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Bounds on the Sample Complexity for Private Learning and Private
Data Release

Amos Beimel* Shiva Kasiviswanathan! Kobbi Nissim?

Abstract

Learning is a task that generalizes many of the analyses that are applied to collections of data, and in
particular, collections of sensitive individual information. Hence, it is natural to ask what can be learned
while preserving individual privacy. [Kasiviswanathan, Lee, Nissim, Raskhodnikova, and Smith; FOCS
2008] initiated such a discussion. They formalized the notion of private learning, as a combination of
PAC learning and differential privacy, and investigated what concept classes can be learned privately.
Somewhat surprisingly, they showed that, ignoring time complexity, every PAC leaming task could be
performed privately with polynomially many samples, and in many natural cases this could even be done
in polynomial time.

While these results seem to equate non-private and private learning, there is still a significant gap: the
sample complexity of (non-private) PAC learning is crisply characterized in terms of the VC-dimension
of the concept class, whereas this relationship is lost in the constructions of private learners, which
exhibit, generally, a higher sample complexity.

Looking into this gap, we examine several private learning tasks and give tight bounds on their
sample complexity. In particular, we show strong separations between sample complexities of proper and
improper private learners (such separation does not exist for non-private learners), and between sample
complexities of efficient and inefficient proper private learners. Our results show that VC-dimension is
not the right measure for characterizing the sample complexity of proper private learning.

We also examine the task of private data release (as initiated by [Blum, Ligett, and Roth; STOC
2008]), and give new lower bounds on the sample complexity. Our results show that the logarithmic
dependence on size of the instance space is essential for private data release.
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1 Introduction

The notion of private learning was recently introduced by Kasiviswanathan et al. [9]. Informally, a private
learner is required to output a hypothesis that gives accurate classification while protecting the privacy of
the individual samples from which the hypothesis was obtained. The formal notion of a private learner is a
combination of two qualitatively different notions. One is that of PAC learning [16], the other of differential
privacy [6]. In PAC (probably approximately correct) learning, a collection of samples (labeled examples)
is generalized into a hypothesis. It is assumed that the examples are generated by sampling from some
(unknown) distribution D and are labeled according to an (unknown) concept ¢ taken from some concept
class C. The learned hypothesis A should predict with high accuracy the labeling of examples taken from
the distribution D, an average-case requirement. Differential privacy, on the other hand, is formulated as
a worst-case requirement. It requires that the output of a learner should not be significantly affected if a
particular example d is replaced with arbitrary d’, for all d and d’. This strong notion provides rigorous
privacy guarantees even against attackers empowered with arbitrary side information [10].

Recent research on privacy has shown, somewhat surprisingly, that it is possible to design differentially
private variants of many analyses (see [5] for a recent survey). In this line, the work of [9] demonstrated
that private learning is generally feasible — any concept class that is PAC learnable can be learned privately
(but not necessarily efficiently), by a “private Occam’s Razor” algorithm, with sample complexity that is
logarithmic in the size of the hypothesis class. Furthermore, taking into account the earlier result of [1] (that
all concept classes that can be efficiently learned in the statistical queries model can be learned privately and
efficiently) and the efficient private parity learner of [9], we get that most “natural” computational learning
tasks can be performed privately and efficiently. This is important as learning problems generalize many of
the computations performed by analysts over collections of sensitive data.

The results of [1, 9] show that private learning is feasible in an extremely broad sense, and hence one
can essentially equate learning and private learning. However, the costs of the private learners constructed
in [1, 9] are generally higher than those of non-private ones by factors that depend not only on the pri-
vacy, accuracy, and confidence parameters of the private learner. In particular, the well-known relationship
between the sampling complexity of PAC learners and the VC-dimension of the concept class (ignoring
computational efficiency) [4] does not hold for the above constructions of private learners — as their sample
complexity is proportional to the logarithm of the size of the concept class (recall that the VC-dimension
of a concept class is bounded by the logarithm of its size, and is significantly lower for many interesting
concept classes).

The focus of this work is on a fine-grain examination of the differences in complexity between private
and non-private learning. The hope is that such an examination will lead to an understanding of which
complexity measure is relevant for the sample complexity of private learning, similar to the well-understood
relationship between the VC-dimension and sample complexity of PAC learning. We believe that such
an examination is also interesting for other tasks, and a second task we examine is that of releasing a
sanitization of a data set that simultaneously protects privacy of individual contributors and offers utility to
the data analyst. See the discussion in Section 1.1.3.

1.1 Our Contributions

We now give a brief account of our results. Throughout this rather informal discussion we will treat the
accuracy, confidence, and privacy parameters as constants (a more detailed analysis is presented in the
technical sections). We use the term “efficient” for polynomial time computations.

Following standard computational learning terminology, we will call learners for a concept class C that
only output hypotheses in C proper, and other learners improper. The original motivation for this distinction
is that there exist concept classes C for which proper learning is computationally intractable [15], whereas
it is possible to efficiently learn C improperly [16]. As we will see below, the distinction between proper
and improper learning is useful also when discussing private learning, and for more reasons than making
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intractable Jearning tasks tractable. Our results on private learning are summarized in Table 1.
1.1.1 Proper and Improper Private Learning

It is instructive to look into the construction of the Occam Razor algorithm of [9] and see why its sample
complexity is proportional to the logarithm of the size of the hypothesis class used. The algorithm uses the
exponential mechanism of McSherry and Talwar [13] to choose a hypothesis. The choice is probabilistic,
where the probability mass that is assigned to each of the hypotheses decreases exponentially with the
number of samples that are inconsistent with it. A union-bound argument is used in the claim that the
construction actually yields a learner, and a sample size that is logarithmic in the size of the hypothesis class
is needed for the argument to go through.

For our analyses in this paper, we consider a simple, but natural, class POINT ; containing the concepts
¢j : {0,1}% — {0,1} where cj(z) = 1 for z = j, and 0 otherwise. The VC-dimension of POINT 4 is one,
and hence it can be learned (non-privately and efficiently, properly or improperly) with merely O(1) samples.

In sharp contrast, (when used for properly learning POINT ;) the Occam Razor algorithm requires
O(log |POINT4|) = O(d) samples — obtaining the largest possible gap in sample complexity when com-
pared to non-private learners! Qur first result is a matching lower bound. We prove that any proper private
learner for POINT ; must use §2(d) samples, therefore, answering negatively the question (from [9]) of
whether proper private learners should exhibit sample complexity that is approximately the VC-dimension
(or even a function of the VC-dimension) of the concept class'.

A natural way to improve on the sample complexity is to use the private Occam Razor to improperly
learn POINT 4 with a smaller hypothesis class, that is still expressive enough for POINT ;. We show that
this indeed is possible, as there exists a hypothesis class of size O(d) that can be used for learning POINT 4
improperly. Furthermore, this bound is tight, any hypothesis class for learning POINT 4 must contain $2(d)
hypotheses. These bounds are interesting as they give a separation between proper and improper private
learning — proper private learning of POINT 4 requires €(d) samples, whereas POIN T ; can be improperly
privately learned using O(logd) samples. Note that such a combinatorial separation does not exist for
non-private learning, as a VC-dimension number of samples are needed and sufficient for both proper and
improper non-private learners. Furthermore, the 2(d) lower bound on the size of the hypothesis class maps
a clear boundary to what can be achieved in terms of sample complexity using the private Occam Razor for
POINT 4. It might even suggest that any private learner for POINT 4 should use §2(log d) samples.

It turns out, however, that the intuition expressed in the last sentence is at fault. We construct an efficient
improper private learner for POINT; that uses merely O(1) samples, hence establishing the strongest
possible separation between proper and improper private learners. For the construction we extrapolate on a
technique from the efficient private parity learner of [9]. The construction of [9] utilizes a natural non-private
proper learner, and hence results in a proper private learner, whereas, due to the bounds mentioned above,
we cannot use a proper learner for POINT 4, and hence we construct an improper (rather unnatural) learner
to base our construction upon. Qur construction utilizes a double-exponential hypothesis class, and hence
is inefficient (even outputting a hypothesis requires super-polynomial time). We use a simple compression
using pseudorandom functions (akin to [14]) to make the algorithm efficient.

1.1.2 Efficient and Inefficient Proper Private Learning

We use the above lower bound on the number of samples for proper private learning POINT ; to show
a separation in the sample size between efficient and inefficient proper private learning. Assuming the
existence of pseudorandom generators with exponential stretch, we present a concept class Pde -a
variant of POINT 4 — such that every efficient proper private learner for this class requires £2(d) samples. In

'Our proof technique yields lower bounds not only on private learning POINT 4 properly, but on private learning of any concept
class C with various hypothesis classes that we call -minimal for C.
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| Concept Class Sample Complexity
POINT, Non-Private Learning Improper Private Learning | Proper Private Learning
(Proper or Improper)
‘ o) [4, 8] o) o(d)
‘ POINT Non-Private Learning | Ineff. Proper Private Learning | Eff. Proper Private Learning
d | (Efficient or Inefficient)
©(1) [4, 8] | e(¢(d) ©(d)

Table 1: Our separation results (ignoring dependence on ¢, , 3). £(d) is any function that grows as w(log d).

contrast, an inefficient proper private learner exists that uses only a super-logarithmic number of samples.
This is the first example where requiring efficiency on top of privacy comes at a price of larger sample size.

1.1.3 The Sample Size of Non-Interactive Sanitization Mechanisms

Given a database containing a collection of individual information, a sanitization is a release that protects the
privacy of the individual contributors while offering utility to the analyst using the database. The setting is
non-interactive if once the sanitization is released the original database and the curator play no further role.
Blum ez al. [2] presented a construction of such sanitizers for count queries. Let C be a concept class consist-
ing of efficiently computable predicates from a discretized domain X to {0, 1}. Given a collection D of data
items taken from X, Blum ez al. employ the exponential mechanism [13] to (inefficiently) obtain another
collection D’ with data items from X such that D’ maintains approximately correct count of ) _ ;. , ¢(d) for
all concepts ¢ € C. Also, they show that it suffices for D to have a size that is O(log |X| - VCDIM (C)).
The database D' is referred to as a synthetic database as it contains data items drawn from the same universe
(X) as the original database D.

We provide new lower bounds for non-interactive sanitization mechanisms. We show that for POINT g
every non-interactive sanitization mechanism that is useful? for POINT ; requires a database of Q(d) size.
This lower bound is tight as the sanitization mechanism of Blum et al. for POINT ; uses a database of
O(d - VCDIM(POINT)) = O(d) size. Our lower bound holds even if the sanitized output is an arbitrary
data structure and not a synthetic database.

1.2 Related Work

The notion of PAC learning was introduced by Valiant [16]. The notion of differential privacy was introduced
by Dwork et al. [6]. Private learning was introduced in [9]. Beyond proving that (ignoring computation)
every concept class can be PAC learned privately (see Theorem 3.2 below), they proved an equivalence
between learning in the statistical queries model and private learning in the local communication model (aka
randomized response). The general private data release mechanism we mentioned above was introduced
in [2] along with a specific construction for halfspace queries. As we mentioned above, both [9] and [2] use
the exponential mechanism of [13] — a generic construction of differential private analyses, that (in general)
does not yield efficient algorithms.

« A recent work of Dwork et al. [7] considered the complexity of non-interactive sanitization under two
settings: (a) sanitized output is a synthetic database, and (b) sanitized output is some arbitrary data structure.
For the task of sanitizing with a synthetic database they show a separation between efficient and inefficient
sanitization mechanisms based on whether the size of the instance space and the size of the concept class is
polynomial in a (security) parameter or not. For the task of sanitizing with an arbitrary data structure they
show a tight connection between complexity of sanitization and traitor tracing schemes used in cryptography.
They leave the problem of separating efficient private and inefficient private learning open.

*Informally, a mechanism is useful for a concept class if for every input, the output of the mechanism maintains approximately
correct counts for all concepts in the concept class.
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It is well known that for all concept classes C, every learner for C requires 2( VCDIM (C)) samples [8].
This lower bound on the sample size also holds for private learning. Blum, Ligett, and Roth [3] have recently
extended this result to the setting of private data release. They show that for all concept classes C, every
non-interactive sanitization mechanism that is useful for C requires Q( VCDIM (C)) samples. We show in
Section 4 that this bound is not tight — there exists a concept class C of constant VC-dimension such that
every non-interactive sanitization mechanism that is useful for C requires a much larger sample size.

2 Preliminaries
Notation. We use [n] to denote the set {1,2,...,n}. The notation O-(g(n)) is a shorthand for O(h(y) -

g(n)) for some non-negative function h. Similarly, the notation £2,(g(n)). We use negl(-) to denote func-
tions from R to [0, 1] that decrease faster than any inverse polynomial.

2.1 Preliminaries from Privacy

A database is a vector D = (d,...,d,,) over adomain X, where each entry d; € D represents information
contributed by one individual. Databases D and D' are called neighbors if they differ in exactly one entry
(i.e., the Hamming distance between D and D’ is 1). An algorithm is private if neighboring databases induce
nearby distributions on its outcomes. Formally:

Definition 2.1 (Differential Privacy [6]). A randomized algorithm A is e-differentially private if for all
neighboring databases D, D', and for all sets S of outputs,

Pr[A(D) € S] < exp(e) - Pr[A(D’) € S]. (1)
The probability is taken over the random coins of A.

An immediate consequence of Equation (1) is that for any two databases D, D’ (not necessarily neigh-
bors) of size mm, and for all sets S of outputs, Pr[A(D) € 8] > exp(—em) - Pr[A(D’) € §].

2.2 Preliminaries from Learning Theory

We consider Boolean classification problems. A concept is a function that labels examples taken from the
domain X by the elements of the range {0,1}. The domain X is understood to be an ensemble X =
{Xa}den. A concept class C is a set of concepts, considered as an ensemble C = {Cg}4en Where Cy is a
class of concepts from {0,1}¢ to {0, 1}.

A concept class comes implicitly with a way to represent concepts and size(c) is the size of the (smallest)
representation of ¢ under the given representation scheme. Let D be a distribution on X ;. PAC learning
algorithms are designed assuming a promise that the examples are labeled consistently with some target
concept ¢ from a class C. Define,

erg)r(c, h) = xlili)[h(x) # c(z)).

Definition 2.2 (PAC Learning [16]). An algorithm A is an (a, 3)-PAC leamer of a concept class Cq over
Xq using hypothesis class Hq and sample size n if for all concepts ¢ € Cq, all distributions D on Xg4, given
an input D = (di,- -+ ,dn), where d; = (z;, ¢(2;)) and z; are drawn i.i.d. from D for i € [n], algorithm A
outputs a hypothesis h € Hg4 satisfying

Pr[er‘g)r(c, hy<al]>1-4.

The probability is taken over the random choice of the examples D and the coin tosses of the learner.
A concept class C = {Cq}gen over X = {Xg}den is PAC learnable using hypothesis class H =
{Ha}aen if there exists an algorithm A, whose inputs are d, &, 3, and a set of samples (labeled examples)

4
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D, and a polynomial p(-, -, -, ) such that for all d € N, the algorithm A(d, o, 3, ) is an (a, 3)-PAC learner
of the concept class Cy4 using hypothesis class Hq and sample size n = p(d, size(c), 1/a,log(1/8)). An
algorithm A is an efficient PAC learner if it runs in time polynomial in d,size(c), 1/, log(1/8). Also, the
learner is called a proper PAC learner if H = C, otherwise it is called an improper PAC learner.

It is well known that improper learning is more powerful than proper learning. For example, Pitt and
Valiant [15] show that unless RP=NP, k-term DNF formulae are not learnable by k-term DNF, whereas it
is possible to learn a k-term DNF using a k-term CNF [16]. For more background on learning theory, see,
e.g., [12].

2.3 Private Learning

Definition 2.3 (Private PAC Learning [9]). Let d, @, 3 be as in Definition 2.2 and ¢ > 0. Concept class C is
e-differentially privately PAC learnable using 'H if there exists an algorithm A that takes inputs €, e, 3, D,
where n, the number of samples (labeled examples) in D is polynomial in 1]e,d,size(c),1/a,log(1/3),
and satisfies

PRIVACY. For all € > 0, algorithm A(g, -, -, ) is e-differentially private (Definition 2.1);

UTILITY. Algorithm A PAC learns C using H (Definition 2.2).

A is an efficient private PAC learner if it runs in time polynomial in 1/¢, d, size(c), 1/, log(1/5). ‘A!so, the
private learner is called proper if H = C, otherwise it is called improper.

Remark 2.4. The privacy requirement in Definition 2.3 is a worst-case requirement. That is, Equation (1)
must hold for every pair of neighboring databases D, D’ (even if these databases are not consistent with any
concept in C). In contrast, the utility requirement is an average-case requirement, where we only require the
learner to succeed with high probability over the distribution of the databases. This qualitative difference
between the utility and privacy of private learners is crucial. A wrong assumption on how samples are
Sformed that leads to a meaningless outcome can usually be replaced with a better one with very little harm.
No such amendment is possible once privacy is lost due to a wrong assumption.

Note also that each entry d; in a database D is a labeled example. That is, we protect the privacy of
both the example and its label.

Observation 2.5. The computational separation between proper and improper learning also holds when
we add the privacy constraint. That is unless RP=NP no proper private learner can learn k-term DNF,
whereas there exists an efficient improper private learner that can learn k-term DNF using a k-term CNF.
The efficient learner of uses statistical queries (SQ) [11] which can be simulated efficiently and privately as
shown by [1, 9].

More generally, such a gap can be shown for any concept class that cannot be properly PAC learned,
but can be efficiently learned (improperly) in the statistical queries model.

3 Learning vs. Private Learning

We begin by recalling the upper bound on the sample (database) size for private learning from [9]. The
bound in [9] is for agnostic learning, and we restate it for (non-agnostic) PAC learning using the following
notion of a-representation:

Definition 3.1. We say that a hypothesis class H4 a-represents a concept class Cq4 over the domain X g if for
every ¢ € Cq and every distribution D on X 4 there exists a hypothesis h € Hg4 such that errorp(c,h) < a.

Theorem 3.2 (Kasiviswanathan et al. [9], restated). Assume that there is a hypothesis class Hq that o-
represents a concept class Cq. Then, there exists a private PAC learner for Cq using Hg that uses O((log |Hq|+
log(1/8))/(ecx)) labeled examples, where €, ., and [3 are parameters of the private learner. The learner
might not be efficient.
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In other words, using Theorem 3.2 the number of labeled examples required for learning a concept class
C4 is logarithmic in the size of the smallest hypothesis class that o-represents Cq. For comparison, the
number of labeled examples required for leaning Cy4 non-privately is proportional to the VC-dimension of
Cq [4, 8].

3.1 Separation Between Private and Non-private PAC Learning

Our first result shows that private learners may require many more samples than non-private ones. We
consider a very simple concept class of VC-dimension one, and hence is (non-privately) properly learnable
using O, (1) labeled examples. We prove that for any proper learner for this class the required number of
labeled examples is at least logarithmic in the size of the concept class, matching Theorem 3.2.

Proving the lower bound, we show that a large collection of m-record databases Dy, . .., Dy exists, with
the property that every PAC learner has to output different hypothesis for each of these databases (recall that
in our context a database is collection of labeled examples, supposedly drawn from some distribution and
labeled consistently with some target concept).

As any two databases D, and D, differ on at most m entries, a private learner must, because of the
differential privacy requirement, output on input D, the hypothesis that is accurate for D}, (and not accurate
for D,) with probability at least (1 — ) - exp(—em). Since this holds for every pair of databases, unless m
is large enough we get that the private learner’s output on D, is with too high probability a hypothesis that
is not accurate for D,. We use the following notion of a-minimality:

Definition 3.3. If H, o-represents Cq, and every H); C Hg does not a-represent Cg, then we say that Hg is
a-minimal for Cg.

Theorem 3.4. Let Hy be an a-minimal class for Cq. Then any private PAC learner that learns Cq using Hy
requires Q((log |Hq| + log(1/8))/¢€) labeled examples.

Proof. Let C4 be over the domain X and let H; be a-minimal for Cy4. Since for every h € Hg, Ha \ {h}
does not a-represent Cy, we get that there exists a concept ¢, € Cy and a distribution Dy, on X such that
on inputs drawn from D, labeled by ¢, every PAC learner (that learns Cy using Hg) has to output & with
probability at least 1 — 3.

Let A be a private learner that learns Cy using Hg4, and suppose A uses m labeled examples. For every
h € Hg, note that there exists a database Dj, € X' on which 4 has to output & with probability at least
1 — 8. To see that, note that if .4 is run on m examples chosen i.i.d. from the distribution D}, and labeled
according to cp, then A outputs h with probability at least 1 — 3 (where the probability is over the sampling
from Dy, and over the randomness of .A). Hence, a collection of m labeled examples over which A outputs
h with probability 1 — [ exists, and D}, can be set to contain these m labeled examples.

Let h,h’ € Hg such that h # h’ and consider the two corresponding databases Dy and Dy with m
entries. Clearly, they differ in at most m entries, and hence we get by differential privacy of A that

Pr[A(Dy) =h'] > exp(~em): Pr[A(Dp) = k']
> exp(—em) - (1-0).
Since the above inequality holds for every pair of databases, we get,
PrlA(Dy) #h] = PrlA(Dn) € Ha\{h}|= D  PrlA(Ds)="H]
h'eHq\{h}
2 ([Ha| = 1) - exp(—em) - (1 - f).
On the other hand, we chose Dy, such that Pr[A(Dp) = h] > 1 — 3, equivalently, Pr[A(Dy) # k] < 3.

We hence get that (|Hg| — 1) - exp(—em) - (1 — ) < (. Solving the last inequality for m, we get m =
Q((log |Ha| + log(1/8))/€) as required. O
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Using Theorem 3.4, we now prove a lower bound on the number of labeled examples needed for proper
private learning a specific concept class. Let T = 2% and X4 = {1,...,T}. Define the concept class
POINT 4 to be the set of points over {1,...,T}:

Definition 3.5 (Concept Class POINT g). For j € [T define ¢; : [T] — {0,1} as ¢;(z) = 1 (positive) if
z = j, and 0 (negative) otherwise. POINT 4 = {c;} je(1).

We note that we use the set {1,...,7} for notational convenience only. We never use the fact that the
set elements are integer numbers.

Proposition 3.6. POINT ; is ce-minimal for itself.

Proof. Clearly, POINT 4 a-represents itself. To show minimality, consider a subset H; C POINT 4, where
¢; ¢ H,;. Note that under the distribution D that chooses i with probability one, errorp(c;, ¢;) = 1 for all
j # i. Hence, H, does not a-represent POINT 4. O

The VC-dimension of POINT 5 is 1. It is well known that a standard (non-private) learner uses approx-
imately VC-dimension number of labeled examples to learn a concept class [4]. In contrast, we get that
far more labeled examples are needed for any proper private learner for POINT 4. The following corollary
follows directly from Theorem 3.4 and Proposition 3.6:

Corollary 3.7. Every proper private PAC learner for POINT 4 requires ((d + log(1/8))/€) labeled ex-
amples.

Remark 3.8. We note that the lower bound for POINT 4 can be improved to 2((d + log(1/8))/(ea))
labeled examples, matching the upper bound from Theorem 3.2, This is shown in Lemma A.1 in Appendix A.
Also, the proper learner for POINT g from Theorem 3.2 can be made efficient. This is shown in Lemma A.2
in Appendix A.

We conclude this section showing that every hypothesis class H that a-represents POINT 4 should have
at least d hypotheses. Therefore, if we use Theorem 3.2 to learn POINT ; we need €)(log d) labeled exam-
ples. At first sight, it may seem that the relationship between |H| and the sample complexity is essential, and
hence, the number of labeled examples needed for every private PAC learner for POINT 4 is super-constant.
However, this turns not to be the case. In Section 3.2, we present a private learner for POINT, that uses
Oq,p,¢(1) labeled examples. For this construction, we use techniques that are very different from those used
in the proof of Theorem 3.2. In particular, our private learner uses a very large hypothesis class.

Lemma 3.9. Let o < 1/2. |H| > d for every hypothesis class H that a-represents POINT .

Proof. Let H be a hypothesis class with || < d. Consider a table whose T' = 2¢ columns correspond to
the possible 2¢ inputs 1, ..., T, and whose |H| rows correspond to the hypothesis in H. The (i, j)th entry
is 0 or 1 depending on whether the ith hypothesis gives 0 or 1 on input j. Since |H| < d, then at least two
columns j # 7 are identical. That is, h(j) = h(j) for every h € H. Consider the concept c; € POINT 4
(defined as ¢j(z) = 1if ¢ = j, and 0 otherwise), and the distribution D with probability mass 1/2 on
both j and j'. We get that errorp(cj, h) > 1/2 > a for all h € H. Therefore, H does not a-represent
POINT,. O

3.2 Separation Between Proper and Improper Private PAC Learning

We now use POINT, to show a separation between proper and improper private PAC learning. One-
way of achieving a smaller sample complexity is to use Theorem 3.2 to improperly learn POINT 4 with a
hypothesis class  that a-represents POINT 4, but is of size smaller than |POINT 4. By Lemma 3.9, we
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know that every such H should have at least d hypotheses. We show in Appendix C (Theorem C.2) that
there does exist a H with |H| = O(d) that a-represents POINT 4. This immediately gives a separation —
proper private learning POINT 4 requires §2, g.¢(d) labeled examples, whereas POINT 4 can be improperly
privately learned using Oq 3¢ (log d) labeled examples.

In the remainder of this section, we use different techniques to show a much stronger (in fact, the
strongest) separation. We show that POINT ; can be privately (and efficiently) learned by an improper
learner using Oq g.¢(1) labeled examples. We begin by presenting a non-private improper PAC learner A,
for POINT ;. Roughly, A; applies a simple proper learner for POINT 4, and then modifies its outcome by
adding random “noise”. We then use sampling to convert .4, into a private learner A. Both .4; and A; are
inefficient as they output hypotheses with exponential description length. However, using a pseudorandom
function it is possible to compress the outputs of .4; and As, and hence achieve efficiency.

Algorithm A;. Given labeled examples (z1,41), .. ., (Zm, Ym), algorithm A; performs the following:

1. If (z1,11),. .., (Tm, ym) are not consistent with any concept in POINT 4, return _L (this happens only
if z; # z;j andy; = y; = 1 forsome ¢, j € [m] orif z; = z; and y; # y;).

2. If y; = 0 for all i € m, then let ¢ = O (the all zero hypothesis); otherwise, let ¢ be the (unique)
hypothesis from POINT that is consistent with the m input labeled examples.

3. Modify ¢ at random to get a hypothesis h by letting h(z) = c(z) with probability 1 — a3/4, and
h(z) = 1 — ¢(z) otherwise for all z € [T']. Return h.

Let m = O((log(1/B8) + log(1/c))/a). Standard arguments (see [12]) show that if m examples are
drawn i.i.d. according to a distribution D on [T, and the examples are labeled consistently according to
some ¢; € POINTy, then Prlerrorp(cj,¢) > a/2] < 3/2. In other words, Step 2 of the algorithm realizes
a PAC learner for POINT 4. To see that A; PAC learns POINT 4 note that

Elerror(c, b)) = E E_[Ih(z) - c(z)]] = _E_ Eflh(z) - e(z)] = %,

and hence, using Markov’s Inequality,

Pr[er%)or[c, h) > a/2] < /2.

Combining this with Prlerrorp(cj,¢) > a/2] < /2 and errorp(cj, h) < errorp(cj,¢) + errorp(e, h),
implies that Prlerrorp(c;, h) > a] < .
Algorithm As. We now modify learner A; to get a private learner A5 (a similar idea was used in [9]

for learning parity functions). Given labeled examples (z1,%1),. - -, (Zm/, Ym’), algorithm A5 performs the
following:

1. With probability a3/4, return 1.

2. Construct a set S C [m/'] by picking each element of [m/] with probability p = a/4. Run the non-
private learner A; on the examples indexed by S.

We first show that, given m’ = 8m/a labeled examples, A; PAC learns POINT 4. First note that,
by Chemnoff bound, Pr[|S| < m] < exp(—m/4) = O4(1). We get that Ay PAC learns POINT 5 with
accuracy parameter &' = o and confidence parameter ' = 3 + af3/4 + exp(—m/4) = O(f3). Hence
(with a proper choice of @, (3), we can obtain accuracy and confidence o/, 3’ with m’ = O((log(1/8") +
log(1/a’))/a’?). (Alternatively, the accuracy and confidence of the learner can be boosted privately as
explained in [9]). We now show that A is e*-differentially private with bounded €*.
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Claim 3.10. Algorithm A, is €*-differentially private, where € = 2/[3.

Proof. Let D, D' be two neighboring databases, and assume that they differ on the ith entry. Remember,
p = a/4. First let us analyze the probability of A5 outputting L:

Pr[A2(D) =1]  p-Pr[Ax(D) =1 |i€ S|+ (1—p)-Pr[As(D) =L |i¢ S|

Pr(As(D') =L1]  p-Prlda(D') =L |i€ S|+ (1—p) Prl4a(D") =L |i ¢S]
p1+(1-p)-PriAy(D) =1 |1 ¢ S|
T p0+(1-p) PrlAx(D') =L [i ¢S]

p 4p

- +1<

(1-p)-Pr{Ay(D") =L |i ¢S] af(1 - p)

where the last equality follows noting that if 7 ¢ S then A is equally likely to output 1 on D and D', and

the last inequality follows as L is returned with probability a/3/4 in Step 1 of Algorithm A5.
For the more interesting case, where A5 outputs a hypothesis h, we get:

PrlA2(D)=h] _ p-PrlAx(D)=h|i€ S|+ (1—p)-Prl4sy(D)=h|i¢ 5]
PrlAy(D')=h] — p-PrlAa(D') =h|i€ S|+ (1-p) PrlAx(D") =h|i ¢S]
p-PrlAy(D)=h|i€ S|+ (1—p)-PrlAsy(D)=h|i ¢S]
= p-0+(1—p) -PrlAy(D')=h|i¢S]

p_ PriAs(D)=h|i€S] +1
l—p Prld2(D)=h|i¢g 8]
where the last equality uses the fact that if i ¢ S then A3 is equally likely to output h on D and D’. To
conclude our proof, we need to bound the ratio of Pr[As(D) = h | i € S| to Pr[As(D) =h |7 ¢ S].

Prld2(D)=h|ic S] _ L rcim\ (i) PrlA2(D) = h | S = RU{i}] - Pr[A; selects R from [m'] \ {i}]

Prl[A2(D)=h|i¢ S] 2rcim\i) Pr[A2(D) = h | S = R] - Pr[A; selects R from [m/] \ {i}]
_— Pr[A2(D) =h|S = RU {i}]

RCpw|\{i} Pr[Ax(D)=h|S = R]

+-1;

IA

2

Now, having or not having access to (z;, y;) can only affect the choice of h(z;), and since, A; flips the
output with probability a3/4, we get

PriAy(D)=h|S=RU{i}] _1-aB/4 _ 4

rem\G) PrlA&(D)=hIS=E] ~ af/4 - af
Putting everything together, we get
Pr[A2(D) = h| 4p 4 2 o
< +1= F+lg =41se .
PriAz(D') = h] — aB(1 — p) A4 - a) pri=e

O

We can reduce €* to any desired ¢ using the following simple lemma (implicit in [9], see proof in
Appendix B):

Lemma 3.11. Let A be an €*-differentially private algorithm. Construct an algorithm B that on input a
database D = (da, . .., dy) constructs a new database D whose ith entry is d; with probability f(€',e*) =
(exp(€') — 1)/(exp(€*) + exp(€’) — exp(€'e*) — 1) and L otherwise, and then runs A on Ds. Then, B is
¢’-differentially private.
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It is clearly possible to incorporate the sampling in the lemma directly in Step 2 of A2 (note that for
small €, f(¢',e*) = €'/(exp(e*) — 1)). We get that the number of labeled examples required by our private
learner is Oy g ¢ (1).

3.2.1 Making the Learner Efficient

Recall that the outcome of .4; (hence .A3) is an exponentially long description of a hypothesis. We now
complete our construction by compressing this description using a pseudorandom function. We use a slightly
non-standard definition of (non-uniform) pseudorandom functions from binary strings of size d to bits; these
pseudorandom functions can be easily constructed given regular pseudorandom functions.

Definition 3.12. Let F' = {F,;}4en be a function ensemble, where for every d, F, is a set of functions from
{0,1}¢ t0 {0,1}. We say that the function ensemble F is g-biased pseudorandom if for every family of
polynomial-size circuits with oracle access {Cy} gen, every polynomial p(-), and all sufficiently large d’s,

HY 1
PriCii(1%) = 1] - Pr[C, ¢ (1) = 1]| < —= ,
IPrCFY = 1] - PG 0% = 1l < o
where Hj : {0,1}* — {0,1} is a function and the value Hy(z) for z € {0, 1}¢ are selected i.i.d. to be 1
with probability q and 0 otherwise.

For convenience, for d € N, we consider Fy as a set of functions from {1,...,7} to {0,1}, where
T = 2%, We set ¢ = o3/4 in the above definition. Using an a3/4-biased pseudorandom function ensemble
_F, we change Step 3 of algorithm A; as follows:

3'. If ¢ = 0, let h be a random function from F,. Otherwise (i.e., ¢ = ¢; for some j € [TY), let h be a
random function from Fy subject to Fy(j) = 1. Return h.

Call the resulting modified algorithm 43. We next show that A3 is a PAC learner. Note that for large
enough d, | Pr[h(z) = 1|k(j) = 1] — aB/4| < negl(d) for every = € {1,...,T} (as otherwise, we get a
non-uniform distinguisher for F'). Thus,

af
E 5 = E E —c < E E|h = E E < — .
JE ferror(e,h)) = \E. E [Ih(z) - c(z)| < \E. E [h(z)] = EE [h)] < %+ negl(d)
The first inequality follows as Va € [T, h(z) > ¢(z). Thus, by the same arguments as for A;, Algorithm
Ajs is a PAC learner.

We next modify algorithm A5 by executing the learner A3 instead of the learner .A;. Call the resulting
modified algorithm A4. Algorithm A4 preserves differential privacy. To see that, note that it suffices to give
a bound on Equation (2). By comparing the case where S = R with S = RU{i}, we get that the probability
for a hypothesis h can increase only if ¢ = 0 when S = R, and ¢ = ¢,, when S = R U {i}. Therefore,

Pr[A4(D)=h|S = RU {i}] & 1 £ 1 8

RCmNG)  PrlAy(D)=h|S=R] ~ (aB/4) - negl(d) — (aB/8) o

Theorem 3.13. There exists an efficient improper private PAC learner for POINT g that uses Oy (1)
labeled examples, where €, o, and 3 are parameters of the private learner.

Lemma A.1 and Theorem 3.13 give the following separation.

Theorem 3.14. Every proper private PAC learner for POINT g requires )((d + log(1/8))/(e)) labeled
examples, whereas there exists an efficient improper private PAC learner that can learn POINT 4 using
Oa,p.c(1) labeled examples.

10
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3.3 Separation Between Efficient and Inefficient Proper Private PAC Learning

In this section, we use the sample size lower bound for proper private learning POINT 4 to obtain a sepa-
ration between efficient and inefficient proper private PAC learning. Let U, represent a uniformly random
string from {0, 1}". Let {.’Ed) : N — N be a function and G = {Gg}4en be a deterministic algorithm such
that on input from {0, 1}(4) it returns an output from {0, 1}¢. Informally, we say that G is pseudorandom
generator if on #(d) truly random bits it outputs d bits that are indistinguishable from d random bits. For-
mally, for every probabilistic polynomial time algorithm B there exists a negligible function negl(d) (i.e., a
function that is asymptotically smaller than 1/d° for all ¢ > 0) such that

| Pr(B(Ga(Uea))) = 1] - Pr[B(Uy) = 1]| < negl(d).

Such exponential stretch pseudorandom generators G (i.e., with £(d) = w(log d)) exist under various strong
hardness assumptions.

Let POINT 3 = {c1,...,c9¢}. Now to a polynomially bounded private learner, CG4(Uyqy) WOUld appear
with high probability as a uniformly random concept picked from POINT ;. We will show by using ideas
similar to the proof of Theorem 3.4 that a polynomially bounded proper private learner would require 2((d+
log(1/8))/€) labeled examples to learn ¢ 4(Uy(ay)- More precisely, define concept class

Pde = U CG.;(?‘)'

re{0,1}4(d)

Assume that there is an efficient proper private learner A for Pde with sample size m = o((d +
log(1/6))/€). We use A to construct a distinguisher for the pseudorandom generator: Given j we construct
the database D with m entries (j, 1). If A(D) = c;, then the distinguisher returns 1, otherwise it returns
0. If j = Gq4(r) for some 7, then, by the utility of the private learner, .4 has to return ¢; on this database
with probability at least 1 — 3. Thus, the distinguisher returns 1 with probability at least 1 — 3 when j is
chosen from G4(Upq)). Assume that for (say) 1/4 of the values j € [2¢] algorithm A, when applied to
the database with m entries (j, 1), returns ¢; with probability at least 1/3. Then, we get a contradiction
following the same argument as in the proof of Theorem 3.4 (as almost all ¢;’s must have probability at least
(1—B) - exp(—em)). Thus, the distinguisher returns 1 with probability at most 1/4+43/4-1/3 = 1/2 when
7 is chosen from Uj.

If the learner is not polynomially bounded then it can use the algorithm from Theorem 3.2 to pri-
vately learn POINT . Since, PﬁTﬂ = 244) the private learner from Theorem 3.2 uses O((¢(d) +
log(1/6))/(ec)) labeled examples. We get the following separation between efficient and inefficient proper
private learning: '

Theorem 3.15. Let £(d) be any function that grows as w(ldg d), and G be a be a pseudorandom gener-

ator with stretch d — £(d). For the concept class POINT g, every efficient (i.e., polynomial time) proper
private PAC learner with probability at least 1 — negl(d) requires Q((d + log(1//3))/€) labeled examples,

whereas there exists an inefficient proper private PAC learner that can learn POINT 4 using O((¢(d) +
log(1/6))/(e)) labeled examples.

Remark 3.16. In the non-private setting, there exists an efficient proper learner that can learn the concept
class POINT 4 using O((log(1/a) + log(1/3))/a) labeled examples (as VCDIM (POINT 3) = 1). In the
non-private setting we also know that even inefficient learners require )(1/c) labeled examples [8, 12].

Therefore, for POINT 4 the sample complexities of efficient non-private learners and inefficient non-private
learners are almost the same.

11
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4 Lower Bounds for Non-Interactive Sanitization

We now prove a lower bound on the database size (or sample size) needed to privately release an output that
is useful for all concepts in a concept class. We start by recalling a definition and a result of Blum ez al. [2].

Let X = {X,}4en be some discretized domain and consider a class of predicates C over X. A database
D is contains points taken from X,. A predicate query Q. for ¢ : X4y — {0, 1} in C is defined as

{d; € D : ¢(d;) = 1}|
Q.(D) = .
|D|
A sanitizer (or data release mechanism) is a differentially private algorithm A that on input a database D

outputs another database D with entries taken from X,4. An algorithm A is (¢, 3)-useful for concepts in
class C if with probability at least 1 — (3 for every ¢ € C, and every database D, for D = A(D),

|Qe(D) — Qe(D)| < a.
Theorem 4.1 (Blum et al. [2]). For any class of functions C, and any database D € X", such that

- (log X4l - VCD{iM(C)log(lfa) N log(l/ﬁ)) |
V€ e

there exists an («, 3)-useful mechanism A that preserves e-differential privacy. The algorithm may not be
efficient.

We show that the dependency on log | X4| in Theorem 4.1 is essential: there exists a class of predicates
C with VC-dimension O(1) that requires |D| = Q4 g.(log | X4|). For our lower bound, the sanitized output
D could be any arbitrary data structure (not necessarily a synthetic database). For simplicity, however, here
we focus on the case where the output is a synthetic database. The proof of this lower bound uses ideas from
Section 3.1.

Let T = 2% and X4 = [T] be the domain. Consider the class POINTy (where i € [T']). For every
i € [T, construct a database D; € X" by setting (1 — 3a)m entries at 1 and the remaining 3am entries
at ¢ (for z = 1 all entries of Dy are 1). Forz € [T]\ {1} we say that a database D is a-useful for
D; if 2a < QC,(D) < 4o and 1 — 4a < ch D) < 1 - 2a. We say that D is a-useful for Dy if
l-a< ch( ) < 1. It follows that for i # j if D is a-useful for D; then it is not a-useful for D;.

Let ]IIJ1 be the set of all databases that are a-useful for D;. Note that for all ¢ 5 1, Dy and D; differ on
3am entries, and by our previous observation, Dy ND; = 0. Let A be an (e, B)-useful private release mech-

anism for POINT 4. For all i, on input D; mechanism .A should pick an output from D; with probability at
least 1 — 3, We get by the differential privacy of A that
Pr[A(D:) € D] > exp(—3eam) Pr[A(D;) € D;] > exp(—3eam) - (1 — B).
Hence, 5 s
PrlA(D:) ¢ 1] > Pr[A(D) € | Dy
i#1
Y Pr[A(D,) € Dy] (sets D; are disjoint)
i#1
> (T —1)exp(—3eam) - (1 — B).

On the other hand, since A is (a, B)-useful, Pr[A(D,) ¢ ]Dh] < B, and hence we get that m =

Q((d + log(1/8))/(ea)).

Theorem 4.2. Every e-differentially private non-interactive mechanism that is (e, 3)-useful for POINT 4
requires an input database of Q((d + log(1/8))/(ea)) size.

Il

12
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A Missing Details from Section 3.1

Lemma A.l. Every proper private PAC learner for POINT 4 requires 2((d + log(1/0))/(ecx)) labeled
examples.

Proof. Define the distributions D; (1 < 7 < T') on X, as follows: point 1 is picked with probability 1 — «
and point 7 is picked with probability «.. The support of D; is on points 1 and 7.

We say a database D € X" is good for distribution D; if D has at most 2am points on ¢. Let D € X7
be a database constructed by taking m i.i.d. samples from D;. By the Chernoff bound, the probability that
D is good for distribution D; is at least 1 — 2 - exp(—2am/3).

Let A be a proper private learner. On a given database from input distribution D; where the points are
labeled consistently with concept ¢;, A has to output h = ¢; with probability at least 1 — 8. Because if A
outputs some h = ¢; (where j # i), then errorp, (c;, h) = errorp, (¢;, ¢;) = Preop,[ci(z) # ¢j(z)] > «
(thus, violating the PAC learning condition for accuracy).

Consider a database D2 constructed by taking m i.i.d. samples from distribution D and labeling these
points with concept cz. Let us first condition on the fact that D5 is good for distribution D,. Let D have
s points on 1. Construct databases D3, ..., Dy from Ds, where Dy (for £ € {3,...,T}) is constructed
by moving the points on D5 that are on 2 to k. The labels are kept unchanged. Notice that all the points
in Dy, are labeled consistently with ¢, and Dy, is a good database for distribution Dy, (as we assumed D5
is good for distribution D5). Therefore, A has to output ¢; on input Dy, with probability at least 1 — 3.
The databases D3 and Dy, differ in s < 2am entries. Therefore (conditioned on D> being good), by the
guarantees of differential privacy

Pr[A(D2) € {cj, ...,er}] > (T - 2) exp(—2eam)(1 — B) = (2¢ — 2) exp(—2eam)(1 — B).

The probability that D, is good for distribution D; is at least 1 — 2 - exp(—2am/3) and A on input D, has
to output ¢z with probability at least 1 — 3. Therefore,

(2% — 2) exp(—2eam)(1 — B)(1 — 2exp(—2am/3)) < B.
Solving for m, we get the claimed bound. O

Lemma A.2. There exists an efficient proper private learner for POINT 4 that uses O((d +log(1/3))/ex)
labeled examples.

Proof. We adapt the learner of [9]. Let POINT,; = {c1,...,c0a}. The learner uses the exponential
mechanism of McSherry and Talwar [13]. Let D = ((z1,%1),...,(Zm,ym)) be a database of labeled
examples (the labels y;’s are assumed to be consistent with some concept in POINT ;). Define for every
¢j € POINT 4, q(D,¢;) = —|{i : yi # cj(zi)}].ie., q(D,¢;) is minus the number of points in D misclas-
sified by c;. The private learner A is defined as follows: output hypothesis ¢; € POINT; with probability
proportional to exp(eg(D, ¢;)/2). Since the exponential mechanism is e-differentially private [13], A is
e-differentially private. By [9], if m = O((d + log(1/6))/(ex)) then A is also a proper PAC learner.

We now show A can be implemented efficiently. Implementing the exponential mechanism requires
computing g(D,¢c;) for 1 < j < 2% However, g(D,c;) is same for all j ¢ {z1,...,2,,} and can be
computed in O(m) time. Also, for any j € {1,...,Zm}, (D, ¢;) can be computed in O(m) time. Let

P= Z exp(eq(D,c;)/2) | + (2% — m)exp(eq(D, cj)/2), where j' ¢ {z1,...,Zm)}.
Je{z1,e®m }

The algorithm A can be efficiently implemented as the following sampling procedure:

14
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1. For j € {z1,...,%m}, with probability exp(eq(D, ¢;)/2)/ P, output c;.

d_ y
2. With probability 2~ xPlea(D.cy)/2)

{¢zy,- €z, } and output it.

, pick uniformly at random a hypothesis from POINT; \

O

B Missing Details from Section 3.2

Proof of Lemma 3.11. Let D, D' be neighboring databases, and assume they differ on the ith entry. Let
S C [n] denote the indices of the random set of entries that are chosen. Let ¢ = f(€’, €*). Since, D and D’
differ in just the ith entry, for any outcome ¢, Pr[A(D;) = t|i € S] = Pr[A(D.) = t|¢ ¢ S|. Thus, we have

Pr{B(D) =1] q-PrlA(Dy) = t]i € S| + (1 - q) - PrlA(Ds) = t}i & S]
PriB(D') =] _ q-PrlA(D,) = tli € S| + (1 —q) - PrlA(Ds) = i & 5]
> rei\iy PrIS = RU{i}] - (¢ - Pr{A(Ds) = t|S = RU {i}] + (1 — q) - Pr[A(Ds) = t|S = R))
2 rcimgy PrlS = RUA{i}] - (¢ Pr[A(D%) = t|S = RU{i}] + (1 - q) - Pr[A(Ds) = t|S = R])
. @PrlAD) = 1IS = RU{i}] + (1 - q) - PrA(D,) = S = R
RC[n\(i} - Pr[A(Df) = t|S = RU {i}] + (1 — q) - Pr[A(Ds) = ¢|S = R]
max 9 &xp(e”) - PriA(Ds) = IS = R] + (1 — q) - Pr[A(Ds) = t|S = R]
RE[n)\{i} g - exp(—€*) - Pr[A(Ds) = t|S = R| + (1 — q) - PrlA(D,) = t|S = R]
1+ g (exp(e’) — 1)

= Tog U-em(e) - o)

Therefore, B is an € -differentially private algorithm. O

C Alternate Improper Private PAC Learner for POINT 4

We construct the best private learner (in terms of sample complexity) that can be yielded by the construction
of Theorem 3.2 for the class POINT 4. For that we construct (randomly) a hypothesis class H, that o-
represents a concept class POINT 4, where |Hy| = Oa(d). Lemma 3.9 shows that this is optimal up to
constant factors.

To demonstrate the main idea of our construction, we begin with a construction of a hypothesis class
Hq = {Ai,...,Ax} that a-represents POINT 4, where k = O(VT/a) = O(V24/w) (this should be
compared to the size of POINT 3 which is 2ey; Every A; € His asubset of {1,...,T}, such that

<

<

(1) For every j there are more than 1/« sets in H that contain j, and
(2) Forevery1 <41 <2 <k, |A;; NA;,| <1

Note first that Hy a-represents POINT 4. For every concept ¢; € POINT 4 there are hypotheses
Ay,...,Ap € H, that contain j (where p = |1/« + 1) and are otherwise disjoint (that is, the intersection
between any two sets A;, and A;, is exactly 7). Fix a distribution D. For every A;, EI'I'OI"D(CJ',AZ') =
Prp(A; \ {7}). Since there are more than 1/« such sets and the sets A; \ {7} are disjoint, there exist+ =
least one set such that errorp(c;, 4;) < . Thus, Hy a-represents the concept class POINT g.

We want to show that there is a hypothesis class whose size is O(V/T/a) and satisfies 1+~ 3?0"3 two
requirements. As an intermediate step, we show a construction of O(T') size. We cmsi%gri : gojiftl"e plane
with T points and 7" lines (each line is a set of points) such that for any two poirn::_o'f"t‘i1 o ach Y one line
containing them and for any two lines there is exactly one point contained in b~ em. such projective
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plane exists whenever T = ¢+ g+ 1 for a prime power g. Furthermore, the number of lines passing through
each point is g + 1. If we take the lines as the hypothesis class, then they satisfy the above requirements,
thus, they a-represent POINT ;. However, the number of hypotheses in the class is 7" and no progress was
made.

We modify the above projective plane construction. We start with a projective plane with 27" points,
where 2T = ¢? + g + 1 and choose a subset of the lines: We choose each line at random with probability
2/((g + 1)c). Since these lines are part of the projective plan, they satisfy the above requirement (2). We
show that for most j's it satisfies requirement (1).

Fix j. Since there were ¢ + 1 lines passing through j and we choose each line with probability 2/((g +
1)), the expected number of chosen lines passing through j is 2/c. Let us call a point bad if it is contained
in less than 1/c chosen lines. Let X; be a random variable representing the number lines containing j. By
the Chebychev inequality, the probability

-3 <

For (g + 1)ao > 8 and @ < 1/6, by setting t = 1/2/3c, we get Pr[X; < 1/a] < 1/4. Therefore, the
probability that a point is bad is at most 1/4. The expected number of bad points is 27" - 1/4 = T'/2. By the
Markov inequality, with probability at least 1/2 there exists at least 7" non-bad points (each non-bad point is
contained in at least 1/« chosen lines). Furthermore, by Markov inequality the probability that we choose
more than 4(q? + g + 1)/((g + 1)) lines is less than 1/2. Thus, with positive probability

o+l

e There are at most 4(¢% + ¢ + 1)/((g + 1)) < 8v/T/ lines, and
e There exists a set of T points each of which is contained in more than 1/« chosen lines.

Thus, there exists a set of lines satisfying these requirements. We choose such lines. We eliminate points
that are contained in less than 1/« chosen lines. Formally, let V' be a subset of the points of size T', each
point in V is contained in more than 1/« lines. We remove from each line all points that are not in V. We
get a set of O(v/T'/a) lines such that the size of the intersection of each two lines is at most 1, and each
of the T point is contained in more than 1/« lines as required. By renaming the points in V, we get the
required construction.

We next show a much more efficient construction based on the above idea.

Lemma C.1. There is a hypothesis class H that a-represents POINT 4 such that [H4| = O(d/a?).

Proof. We will show how to construct a hypothesis class H = {Sy,...,Sx}, where every S; € H is a
subset of {1,..., T} and for every j

There are p = log T - (1 + |1/c]) sets Aq,..., Ap in H that contain j such that

for every b # j, the point b is contained in less than log T" of the sets A, ..., Ap. G

First we show that H a-represents POINT 4. Fix a concept ¢c; € POINT 4 and a distribution D, and
consider hypotheses A1,..., Ay in H that contain j. Since every point in these hypotheses is contained in
less than log T sets,

D Pr(4i\{7}) < logT Pr(U(4:\{j}) < logT.

i=]

Thus, there exists at least one set A; such that errorp(c;, 4;) = Prp(A; \ {j}) < logT/p < c. Thus, Hy
a-represents the concept class POINT .
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We next show how to construct H. Let k = 8ep?/logT (that is, k = O(log T/a?)). We choose
k random subsets of {1,...,27} of size 4pT'/k. We will show that a point j satisfies Equation (3) with
probability at least 3/4. We assume d > 16 (and hence, p > 16 and T' > 16).

Fix j. The expected number of sets that contain j is k - (4pT'/k)/(2T") = 2p, thus, by the Chebychev
inequality, the probability that less than p sets contain j is less than 2/p < 1/8. We call this event BAD;.

Let j be such that there are at least p sets that contain j and let A;,..., Ap be p of them. Notice
that A; \ {j},..., 4, \ {j} are random subsets of {1,...,2T} \ {j} of size (4pT/k) — 1. Now, fix
b # j. The probability that a random subset of {1,...,27'} \ {j} of size (4pT'/k) — 1 contains b is
(4pT/k —1)/(2T — 1) < 2p/k. For log T random sets of size (4pT'/k) — 1, the probability that all of them
contain b is less than (2p/k)'°gT. Thus, the probability that there is a b € {1,...,2T'}, where b # j, and
log T' sets among Ay, ..., Ap such that these log 7" sets contains b is less than

2T- (logT) (2p/k)]OgT < 2T - (ep/log T)JOgT (Qp/k)logT

= 2T - (2ep?/(klog T))logT .

By the choice of k, 2ep?/(klog T') = 1/4, thus, the above probability is at most 27" - (1/4)18T = 2/T <
1/8. We call this event BAD».

To conclude, the probability that j does not satisfy Equation (3) is the probability that either BAD; or
BA D happens which is at most 1/4. Therefore, the expected number of j's that do not satisfy Equation (3)
is less than T'/2. By the Markov inequality, the probability that more than T points j do not satisfy Equa-
tion (3) is less than 1/2. We take k£ = O(log T'/a?) subsets of {1,...,2T'}, denoted S, ..., Sk, such that
at least 7" points j satisfy Equation (3). By the probabilistic argument above, such sets exist. Let V be a
set of size T of the points that satisfy Equation (3), and define Hq = {S1 NV,..., SN V}. Finally, by a
simple renaming, we can assume that 4 contains subsets of {1,..., 7'} as required. O

From Lemma C.1 and Theorem 3.2 we get:

Theorem C.2. There exists an improper private PAC learner for POINT g that uses O((logd + log c% +
log %3-) /ec) labeled examples, where €, o, and (3 are parameters of the private learner.
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