4 = 695 nm. Though the two incident wavelengths are quite close to each other, the angular
transmission peaks are 34° away from each other.

Based on Eq. (5.5) and (5.6), if we change b but keep a/b unchanged, the locations of the peaks

changes but the phase difference between the grooves and the slit keeps. In Fig. 5.15(b), a1, az, b,
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and b, are 10% smaller then the corresponding values in Fig. 5.15(a). The structure still works as a

frequency splitter and the output peaks are 52° away.

5.3.5 Conclusion

I have shown that a metallic slit surrounding by grooves is a good oblique beaming structure. I
implement good oblique beaming at any angle in the range of +70° using a metallic subwavelength slit
with one-side periodic grooves and better oblique beaming at an angle between +40° using a slit sur-

rounded by upper and lower periodic grooves. I also design a frequency splitter based on the structure.
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APPENDIX A. Simulations of infinitely long waveguides

A.1 Perfect matched layer

Computers can not simulate an area with finite size. But sometimes we need simulate the interaction
between electromagnetic waves and objects located in an unbounded region. For these problems, we
have to use absorbing boundary conditions (ABC) to terminate the simulation area (82).

Perfect matched layer (PML) is one kind of absorbing boundary conditions. The basic idea is to
use a lossy medium surrounding the simulation area and ideally the lossy medium will absorb incident
waves without any reflections regardless the incident angles, frequnencies and polarizations. Compar-
ing with other analytic absrorbing boundary conditions, PML ABS uses a litter bit larger simulation
area to contain the lossy medium but generally reflects less energy back. Normally the thickless of
PML is about several wavelengths.

Below I will introduces an implementation of PML ABC: a uniaxial PML (UPML), which me-
chanics can be proved analytically from Maxwell’e equations (83). Fig. A.1 shows the schematic of
the problem: the x < 0 half-plane is the unbounded simulation area and contains isotropic dielectric; the
x > 0 half-plane is the perfect matched layer. We will study the wave propagation from the dielectric
to the UPML. The dielectirc has scalar permittivity €; and permeability p;. The UPML is comprised of

a uniaxial anistropic medium and has the permittivity and permeability tensor

sst 000
=65 [M=ws 5=|0 s, 0| Sx=1+io /we. (A.1)
0 0 s

Suppose a plane waves in the UPML has magnetic fields as

Hy = Hyexp [i(kyxx + kayy — wi)]. (A.2)
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Figure A.1 Schematic representation of incidence from isotropic dielectric in
x < 0 half-plane to perfect matched layer in x > 0 half-plane.

Then the electric fields are

Ey = Eexp [i(kax + kayy — wi)]. (A.3)

and Eo and ﬁo satisfy
ko x Er = wiinHy; ko X Hy = —wé Ey. (A.4)
Ky = kae& + ko . (A.5)

I'use TE polarization as a example here, so H;, E, and E, are the only three non-zero components
of electromagnetic waves. The equations about TM polarization are very similar.

Then the magnetic fields of the plane wave in the UPML under TE polarization become
Ho = Hos. (A.6)

Based on the second equation of Eq. (A.4), we have

S koS k
)= (-2 Hy, 2 H,, 0). (A7)
we| WE| Sy

Put the expression of E| back to the first equation of Eq. (A.4), we get the dispersion relation of the
plane waves in the UPML.:

i, = sy e — k). (A.8)
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The plane wave in the UPML is excited by the incident waves from dielectric side. Suppose the

incident wave in the dielectric is
H™ = zH; expli(k; x + kiyy — w0)].

Then the reflected wave is

arel = ZRH; expli(=kixx + kiyy — wi)].

(R 1s the reflection coefficient) and the total fields in the dielectric are

Hy = H™ + ™ = 2H; expli(k; ox + ki,y — wi)] + ZRH; expli(—kyox + ki,y — wi)].

The electric fields in the dielectric are

ki . .
El = _Q_Z)(H,- expli(kicx + K1,y — wi)] + RH; expli(—kicx + kiyy — wi)]);

Lk , _
Eyy = 611; (Hi explitkicx + kiyy — wi)] = RH; expli(—ki.x + kiyy — w1)]);
Ep. =0.

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

H; and E| are continuous along the interface x = 0. So ka, = ki, and ky, is decided by the dispersion

relation of Eq. (A.8). Then the fields along x = 0 are

Hy:(0,y) = (1 + R)H; expli(kiyy)];

H>:(0,y) = Ho expli(kiyy)];

ki .

E1(0.y) = Ellwa — R)H; expliki,y)l;
k2x .

E>(0,y) = Hy expli(kiyy)].

€E1WSx

and the dispersion relations are

2 2 2 2 2. 2 2
ki, = weu —k ky, = sy(w euy — kly).

ly;

(A.15)
(A.16)

(A17)

(A.18)

(A.19)

From H,(0,y) = H»,(0,y), we get (1 + R)H; = Ho. From E;(0,y) = E»,(0,), we get (1 —R)*H? =

Hg. Obviously R = 0 is the only choice to make the two equations correct and when R = 0, Hy = H,,

kox = kiysy, the continuities of H; and E, along x = 0 are correct for any frequency and incident
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angle. So we proved the UPML perfectly matches the dielectric and generates no reflection for any
frequencies and incident angles.

When incident angle is 6, we have
kiy=kcos, kiy=ksinf, k=w+eu, 6¢c(-n/2,n/2). (A.20)
The incident wave is

H, = ZH; expli(k cos Ox + k sin 8y — wr)]; (A.21)
El = (—)%Zd sin6 + $Z; cos Q)H,- expli(k cos 6x + ksin 0y — wt)]; (A.22)

Zq = \m/e. (A.23)

and the fields in the UPML is

ﬁz = ZH; expli(k cos 6x + k sin 8y — wt)] exp[—o0 xZ, cos 6x]; (A.24)

Ey = (~%5,Z4sin 0 + $Z, cos 0)H; expli(k cos 6x + k sin By — wi)] exp[—oxZg cos Ox]. (A.25)

When o, > 0, the UPML is lossy and the fields decay exponentially inside. The perfect matching

property and the lossy property make UMPL a ideal choice to truncate the unbounded simulation area.

A.2 Perfect electric conductor waveguide

In the previous section we have introduced UPML for unbounded simulation area. Now we begin to
study waveguides with infinite length, which is partially unbounded. The diagram is shown in Fig. A.2.
The two-dimensional waveguide is bounded by two PEC surfaces along y direction and the waveguide
width is W. Now I will prove inserting UPML in the waveguide will make the waveguide infinite along
x direction.

The fields in a waveguide are the summation of the eigenmodes. Suppose H isa eigenmode in the

waveguide propagating at +x direction. I consider only TE mode here. So
H) = 2(A explik,y] + Bexp[—ikyy]) expli(k,x — wt)]. (A.26)

The eigonmode in the waveguide is always the summation of two plane waves. Based on the

knowledege of UPML (Eq. (A.21) to Eq. (A.25)) in the previous section, we know the field distributions
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Figure A.2 Schematic representation of a UPML in a PEC or a SIBC waveguide.

below (ﬁ 1 and H 1 are the fields in the dielectric; ﬁz and ﬁz are the fields in the dielectric;) satisfy the

boundary condition along x = 0, which is the interface between the dielectric and UPML.

H 1 = AZexpli(kyx + kyy — wt)] + BZexpli(kyx — kyy — wt)]; (A.27)
E\ = A(=2Zaky/k + $Zaky/k) expliCkx + kyy — wi)]
(A.28)
+ B(5Zaky [k + §Zak. k) explilhyx — kyy = wb)];
1-72 = AZexpli(kyx + kyy — wt)] exp[—0Zgkx/k]
(A.29)
+ Bexpli(kyx — kyy — wt)] exp[—0,Zgk,x/k];
Eg = A(—fcstdky/k + j/dex/k) expli(kyx + kyy — wt)] exp[—oZgkx/k]
(A.30)

+ B(S5,Zaky [k + $Zaky/ k) expliCkex — kyy — wt)] expl—0 Zakyx/k];

Here k = [k + kg.

At a PEC boundary, the electric fields are perpendicular to the boundary. So the eigenmode in the

PEC waveguide satisfies

AexplikyW/2] — Bexp[-ik,W/2] = 0;
(A.31)

A exp[—ikyW/2] — Bexplik,W/2] = 0.
Given boundary conditions Eq. (A.31), it is easy to verify the electric fields in UPML are also
perpendicular to the boundaries. So Eq. (A.27) to Eq. (A.30) are a possible field distribution of UPML
in the PEC waveguide if the incident wave is H,. Becuse of the uniqueness theorem of the field

distribution, they are the only solution. Obviously there isn’t any reflected wave in the solution and the



106

fields in UPML decay exponentially. So inserting UPML in a PEC waveguide makes the waveguide

infinitely long.

A.3 Metallic waveguide

Now I study how to implement an infinitely-long metallic waveguide. The geometry is the same
as the PEC waveguide shown in Fig. A.2. The difference is now the waveguide is bounded by surface
impedance boundaries.

Using the same method shown in the previous section, I begin from an eigenmode in the waveg-
uide and Eq. (A.27) to Eq. (A.27) are a field distribution satisfying the boundary condition along the
dielectric-UPML interface.

Now let’s consider the boundary conditions along the waveguide boundaries. SIBC requires the

eigenmode satisfies
Ev(x, W/2) _
Hy(x, W/2)

Eix(x,-W/2) _

-Zy, and ———— =
Hi (x,—W/2)

an M

Here Z,, is the surface impedance. So I getA and B satisfy

Aexplik,W/2] — Bexp[-ik,W/2]  Z,k )
Aexplik,W/2] + Bexpl—ik,W/2] ~ Zak,
A exp[—ik,W/2] — Bexplik,W/2] Znk
Acxpl—ik,W/2] + Bexplik,W/2] ~ Zaky'

Then the fields in the UPML at the boundaries satisfy

Enx(x, W/2) —AsyZgky [k explikyW/2] + Bs,Zky/k exp[—ik,W/2]

Ho (x, W/2) A explikyW/2] + Bexpl—iky,w/2]
sxZqky A expliky,W/2] — Bexp[—ikyw/2]
Tk Aexplik,W/2] + Bexp[—ik,w/2]

Ep(x,-W/2) —AsxZgky [k exp[—iky2W/2] + Bs Zgk,/k explikyw/2]
Ho.(x,-W/2) A expl—ik,W/2] + Bexplikyw/2]

sxZqky A exp[—ik,W/2] — Bexplik,w/2]
Tk Aexpl-ik,W/2] + Bexplik,w/2]

= —=5Zm;

SxLms

So the fields in the UPML also satisfy SIBC at the waveguide boundaries but the surface impedance is
SxZm-
In conclusion, inserting UPML in a SIBC waveguide with surface impedance Z,, and changing

the surface impedance of boundaries bounding UPML to s.Z,, makes the waveguide infinitely long.



107

Figure A.3 Schematic representation of a two-dimensional photonic crystal
waveguide with infinite length. The left region is an ordinary photonic
crystal (PC) waveguide; the right blue region is the PC-based uniaxial
perfectly matched layer (UPML). x = 0 is the PC-UPML interface.

When Z; = 0, SIBC becomes PEC and the corresponding UPML boundaries is PEC too, which is the

conclusion of the previous section.

A.4 Photonic waveguide

In previous section, I have implemented PEC or SIBC waveguides with infinite length by intserting
UPML in the waveguide and proved the inserted UPML absorbs the incident wave without reflection
analytically. UPML can also be used to simulated the infinitely-long photonic crystal waveguide (84;
85).

Fig. A.3 shows an example of a photonic crystal waveguide followed by a PC-based UPML. The
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UPML begins from x = 0. The region on the left of the x = 0 line is an ordinary two-dimensional
photonic crystal waveguide. In this example, the photonic crystal is composed by a suqare arrry of rods
in air. A line defect is introduced into the photonic crystal to form the waveguide. The region on the
right of the x = 0O line is the UPML. Instead of the homogeneous UPML used to terminate a PEC or
SIBC waveguide, here the UPML keeps the geometry of the PC waveguide before it. The UPML in the
rods have the permittivity and permeability tensor &,,; = €;60S and fi,,q = poS; the UPML around the

rods are &, = €5 and 14, = poSs. Here ¢4 is the relative permittivity of the rods of the photonic crystal

and
ss10 00
5=10 s O (A.32)
0O 0 sy

The UPML in the rods perfectly matches the rods of the ordinary PC and the UPML surronding the
rods perfectly matches the air. This UPML is called PC-based UPML.

To suppress the reflection, s, is a function of the location. s, can change continuously. But for
simplicity, it changes discreetly in my simulations. As shown in Fig. A.3, the UPML is cut into several
layers and each layer is numbered form left to right. s, keeps constant in one layer and changes with

the layer number. Nomally the function is

sy(n) =1+ iM(n/N)P.

Here n is the layer number; N is the total number of UPML layers; p is a postive integer.

Besides the infinitely-long photonic crystal, the PC-based UPML can be used to simulate any in-
finite PC structures with translation symmetry. In Fig. A.5 and Fig. A.6, I study the transmissio into
a photonic crystal grating with infinite length, which is shown in Fig. A.4. The photonic crystal is a
square array of square alumina rods. The lattice constant is @ = 11 mm. The square rods are with side
length d = 3.1mm and relative permittivity ¢; = 9.8. This photonic crystal has a band gap between
9.43 and 12.78 GHz under TE polization. There are periodic slits inside the photonic crystal every four
columns of rods. The width of the slits is W = 15 mm. The grating is illuminated by normal incident
plane wave with frequency f = 9.6 GHz, which is in the band gap. The total number of layes of the

photonic crystal changes from 20 to 40. The total number of layers of the UPML is N = 20.
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Schematic representation of a two-dimensional photonic crystal grat-
ing with infinite length. The left region is the ordinary photonic crystal
(PC) grating; the right blue region is the PC-based uniaxial perfectly
matched layer (UPML). x = 0 is the PC-UPML interface. The inci-
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dent wave is TM polarized.
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The parameters of the PC-based UPMLs are

N =20,M =03,p=1and N = 20,M = 03,p = 2. The total
number of layers of the graing changes from 20 to 40.
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In Fig. A.5, I show the transmission into the grating followed by air and homogeneous UPML. The
homogeneous UPML means the permittivity tensor of the rods in UPML is the same as the tensor of the
UPML around it; &4 = €;r = €S and s, = 1 + 0.3i. The two curves overlap with each other. It shows
the homogeneous UPML is equivalent to free space. The transmission curve oscillates with the total
number of layers of the ordinary photonic crystal. It is because of the Fabry-Pérot interference between
the input and output surfaces of the photonic crystal grating. The oscillation amplitude descirbes the
reflection from the output surface. Then I put a PC-based UPML with M = 0.3, p = O after the grating.
The oscillation amplitude decreases dramatically, which means the UPML matches the grating very
well. We should notice that this mathc is not perfect.

To get better simulation results, we have to consider two things; First the permittivity and per-
meability difference between two adjacent layers should be mall to suppress the reflection since the
match isn’t perfect; second, s, in the UPML should be big to absort the incident wave efficiently. So in
Fig. A.6, I increse s, slowly. I put the PC-based UPML with M = 0.3,p =1 and with M = 0.3,p =2
after the grating. The oscillation amplitude becomes very small, specially when p = 2. So the grating
followed by a PC-based UPML is equivalent to a grating with infinite length. We can continue to try

differet function of s, to get the optimal results.
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