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Bounds on the Sample Complexity for Private Learning and Private 
Data Release 

Amos Beime}* Shiva Kasiviswanathant Kobbi Nissimt 

Abstract 

Learning is a task that generalizes many of the analyses that are applied to collections of data, and in 
particular, collections of sensitive individual information. Hence, it is natural to ask what can be learned 
while preserving individual privacy. [Kasiviswanathan, Lee, Nissim, Raskhodnikova, and Smith; FOCS 
2008] initiated such a discussion. They formalized the notion of private learning, as a combination of 
PAC learning and differential privacy, and investigated what concept classes can be learned privately. 
Somewhat surprisingly, they showed that, ignoring time complexity, every PAC learning task could be 
performed privately with polynomially many samples, and in many natural cases this could even be done 
in polynomial time. 

While these results seem to equate non-private and private learning, there is still a significant gap: the 
sample complexity of (non-private) PAC learning is crisply characterized in terms of the VC-dimension 
of the concept class, whereas this relationship is lost in the constructions of private learners, which 
exhibit, generally, a higher sample complexity. 

Looking into this gap, we examine several private learning tasks and give tight bounds on their 
sample complexity. In particular, we show strong separations between sample complexities of proper and 
improper private learners (such separation does not exist for non-private learners), and between sample 
complexities of efficient and inefficient proper private learners. Our results show that VC-dimension is 
not the right measure for characterizing the sample complexity of proper private learning. 

We also examine the task of private data release (as initiated by [Blum, Ligett, and Roth; STOC 
2008]), and give new lower bounds on the sample complexity. Our results show that the logarithmic 
dependence on size of the instance space is essential for private data release. 
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1 Introduction 

The notion of private learning was recently introduced by Kasiviswanathan et al. [9]. Informally, a private 
learner is required to output a hypothesis that gives accurate classification while protecting the privacy of 
the individual samples from which the hypothesis was obtained. The formal notion of a private learner is a 
combination of two qualitatively different notions. One is that of PAC learning [16], the other of differential 
privacy [6]. In PAC (probably approximately correct) learning, a collection of samples (labeled examples) 
is generalized into a hypothesis. It is assumed that the examples are generated by sampling from some 
(unknown) distribution D and are labeled according to an (unknown) concept c taken from some concept 
class C. The learned hypothesis h should predict with high accuracy the labeling of examples taken from 
the distribution D, an average-case requirement. Differential privacy, on the other hand, is formulated as 
a worst-case requirement. It requires that the output of a learner should not be significantly affected if a 
particular example d is replaced with arbitrary d', for all d and d'. This strong notion provides rigorous 
privacy guarantees even against attackers empowered with arbitrary side information UO] . 

Recent research on privacy has shown, somewhat surprisingly, that it is possible to design differentially 
private variants of many analyses (see [5] for a recent survey). In this line, the work of [9] demonstrated 
that private learning is generally feasible - any concept class that is PAC learnable can be learned privately 
(but not necessarily efficiently), by a "private Occam's Razor" algorithm, with sample complexity that is 
logarithmic in the size of the hypothesis class. Furthermore, taking into account the earlier result of (1] (that 
all concept classes that can be efficiently learned in the statistical queries model can be learned privately and 
efficiently) and the efficient private parity learner of [9], we get that most "natural" computational learning 
tasks can be perfonned privately and efficiently. This is important as learning problems generalize many of 
the computations performed by analysts over collections of sensitive data. 

The results of [1, 9] show that private learning is feasible in an extremely broad sense, and hence one 
can essentially equate learning and private learning. However, the costs of the private learners constructed 
in [1, 9] are generally higber than those of non-private ones by factors that depend not only on the pri­
vacy, accuracy, and confidence parameters of the private learner. In particular, the well-known relationship 
between the sampling complexity of PAC learners and the VC-dimension of the concept class (ignoring 
computational efficiency) [4] does not hold for the above constructions of private learners - as their sample 
complexity is proportional to the logarithm of the size of the concept class (recall that the VC-dimension 
of a concept class is bounded by the logarithm of its size, and is significantly lower for many interesting 
concept classes). 

The focus of this work is on a fine-grain examination of the differences in complexity between private 
and non-private learning. The hope is that such an examination will lead to an understanding of which 
complexity measure is relevant for the sample complexity of private learning, similar to the well-understood 
relationship between the VC-dimension and sample complexity of PAC learning. We believe that such 
an examination is also interesting for other tasks, and a second task we examine is that of releasing a 
sanitization of a data set that simultaneously protects privacy of individual contributors and offers utility to 
the data analyst. See the discussion in Section 1.1.3. 

1.1 Our Contributions 

We now give a brief account of our results . Throughout this rather informal discussion we will treat the 
accuracy, confidence, and privacy parameters as constants (a more detailed analysis is presented in the 
technical sections). We use the term "efficient" for polynomial time computations. 

Following standard computational learning terminology, we will call learners for a concept class C that 
only output hypotheses in C proper, and other learners improper. The original motivation for this distinction 
is that there exist concept classes C for which proper learning is computationally intractable [15], whereas 
it is possible to efficiently learn C improperly [16]. As we will see below, the distinction between proper 
and improper learning is useful also when discussing private learning, and for more reasons than making 
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intractable learning tasks tractable. Our results on private learning are summarized in Table 1. 

1.1.1 Proper and Improper Private Learning 

It is instructive to look into the construction of the Occam Razor algorithm of [9] and see why its sample 
complexity is proportional to the logarithm of the size of the hypothesis class used. The algorithm uses the 
exponential mechanism of McSherry and Talwar [13] to choose a hypothesis. The choice is probabilistic, 
where the probability mass that is assigned to each of the hypotheses decreases exponentially with the 
number of samples that are inconsistent with it. A union-bound argument is used in the claim that the 
construction actually yields a learner, and a sample size that is logarithmic in the size of the hypothesis class 
is needed for the argument to go through. 

For our analyses in this paper, we consider a simple, but natural, class POINT d containing the concepts 
Cj : {O, l}d -4 {D, I} where Cj(x) = 1 for x = j, and D otherwise. The VC-dimension of POINT d is one, 
and hence it can be learned (non-privately and efficiently, properly or improperly) with merely 0(1) samples. 

In sharp contrast, (when used for properly learning POINT d) the Occam Razor algorithm requires 
O(Iog IPOINT dl) = O(d) samples - obtaining the largest possible gap in sample complexity when com­
pared to non-private learners! Our first result is a matching lower bound. We prove that any proper private 
learner for POINT d must use D(d) samples, therefore, answering negatively the question (from [9]) of 
whether proper private learners should exhibit sample complexity that is approximately the VC-dimension 
(or even a function of the VC-dimension) of the concept class 1. 

A natural way to improve on the sample complexity is to use the private Occam Razor to improperly 
learn POINT d with a smaIler hypothesis class, that is still expressive enough for POINT d. We show that 
this indeed is possible, as there exists a hypothesis class of size O(d) that can be used for learning POINT d 

improperly. Furthermore, this bound is tight, any hypothesis class for learning POINT d must contain D(d) 
hypotheses. These bounds are interesting as they give a separation between proper and improper private 
learning - proper private learning of POINT d requires D( d) samples, whereas POINT d can be improperly 
privately learned using O(Iog d) samples. Note that such a combinatorial separation does not exist for 
non-private learning, as a VC-dimension number of samples are needed and sufficient for both proper and 
improper non-private learners. Furthermore, the D(d) lower bound on the size of the hypothesis class maps 
a clear boundary to what can be achieved in terms of sample complexity using the private Occam Razor for 
POINT d. It might even suggest that any private learner for POINT d should use D(Iog d) samples. 

It turns out, however, that the intuition expressed in the last sentence is at fault. We construct an efficient 
improper private learner for POINT d that uses merely 0(1) samples, hence establishing the strongest 
possible separation between proper and improper private learners. For the construction we extrapolate on a 
technique from the efficient private parity learner of [9]. The construction of [9] utilizes a natural non-private 
proper learner, and hence results in a proper private learner, whereas, due to the bounds mentioned above, 
we cannot use a proper learner for POINT d. and hence we construct an improper (rather unnatural) learner 
to base our construction upon. Our construction utilizes a double-exponential hypothesis class, and hence 
is inefficient (even outputting a hypothesis requires super-polynomial time). We use a simple compression 
using pseudorandom functions (akin to [14]) to make the algorithm efficient. 

1.1.2 Efficient and Inefficient Proper Private Learning 

We use the above lower bound on the number of samples for proper private learning POINT d to show 
a separation in the sample size between efficient and inefficient proper private learning. Assuming the 

existence of pseudorandom generators with exponential stretch, we present a concept class p75iNT d - a 
variant of POINT d - such that every efficient proper private learner for this class requires D(d) samples. In 

lOur proof technique yields lower bounds not only on private learning PO lNT d properly, but on private learning of any concept 
class C with various hypothesis classes thaI we call a-minimal for C. 

2 
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Concept Class Sample Complexity 

POINTd 
Non-Private Learning Improper Private Learning Proper Private Learning 
(Proper or Improper) 

8(1) [4,8] 8(1) 8(d) -- Non-Private Learning Ineff. Proper Private Learning Eff. Proper Private Learning 
POINTd (Efficient or Inefficient) 

8(1) [4, 8] 8(£(d» 8(d) 

Table 1: Our separation results (ignoring dependence on f , lX, /3). l(d) is any function that grows as w(log d) . 

contrast, an inefficient proper private learner exists that uses only a super-logarithmic number of samples. 
This is the first example where requiring efficiency on top of privacy comes at a price of larger sample size. 

1.1.3 The Sample Size of Non-Interactive Sanitization Mechanisms 

Given a database containing a collection of individual information, a sanitization is a I;elease that protects the 
privacy of the individual contributors while offering utility to the analyst using the database. The setting is 
non-interactive if once the sanitization is released the original database and the curator play no further role. 
Blum et al. [2] presented a construction of such sanitizers for count queries. Let C be a concept class consist­
ing of efficiently computable predicates from a discretized domain X to {O, I}. Given a collection D of data 
items taken from X, Blum et al. employ the exponential mechanism [13] to (inefficiently) obtain another 
collection D' with data items from X such that D' maintains approximately correct count of LdED c(d) for 
all concepts c E C. Also, they show that it suffices for D to have a size that is O(log IXI· VCDIM(C». 
The database D' is referred to as a synthetic database as it contains data items drawn from the same universe 
(X) as the original database D. 

We provide new lower bounds for non-interactive sanitization mechanisms. We show that for POINT d 
every non-interactive sanitization mechanism that is useful2 for POINT d requires a database of Q(d) size. 
This lower bound is tight as the sanitization mechanism of Blum et at. for POINT d uses a database of 
O(d· VCDIM(POINTd» = O(d) size. Our lower bound holds even if the sanitized output is an arbitrary 
data structure and not a synthetic database. 

1.2 Related Work 

The notion of PAC learning was introduced by Valiant [16]. The notion of differential privacy was introduced 
by Dwork et al. [6]. Private learning was introduced in [9]. Beyond proving that (ignoring computation) 
every concept class can be PAC learned privately (see Theorem 3.2 below), they proved an equivalence 
between learning in the statistical queries model and private learning in the local communication model (aka 
randomized response). The general private data release mechanism we mentioned above was introduced 
in [2] along with a specific construction for halfspace queries. As we mentioned above, both [9] and [2] use 
the exponential mechanism of [13] - a generic construction of differential private analyses, that (in general) 
does not yield efficient algorithms. 
• A recent work of Dwork et at. [7] considered the complexity of non-interactive sanitization under two 
settings: (a) sanitized output is a synthetic database, and (b) sanitized output is some arbitrary data structure. 
For the task of sanitizing with a synthetic database they show a separation between efficient and inefficient 
sanitization mechanisms based on whether the size of the instance space and the size of the concept class is 
polynomial in a (security) parameter or not. For the task of sanitizing with an arbitrary data structure they 
show a tight connection between complexity of sanitization and traitor tracing schemes used in cryptography. 
They leave the problem of separating efficient private and inefficient private learning open. 

2Infonnally, a mechanism is useful for a concept class if for every input , the output of the mechanism maintains approximately 
correct counts for all concepts in the concept class . 

3 
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It is well known that for all concept classes C, every learner for C requires n( VCDIM (C)) samples [8]. 
This lower bound on the sample size also holds for private learning. Blum, Ligett, and Roth [3] have recently 
extended this result to the setting of private data release. They show that for all concept classes C, every 
non-interactive sanitization mechanism that is useful for C requires n( VCDIM(C)) samples. We show in 
Section 4 that this bound is not tight - there exists a concept class C of constant VC-dimension such that 
every non-interactive sanitization mechanism that is useful for C requires a much larger sample size. 

2 Preliminaries 

Notation. We use [n] to denote the set {I, 2, ... , n}. The notation 0, (g( n)) is a shorthand for 0 (h( 'Y) . 
g(n)) for some non-negative function h. Similarly, the notation n,(g(n)). We use negl(-) to denote func­
tions from jR+ to [0,1] that decrease faster than any inverse polynomial. 

2.1 Preliminaries from Privacy 

A database is a vector D = (d1, ... , dm ) over a domain X, where each entry di E D represents information 
contributed by one individual. Databases D and D' are called neighbors if they differ in exactly one entry 
(i.e., the Hamming distance between D and D' is 1). An algorithm is private if neighboring databases induce 
nearby distributions on its outcomes. Formally: 

Definition 2.1 (Differential Privacy [6]). A randomized algorithm A is E-differentially private if for all 
neighboring databases D, D', and for all sets S of outputs, 

Pr[A(D) E S] :::; exp(E) . Pr[A(D') E S]. (1) 

The probability is taken over the random coins of A 

An immediate consequence of Equation (1) is that for any two databases D, D' (not necessarily neigh­
bors) of size m, and for all sets S of outputs, Pr[A(D) E S] :::: exp( -Em) . Pr[A(D') E S]. 

2.2 Preliminaries from Learning Theory 

We consider Boolean classification problems. A concept is a function that labels examples taken from the 
domain X by the elements of the range {O, I}. The domain X is understood to be an ensemble X = 

{Xd}dEN. A concept class C is a set of concepts, considered as an ensemble C = {Cd}dEN where Cd is a 
class of concepts from {O, l}d to {O, I}. 

A concept class comes implicitly with a way to represent concepts and size( c) is the size of the (smallest) 
representation of c under the given representation scheme. Let V be a distribution on Xd. PAC learning 
algorithms are designed assuming a promise that the examples are labeled consistently with some target 
concept c from a class C. Define, 

error(c, h) = Pr [h(x) =I- c(x)]. 
V X~V 

Definition 2.2 (PAC Learning [16]). An algorithm A is an (0:, ,8)-PAC learner of a concept class Cd over 
Xd using hypothesis class 1td and sample size n iffor all concepts c E Cd, all distributions V on Xd, given 
an input D = (dl,··· , dn ), where di = (Xi, C(Xi)) and Xi are drawn i.i.d.from V for i E [n], algorithm A 
outputs a hypothesis h E 1td satisfying 

Pr[error(c, h) :::; 0:] :::: 1 - ,8. 
v 

The probability is taken over the random choice of the examples D and the coin tosses of the learner. 
A concept class C = {Cd}dEN over X = {Xd}dEN is PAC learnable using hypothesis class 1t 

{1td}dEN if there exists an algorithm A, whose inputs are d, 0:,,8, and a set of samples (labeled examples) 

4 
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D, and a polynomial pC, ., ., .) such that for all dEN, the algorithm A(d, ex, {3, .) is an (ex, {3)-PAC learner 
of the concept class Cd using hypothesis class 'Hd and sample size n = p(d, size(c), I/ex, 10g(I/ {3)). An 
algorithm A is an efficient PAC learner if it runs in time polynomial in d, size(c), 1/ ex, 10g(I/ {3). Also, the 
learner is called a proper PAC learner if'H = C, otherwise it is called an improper PAC learner. 

It is well known that improper learning is more powerful than proper learning. For example, Pitt and 
Valiant [15] show that unless RP=NP, k-term DNF formulae are not learnable by k-term DNF, whereas it 
is possible to learn a k-term DNF using a k-term CNF [16]. For more background on learning theory, see, 
e.g., [12]. 

2.3 Private Learning 

Definition 2.3 (Private PAC Learning [9]). Let d, ex, {3 be as in Definition 2.2 and E > 0. Concept class C is 
E-differentially privately PAC learnable using 'H if there exists an algorithm A that takes inputs E, ex, {3, D, 
where n, the number of samples (labeled examples) in D is polynomial in 1/ E, d, size(c), 1/ ex, 10g(I/ {3), 
and satisfies 

PRIVACY. For all E > 0, algorithm A(E,·,·,·) is E-differentially private (Definition 2.1); 

UTILITY. Algorithm A PAC learns C using 'H (Definition 2.2). 

A is an efficient private PAC learner ifit runs in time polynomial in I/E, d, size( c), 1/ ex, 10g(I/ {3). Also, the 
private learner is called proper if'H = C, otherwise it is called improper. 

Remark 2.4. The privacy requirement in Definition 2.3 is a worst-case requirement. That is, Equation (1) 
must hold for every pair of neighboring databases D, D' (even if these databases are not consistent with any 
concept in C). In contrast, the utility requirement is an average-case requirement, where we only require the 
learner to succeed with high probability over the distribution of the databases. This qualitative difference 
between the utility and privacy of private learners is crucial. A wrong assumption on how samples are 
formed that leads to a meaningless outcome can usually be replaced with a better one with very little harm. 
No such amendment is possible once privacy is lost due to a wrong assumption. 

Note also that each entry ch in a database D is a labeled example. That is, we protect the privacy of 
both the example and its label. 

Observation 2.5. The computational separation between proper and improper learning also holds when 
we add the privacy constraint. That is unless RP=NP no proper private learner can learn k-term DNF, 
whereas there exists an effiCient improper private learner that can learn k-term DNF using a k-term CNF. 
The efficient learner of uses statistical queries (SQ) [II} which can be simulated efficiently and privately as 
shown by [1, 9]. 

More generally, such a gap can be shown for any concept class that cannot be properly PAC learned, 
but can be efficiently learned (improperly) in the statistical queries model. 

3 Learning vs. Private Learning 

We begin by recalling the upper bound on the sample (database) size for private learning from [9]. The 
bound in [9] is for agnostic learning, and we restate it for (non-agnostic) PAC learning using the following 
notion of ex-representation: 

Definition 3.1. We say that a hypothesis class 'Hd ex-represents a concept class Cd over the domain Xd iffor 
every c E Cd and every distribution D on Xd there exists a hypothesis h E 'Hd such that errofv( c, h) ~ ex. 

Theorem 3.2 (Kasiviswanathan et al. [9], restated). Assume that there is a hypothesis class 'Hd that ex­
represents a concept class Cd. Then, there exists a private PAC learner for Cd using 'Hd that uses O( (log l'Hdl+ 
10g(I/{3))/(w)) labeled examples, where E,ex, and {3 are parameters of the private learner. The learner 
might not be efficient. 

5 
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In other words, using Theorem 3.2 the number of labeled examples required for learning a concept class 
Cd is logarithmic in the size of the smallest hypothesis class that a-represents Cd. For comparison, the 
number of labeled examples required for leaning Cd non-privately is proportional to the VC-dimension of 
Cd [4,8]. 

3.1 Separation Between Private and Non-private PAC Learning 

Our first result shows that private learners may require many more samples than non-private ones. We 
consider a very simple concept class of VC-dimension one, and hence is (non-privately) properly learnable 
using Oa,,6(l) labeled examples. We prove that for any proper learner for this class the required number of 
labeled examples is at least logarithmic in the size of the concept class, matching Theorem 3.2. 

Proving the lower bound, we show that a large collection of m-record databases D 1 , ... , D N exists, with 
the property that every PAC learner has to output different hypothesis for each of these databases (recall that 
in our context a database is collection of labeled examples, supposedly drawn from some distribution and 
labeled consistently with some target concept). 

As any two databases Da and Db differ on at most m entries, a private learner must, because of the 
differential privacy requirement, output on input Da the hypothesis that is accurate for Db (and not accurate 
for Da) with probability at least (1 - (3) . exp( -on). Since this holds for every pair of databases, unless m 
is large enough we get that the private learner's output on Da is with too high probability a hypothesis that 
is not accurate for Da. We use the following notion of a-minimality: 

Definition 3.3. If1td a-represents Cd, and every 1t~ S;; 1td does not a-represent Cd, then we say that 1td is 
a-minimal for Cd. 

Theorem 3.4. Let 1td be an a-minimal class for Cd. Then any private PAC learner that learns Cd using 1td 
requires O((log l1tdl + 10g(1/ (3))/ E) labeled examples. 

Proof Let Cd be over the domain Xd and let 1td be a-minimal for Cd. Since for every h E 1td, 1td \ {h} 
does not a-represent Cd, we get that there exists a concept Ch E Cd and a distribution Dh on Xd such that 
on inputs drawn from Dh labeled by Ch, every PAC learner (that learns Cd using 1td) has to output h with 
probability at least 1 - (3. 

Let A be a private learner that learns Cd using 1td, and suppose A uses m labeled examples. For every 
h E 1td, note that there exists a database Dh E X'd on which A has to output h with probability at least 
1 - (3. To see that, note that if A is run on m examples chosen i.i.d. from the distribution TJh and ]abeled 
according to Ch, then A outputs h with probability at least 1 - (3 (where the probability is over the sampling 
from TJh and over the randomness of A). Hence, a collection of m labeled examples over which A outputs 
h with probability 1 - (3 exists, and Dh can be set to contain these m labeled examples. 

Let h, h' E 1td such that hi-h' and consider the two corresponding databases Dh and Dh' with m 
entries. Clearly, they differ in at most m entries, and hence we get by differential privacy of A that 

Pr[A(Dh) = h'] > exp( -Em) . Pr[A(Dhl) = h'] 
> exp( -Em) . (1 - (3). 

Since the above inequality holds for every pair of databases, we get, 

Pr[A(Dh) E 1td \ {h}] = L Pr[A(Dh) = h'] 
hi EJ-id \ {h} 

> (l1tdl - 1) . exp( -Em) . (1 - (3). 

On the other hand, we chose Dh such that Pr[A(Dh) = h] 2: 1 - (3, equivalently, Pr[A(Dh) ::j:. h] ::; (3. 
We hence get that (l1tdl - 1) . exp( -Em) . (1 - (3) ::; (3. Solving the last inequality for m, we get m = 
O((log l1tdl + 10g(1/ (3)) /E) as required. 0 

6 
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Using Theorem 3.4, we now prove a lower bound on the number of labeled examples needed for proper 
private learning a specific concept class. Let T = 2d and Xd = {I, ... , T}. Define the concept class 
POINT d to be the set of points over {I, ... ,T}: 

Definition 3.5 (Concept Class POINTd). For j E [T] define Cj : [T] ~ {O, I} as Cj(x) = 1 (positive) if 
x = j, and 0 (negative) otherwise. POINTd = {Cj}jE[Tj' 

We note that we use the set {I, ... , T} for notational convenience only. We never use the fact that the 
set elements are integer numbers. 

Proposition 3.6. POINT d is a-minimal for itself. 

Proof Clearly, POINT d a-represents itself. To show minimality, consider a subset H~ ~ POINT d, where 
Ci ~ H~. Note that under the distribution D that chooses i with probability one, errorv(ci, Cj) = 1 for all 
j =j:. i. Hence, H~ does not a-represent POINT d. D 

The VC-dimension of POINT dis 1. It is well known that a standard (non-private) learner uses approx­
imately VC-dimension number of labeled examples to learn a concept class [4]. In contrast, we get that 
far more labeled examples are needed for any proper private learner for POINT d. The following corollary 
follows directly from Theorem 3.4 and Proposition 3.6: 

Corollary 3.7. Every proper private PAC learner for POINTd requires D((d + 10g(1/,8))/f) labeled ex­
amples. 

Remark 3.8. We note that the lower bound for POINTd can be improved to D((d + 10g(1/,8))/(w)) 
labeled examples, matching the upper bound from Theorem 3.2. This is shown in Lemma Ai in Appendix A 
Also, the proper learner for POINT dfrom Theorem 3.2 can be made efficient. This is shown in Lemma A2 
in Appendix A 

We conclude this section showing that every hypothesis class H that a-represents POINT d should have 
at least d hypotheses. Therefore, if we use Theorem 3.2 to learn POINT d we need D(log d) labeled exam­
ples. At first sight, it may seem that the relationship between IHI and the sample complexity is essential, and 
hence, the number of labeled examples needed for every private PAC learner for POINT d is super-constant. 
However, this turns not to be the case. In Section 3.2, we present a private learner for POINT d that uses 
o a,{3,€ (1) labeled examples. For this construction, we use techniques that are very different from those used 
in the proof of Theorem 3.2. In particular, our private learner uses a very large hypothesis class. 

Lemma 3.9. Let a < 1/2. IHI ~ dfor every hypothesis class H that a-represents POINT d· 

Proof Let H be a hypothesis class with IHI < d. Consider a table whose T = 2d columns correspond to 
the possible 2d inputs I, ... , T, and whose IHI rows correspond to the hypothesis in 1t. The (i, j)th entry 
is 0 or 1 depending on whether the ith hypothesis gives 0 or 1 on input j. Since IHI < d, then at least two 
columns j =j:. j' are identical. That is, h(j) = h(j') for every h E H. Consider the concept Cj E POINT d 
(defined as Cj (x) = 1 if x = j, and 0 otherwise), and the distribution D with probability mass 1/2 on 
both j and j'. We get that errorv(cj, h) ~ 1/2 > a for all h E H. Therefore, H does not a-represent 
POINTd. D 

3.2 Separation Between Proper and Improper Private PAC Learning 

We now use POINT d to show a separation between proper and improper private PAC learning. One­
way of achieving a smaller sample complexity is to use Theorem 3.2 to improperly learn POINT d with a 
hypothesis class H that a-represents POINT d, but is of size smaller than I POINT dl. By Lemma 3.9, we 
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know that every such 1t should have at least d hypotheses. We show in Appendix C (Theorem C.2) that 
there does exist a 1t wirth 11t1 = O( d) that a-represents POINT d. This immediately gives a separation -
proper private learning POINT d requires Sla,,6,€ (d) labeled examples, whereas POINT d can be improperly 
privately learned using Oa,,6,€ (log d) labeled examples. 

In the remainder of this section, we use different techniques to show a much stronger (in fact, the 
strongest) separation. We show that POINT d can be privately (and efficiently) learned by an improper 
learner using Oa,,6,€(l) labeled examples. We begin by presenting a non-private improper PAC learner Al 
for POINT d. Roughly, Al applies a simple proper learner for POINT d, and then modifies its outcome by 
adding random "noise". We then use sampling to convert Al into a private learner A2. Both Al and A2 are 
inefficient as they output hypotheses with exponential description length. However, using a pseudorandom 
function it is possible to compress the outputs of Al and A2, and hence achieve efficiency. 

Algorithm AI. Given labeled examples (Xl, yd, ... , (xm, Ym), algoritllm Al performs the following: 

1. If (Xl, YI), ... , (Xm, Ym) are not consistent with any concept in POINT d, return -.1 (this happens only 
if Xi =J- Xj and Yi = Yj = 1 for some i, j E [m] or if Xi = Xj and Yi =J- Yj)· 

2. If Yi = 0 for all i E m, then let C = 0 (the all zero hypothesis); otherwise, let C be the (unique) 
hypothesis from POINT d that is consistent with the m input labeled examples. 

3. Modify C at random to get a hypothesis h by letting h(x) = c(x) with probability 1 - a(3/4, and 
h(x) = 1 - c(x) otherwise for all X E [T]. Return h. 

Let m = O((log(l/(3) + 10g(1/a))/a). Standard arguments (see [12]) show that if m examples are 
drawn i.i.d. according to a distribution D on [TJ, and the examples are labeled consistently according to 
somecj E POINTd, then Pr[errorv(cj,c) > a/2]::; (3/2. Inotllerwords, Step 2 of the algorithm realizes 
a PAC learner for POINT d. To see that Al PAC learns POINT d note that 

IE[error(c, h)] = IE IE 1:lh(x) - c(x)l] = IE IE[lh(x) - c(x)l] = a(3, 
h V h x~v x~v h 4 

and hence, using Markov's Inequality, 

Pr[error( c, h) > a/2] ::; (3/2. 
v 

Combining this with Pr[errorv(cj, c) > a/2] ::; (3/2 and errorv(cj, h) ::; errorv(cj, c) + errorv(c, h), 
implies that Pr[errorv(cj, h) > a] ::; (3. 

Algorithm A2. We now modify learner Al to get a private learner A2 (a similar idea was used in [9] 
for learning parity functions). Given labeled examples (Xl, YI), ... , (Xml, Ym/), algorithm A2 performs the 
following: 

1. With probability a(3 / 4, return -.1. 

2. Construct a set S <:;;: [m'] by picking each element of [m'] with probability p = a/4. Run the non­
private learner Al on the examples indexed by S. 

We first show that, given m' = 8m/a labeled examples, A2 PAC learns POINT d. First note that, 
by Chernoff bound, Pr[ISI ::; m] ::; exp( -m/4) = Oa,,6(l). We get tllat A2 PAC learns POINT d with 
accuracy parameter a' = a and confidence parameter (3' = (3 + a(3/4 + exp( -m/4) = 0((3). Hence 
(with a proper choice of a, (3), we can obtain accuracy and confidence a', (3' witll m' = O((log(l/ (3') + 
10g(1/a'))/a,2). (Alternatively, the accuracy and confidence of the learner can be boosted privately as 
explained in [9]). We now show that A2 is f* -differentially private with bounded f*. 
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Claim 3.10. Algorithm A2 is f* -differentially private, where f* = 2//3. 

Proof Let D, D' be two neighboring databases, and assume that they differ on the ith entry. Remember, 
p = 0:/4. First let us anaJyze the probability of A2 outputting -.1: 

Pr[A2(D) =-.1] 
Pr[A2(D') =-.1] = 

< 

= 

p' Pr[A2(D) =-.1 liE S] + (1 - p) . Pr[A2(D) =-.1 Ii <t- S] 
p' Pr[A2(D') =-.1 liE S] + (1 - p) . Pr[A2(D') =-.1 Ii <t- S] 
p' 1 + (1 - p) . Pr[A2(D) =-.1 Ii <t- S] 
p' 0 + (1 - p) . Pr[A2(D') =-.1 Ii <t- S] 

p +1< ~ +1 
(1 - p) . Pr[A2(D') =-.1 Ii <t- s] - 0:/3(1 - p) , 

where the last equality follows noting that if i <t- S then A2 is equaJly likely to output -.1 on D and D', and 
the last inequaJity follows as -.1 is returned with probability 0:/3/4 in Step 1 of Algorithm A2. 

For the more interesting case, where A2 outputs a hypothesis h, we get: 

Pr[A2(D) = h] 
Pr[A2(D') = h] 

= 
p' Pr[A2(D) = h liE S] + (1 - p) . Pr[A2(D) = h I i <t- S] 
p' Pr[A2(D') = hi i E S] + (1 - p) . Pr[A2(D') = hi i <t- S] 

< p. Pr[A2(D) = h liE S] + (1 - p) . Pr[A2(D) = h I i <t- S] 
p' 0 + (1 - p) . Pr[A2(D') = h I i <t- S] 

_p_ . Pr[A2(D) = h liE S] + 1 
1 - p Pr[A2(D) = h I i <t- S] , 

where the last equaJity uses the fact that if i <t- S then A2 is equally likely to output h on D and D'. To 
conclude our proof, we need to bound the ratio of Pr[A2(D) = h liE S] to Pr[A2(D) = hi i <t- S]. 

Pr[A2(D) = h liE S] 
Pr[A2(D) = h I i <t- S] = 

L:RClm']\{i} Pr[A2(D) = hiS = R U {i}]· Pr[A2 selects R from [m'] \ {i}] 

L:W;;[m']\{i} Pr[A2(D) = hiS = R] . Pr[A2 selects R from [m'] \ {i}] 

< max Pr[A2(D) = hiS = Ru {i}] (2) 
R~[m']\{i} Pr[A2(D) = hiS = R] 

Now, having or not having access to (Xi, Yi) can only affect the choice of h(Xi), and since, Al flips the 
output with probability 0:(3/4, we get 

Pr[A2(D)=hIS=RU{i}] 1-0:/3/4 4 
max < <-. 

R~[m']\{i} Pr[A2(D) = h IS = R] - 0:/3/4 - 0:(3 

Putting everything together, we get 

Pr[A2(D) = h] < 4p + 1 = 4 + 1 < ~ + 1 < eE·. 
Pr[A2(D') = h] - 0:/3(1 - p) /3(4 - 0:) /3 

o 
We can reduce f* to any desired f' using the following simple lemma (implicit in [9], see proof in 

Appendix B): 

Lemma 3.11. Let A be an f* -differentially private algorithm. Construct an algorithm B that on input a 
database D = (d1, ... ,dn ) constructs a new database Ds whose ith entry is di with probability f( f', f*) = 
(exp(f') - l)/(exp(f*) + exp(f') - exp(f'f*) - 1) and -.1 otherwise, and then runs A on Ds. Then, B is 
f'-differentially private. 
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It is clearly possible to incorporate the sampling in the lemma directly in Step 2 of A2 (note that for 
small E', f ( E', E*) ~ E' / (exp( E*) - 1)). We get that the number of labeled examples required by our private 

learner is 0°' ,/3' ,f' (1). 

3.2.1 Making the Learner Efficient 

Recall that the outcome of Al (hence A2) is an exponentially long description of a hypothesis . We now 
complete our construction by compressing this description using a pseudorandom function. We use a slightly 
non-standard definition of (non-unifonn) pseudorandom functions from binary strings of size d to bits; these 
pseudorandom functions can be easily constructed given regular pseudorandom functions. 

Definition 3.12. Let F = {Fd}dEN be afunction ensemble, where for every d, Fd is a set offunctions from 
{a, l}d to {a, I}. We say that the function ensemble F is q-biased pseudorandom if for every family of 
polynomial-size circuits with oracle access {Cd} dEN, every polynomial p(-), and all sufficiently large d's, 

where Hd : {a, l}d ---; {a, I} is a function and the value Hd(x) for x E {a, l}d are selected i.i.d. to be 1 
with probability q and 0 otherwise. 

For convenience, for dEN, we consider Fd as a set of functions from {I, ... , T} to {a, I}, where 
T = 2d. We set q = 0:{3/4 in the above definition. Using an 0:{3/4-biased pseudorandom function ensemble 
F, we change Step 3 of algorithm Al as follows: 

3'. If c = 0, let h be a random function from Fd. Otherwise (i.e., C = Cj for some j E [T]), let h be a 
random function from Fd subject to Fd(j) = 1. Return h. 

Call the resulting modified algorithm A3. We next show that A3 is a PAC learner. Note that for large 
enough d, I Pr~h(x) = 1Ih(j) = 1] - 0:{3/41 ::; negl(d) for every x E {I , ... , T} (as otherwise, we get a 
non-uniform distinguisher for F). Thus, 

IE [error(c, h)] = IE IE [lh(x) - c(x)I]::; IE IE [h(x)] = IE IE [h(x)]::; 0:{3 + negl(d). 
hEFd V hEFd x~v hEFd x~v x~v hEFd 4 

The first inequality follows as \Ix E [T], h(x) ~ c(x). Thus, by the same arguments as for AI, Algorithm 
A3 is a PAC learner. 

We next modify algorithm A2 by executing the learner A3 instead of the learner AI. Call the resulting 
modified algorithm A 4. Algorithm A4 preserves differential privacy. To see that, note that it suffices to give 
a bound on Equation (2). By comparing the case where S = R with S = Ru {i}, we get that the probability 
for a hypothesis h can increase only if c = 0 when S = R, and c = Cyi when S = R U {i}. Therefore, 

max 
R~[m'l\{i} 

Pr[A4(D)=hIS=RU{i}] < 1 < 1 
Pr[A4(D) = h IS = R] - (0:{3/4) - negl(d) - (0:{3/8) 

8 
0:{3. 

Theorem 3.13. There exists an efficient improper private PAC learner for POINTd that uses Oo,,B,f(l) 
labeled examples, where E, 0:, and (3 are parameters of the private learner. 

Lemma A.l and Theorem 3.13 give the following separation. 

Theorem 3.14. Every proper private PAC learner for POINT d requires n((d + 10g(1/ (3))/(w)) labeled 
examples, whereas there exists an efficient improper private PAC learner that can learn POINT d using 
Oo,,B,f(l) labeled examples. 

10 



Submission number 163 to Tee 2010: DO NOT DISTRIBUTE! 

3.3 Separation Between Efficient and Inefficient Proper Private PAC Learning 

In this section, we use the sample size lower bound for proper private learning POINT d to obtain a sepa­
ration between efficient and inefficient proper private PAC learning. Let Ur represent a uniformly random 
string from {O, IV. Let £(d) : N -7 N be a function and G = {Gd}dEN be a deterministic algorithm such 
that on input from {a, l}t(d) it returns an output from {a, l}d. Informally, we say that G is pseudorandom 
generator if on £(d) truly random bits it outputs d bits that are indistinguishable from d random bits. For­
mally, for every probabilistic polynomial time algorithm 13 there exists a negligible function negl( d) (i.e., a 
function that is asymptotically smaller than 1/ de for all C > 0) such that 

I Pr[13(Gd(Ut(d»)) = 1] - Pr[13(Ud) = 1]1 :s; negl(d). 

Such exponential stretch pseudorandom generators G (i.e., with £(d) = w(log d)) exist under various strong 
hardness assumptions. 

Let POINT d = {Cl' ... ,~d}. Now to a polynomially bounded private learner, cGd(Ut(d) would appear 
with high probability as a uniformly random concept picked from POINT d. We will show by using ideas 
similar to the proof of Theorem 3.4 that a polynomially bounded proper private learner would require!1( (d+ 
10g(1/,8))/E) labeled examples to learn cGd(U£(d)' More precisely, define concept class 

P?5iNT d = U cGd(r)' 

rE{O,l}t(d) 

Assume that there is an efficient proper private learner A for P7Jii[T d with sample size m = o( (d + 
10g(1/ ,8))/ E). We use A to construct a distinguisher for the pseudorandom generator: Given j we construct 
the database D with m entries (j,1). If A(D) = Cj, then the distinguisher returns 1, otherwise it returns 
0. If j = Gd(r) for some r, then, by the utility of the private learner, A has to return Cj on this database 
with probability at least 1 - ,8. Thus, the distinguisher returns 1 with probability at least 1 - ,8 when j is 
chosen from Gd(Ue(d»)' Assume that for (say) 1/4 of the values j E [2d] algorithm A, when applied to 
the database with m entries (j, 1), returns Cj with probability at least 1/3. Then, we get a contradiction 
following the same argument as in the proof of Theorem 3.4 (as almost all c/s must have probability at least 
(1-,8)· exp( -Em)). Thus, the distinguisher returns 1 with probability at most 1/4 + 3/4 ·1/3 = 1/2 when 
j is chosen from U d. 

If the learner is not polynomially bounded then it can use the algorithm from Theorem 3.2 to pri-
vately learn P7Jii[Td. Since, Ip7Jii[Tdl = 2t(d), the private learner from Theorem 3.2 uses O((£(d) + 
log( 1 / ,8)) / (w)) labeled examples. We get the following separation between efficient and inefficient proper 
private learning: 

Theorem 3.15. Let £(d) be any function that grows as w(logd), and G be a be a pseudorandom gener­

ator with stretch d - £(d). For the concept class P7Jii[T d, every efficient (Le., polynomial time) proper 
private PAC learner with probability at least 1 - negl(d) requires !1( (d + 10g(1/,8))/ E) labeled examples, 

whereas there exists an inefficient proper private PAC learner that can learn P7Jii[Td using O((£(d) + 
10g(1/,8))/(w)) labeled examples. 

Remark 3.16. In the non-private setting, there exists an efficient proper learner that can learn the concept 

class P7Jii[Td using O((!og(l/a) +log(l/,8))/a) labeled examples (as VGDIM(P7Jii[Td) = 1). In the 
non-private setting we also know that even inefficient learners require !1(l/a) labeled examples [8, I2J. 

Therefore, for P7Jii[T d the sample complexities of efficient non-private learners and inefficient non-private 
learners are almost the same. 
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4 Lower Bounds for Non-Interactive Sanitization 
We now prove a lower bound on the database size (or sample size) needed to privately release an output that 
is useful for all concepts in a concept class. We start by recalling a definition and a result of Blum et al. [2]. 

Let X = {Xd}dEN be some discretized domain and consider a class of predicates Cover X. A database 
D is contains points taken from Xd. A predicate query Qc for c : Xd -> {O, 1} in C is defined as 

Q (
D) = I{di ED: C(di) = 1}1 

c IDI · 

A sanitizer (or data release mechanism) is a differentially private algorithm A that on input a database D 
outputs another database D with entries taken from X d . An algorithm A is (a , ,B)-useful for concepts in 

class C if with probability at least 1 - ,B for every c E C, and every database D , for D = A(D), 

IQc(D) - Qc(.o)1 < a. 

Theorem 4.1 (Blum et al. [2]). For any class offunctions C, and any database D E X;r, such that 

m? 0 (lOg IXdl . VCD~M(C) log(1ja) + IOg(1 j ,8)) \ 
a f fa 

there exists an (a, ,B)-useful mechanism A that preserves f-differential privacy. The algorithm may not be 
efficient. 

We show that the dependency on log 'IXdl in Theorem 4. 1 is essential: there exists a class of predicates 
~ with VC-dimension 0(1) that requires IDI = Oa,,8,€(log IXdl). For our lower bound, the sanitized output 

D could be any arbitrary data structure (not necessarily a synthetic database). For simplicity, however, here 
we focus on the case where the output is a synthetic database. The proof of this lower bound uses ideas from 
Section 3.1. 

Let T = 2d and Xd = [T] be the domain. Consider the class POINT d (where i E [T]). For every 
i E [T], construct a database Di E X;r by setting (1 - 3a)m entries at 1 and the remaining 3am entries 

at i (for i = 1 all entries of Dl are 1). For i E [T] \ {1} we say that a database .0 is a-useful for 

Di if 2a < Qc; (D) < 4a and 1 - 4a < QCj (D) < 1 - 2a. We say that .0 is a-useful for Dl if 
1 - a < QCj (D) ~ 1. It follows that for i =I=- j if .0 is a-useful for Di then it is not a-useful for D j . 

Let ID>i be the set of all databases that are a-useful for Di. Note that for all i =I=- 1, Dl and Di differ on 
3am entries, and by our previous observation, ID>1 n E)i = 0. Let A be an (a, ,B)-useful private release mech­

anism for POINT d. For all i, on input Di mechanism A should pick an output from E)i with probability at 
least 1 - ,B. We get by the differential privacy of A that 

Pr[A(D1 ) E ID\] ? exp( -3wm) Pr{A(Di ) E E)i] ? exp( -3wm) . (1 - ,8). 

Hence, 

(sets IDii are disjoint) 
i¥l 

> (T - 1) exp( -3wm) . (1 - ,B). 

On the other hand, since A is (a,,8)-useful, Pr[A(D1) .;. ID>lJ < ,B, and hence we get that m = 
O((d + log(1j ,B))j(w )). 

Theorem 4.2. Every f-differentially private non-interactive mechanism that is (a, ,B)-useful for POINT d 

requires an input database ofO( (d + log(1j ,B))j(w)) size. 
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A Missing Details from Section 3.1 
Lemma A.1. Every proper private PAC learner for POINTd requires D((d + log(l/,6))/(w)) labeled 
examples. 

Proof Define the distributions Vi (1 ::; i ::; T) on Xd as follows: point 1 is picked with probability 1 - 0: 
and point i is picked with probability 0:. The support of Vi is on points 1 and i. 

We say a database D E Xd is good for distribution Vi if D has at most 20:m points on i. Let D E Xd 
be a database constructed by taking m i.i.d. samples from Vi. By the Chernoff bound, the probability that 
D is good for distribution Vi is at least 1 - 2· exp( -20:m/3). 

Let A be a proper private learner. On a given database from input distribution Vi where the points are 
labeled consistently with concept Ci, A has to output h == Ci with probability at least 1 - ,6. Because if A 
outputs some h = Cj (where j =I- i), then errorvi (Ci' h) = errorVi (Ci, Cj) = Pr x~vJCi (x) =I- Cj (x)] > 0: 
(thus, violating the PAC learning condition for accuracy). 

Consider a database D2 constructed by taking m i.i.d. samples from distribution V2 and labeling these 
points with concept C2. Let us first condition on the fact that D2 is good for distribution V 2. Let D2 have 
s points on 1. Construct databases D3,' .. , DT from D2, where Dk (for k E {3, ... , T}) is constructed 
by moving the points on D2 that are on 2 to k. The labels are kept unchanged. Notice that all the points 
in Dk are labeled consistently with Ck and Dk is a good database for distribution Vk (as we assumed D2 
is good for distribution V 2). Therefore, A has to output Ck on input Dk with probability at least 1 - ,6. 
The databases D2 and Dk differ in s ::; 20:m entries. Therefore (conditioned on D2 being good), by the 
guarantees of differential privacy 

Pr[A(D2) E {C3,'" ,CT}] 2 (T - 2)exp(-2wm)(1-,6) = (2d - 2)exp(-2wm)(1- ,6). 

The probability that D2 is good for distribution V2 is at least 1 - 2 . exp( -20:m/3) and A on input D2 has 
to output C2 with probability at least 1 - ,6. Therefore, 

(2d - 2) exp( -2wm)(1 - ,6)(1 - 2 exp( -20:m/3)) ::; ,6. 

Solving for m, we get the claimed bound. o 
Lemma A.2. There exists an efficient proper private learner for POINT d that uses O((d + log(l/ ,6))/w) 
labeled examples. 

Proof We adapt the learner of [9]. Let POINTd = {CI"",C2d}. The learner uses the exponential 
mechanism of McSherry and Talwar [13]. Let D = ((Xl, yd, ... , (xm, Ym)) be a database of labeled 
examples (the labels Yi'S are assumed to be consistent with some concept in POINT d). Define for every 
Cj E POINT d, q(D, Cj) = -I {i : Yi =I- Cj(Xi)} I, i.e., q(D, Cj) is minus the number of points in D misclas­
sified by Cj. The private learner A is defined as follows: output hypothesis Cj E POINT d with probability 
proportional to exp(Eq(D, cj)/2). Since the exponential mechanism is E-differentially private [13], A is 
E-differentially private. By [9], if m = O( (d + log(l/,6) )/( w)) then A is also a proper PAC learner. 

We now show A can be implemented efficiently. Implementing the exponential mechanism requires 
computing q(D, Cj) for 1 ::; j ::; 2d. However, q(D, Cj) is same for all j 1:. {Xl, ... , Xm} and can be 
computed in O(m) time. Also, for any j E {Xl, ... , Xm}, q(D, Cj) can be computed in O(m) time. Let 

p= ( L eXP(Eq(D,Cj)/2)) + (2d -m)exp(Eq(D,cj')/2), wherej' 1:. {XI, ... ,Xm}. 
jE{xj, ... ,xm } 

The algorithm A can be efficiently implemented as the following sampling procedure: 
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1. For j E {Xl, ... , xm }, with probability exp(Eq(D, ej)/2)/ P, output ej. 

2 W· h b b'l' (2 d -m) exp(€q(D,cj, )/2) . k ." . It pro a I Ity p, pIC uniiormly at random a hypothesis from POINT d \ 
{eX! , ... , ex",,} and output it. 

o 
B Missing Details from Section 3.2 

Proof of Lemma 3.11. Let D, D' be neighboring databases, and assume they differ on the ith entry. Let 
S ~ [n] denote the indices of the random set of entries that are chosen. Let q = f (E', E*). Since, D and D' 
differ in just the ith entry. for any outcome t, Pr[A(Ds) = tIi ~ S] = Pr[A(D~) = tIi t/:- S]. Thus. we have 

Pr[B(D) = t] _ q . Pr[A(Ds) = tIi E S] + (1 - q) . Pr[A(Ds) = tli ~ S] 
Pr[B(D') = t] - q. Pr[A(Di) = tIi E S] + (1 - q) . Pr[A(Ds) = tli ~ S] 

LR~[nl\{i} Pr[S = R U {i}]· (q. Pr[A(Ds) = tiS = R U {i}] + (1 - q). Pr[A(Ds) = tiS = RJ) 
= 

LR~[nl\{i} Pr[S = R U {i}]· (q. Pr[A(D~) = tiS = R U {i}] + (1 - q) . Pr[A(Ds) = tiS = R]) 

< 
q. Pr[A(Ds) = tiS = R U {i}] + (1 - q) . Pr[A(Ds) = tiS = R] 

max 
R~[nl\{i} q. Pr[A(Di) = tiS = R U {i}] + (1 - q) . Pr[A(Ds) = tiS = R] 

< 
q. exp(E*) . Pr[A(Ds) = tiS = R] + (1 - q) . Pr[A(Ds) = tiS = R] 

max 
R~[nl\{i} q . exp( -E*) . Pr[A(Ds) = tiS = R] + (1 - q) . Pr[A(Ds) = tiS = R] 

1 + q . (exp( E*) - 1) ( ') 
= l_q . (I_exp(_E*))=exp E . 

Therefore, .6 is an E'-differentially private algorithm. o 
C Alternate Improper Private PAC Learner for POINT d 

We construct the best private learner (in terms of sample complexity) that can be yielded by the construction 
of Theorem 3.2 for the class POINT d. For that we construct (randomly) a hypothesis class Hd that a­
represents a concept class POINT d, where IHdl = Oo(d). Lemma 3.9 shows that this is optimal up to 
constant factors. 

To demonstrate the main idea of our construction, we begin with a construction of a hypothesis class 
Hd = {AI, ... ,Ad that a-represents POINTd, where k = O(VT/a) = O(-J2d/a) (this should be 
compared to the size of POINT d which is 2d). Every Ai E H is a subset of {I, ... ,T}, such that 

(1) For every j there are more than l/a sets in H that contain j, and 

(2) For every 1 ::; il < i2 ::; k, IAi! n Ai21 ::; 1. 

Note first that Hd a-represents POINT d. For every concept ej E POINT d there are hypotheses 
AI, . .. ,Ap E Hd that contain j (where p = Ll/a J + 1) and are otherwise disjoint (that is, the intersection 
between any two sets Ail and Ai2 is exactly j). Fix a distribution V. For every Ai, errorv(ej, Ai) = 
Pr1)(A i \ {j}). Since there are more than l/a such sets and the sets Ai \ {j} are disjoint, there exist' .. ( 
least one set such that error1)(ej, Ai) ::; a. Thus, Hd a-represents the concept class POINT d· 

We want to show that there is a hypothesis class whose size is O(..JT / a) and satisfie~ I-.~ a~ove two 
requirements. As an intermediate step. we show a construction of O(T) size. We consider. ~ projective pl~ne 
with T points and T lines (each line is a set of points) such that for any two points ftl-~hre IS exactly o~e l~ne 

. . ., I . . d' L ~1 0 t em. Such pro1ectrve contammg them and for any two hnes there IS exact y one pomt contame In ", J 
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plane exists whenever T = q2 +q+ 1 for a prime power q. Furthermore, the number of lines passing through 
each point is q + 1. If we take the lines as the hypothesis class, then they satisfy the above requirements, 
thus, they a-represent POINT d. However, the number of hypotheses in the class is T and no progress was 
made. 

We modify the above projective plane construction. We start with a projective plane with 2T points, 
where 2T = q2 + q + 1 and choose a subset of the lines: We choose each line at random with probability 
2/((q + l)a). Since these lines are part of the projective plan, they satisfy the above requirement (2). We 
show that for most j's it satisfies requirement (1). 

Fix j. Since there were q + 1 lines passing through j and we choose each line with probability 2/ (( q + 
l)a), the expected number of chosen lines passing through j is 2/a. Let us call a point bad if it is contained 
in less than 1/ a chosen lines. Let Xj be a random variable representing the number lines containing j. By 
the Chebychev inequality, the probability 

Pr [Ix, - ~I > t ~ (1- 2 )] < ~. 
J a - a (q + l)a - t 2 

For (q + l)a ::::: 8 and a :::; 1/6, by setting t = -)2/3a, we get Pr[Xj :::; l/a] :::; 1/4. Therefore, the 
probability that a point is bad is at most 1/4. The expected number of bad points is 2T . 1/4 = T /2. By the 
Markov inequality, with probability at least 1/2 there exists at least T non-bad points (each non-bad point is 
contained in at least l/a chosen lines). Furthermore, by Markov inequality the probability that we choose 
more than 4(q2 + q + l)/((q + l)a) lines is less than 1/2. Thus, with positive probability 

• There are at most4(q2 + q + l)/((q + l)a) < 8VT/a lines, and 

• There exists a set of T points each of which is contained in more than 1/ a chosen lines. 

Thus, there exists a set of lines satisfying these requirements. We choose such lines. We eliminate points 
that are contained in less than 1/ a chosen lines. Formally, let V be a subset of the points of size T, each 
point in V is contained in more than 1/ a lines. We remove from each line all points that are not in V. We 
get a set of 0 ( VT / a) lines such that the size of the intersection of each two lines is at most 1, and each 
of the T point is contained in more than l/a lines as required. By renaming the points in V, we get the 
required construction. 

We next show a much more efficient construction based on the above idea. 

Lemma c.l. There is a hypothesis class Hd that a-represents POINT d such that IHdl = O( d/ a 2). 

Proof We will show how to construct a hypothesis class H = {Sl,"" Sk}, where every Si E H is a 
subset of {I, ... , T} and for every j 

There are p = log T . (1 + L l/a J) sets AI, ... ,Ap in H that contain j such that 
for every b #- j, the point b is contained in less than log T of the sets AI, ... , Ap. 

(3) 

First we show that H a-represents POINT d. Fix a concept Cj E POINT d and a distribution D, and 
consider hypotheses AI, ... , Ap in H that contain j. Since every point in these hypotheses is contained in 
less than log T sets, 

p 

L ~(Ai \ {j}) 
i=l 

< log T . Pr(U(Ai \ {j})) 
V 

< logT. 

Thus, there exists at least one set Ai such that errorv(cj, Ai) = Prv(Ai \ {j}) :::; log T /p < a. Thus, Hd 
a-represents the concept class POINT d. 
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We next show how to construct 'H . Let k = 8ep2/ log T (that is, k = o (log T / ( 2)). We choose 
k random subsets of {I, ... ,2T} of size 4pT / k. We will show that a point j satisfies Equation (3) with 
probability at least 3/4. We assume d 2 16 (and hence, p 2 16 and T 2 16). 

Fix j. The expected number of sets that contain j is k . (4pT / k) / (2T) = 2p, thus, by the Chebychev 
inequality, the probability that less than p sets contain j is less than 2/p ::; 1/8. We call this event BAD I. 

Let j be such that there are at least p sets that contain j and let AI, ... , Ap be p of them. Notice 
that Al \ {j} , ... , Ap \ {j} are random subsets of {I, ... ,2T} \ {j} of size (4pT / k) - 1. Now, fix 
b =f j. The probability that a random subset of {I, ... , 2T} \ {j} of size (4pT/k) - 1 contains b is 
(4pT / k - 1) / (2T - 1) < 2p/ k. For log T random sets of size (4pT / k) - 1, the probability that all of them 
contain b is less than (2p/k)logT. Thus, the probability that there is abE {I, ... , 2T}, where b =f j, and 
log T sets among AI , .. . , Ap such that these log T sets contains b is less than 

2T . ( P ) (2p/k)logT ::; 2T. (ep/ logT)logT (2p/k)logT 
logT 

= 2T. (2ep2 / (k log T) ) log T . 

By the choice of k, 2ep2 /(k logT) = 1/4, thus, the above probability is at most 2T . (1/4)logT = 2/T ::; 
1/8. We call this event BAD2. 

To conclude, the probability that j does not satisfy Equation (3) is the probability that either BADI or 
BAD2 happens which is at most 1/4. Therefore, the expected number of j's that do not satisfy Equation (3) 
is less than T /2. By the Markov inequality, the probability that more than T points j do not satisfy Equa­
tion (3) is less than 1/2. We take k = O(logT /(2) subsets of {1, ... , 2T}, denoted 81 , ... , 8k, such that 
at least T points j satisfy Equation (3). By the probabilistic argument above, such sets exist. Let V be a 
set of size T of the points that satisfy Equation (3), and define 'Hd = {8I n V, ... , 8k n V} . Finally, by a 
simple renaming, we can assume that 'Hd contains subsets of {1, ... , T} as required. 0 

From Lemma C.l and Theorem 3.2 we get: 

Theorem C.2. There exists an improper private PAC learner for POINT d that uses O( (log d + log ~ + 
log ~)/ta) labeled examples, where t, a, and f3 are parameters of the private learner. 
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