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ABSTRACT 

Remarkable advances have been made since rapid solidification was first introduced 

to the field of materials science and technology. New types of materials such as amorphous 

alloys and nanostructure materials have been developed as a result of rapid solidification 

techniques.  While these advances are, in many respects, ground breaking, much remains to 

be discerned concerning the fundamental relationships that exist between a liquid and a 

rapidly solidified solid.   

The scope of the current dissertation involves an extensive set of experimental, 

analytical, and computational studies designed to increase the overall understanding of 

morphological selection, phase competition, and structural hierarchy that occurs under far-

from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are 

the two different rapid solidification techniques applied in this study. The research is mainly 

focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet 

favorable, systems for exploration when alloyed with aluminum under far-from equilibrium 

conditions. One of the main differences comes from the positions of their respective T0 

curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 

line in Al-Sm promotes glass formation.  

The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 

to 50 wt% Si are examined using scanning and transmission electron microscopy.  The non-

equilibrium partitioning and morphological selection observed by examining powders at 

different size classes are described via a microstructure map. The interface velocities and the 

amount of undercooling present in the powders are estimated from measured eutectic 

spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which 

permit a direct comparison of theoretical predictions. For an average particle size of 10 µm 

with a Péclet number of ~0.2, JH and TMK deviate from each other. This deviation indicates 
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an adiabatic type solidification path where heat of fusion is reabsorbed. It is interesting that 

this particle size range is also consistent with the appearance of a microcellular growth. 

While no glass formation is observed within this system, the smallest size powders appear to 

consist of a mixture of nanocrystalline Si and Al.   

Al-Sm alloys have been investigated within a composition range of 34 to 42 wt% Sm. 

Gas atomized powders of Al-Sm are investigated to explore the morphological and structural 

hierarchy that correlates with different degrees of departure from full equilibrium conditions. 

The resultant powders show a variety of structural selection with respect to amount of 

undercooling, with an amorphous structure appearing at the highest cooling rates. Because of 

the chaotic nature of gas atomization, Cu-block melt-spinning is used to produce a 

homogeneous amorphous structure. The as-quenched structure within Al-34 to 42 wt% Sm 

consists of nanocrystalline fcc-Al (on the order of 5 nm) embedded in an amorphous matrix. 

The nucleation density of fcc-Al after initial crystallization is on the order of 1022-1023 m-3, 

which is 105-106 orders of magnitude higher than what classical nucleation theory predicts. 

Detailed analysis of liquid and as-quenched structures using high energy synchrotron X-ray 

diffraction, high energy transmission electron microscopy, and atom probe tomography 

techniques revealed an Al-Sm network similar in appearance to a medium range order 

(MRO) structure. A model whereby these MRO clusters promote the observed high 

nucleation density of fcc-Al nanocrystals is proposed. The devitrification path was identified 

using high temperature, in-situ, high energy synchrotron X-ray diffraction techniques and the 

crystallization kinetics were described using an analytical Johnson-Mehl-Avrami (JMA) 

approach.  
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CHAPTER 1: OVERVIEW 

General Introduction 

Thermodynamics and Kinetics of Rapid Solidification 

One of earliest studies on rapid solidification of alloys was initiated by Falkenhagen 

and Hoffmann [1], who first determined the nucleation, undercoolings and cooling rates (up 

to 105 K/S) for a number of metal alloys. Following this work, Pol Duwez [1] and co-workers 

invented a practical process of quenching hot molten alloys from their liquid states onto the 

chilled surface of a rotating copper wheel, which introduced a new path to produce 

intriguing, novel materials such as super saturated solid solutions, metallic glasses, and 

nanostructured alloys under non-equilibrium conditions [2] .  Since then, rapid solidification 

processing (RSP) has become one of the most important topics in solidification research.  

The general understanding of the term RSP involves production of a high 

solidification rate (typically V>1 cm/s where V = solidification front velocity) by larger 

undercooling values from suppression of active nucleants or from effective melt quenching, 

which breaks down many assumptions of conventional solidification. In other words under 

rapid solidification conditions diffusion distance is shorter than the scale of the 

microstructure (i.e., low Péclet number) [3].  Although local interfacial equilibrium is lost at 

higher solidification rates, the free-energy functions of the solid and liquid phases can be 

used to estimate the range of compositions that can exist at the interface at various 

temperatures [4-6].  Therefore, the free energies of the different competing phases in a given 

system can be calculated at various temperatures (at fixed pressures) and the stability of the 

phases can be determined. In this sense, non-equilibrium conditions can be understood to 

mean that different degrees of departure from full equilibrium may occur, with the 
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differences constituting a hierarchy of stability which is followed with increasing 

solidification rate [7]. 

In Fig.1 the common tangent between A and B shows the most stable state for a 

compositional interval of A to B at a temperature of TA. For any pair of solid and liquid 

compositions, there exists one temperature where the free energies of the solid and liquid 

phases are equal to each other. This thermodynamic temperature is expressed as T0 curve in 

the phase diagram and it can be estimated by connecting the midpoints between the liquidus 

and solidus lines at a given temperature. The relative positions of the liquidus, solidus and T0 

lines are schematically shown in a hypothetical free energy curve and phase diagram in Fig. 

1. Any undercooling from the liquid state that corresponds to temperatures below the T0 

curve may cause a diffusionless transformation of the liquid alloy to a solid solution. 

Therefore, the position and curvature extension of T0 is important in determining the 

minimum degree of undercooling for partitionless solidification [8].  For example, if the T0 

curve plunges to very low temperatures, a single phase (α or β) crystal cannot be formed 

from the melt. In this case, deep undercooling may result in a depression of the solidification 

temperature to a point where it approaches the glass transition temperature, where the 

viscosity of the undercooled liquid prevents crystallization [8].  Eutectic systems with 

plunging T0 curves are good candidates for easy metallic glass formation [9]. In contrast, 

alloys with T0 curves which are only slightly depressed below the stable liquidus curves 

make good candidates for solubility extension and are unlikely ones for glass formation [8]. 

These conditions are schematically illustrated in Fig.2 (a) and (b).  

According to the thermodynamic point of view, at a given undercooling there is a 

possibility of formation of both stable and competing metastable phases. Therefore, 

thermodynamics is not sufficient to determine the hierarchy of phases during nucleation by 

itself; the kinetics of the process must be taken into account. Nucleation of a crystalline phase 

from a melt is classified in two types, namely, homogeneous and heterogeneous nucleation 
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[11-13]. Homogeneous nucleation is rarely seen in practice in solidification.  In both types of 

nucleation, there is a barrier of energy to be considered when a small, spherical (assumed) 

solid crystal is created.  Eq. 1 shows the change in free energy during the nucleation of solid 

crystal where, ∆Gv is free energy per volume due to the liquid to solid phase transformation, 

γSL is the solid-liquid interfacial free energy, and r is the radius of the nucleus. S(θ) is the 

wetting factor that must be considered for heterogeneous nucleation (given by Eq. 2) and θ is 

the wetting angle [14]. The relationship between these various factors is shown schematically 

in Fig. 3.   

The change in free energy (∆Gr) is initially increasing due to the increased in 

interfacial energy and reaches a maximum r* and ∆G,* after which it becomes negatives. This 

means that r* represents a critical nucleus size and clusters with diameters larger than the 

critical value decrease their free energy if the solid grows in the liquid. The critical nucleus 

size and energy barrier are given in Eq. 3 and 4 respectively.   
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The free energy barrier, ∆G* is inversely proportional to ∆Gv which is given in Eq.5 

where Lv is the latent heat of fusion. At the melting point Tm, the free energies of the solid 

and the liquid phases are equal to each other and  the free energy ∆G* is infinite, indicating 

that a solid would never form under this conditions. In theory, a liquid can easily be 

undercooled to temperatures below Tm without nucleation for a certain amount of time that in 

needed to build a cluster of the critical size. At low undercooling levels, although the atomic 

mobility necessary to facilitate interatomic diffusion is high, the amount of time required for 

a liquid to freeze into a solid can be long due to the fact that the energy barrier that must be 
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overcome to initiate nucleation is high.  Nucleation time initially decreases with an 

increasing degree of undercooling since ∆G* is inversely proportional to ∆T (Eq.1.5) [14].  

Interestingly, atomic mobility also deceases so that at high undercooling, nucleation time 

again increases.  These competing processes mean that the amount of time required for a 

liquid to freeze into a solid is variable and is function of temperature [8], which is plotted as 

a T-T-T (Time-Temperature-Transformation) curves.  

               
m

v
v T
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G
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−=∆                                                                                   Equation 5 

Predictions of growth morphology, segregation patterns and the rate of phase growth 

are particularly complex in a rapid solidification processes. Both heat and solute equations 

need to be solved under non-equilibrium conditions at the liquid-solid interface [8]. Baker 

and Cahn [6] described conditions for a binary alloy in terms of interface temperature (TI), 

and the composition CS
*. These relationships are given in Eq. 6 and 7: 

 MMLI KTCVTT Γ−= ),( **                                                                       Equation 6 
 ),( ****

LLS CVkCC =                                                                                   Equation 7 

where V is the local interface velocity, CL* is the composition of the liquid at the interface, Γ 

is the capillary constant, KM is the mean curvature of the solid-liquid interface, T* and k* 

are the interface temperature and partition coefficient functions, respectively, which are 

dependent on velocity and composition of the liquid at the interface. The values of T* and k* 

can be easily determined from phase diagrams at zero interface velocities. Several models 

have been proposed [16-18] at higher solidification rates in order to calculate T* and k*. The 

distribution of the solute plays the major role in forming the microstructure as compared to 

heat distribution since solute diffusivities are much smaller than thermal diffusivities.  The 

dimensionless solute Péclet number (Pc = Vl / 2D), where V is the interface velocity, l is the 

characteristic length, and D is the liquid diffusion coefficient), is almost always considered 

for analysis of solute redistribution [3]. For slow solidification rates the diffusion length is 

much longer than the system size, producing a solute Péclet number much smaller than unity.  
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Under rapid solidification conditions the solute Péclet number can approach unity. The effect 

of Pc is discussed in [8] for eutectic [16, 17, 19-25], dendritic [26-33], and cellular [8, 24-36] 

growth morphologies, and summarized in Table 1.    

Amorphous Structure 

If the nucleation and growth of any crystalline phases are suppressed upon cooling, a 

liquid will eventually “freeze” due to the continuous increase in viscosity into a metastable 

solid state.  Although structurally similar to a liquid, the metastable solid is called the glassy 

state [8]. The temperature at which the glass ceases to flow like a liquid (an amorphous solid 

is usually believed to have a viscosity of higher than 1012 Pa s) is usually called the glass 

transition temperature (Tg) [37-39]. As discussed earlier, alloy systems with plunging T0 

curves are good candidates for easy metallic glass formation depending on the glass 

transition temperature. It should be noted that Tg is not a material constant, but changes with 

cooling rate and thermal history of the material [40, 41]. Some materials, such as polymers, 

are easy to form in an amorphous state, whereas in others (such as metals) an amorphous 

phase is not easily produced. Many theories have been postulated in order to predict the glass 

forming ability (GFA) of metallic materials [13, 42] based on the number of alloying 

elements (confusion principle), the atomic size effect, heats of mixing of constituent 

elements, and atomic elasticity [13, 43-49]. Among these theories, the Turnbull criterion is 

still the most popular for predicting GFA [13, 42]. According to Turnbull, a compound with 

high GFA will have a so-called reduced glass transition temperature (Trg = Tg/Tm ) which is 

equal or higher than 2/3. Bulk metallic glasses (BMG) posses values of Trg that exceed 0.6 

and can be easily solidified to an amorphous state with relatively low cooling rates, on the 

order of 102 K/s [50].  In contrast, marginal glass forming alloys do not easily form 

disordered glassy structures, i.e., a higher cooling rates (on the order of 105 K/s) are required 

as compared to BMGs [51]. Because of the difficulty in fully transforming to a glass, 
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nanocrystalline phase formation is often observed in highly undercooled marginal glass 

forming alloys. Examples of bulk metallic glasses and marginal glass former alloys are given 

in Table 2.  

The atomic structures of disordered phases are quite different than crystalline phases 

as the former do not posses any long-range atomic order. X-ray, neutron and electron 

scattering techniques are often used to characterize non-crystalline systems, however, in most 

of the time conventional methods for using these scattering techniques are not sufficient 

individually to resolve the details of disordered structures, requiring more specialized 

instrumental and analysis techniques [52]. For example, Cu-Kα radiation is the most 

commonly used standard diffraction technique to resolve crystal structures, and it can be also 

used to differentiate amorphous and crystalline materials. However, this technique is not 

capable of resolving structural details in non-crystalline materials, mostly because of its low 

value of Qmax and the low brilliance of the source. In such cases high energy synchrotron X-

ray radiation or a pulsed neutron source may be more helpful to collect data of high 

sensitivity. 

Another example of a specialized characterization technique used for amorphous 

materials is advanced transmission electron microscopy. Although conventional bright-field 

(BF) and selected area diffraction (SAD) techniques are useful to determine whether or not 

the structure is crystalline, these methods fail to give information about the atomic structure. 

However, with the help of an intensity recording device (e.g. image plates or slow scan CCD) 

and energy-filtering systems it is possible to conduct comprehensive studies on the atomic 

structure of non-crystalline materials using a transmission and/or scanning transmission 

electron microscope (TEM / STEM).  

Three different types of order are considered when describing the atomic arrangement 

of a compound, namely, short, medium and long range order structures. Crystalline materials 

posses long-range order structure as the atoms occupy the positions in a regular three-
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dimensional lattice that can be extended to infinity. The size of long range correlations, 

which are on the order of 3nm and longer, are easily detected using conventional diffraction 

and imaging techniques.  

Correlations within the 0.5 – 3 nm are called medium range order. It is particularly 

elusive to detect any correlations within a 1-2 nm range because of the low signal-to-noise 

ratio and the weakness of the coherent diffraction signal that is typical using conventional 

diffraction and imaging techniques. Fluctuation electron microscopy (FEM) is a new tool to 

detect structure within the medium range order (MRO) scale [53-59]. FEM uses the spatial 

fluctuations in diffraction due to Bragg-like diffraction from nanoscale regions to resolve the 

MRO in disordered materials. High resolution electron microscopy (HRTEM) and nano-

diffraction techniques using a nano-electron probe in a field-emission TEM or STEM are 

also helpful to detect MRO structures.  

Correlations with a size of less than 0.5 nm can still have order up to some degree 

since any two atoms can not be closer than specific bonding distance. This type of order is 

considered to be short range order (SRO) and it is studied using X-ray, neutron and electron 

diffraction techniques.  

Analysis of diffraction data from a non-crystalline material is quite different than that 

for a crystalline materials because the entire reciprocal space of scattering intensity has to be 

carefully examined [52, 60]. The total intensity function of a scattered X-ray experiment is 

given by 

 Itotal(Q) = Iel(Q) + IInel(Q) + Imult(Q) + Iair(Q) + Iback(Q)                      Equation 8 

where 

 Iel(Q) = intensity of elastically scattered x rays, 

 Iinel(Q) = intensity of Compton scattering, 

 Imut(Q) = multiple scattering intensity, 

 Iair(Q) = air scattering intensity, 
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 Iback(Q) = Background intensity from sample holder 

Structural information is really contained in the first term of Eq. 8, i.e., the elastic 

component of the total scattering. Therefore, other components have to be calculated or 

measured and subtracted from the total scattering function in order to evaluate the structure 

of non-crystalline material. This is explained in detail in [60]. After Iel(Q) is calculated the 

total structure factor, S(Q) can be calculated by: 

 2
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where f(Q) is the atomic scattering factor. The most useful pieces of information that can be 

derived from the total structure factor is Fourier-transform S(Q), to obtain the pair 

distribution function ρ(r), as given by  

 ∫ −+=
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where ρ0 is the average atomic density. Another important function to be considered is the 

radial distribution function (RDF) which is given by 4πr2ρ(r). The area under the first peak in 

the RDF gives the atomic coordination number. The atomic pair distribution function is given 

by G(r)=4πr[ρ(r)-ρ0]. S(Q) and G(r) functions contain valuable structural information for 

non-crystalline samples in reciprocal and real spaces, respectively. The total structural factor 

function can be calculated from data obtained using different methods such as high energy 

synchrotron X-ray radiation [61-65], energy-dispersive X-ray diffraction (EDXD) , extended 

X-ray absorption edge fine structure (EXAFS) [66, 67], differential anomalous scattering 

measurements [68], neutron scattering [69-73], and electron diffraction with energy-filtering 

techniques [74-76].  

One of the major issues in analyzing non-crystalline systems is to produce structural 

models that agree with experimental data. The two common methods used to simulate 

disordered systems are Metropolis Monte Carlo (MMC) and Molecular Dynamics (MD) 

simulations. Both of these simulations are based on interatomic potentials which are 
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particularly difficult to derive for metallic alloys. Another simulation technique which does 

not rely on the interatomic potentials is the Reverse Monte Carlo (RMC) method [73, 77-83]. 

RMC can produce three dimensional models of disordered structures using either individual 

or combined diffraction data (from neutron, X-rays, and EXAFS). RMC simulation is usually 

started with an initial configuration (e.g. a random or crystal structure) with periodic 

boundary conditions. The difference in the experimental total structure factor and the one 

determined from the configuration is calculated according to Eq.11 with an experimental 

error of σ(Qi). Atoms are moved and if χn
2 is less than χ0

2, the atomic move is accepted. If χn
2 

is more than χ0
2, the move is accepted with a probability exp(-(χn

2- χ0
2 )/2). 

 ∑
=
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Although RMC is a practical and useful technique, it should be noted that the three 

dimensional structures produced by RMC are not unique but just provide simple models that 

agree with the diffraction data. In the absence of any other supporting information, there is 

no way of determining the “absolutely correct” structure. The other disadvantage of RMC is 

that the configurational entropy is always maximized. However, this effect can be minimized 

by using additional constraints [77, 78].  

The local atomic environment of the structures simulated by RMC can be described 

by several characteristics such as coordination number, or bond angle determination. One 

well known method is the Voronoi polyhedron analyses [84-86]. In this method, the bonds 

between any atom and its closest neighbors are bisected with planes and the intersections of 

these planes form a Voronoi polyhedron. The distribution of different Voronoi polyhedrons 

are indexed by Schläfli notation [85], where a polyhedron is expressed by an eight number 

set of indices n3, n4,…, n8 where ni is the number of faces with i vertices. The Voronoi index 

of a truncated tetrahedron is given as an example in Fig. 4. 
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Devitrification 

Devitrification can be defined as the controlled crystallization of a partially or fully 

amorphous material under isothermal or isochronal heating conditions. Thermal and 

structural changes during devitrification are usually monitored using thermal calorimetry and 

in-situ diffraction techniques. Fig. 5 shows typical specific temperatures observed during an 

isochronal thermal analysis of bulk metallic amorphous and marginal glass forming alloys.  

Upon heating of an amorphous alloy, an initial relaxation occurs in the structure due 

to annihilation of the free volume created during rapid solidification, followed by a change 

from amorphous to super cooled liquid state which is denoted as the glass transition (Tg). In 

amorphous alloys the glass transition temperature can be monitored in a DSC as a step-like 

shift in the baseline, but is often hindered for marginal glass forming alloys, because in these 

alloys, an irreversible crystallization reaction starts at temperatures close to Tg. Using special 

techniques such as modulated differential scanning calorimetry (MDSC) it is sometime 

possible to resolve the glass transition in a marginal glass forming alloy during isochronal 

heating [87] of marginal glass formers. Further heating of both bulk amorphous and marginal 

glass formers causes crystallization by an exothermic reaction with an onset temperature of 

Tx.   

Crystallization of an amorphous structure has been observed to proceed in three inter-

related steps: nucleation, growth, and impingement of growing particles [14, 88, 89]. 

Nucleation can be homogeneous or heterogeneous. It is heterogeneous if the nucleation starts 

at sites such as interfaces, inclusions or defects in the as-quenched material. Once a nucleus 

is formed and starts to grow, different growth patterns can be observed in the system. 

Different growth mechanisms can result in different transformations, commonly being, 

primary crystallization, eutectic, and polymorphic transformations [89]. Primary 

crystallization is a diffusion controlled process where there is a homogenization of the 

concentration gradient between the growing crystal and the surrounding matrix. Eutectic 
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transformation requires diffusion as well, but it is a coupled growth that depends on the 

interparticle spacing of the growing crystal. In polymorphic transformation (i.e.interface 

controlled growth [88]), the matrix and the growing crystals have the same composition and 

growth proceeds by movement of atoms through the interface. Growth can also occur via a 

mixed mode or change in characteristics during crystallization as well. As nucleated crystals 

grow larger in size a point can be reached where it is possible for their diffusion fields to start 

to interfere with each other.  This effect is known as impingement and can result in a slowing 

of the growth rate.  

In order to model the kinetics of amorphous to crystalline phase transformation, 

nucleation, growth and impingement should be taken into consideration. Under special 

conditions the transformation kinetics of the amorphous alloy can be described by the well-

known JMA (Johnson, Mehl and Avrami) analytical expression [90-93] . According JMA the 

transformed volume fraction X is given by  
 })]([exp{1)( 0

n
T ttKtX −−−=                                                         Equation 12 

where KT is the temperature dependent reaction constant, t0 is the incubation time, and n is 

the Avrami exponent. The reaction constant KT can be calculated from the intercept of the 

JMA plot [90-92].  The Avrami exponent, n, contains significant information about the 

transformation behavior.  In general for isothermal crystallization of an amorphous alloy, a 

mean value of the Avrami exponent is used. However, it has been also proposed to use the 

differential value of the Avrami exponent n(x) [93-95] which reflects the change in Avrami 

exponent with respect to the crystallized volume fraction X. This is given as: 

 
)ln(

)]1ln(ln[)(
0tt
XXn

−∂
−−∂

=                                                                     Equation 13 

Rapid Solidification Techniques 

Rapid solidification techniques include melt-atomization, melt-spinning, splat-

quenching, surface remelting, and planar flow-casting, as well as derivatives of these main 
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methods [96-98]. The two RSP techniques employed in this study are high pressure gas 

atomization (HPGA) and chill block melt spinning. Gas atomization is a melt atomization 

method where a molten alloy is broken into small droplets by a stream of high pressure gas. 

These droplets cool by radiation and forced convection of heat from their surface and solidify 

during the free fall inside the spray chamber. Although the solidification process is chaotic 

for the gas atomization process, the amount of undercooling is approximately the same for 

the particles with similar diameters. The smallest size particles tend to undercool deeply so 

that they solidify more rapidly as compared to larger size particles [11, 99]. This can be 

understood because a melt that is broken up into many fine droplets can have the number of 

droplets may exceed the number of active nucleation sites, or motes, present in the melt. This 

effect, known as mote isolation [100], is enhanced with extreme reduction of particle size, 

making gas atomized powder ideal for solidification studies at extreme undercoolings 

regardless of the imposed cooling rate [101,102].   

In the melt-spinning technique, the molten alloy is ejected as a stream onto a rotating 

surface such as a (usually copper) wheel that has a relatively high circumferential speed (max 

40 m/s in this study). In some cases multiple melt streams can be used to make composite 

ribbons. In order to increase the cooling rate and create a homogeneous structure throughout 

the cross-section of the ribbon, twin chill roll surfaces are used.  The product of this process 

is a ribbon that is typically 10 to 100 µm thick and a few millimeter wide [96].  

Although thermal undercooling is the main mechanism in fine powders with a 

reduced number of catalyst, kinetic undercooling is more prevalent in melt spinning 

techniques [8].  
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Literature Review 

Rapid Solidification of Al-Si and Al-Sm Binary Alloys 

The high Al content (Al > 80 at% ) Al-Si and Al-Sm binary alloy systems represent 

two different types of non-equilibrium solidification paths based on the constructions of their 

respective T0 lines. The Al-Si system has slightly depressed T0 lines near the eutectic 

composition, which makes Al-Si a good candidate for partitionless solidification. On the 

contrary, in the Al-Sm system T0 lines plunge to very low temperatures near the eutectic 

composition, which promotes glass formation within this system.  Amorphous phase 

formation has been reported in many Al-RE and Al-RE-TM (RE: Rare-earth, TM: transition 

metals) [88]. Glass formation in Al-RE based alloys is observed between Al- RE eutectic 

points and Al11RE3 or Al3RE intermetallics [51]. Among the Al-RE binary alloys, the Al-Sm 

system has the widest glass formation range, from 8 to 16 at %Sm (34 – 52 wt %Sm), as 

shown in Fig. 6. 

The tendency for glass formation in Al-RE systems has been discussed by several 

researchers in terms of the large atomic size difference that exists between Al and Sm [49] 

and the relatively large enthalpy of mixing [51]. It is interesting to note that glass forming 

Al-RE systems have high temperature metastable compounds (973 – 1217K) in the form of 

Al11RE3 or Al3RE in the phase diagrams, which shows strong attractive interactions between 

Al and RE [103]. Although Al-Sm has the widest glass formation range, its phase diagram is 

not completely understood. However, several experimental and theoretical studies have been 

conducted to model the thermodynamics and kinetics considerations of non-equilibrium 

solidification in the Al-Sm system [104-106]. Table 3 shows several stable and metastable 

phases observed in Al-Sm system. Further information on the Al-Sm system will be given in 

the following sections.  



 14

Significant studies on the correlation between undercooling and resultant 

microstructure were performed by Levi and Mehrabian [117, 118] for the Al-Si binary 

system. They produced submicron aluminum alloy powders (including Al-Si) via vacuum 

electro-hydrodynamic atomization (EHD) and investigated them using TEM. Most of the 

submicron particles showed the basic segregation pattern shown in Fig. 7 (a).  

In terms of the effect of particle size, as the powder diameter decreases the cellular 

structure becomes less defined and eventually disappears, leaving only a few segregated Si 

particles. At the lower end of the size distribution the particles appeared almost featureless, 

showing only a supersaturated region, denoted as “A” in Fig. 7 (a). A small portion of the 

powders (<5%) exhibit a different type of segregated microstructure where large, faceted 

silicon phases appear distributed along the particle surface, Fig. 7 (b). It was concluded that 

powders showing the faceted silicon were unlikely to have reached substantial undercooling 

prior to nucleation, and, hence, were extensively segregated. The lack of cellular morphology 

was explained as evidence of interface morphological stability due to surface tension effects 

[117]. 

Following these studies, Boettinger, Bendersky and Early [119] investigated the 

microstructure of rapidly solidified Al-Fe powders. Their results have many key observations 

that appear applicable to Al-Si rapid solidification microstructures. According to their TEM 

studies, powders less than 10 µm in diameter yield a two-zone microcellular-cellular 

structure. However, larger particles do not exhibit a two-zone structure but cellular, eutectic, 

or primary intermetallic structures. In a later study Bendersky and coworkers [120] obtained 

very similar results with a gas atomized Al-5Mn-5Fe-2Si(wt%) alloy. One of their 

remarkable results is the observation of microcellular structures in powders with less than a 

10 µm particle size.  

Laser resolidification experiments of compositions varying from Al-15.5 to 20 wt% 

Si were conducted by Pierantoni and coworkers [121]. The microstructure of a laser treated 
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sample with composition higher than 20wt% Si consists of fine equiaxed silicon crystals 

surrounded by α-Al cells distributed in an equiaxed eutectic matrix. According to their SEM 

micrographs, the mean eutectic spacing was affected only by the solidification rate and not 

by silicon content. They used an Al-17wt% Si alloy to measure the eutectic spacing and to 

calculate the corresponding growth rates. This study also found the Al-rich boundary of the 

coupled zone, and this limit is shown superimposed upon an equilibrium phase diagram.  It 

should be noted that this construction is only concerned with growth; in a real system 

nucleation effects also impact the final microstructure and must be considered. In accordance 

with this, Allen, Gremaud and Perepezko [122] performed an analysis of microstructural 

transitions based upon the limiting solidification interface temperature at the transition using 

a heterogeneous volume nucleation model. This nucleation analysis indicated that primary Si 

restricted the coupled eutectic zone for silicon compositions greater than 18wt%, Fig. 8.  

Birol [123] investigated ribbon of an Al-12wt% Si alloy produced by quenching from 

the melt at a cooling rate of 106 K.s-1. XRD analysis of as-quenched ribbons revealed the 

following phases: (i) a supersaturated aluminum solid solution and (ii) Si crystals. TEM 

analysis showed that the Al solid solution forms a cellular structure between which nanosize 

Si crystals are distributed along cell boundaries.  Birol also claimed that a featureless zone 

(called this due to a lack of response to etching) was created along the wheel side. However, 

whether this corresponds to the same featureless zone observed by Levi and Mehrabian [117, 

118] has not been verified.  Other experiments and data (for example SAD of this region) is 

required to characterize the nature of this featureless zone.  

Wang et al. [124] used a different technique and produced Al-18wt%Si alloys via a 

drop tube method. Droplets ranging from 60 to 1000 µm in diameter were obtained. They 

calculated the cooling rate using a Newtonian cooling model and found it to be 3.8 x 105 K/s 

and 3.9 x 103 K/s for the smallest droplets, respectively. According to microstructural 

analysis, in particles larger than 500 µm polygonal primary Si crystals were present 
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surrounded by eutectic distributed homogeneously in an α-Al matrix. In smaller particles, 

star-shaped primary silicon formed along with spherical eutectic grains, which were 

composed of anomalous eutectic at the core with lamellar eutectic radiating outward.  

The microstructural details of rapidly solidified Al-20wt%Si alloy powders produced 

by gas atomization were examined by Kim and co-workers [125] using TEM. Due to the high 

convective cooling rate during gas atomization, powder samples showed a fine distribution of 

primary Si embedded in an Al matrix. Alloy powders of 10 µm in diameter consisted of Si 

particles that formed within Al grains of 1 µm. The two phases were found to have a 

semicoherent boundary between Al {111} and Si {111}.  

Recently, Trivedi, Anderson, Jin and Genau [33, 126, 127] investigated the dynamical 

evolution of the microstructure in eutectic and hypereutectic Al-Si powders. According to 

their studies, all solidified droplets showed the presence of more than one microstructural 

feature and generally exhibited eutectic, dendritic and cellular morphologies. As the droplet 

size becomes smaller, the predominant morphology changed from eutectic to dendritic to 

microcellular. The variations of the eutectic and cellular spacings inside the droplets as a 

function of droplet diameter were measured as well. For both eutectic [126] and 

hypereutectic compositions (15-18wt%Si) [128] the average spacing found to be decreased 

for smaller powders due to higher interface velocity. 

A microstructure map that described the range of droplet undercooling as related to 

droplet diameter and alloy composition was first suggested by Trivedi et al [126]. The effect 

of atomization gas was also investigated using hypereutectic Al-Si alloy powders. Two 

different gases were compared, nitrogen and helium. Helium seemed to provide noticeably 

smaller powder, along with generally higher undercooling and faster interface velocities. 

However, for particles with size about 11 µm or below, the gas choice was found to be 

irrelevant in determining the solidification morphology due to complete adiabatic 

solidification of these particles [128].  
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Devitrification Studies 

One of the first studies performed to identify the crystallization behavior of Al-Sm 

amorphous alloys was carried out by Battezzati and coworkers [129].  They prepared            

Al(100-x)Smx (x=8,10,12,and 14) by arc-melting the pure elements in a chamber evacuated and 

back-filled with Ar. Samples of each alloy were melt spun with a wheel speed of 150 m s-1. 

The resulting ribbons were 1-2 mm wide and 20-30 µm thick. Both fully and partially 

amorphous phases were obtained and the crystallization processes of the amorphous phases 

were followed using TEM, XRD and DSC. No glass transition was seen in conventional DSC 

experiments; such a transition is often absent in systems showing a tendency toward marginal 

glass formation. In a narrow composition range of 8 to 14 at% Sm they found several types 

of devitrification processes: primary crystallization of α-Al in Al92Sm8; polymorphic 

crystallization to a metastable phase in Al90Sm10; eutectic crystallization again involving 

unidentified metastable phases, in Al88Sm12 and Al86Sm14. The other details are given in 

Table 4 and Table 5.  

Further devitrification studies by Guo and co-workers [130] involved Al(100-x)Smx 

(x=8,10,12,and 14) alloys produced initially by arc-melting and subsequently rapidly 

solidified into ribbons via melt spinning with thicknesses in the range of 20-30µm. The 

decomposition behavior of the ribbons was examined by XRD, TEM and DSC. Three kinds 

of new phases, designated as G2, G3, and G4 were identified. G2 is an orthorhombic phase 

with lattice parameters a = 13.781 Å, b = 11.019 Å and c = 7.303 Å, G3 is a metastable 

hexagonal phase with lattice parameters a = 4.597 Å and c = 6.358 Å, and G4 is a metastable 

cubic phase with lattice parameter a = 19.154 Å.   

Recently, Rizzi and coworkers [131] in a follow-on study to previous work [132] 

investigated the devitrification process for Al92Sm8 and Al90Sm10 melt spun alloys. One 

interesting result that they found for Al90Sm10 is that ribbons containing a fraction of a cubic 
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phase (corresponding to G4 discovered by Guo and co-workers [130]) after quenching 

transformed according to the following sequence: 

Amorphous + α-Al + G4 → Amorphous + α-Al + G4 (higher fraction) → α-Al+R5→ α-

Al+R4 

They concluded that the cubic phase (G4) forms during undercooling and does not 

nucleate from the glass. Rather, it simply grows as if it were already present. Their 

experimental results, as well as the findings reported from similar studies, are summarized in 

Table 4 and Table 5. 

Examination of the tables shows no clear consensus exists concerning the exact 

devitrification path and existing intermediate phases for Al(100-x)Smx (x=8,10,12,and 14) 

alloys. There is a possibility that the existence of various nucleating phases indicates a 

“confusion principle” is operative in the alloy that aids in glass formation [131]. However, it 

is more likely true that the exact nature of the starting materials used in the various studies 

differed from one another.  It is certainly true that all of the previous studies examined 

different material using different equipment and methodologies, and while slight, these 

differences in may have produced significant changes in observed results. 

If further experiments are to be conducted in order to more clearly identify the 

devitrification path, it would appear that extensive characterization of the starting material 

followed by in-situ experiments (for example, time resolved high temperature studies) using 

powerful X-ray sources (e.g., synchrotron radiation) capable of identifying initial 

crystallization events as they occur hold the best chance of resolving discrepancies in the 

literature. At present the only time resolved in-situ study for Al-Sm alloys is the work by 

Antonowicz [133], who sought to identify the primary crystallization event and quantify the 

crystalline phase volume fractions  and mean crystal sizes for five different binary Al-rare 

earth glassy alloys including Al92Sm8. 
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High Density Nanocrystalline Formation and Applications  

Devitrification of certain types of amorphous alloys, particularly marginal glass 

forming alloys, results in formation of very high number of densities of primary crystals with 

sizes of less than 25 nm. Among these types of metallic glasses, Fe and Al based systems 

have attracted much attention due to their unique properties [134]. Fe-based alloys are used 

both as magnetically soft and hard materials, according to the size and volume percentages of 

the nanocrystals formed in the amorphous matrix. For hard magnetic applications almost full 

crystallization is required whereas for soft magnetic applications partial crystallization of 70-

75% is enough. Finemet® (Fe73.5Cu1Nb3Si13.5B9) and Nanoperm® (Fe84Zr3.5Nb3.5B8Cu1) are 

well known alloy systems for magnetically soft materials and Fe-RE-B systems are good 

candidates for hard magnet applications [134].  

Al-based nanocrystalline alloys are particularly interesting due to their unique 

structural properties. GIGAS®, a commercial Al-nanocrystalline alloy, was reported to have a 

tensile strength of more than 1 GPa. Al-based nanocrystalline alloys are usually in form of 

Al-RE, or Al-RE-TM (RE=Y, La, Ce, Nd, Sm; TM=Ni, Co, Fe, Cu). A very high number of 

density of primary fcc-Al nanoparticles on the order of 1021 to 1023 m-3 are formed during 

partial or complete crystallization of the amorphous alloy as a result of annealing. Despite 

many previous investigations the origin of the high nucleation density after crystallization of 

certain amorphous alloys has not been thoroughly understood.  

The isothermal crystallization of Zr41Ti14Cu12Ni10Be23 was investigated by J. Schroers 

and coworkers [135]. The number density of nuclei formed during primary crystallization 

was estimated from measurements made using electron microscopy and small-angle neutron 

scattering experiments. For comparison, the nucleation density was also calculated from 

classical nucleation theory, where the steady-state nucleation rate Iss is given as: 
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where k is Boltzmann’s constant, T is the absolute temperature, N0 is the number of active 

nucleation sites, η is viscosity, a is interatomic spacing, and ∆G* is the activation energy to 

form a critical nucleus. As it is shown in Fig. 9 the solid curve calculated from Eq. 14 is in 

good agreement with experimental data for temperatures higher than 850 °C, but for lower 

temperatures experimental data deviates drastically from calculated values. For example, at 

temperatures close to 600 °C the experimental data is 21 orders of magnitude larger than the 

calculated value. 

The results of [135] show clearly that classical steady-state nucleation theory fails to 

predict the observed nucleation density. One of the first models that was suggested to explain 

this unusual behavior proposed the existence of “quenched-in” nuclei in the amorphous state 

[41, 87, 136-144]. In this model the initial amorphization reaction is under the control of two 

different mechanisms, namely, nucleation control and growth control.  Schematics 

illustrating the basic differences behind these mechanisms are illustrated in Fig. 10. 

With nucleation control, the undercooling achieved during rapid cooling by-passes 

the nucleation reaction, so no nuclei form.  Perhaps more importantly, the cluster size 

distribution, C(n), retained by the quench does not have a significant density at the critical 

size, n* at Tx. As a result, there is no precursor reaction to influence the evolution of 

crystalline clusters during subsequent thermal treatment. In this way, a clear separation in 

temperature between the Tg and Tx signals can be observed during reheating.  

Under growth control some small fraction of crystallites may form initially during 

cooling.  However, the rapidly rising viscosity that occurs with continued cooling near Tg 

prevents their development.  Another possibility is that the cluster distribution that is retained 

upon cooling has a significant density at the critical nucleation size at Tg. In either case, upon 

reheating a sample with preexisting crystallites, rapid crystallization ensues at Tg, which will 

essentially coincide with Tx [137, 145].  
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Perepezko and co-workers investigated these mechanisms on rapidly quenched melt-

spun and on cold-rolled Al92Sm8 alloys. According to their calorimetry and microstructural 

analyses, cold-rolled Al92Sm8 samples that have not been exposed to high temperatures in the 

liquid state before vitrification exhibit a clear Tg signal. 

The formation of a high number density of Al-nanocrystals, as observed during 

heating of melt-spun ribbon samples, does not occur in the cold rolled samples (Fig. 11). 

Therefore, nucleation at a temperature at or below Tg in melt-spun ribbons does not cause 

primary crystallization, but results in the growth of “quenched-in” nuclei.  

Following these studies, fluctuation electron microcopy (FEM) of amorphous 

Al92Sm8 identified Al-like medium range order clusters for the as-quenched melt-spun alloy 

produced at high wheel speeds (150 m/s) but not for the cold-rolled sample, where a different 

nanoscale ordering was observed [56]. The size of these clusters is on the order of between 1 

and 2 nm, which make them difficult to detect using conventional TEM and XRD in the as-

quenched state. Upon heating, these sub-size nuclei showed a restricted growth and the glass 

transition temperature was obscured, i.e., blended with the first crystallization peak,  for as-

quenched amorphous alloys. However, the hypothesis of these “quenched-in” nuclei has been 

questioned by several researchers [146]. The main objection to the idea of quenched-in nuclei 

is the observation of an unrealistically large apparent nucleation density in this Al-Sm and 

several other Al-based marginal glass forming alloys (ex. Al-Ni-Gd and Al-Y systems). In 

other words, continuous heating seemed to promote a continuous process of nucleation and 

growth of fcc-Al crystals.   

Another hypothesis is based on phase separation of the amorphous phase into Al-rich 

and solute-rich regions prior to crystallization. One of the first observations of phase 

separation was in the Al88Gd6La2Ni4 alloy system, in Fig. 12 [147]. Kelton explained the 

origin of the phase separation by developing a time-dependent homogeneous nucleation 

theory called coupled-flux nucleation [148 149]. In this theory the nucleation kinetics are a 
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function of both the number of atoms in the cluster, n, and the number of atoms in the cluster 

neighborhood, ρ. Cluster growth is determined by the relative rates of exchange of atoms 

with the parent phase and the cluster.  Similar types of phase separations were also reported 

in other systems such Fe and Zr systems [76, 150-153].  Fig. 13 shows one such observation 

using simultaneous in-situ X-ray diffraction and small angle X-ray scattering (SAXS) of 

Zr52.5Cu17.9Ni14.6Al10Ti5 also known as BAM-11 during isothermal heating [154]. The results 

of this study showed a delay between SAXS and diffraction signals, which was interpreted as 

phase separation prior to crystallization. However, such phase separations are strongly 

dependent upon composition of the as-quenched alloy. For example, although a phase 

separation was reported within the Al88Gd6La2Ni4 alloy [147], no phase separation was 

observed for an Al88Gd6ErNi4 alloy [155]. Instead, a surface crystallization was seen prior to 

fcc-Al crystallization. 

It should also be pointed out that the evidence offered for phase separation in [147] is 

less than conclusive.  Specimen preparation artifacts from either electropolishing or ion-

milling for TEM investigation can produce contrast similar to phase separation in 

conventional BF images. Therefore, special care must be taken before giving any conclusion 

about phase separation based solely on TEM BF imaging.  

Another hypothesis to describe the observed high nucleation densities of nanocrystals 

is the possibility of an extremely large number of heterogeneous nucleation occurring on 

impurity sites such as nano-scale oxides [156]. This hypothesis was observed in a few 

amorphous systems such as Zr52.5Cu17.9Ni14.6Al10Ti5, but it is still in question since the 

density of the impurities are usually orders of magnitudes lower than the number of 

nanocrystals formed in partially crystalline amorphous matrix.  

In summary, there is still no agreement on the mechanism of high density nanocluster 

formation. A detailed analysis of the as-quenched and liquid structures is crucial to develop a 
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better understanding of the unusual behavior of amorphous alloys forming a high density of 

nanocrystals after the initial crystallization. 

Experimental procedure 

Sample Production 

As rapidly solidified samples were produced using high pressure gas atomization and 

copper chill block melt spinning techniques.  

Powder samples were produced using the high pressure vertical gas atomizer (Fig. 

14) in Ames Laboratory of DOE. The melt chamber was charged with high purity (99.95%) 

Al, Si (99.99%) and Sm (99.9%) in lump form for each experiment to a total weight of about 

1.5 kg.  N2 and He were used as the atomization gas for Al-Si and Al-Sm, respectively. The 

applied gas pressure was 6.6 MPa for N2 and 5.5 MPa for He gases. A cyclone separator was 

incorporated into the system to collect the particles while allowing the atomization process 

gas to escape and be vented out of the system.  

The powder collected from both experiments was screened using an ASTM standard 

sieve with a vibratory shaker to obtain particles of 45 µm in diameter or less of Al-Si and 

particles of 106 µm in diameter or less of Al-Sm samples. Air classification was used to 

obtain 5-10 µm and <5 µm diameter powder. For further classification (<3 µm) 

sedimentation technique in Hexane (C6H14) was employed. The complete size classification 

of the experimental powders is given in Table 6. 

Al-Sm ribbon samples were produced using the copper chill block melt spinner (Fig. 

15) in Ames Laboratory. Ingots of Al100-xSmx (x=8, 10 and 12 at%) were prepared initially 

from highly pure Al (99.99%) and Sm (99.9%) by arc melting under an Argon atmosphere. 

The pre-alloyed ingot was then remelted and rapidly solidified into ribbon form at 

circumferential speeds of 10, 20, 30 and 40 m/s in a He atmosphere. The thickness of these 

ribbons was in the range of 20 - 70 µm for high and low circumferential speeds, respectively.  
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The overall chemical compositions of the ribbons were determined using a JEOL® JXA-8200 

Superprobe for comparison to the initially determined compositions.  

Specimen Preparation 

The Al-Si and Al-Sm samples produced through gas atomization and/or melt spinning 

techniques were subjected to a series of sample preparation steps in order to be ready for 

characterization using various techniques. 

The SEM work was done using JSM 6060 LV and JSM 5910 LV microscopes 

equipped with energy dispersive X-ray spectrometers (EDS). Samples selected for SEM 

analysis were mounted in epoxy resin for cross sectional studies. The mounted samples were 

ground with 800 and 1200 grit SiC papers under water and polished with aqueous slurries of 

0.3 and 0.05 µm alumina. Each polished mount was then etched with Keller’s reagent for 

approximately 10 seconds. To facilitate electron microscopy, the mounts were carbon painted 

around the sides and sputter coated with gold.  

TEM investigations were conducted either using a Philips® CM30 S/TEM equipped 

with EDS or an FEI Tecnai® G2 F20 S/TEM equipped with EDS, electron energy loss 

spectroscopy (EELS), energy filtered transmission electron microscopy (EFTEM) and high 

angle annular dark field (HAADF) capabilities. Due to the strong interaction between 

electrons and matter, the specimens have to be rather thin (<< 1000 nm for conventional 

TEM and << 30 nm for HRTEM) for TEM investigation. Thus, bulk materials have to be 

thinned to make them electron transparent. This is done either by simply crushing them and 

subsequently depositing some fragments onto a carbon foil or by mechanical grinding and 

ion milling. If produced directly, nanoparticles are thin enough for direct observation.  

In general, all specimens to be prepared for transmission electron microscopy can be 

divided in two broad categories: self supporting specimens, where the whole specimen 
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consists of one material, and specimens supported on a grid or washers containing a small 

hole or slot.  

In the case of powder samples a supporting grid or matrix is most often needed as the 

powders are too small to support themselves. However, melt spun ribbons can usually 

support themselves, although a double sided copper grid or Cu (Be) washer is used to secure 

the sample and prevent movement in the TEM holder.  

Sample preparation of Al-Sm ribbon samples is a straightforward process. Ribbons 

were first punched to create three millimeters discs. These discs were mechanically thinned 

with a Dimpler® initially and final thinning was performed using electropolishing with a 

chemical composition of 25 ml HCl, 500 ml H2O, and 300 ml methanol. Electropolishing 

was performed at -25°C using a double jet electropolisher at a fixed voltage. In some cases 

the alternative chemical solution of 333 ml nitric acid and 667 ml methanol at -40°C was 

used.  (N.B. Ion milling was also attempted, however, damage due to the ions was noted on 

numerous samples. Particularly for amorphous specimens it was seen that ion milling 

induced surface patterns on the amorphous matrix, and in some cases it triggered 

crystallization. Therefore, ion milling was avoided for as-quenched amorphous specimens.) 

Many different methods were proposed in the literature for obtaining thin sections 

from powder specimens, such as dispersion in a volatile liquid [157], embedding between 

metal powders or sheets [158, 159], microtomy [160, 161], electronic deposition, focus ion 

beam milling [162, 163] and miscellaneous other methods (such as using dental amalgam 

[164].  Of these techniques two were used for preparation of Al-Si and Al-Sm powders, the 

first being dispersion in a volatile liquid.  

Larger particles (1µm<Powder diameter<5µm) are too thick for electron transmission, 

therefore, a thinning process was performed. Samples were prepared from an epoxy-

hardener-sample mix (EPOTEK 353 ND), hardened at room temperature. Conventional 
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mechanical thinning and dimpling, followed by ion milling (Gatan® Dual Ion Mill Model 

600) utilizing a LN2 cold stage to perforation, was applied.  

A small number of conventional (Cu-Kα) XRD studies were conducted using a 

Scintag® XPS 2000 X-ray diffractometer employing the Bragg-Brentano focusing geometry 

and a horizontal goniometer axis. The sample holder used in this geometry is a specially cut 

quartz sample holder with a rectangular cavity etched into the surface to accommodate the 

powder. The cavity was filled with powder and the excess was removed from the surface of 

the sample holder by scraping with a razor blade. Amorphous ribbon specimens were fixed 

onto no-background glass holders with Vaseline. This type of glass holder is particularly 

useful to distinguish low intensity amorphous humps at lower angles. Both free and wheel 

sides of the as-rapidly solidified ribbons were examined for angles in the range 10° ≤ 2θ ≤ 

120° with a step size of 0.02°.  

Most of the X-ray diffraction studies were conducted using synchrotron radiation at 

the 6ID-D beamline of the Advanced Photon Source (APS) in Argonne National Laboratory 

(ANL), U.S. Department of Energy (DOE), in collaboration with the Midwest Universities 

Collaborative Access Team (MUCAT). Synchrotron radiation has many benefits over 

conventional laboratory sources [62, 64, 65], the most important being short wavelength, 

high brilliance, high collimation with small angular divergence of the beam, and high level of 

polarization. The diffraction data was collected using either a MAR345 image plate detector 

or a charge coupled detector (CCD) in Debye-Scherrer (transmission X-ray diffraction) 

geometry from the entire sample over a wide angular range. These detectors both have high 

spatial resolution (4096 x 4096) and high count rates. The devitrification experiments were 

conducted in-situ during isothermal and isochronal heating. The crystal specimens were 

rotated for improved powder averaging. The schematic of the experimental set-up and the 

furnace used in this study are shown in Fig. 16 (a) and (b). 
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The powder specimens were inserted into 2 mm diameter quartz capillary tubes. For 

each experimental condition a minimum of three sets of tubes were prepared. For room 

temperature experiments the sample tubes were sealed with an epoxy mixture to ensure that 

the powders did not escape the tube.  

Ribbon samples were cut into small pieces (1cm long) and stacked (at least 20 pieces 

per tube) into glass capillary tubes.  The thicknesses of the tube walls are 10µm, which is thin 

enough to transmit X-rays at the applied energy. The quartz capillary tubes used for high 

temperature time resolved experiments were backfilled with Argon gas then sealed to prevent 

oxidation. Care was taken to prevent unwanted annealing of powders during sealing by 

inserting glass fibers between the ribbons and the region of the capillary that was sealed.  

Sealing of the capillaries was accomplished by inserting a glass rod into the end, followed by 

flash heating at the point of closure.  

For liquid structure analysis, samples were cast initially into rods of 15 mm length.  

The rods were then fractured and rod pieces were inserted into 2 mm quartz tube that first C-

deposited on the inside surface to prevent reaction of the melt with the quartz.  These 

samples were then sealed under an Ar atmosphere using the method described above. 

Diffraction patterns from empty quartz capillaries were always collected and subtracted from 

the liquid data sets to provide background corrections. The diffraction data from amorphous 

ribbon samples were collected at room temperature without the use of a sample holder.   

Differential scanning calorimetry (DSC) and differential thermal analysis (DTA) 

were carried out using a Perkin Elmer® DSC Pyris-1 and DTA 7 instruments, respectively. 

For DSC experiments, the Al sample pan was filled with an average sample weight of 10 mg 

of powders or ribbon fragments and sealed with an Al cover. Temperature and heat flow 

calibrations were conducted using In and Zn standard samples. For DTA measurements 

powder and ribbon samples were inserted into small alumina crucibles with an average 

sample weight of 40 mg. After each isothermal and/or isochronal thermal scan, a subsequent 
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run was performed to calculate the baseline. A protective gas atmosphere of pure Ni was 

employed for each thermal analysis experiments.  

Chemical distributions in the as-solidified ribbons was investigated using 3D APT 

microscopy (LEAP 3000X) in collaboration with the University of North Texas. Sharp 

needle-shaped samples for atom probe tomography analysis were prepared using a focused 

ion beam (FIB) instrument with Ga ion milling.   

Thesis organization 

This dissertation is written in the alternate paper format and is composed of five 

original manuscripts. The references are cited after each chapter. The first chapter is a 

general “Overview”, including introduction, literature review, and experimental procedure.  

The second chapter, entitled “Characterization of hypereutectic Al-Si powders 

solidified under far-from equilibrium conditions,” was published in Metallurgical and 

Materials Transactions A in 2007. The authors were Y. Eren Kalay (graduate student and 

teaching assistant at the Materials Science and Engineering Department of Iowa State 

University and research assistant at the Ames Laboratory of the U.S. Department of Energy, 

L. Scott Chumbley (professor and graduate advisor in the Materials Science and Engineering 

Department of Iowa State University and primary investigator at the Ames Laboratory of the 

U.S. Department of Energy), Iver E. Anderson (adjunct professor and graduate advisor in the 

Materials Science and Engineering Department of Iowa State University and primary 

investigator at the Ames Laboratory of the U.S. Department of Energy), and Ralph E. 

Napolitano (associate professor in the Materials Science and Engineering Department of 

Iowa State University and primary investigator at the Ames Laboratory of the U.S. 

Department of Energy). This manuscript presents the morphological transitions with respect 

to interface velocity and undercooling observed in Al-Si gas-atomized powders, including a 
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direct comparison of experimental results with theoretical predictions based on the Jackson-

Hunt (JH) and Trivedi-Magnin-Kurz (TMK) solidification models. 

The third chapter, entitled “Characterization of a marginal glass former alloy 

solidified in gas atomized powders,” was published in Materials Science and Engineering A 

in 2008. The authors were Y. Eren Kalay, L. Scott Chumbley, and Iver E. Anderson. This 

manuscript reveals the metastable phase hierarchy and glass formation during vitrification of 

the marginal glass former Al90Sm10 rapidly solidified using high pressure He gas atomization 

(HPGA).  

The fourth chapter, entitled “Crystallization behavior in a highly driven marginal 

glass forming alloy,” was published in Journal of Non-Crystalline Solids in 2008. The 

authors were Y. Eren Kalay, L. Scott Chumbley, and Iver E. Anderson. This manuscript 

focuses on the devitrification path of the marginal glass former Al90Sm10 and discusses the 

appearance of a pre-peak on high energy X-ray diffraction pattern. 

The fifth chapter, entitled “Local structure of the marginal glass forming Al-Sm 

alloy,” will be submitted to Philosophical Magazine A in 2009. The authors are Y. Eren 

Kalay, L. Scott Chumbley, Matthew J. Kramer (adjunct professor in the Materials Science 

and Engineering Department of Iowa State University and primary investigator at the Ames 

Laboratory of the U.S. Department of Energy) and Iver E. Anderson. This manuscript 

discusses the local structure in quenched Al(100-x)Smx (x=8, 10, and 12) investigated using a 

combination of high resolution electron microscopy (HRTEM) and high energy synchrotron 

X-ray diffraction (HEXRD). It presents atomic structure models constructed using Reverse 

Monte Carlo (RMC) simulations coupled with Voronoi Tesellation analysis. A model based 

on structural rearrangements in the melt is proposed to explain the high number of density 

nanocrystal formation.    

The sixth chapter, entitled “Initial crystallization in a nanostructured Al-Sm rare earth 

alloy,” will be submitted to Journal of Non-Crystalline Solids in 2009. The authors are Y. 
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Eren Kalay, C. Yeager (undergraduate student in the Materials Science and Engineering 

Department at Missouri University of Science and Technology), L. Scott Chumbley, 

Matthew J. Kramer, and Iver E. Anderson. This manuscript highlights the transformation 

kinetics and microstructural evolution that occur during initial stages of crystallization in a 

highly driven Al90Sm10 alloy containing pre-existing fcc-Al nanocrystals. The effect of local 

structure on crystallization kinetics is discussed.  

The seventh chapter is the “General Conclusions” which summarizes the important 

results of the dissertation and gives recommendations for future studies.  
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 Figure 1. Schematic free energy curves and phase diagram showing T0 curve. 
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 Figure 2. Schematic representation of T0 curves of different eutectic systems, (a) 

Plunging T0 curves, (b) Intersecting T0 curves. Figure from [8] 
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Figure 3. The free energy change related to homogeneous and heterogeneous 

nucleation. Figure from [15]. 
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Figure 4. Truncated tetrahedrons in 3-D and 2-D. Black points represent the atoms in 

the Voronoi polyhedron with <400400> indices. Figure from [15]. 
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Figure 5. Specific temperatures observed during an isochronal thermal analysis for 

bulk metallic amorphous and marginal glass forming alloys. 
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Figure 6. Glass formation composition range for Al-RE binary systems. Figure 

modified from [51]. 
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Figure 7. (a) TEM bright field image of Al-6wt%Si submicron sample (1µm > 2r0 > 

0.5µm)  A : supersaturated zone, B : precipitate free zone, C : cellular region (1µm > 2r0 
> 0.5µm) (b) TEM bright field image of the anomalous morphology of a silicon 

segregate (pro-eutectic phase) observed in some of the Al-Si powders [117] 
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Figure 8. Interface temperature microstructure map for laser-processed Al-Si alloys: (-) 
equilibrium phase boundaries; (- - -) calculated microstructure transition boundaries;  

(. . .) boundaries between primary Si and Al re-growth. Figure from [122]. 
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Figure 9. The number densities measured from electron microscope and small angle 
neutron scattering data (•). The solid line shows the trend of nucleation according to 

classical nucleation theory. Figure from [135]. 
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Figure 10. Schematics showing kinetics of metallic glass formation: nucleation control 

vs. growth control (dQ/dt: Heat evolution rate).Figure from [137]. 
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Figure 11. TEM bright field images and SAED patterns (insets) of Al92Sm8 samples.  (a) 

Melt-spun ribbon after annealing at 150°C for 10 min. (b) Cold-rolled sample after 
annealing at 150°C for 60 min. Figure from [41]. 
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Figure 12. (a) as-quenched amorphous state, (b) after annealing for 223 °C for 1 min. 
contrast attributed to phase separation, (c) jump ratio image near NiM23 loss edge, (d) 

after first crystallization. Image from [147]. 
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Figure 13. Simultaneous in-situ X-ray diffraction and small angle X-ray scattering 

results showing phase separation taking place prior to crystallization of a 
Zr52.5Cu17.9Ni14.6Al10Ti5 amorphous alloy. Figure from [154]. 
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Figure 14. High pressure gas atomizer, Ames Laboratory. 
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Figure 15. Copper chill block melt spinner, Ames Laboratory. 
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Figure 16. (a) Schematic of the experimental set-up showing the positions of incident   

X-ray beam, CCD, and the (b) furnace. 
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Table 1. Effects of solute Péclet number. Table from [8]. 

Subject l Pe<<1 Pe~1 Reference 
Eutectic growth Eutectic 

spacing 
Jackson-Hunt 

Analysis 
λ2V ≠ constant 

Trivedi –
Magnin- Kurz 

Analysis 

[18-24] 

Dendritic growth Dendritic tip 
radius 

Trivedi, Lipton-
Glicksman-

Kurz Analysis 

Boettinger-
Coriell, Lipton-

Kurz-Trivedi 
Analysis 

[25-32] 

Microsegregation Cell spacing or 
primary 
dendrite 

Scheil-type 
analysis 

Flat solute 
profiles 

[33-35] 

Interface shape 
stability 

Interface 
perturbation 
wavelength 

Constitutional 
supercooling 

Absolute 
stability 

 

Solute trapping Interatomic 
distances 

Local 
equilibrium 

Partitionless 
solidification 

[14, 15] 
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Table 2. Examples of bulk metallic glasses and marginal glass formers 
(RE: rare-earths, TM: Transient metals) 

Bulk Metallic Glasses Marginal Glass Formers 
Vitreloy ® 

(Zr41.2Ti13.8Cu12.5Ni10Be22.5) 
Finemet® 

(Fe73.5Cu1Nb3Si13.5B9) 
Vit105® 

(Zr52.5Ti5Cu17.9Ni14.6Al10) 
Nanoperm® 

(Fe84Zr3.5Nb3.5B8Cu1) 
Fe56Co7Ni7Zr10B20 Al-RE-TM 
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Table 3. Crystal Structure Data of the Al-Sm Binary System 
Lattice Constants (Å) Phases Structure Type 

a b c 

Space 
Group 

Reference 

α-Sm Rhombohedral 
hR9- α-Sm 

3.6290  2.6207  [103] 

β-Sm Hexagonal 
hP2-Mg 

3.6630  5.8448 
γ:120° 

 [103] 

γ-Sm Cubic 
cI2-W 

4.1000    [103] 

AlSm Orthorhombic 
oP16-AlDy 

5.8990 11.622 5.6780 Pbcm-57 [107] 

AlSm Orthorhombic 
oP16-AlDy 

5.8990 11.622 5.778 Pbcm-57 [108] 

AlSm Cubic 
ClCs-cP2 

3.7392   Pm 3 m-221 [109] 

AlSm2 Orthorhombic ? 7.7820 9.3020 11.210 ? [110] 
AlSm2 Orthorhombic 

Co2Si-oP12 
6.6540 5.1930 9.6310 Pnma-62 [110] 

AlSm3 Cubic 
AuCu3-cP4 

4.901   Pm 3 m-221 [111] 

Al2Sm Cubic 
Cu2Mg-cF24 

7.9405   Fd 3 m-227 [112] 

Al3Sm Hexagonal 
Ni3Sn-hP8 

6.3800  4.5970 
γ:120° 

P63/mmc-194 [113] 

Al4Sm 
(Al11Sm3) 

Tetragonal 
Al4Ba-tI10 

4.2800  9.9000 I4/mmm-139 [114] 

Al4Sm 
(Al11Sm3) 

Tetragonal 
Al4Ba-tI10 

4.2870  9.9050 I4/mmm-139 [115] 

Al4Sm 
 

Orthorhombic 
Al4U-oI20 

4.4400 6.3800 13.6200 Imma-74 [114] 

Al11Sm3 Orthorhombic 
Al11La3 -oI28 

4.3330 12.8100 9.9700 Immm-71 [110] 

Al Cubic 
cF4-Cu 

4.0495   Fm3m-225 [116] 
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Table 4. Previous studies on devitrification path of Al-Sm alloy. 

 8 10 12 14  
Initial 
State 

PartiallyAmorp
hous 

Amorphous PartiallyAmorphous Amorphous 

1. DSC 
Peak 

197°C 
α-

Al+Amorphous 

195°C 
B1 

210°C 
α-Al+B2+B3+B5 

225°C 
α-Al+B3+B5 

2. DSC 
Peak 

270°C 
α-Al + B2 

290°C 
α-Al + B2 

307°C 
- 

325°C 
α-Al+B5 

3. DSC 
Peak 

? 
α-Al + B4 

451°C 
α-Al+B4 

451°C 
α-Al+B4 

490°C 
α-Al+B4 

Reference[129] 
Samples 

produced by 
single roller 

melt spinning 
apparatus and 

crystal; 
structure 

examined by 
Co-Kα XRD. 

 8 10 12 14 
Initial 
State 

PartiallyAmorp
hous 

PartiallyAmorpho
us 

PartiallyAmorphous PartiallyAmorp
hous 

1. DSC 
Peak 

197°C 
α-

Al+Amorphous 

234°C 
α-Al+G1+G3 

234°C 
α-Al+G1+G3 

227°C 
α-Al+G1+G4 

2. DSC 
Peak 

268°C 
α-Al + G1 

307°C 
- 

307°C 
- 

325°C 
α-Al+G1+G3 

3. DSC 
Peak 

321°C 
α-Al + G2 

451°C 
α-Al+G2 

451°C 
α-Al+G2 

490°C 
α-Al+G2 

Reference[130] 
Samples 

produced by 
single roller 

melt spinning 
apparatus and 

crystal; 
structure 

examined by 
Cu-Kα XRD. 

 8 10 12 14 
Initial 
State 

Amorphous Amorphous   

1. DSC 
Peak 

Ann.  at 200°C 
α-

Al+Amorphous 

Ann. at  270°C 
R1 

  

2. DSC 
Peak 

Ann. at 320°C 
α-Al + R5 

Ann. at  350°C 
α-Al + R2 + R3 

  

3. DSC 
Peak 

Ann. at  600°C 
α-Al+R4 

Ann. at  600°C 
α-Al+R4 

  

Reference[131] 
Samples 

produced by 
single roller 

melt spinning 
apparatus and 

crystal; 
structure 

examined by 
Co-Kα XRD. 
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Table 5. Phases identified during devitrification of Al(100-x)Smx 
(x=8,10,12,and 14). 

Lattice Constants (Å) Phases Structure 
a b c 

G1 Tetragonal 4.280  9.900 
G2 Orthorhombic 13.781 11.019 7.303 
G3 Hexagonal 4.597  6.358 
G4 Cubic 19.154   
B1 Iso-structure 

Al20Cr2Nd 
? ? ? 

B2 Not identified    
B3 Not identified    
B4 Tetragonal 4.440 6.340 13.700 
B5 Orthorhombic 4.333 12.810 9.970 
R1 Cubic 4.597   
R2 Tetragonal 4.280  9.900 
R3 Hexagonal 4.597  6.358 
R4 Orthorhombic 4.333 12.810 9.970 
R5 Tetragonal 4.280  9.900 
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Table 6. Powder Classification 

Powder Classifications 
(µm) 

Composition 
Wt% 

-90 +75 Al- 38 Sm 
-75 +63 Al – 38 Sm 
-63 +53 Al – 38 Sm 
-53 +45 Al – 38 Sm 
-45 +38 Al – 38 Sm 

Al – 12.6 Si 
Al- 15 Si 
Al – 18 Si 
Al – 25 Si 
Al – 50 Si 

-38 +32 Same as above 
-32 +25 Same as above 
-25 +20 Same as above 
-20 +15 Al – 38 Sm 

Al – 12.6 Si 
Al- 18 Si 

-15 +10 Same as above 
-10 +05 Same as above 

<03 Al – 38 Sm 
Al – 12.6 Si 

Al- 15 Si 
Al – 18 Si 
Al – 50 Si 

<01 Same as above 
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CHAPTER 2: CHARACTERIZATION OF HYPEREUTECTIC Al-Si 
POWDERS SOLIDIFIED UNDER FAR-FROM EQUILIBRIUM 

CONDITIONS 

A paper published in Metallurgical and Materials Transactions A 

Y.E. Kalay1,2, L.S. Chumbley1,2, I.E. Anderson1,2, R.E. Napolitano1,2 

Abstract 

The rapid solidification microstructure of gas-atomized Al-Si powders of 15, 18, 25, 

and 50 wt pct Si were examined using scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM). In order of increasing particle size, the powders exhibited 

microcellular Al, cellular/dendritic Al, eutectic Al, and primary Si growth morphologies. 

Interface velocity and undercooling were estimated from measured eutectic spacing based on 

the Trivedi–Magnin–Kurz (TMK) model, permitting a direct comparison with theoretical 

predictions of solidification morphology. Based on our observations, additional conditions 

for high-undercooling morphological transitions are proposed as an extension of coupled-

zone predictions. 

 Introduction 

Attributed primarily to its ability to achieve high cooling rates in a single process step 

for large quantities of material, gas atomization is, perhaps, the most industrially significant 

technique for rapid solidification, with over 50,000 tons of material produced by this method 

each year [1]. From a scientific standpoint, atomization methods provide experimental access 

                                                 
1 Ames Laboratory (DOE), Iowa State University, Ames IA 50011-3020, USA 

2 Department of Materials Science and Engineering, Iowa State University, Ames IA 50011-3020 USA 
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to very high undercoolings in a containerless environment, presenting an opportunity to 

investigate the fundamentals of nucleation and growth in highly driven systems. In addition, 

the droplet size itself is a useful metric of the prevailing undercooling or cooling rate, and the 

atomization of a volume of liquid will typically produce a large range of droplet sizes, 

corresponding to a wide range of cooling rates. Thus, a quantity of atomized powder will 

exhibit a spectrum of solidification microstructures. Detracting from the scientific utility of 

the atomization method, however, is the chaotic nature of the process, which gives rise to 

considerable variation of microstructure, even for droplets of a particular size. Accordingly, 

employing gas atomization for the systematic study of solidification can be problematic.      

Numerous atomization experiments for fundamental investigation of microstructural 

evolution during rapid solidification have been reported [2,3,4]. A detailed investigation of 

the correlation between undercooling and microstructure was performed by Levi and 

Mehrabian, [2] who used a vacuum-electrohydrodynamic atomization process to produce 

submicron powders of Al-Si and Al-Cu alloys. The typical microstructure exhibited by their 

powders revealed that solidification occurred primarily in two stages, beginning with the 

planar growth of a supersaturated solid solution followed by a transition to a cellular 

morphology and the concomitant segregation pattern. This two-stage freezing behavior has 

been observed by others [5] and indicates a transition from the rapid cooling associated with 

the absorption of latent heat by the droplet itself to the slower cooling associated with the 

transfer of heat to the particle’s surroundings (i.e., Newtonian cooling). Atomized particles 

often exhibit a clear microstructural transition associated with the change in cooling rate that 

accompanies the onset of Newtonian dominated cooling. Indeed, while microstructures were 

observed to vary within any given particle size range, the results of Levi and Mehrabian 

clearly indicate that decreasing particle size can be generally correlated with increasing 

undercooling and a departure from Newtonian cooling conditions. Thus, for smaller particles, 

solidification during recalescence becomes dominant and the transition to external heat-
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transfer control is suppressed. In the adiabatic limit, undercooling is sufficiently high that all 

of the latent heat liberated by the freezing droplet can be accommodated within the droplet 

itself and no external heat extraction is required for solidification. These general features 

have been well evidenced by microstructural observations [2] where smaller particle sizes 

have been associated with an increasing degree of planar growth of the supersaturated solid 

solution and a suppression of the segregation-induced transition from planar to cellular 

growth morphologies.  

In the current study, we employ high-pressure gas atomization to investigate 

microstructural selection in hypereutectic Al-Si alloys. In particular, we examine 

microstructural selection at high undercoolings and compare our observations with the 

selection map reported by Trivedi et al[4]. In addition, we consider the implications of our 

observations with respect to the onset of nonequilibrium solidification phenomena and non-

Newtonian cooling conditions. 

Experimental Procedure 

Hypereutectic alloy powders of Al-15Si, Al-18Si, Al-25Si, and Al-50Si (wt pct) were 

produced using high-pressure gas atomization. For each experiment, the melt chamber of the 

gas atomizer was charged with high-purity (99.95 pct) Al and (99.99 pct) Si to a total weight 

of about 1.5 kg. Each charge was induction melted to 400 °C above the relevant liquidus 

temperature in a hard-fired bottom-pouring crucible made from high-purity (99.7 pct) Al2O3. 

Atomization was accomplished using ultrahigh purity (99.995 pct) nitrogen with a supply 

pressure of 6.6 MPa. The powder collected from each experiment was screened using ASTM 

standard vibratory sieves to obtain particles with diameters of #45 µm. Air classification and 

sedimentation methods were then used to isolate particles in size classes of 0 to 5 µm and 5 

to 10 µm. Samples selected for scanning electron microscopy (SEM) analysis were mounted 

in epoxy resin, ground, polished, and etched (in aqueous solution of 3 pct HCl, 2 pct HNO3, 
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and 1 pct HF, by volume) for cross-sectional analysis. In any given specimen, the largest 

particle cross sections were selected for examination to best ensure near-diametral sections. 

In addition, the particle diameter was measured on cross-sectional planes, which include at 

least three particles in contact, again ensuring a true diametral measurement. For 

transmission electron microscopy (TEM) investigation, selected powders were dispersed in 

epoxy, and the mixture was cured, thinned, and argon-ion milled (4 kVacceleration voltage 

and 20 deg incident angle) to perforation. For both SEM and TEM analyses, only the most 

spherical particles were considered for quantitative investigation because they are the ones 

that most likely solidified during free fall in the chamber. The relative dominance of the 

different growth morphologies was measured as a function of powder size and composition 

using a linear-intercept analysis on selected powder cross sections. A total of 80 particles 

were examined, ranging from 0.5 to 45 µm in diameter and from 15 to 50 wt pct in Si 

content. For each particle, a total line length equal to 3 times the particle diameter was used 

for the analysis. Measurements of eutectic spacing were also performed using a line-intercept 

method, where the eutectic spacing was simply taken as the reciprocal of one-half the 

measured linear density of phase boundary intersections. A total of 21 particles, all with a 

composition of 18 wt pct Si but ranging from 2 to 45 µm in diameter, were used for this 

analysis.  

Results 

The range of morphologies observed in the powder samples includes primary silicon, 

eutectic, dendritic/cellular primary aluminum, and a microcellular aluminum structure. This 

is illustrated in Figure 1, showing the microstructure in ~25-µm-diameter powders over a 

range of compositions, and in Figure 2, showing the microstructure in 18 wt pct Si powders 

over a range of particle sizes. For the larger powders, growth morphology was easily 
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ascertained using SEM analysis, but finer particles (i.e. <5 µm diameter) required TEM 

imaging.  

The influence of composition on growth morphology is summarized in Figure 1 for 

large (~25 µm) diameter powders. These exhibit dominant morphologies of primary Si 

(Figure 1(a)), eutectic (Figure 1(b)), or primary aluminum (Figure 1(d)), for compositions of 

50, 25, and 15 wt pct Si, respectively. Similarly, the morphology varies with particle size, as 

shown in Figure 2, for powders of 18 wt pct Si. Here, the dominant morphology varies from 

eutectic at 30 µm (diameter) to cellular plus eutectic at 20 µm, cellular at 4 to 10 µm, and 

microcellular at 0.4 µm. For our purposes, we differentiate the microcellular morphology 

from the cellular morphology on the basis of the intercellular structure. Thus, the cellular 

structure contains a resolvable two-phase intercellular constituent (Figure 2(d)), where the 

microcellular morphology exhibits a distinguishable cellular segregation pattern, but no 

clearly distinguishable twophase intercellular microstructure (Figure 2(f)). Rather, selected 

area diffraction reveals nanocrystalline Si and Al in the intercellular region.  

The relative amount of each type of microstructure measured for two powder size 

classes (2 to 4 µm and 20 to 24 µm diameter) is plotted in Figure 3 as a function of alloy 

composition. This figure shows that, for the 20- to 24-µm size class, as the alloy composition 

is decreased from 50 wt pct Si to 18 wt pct Si, the dominant microstructure shifts from 

primary silicon to a eutectic morphology. The interpolated curves suggest that such a 

transition occurs at approximately 41 mm.   

As a means for the estimation of undercooling, powders of 18 wt pct silicon, which 

were generally observed to be dominated by the eutectic morphology, were selected for the 

measurement of eutectic spacing. The results are shown in Figure 4, where measured eutectic 

spacings are plotted as a function of powder diameter and are compared with results from a 

previous study, [6] where helium, rather than nitrogen, was used as the atomization gas. 
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Discussion 

The variation of eutectic spacing with particle diameter, plotted in Figure 4, indicates 

that the atomization gas has a measurable effect on undercooling for large particles. This is 

not particularly surprising, given that the heat capacity and thermal conductivity for helium 

gas are much greater than those for nitrogen gas. The plot indicates, however, that for 

particles less than  ~10 m, the undercooling may not be measurably dependent on these 

factors, perhaps indicating the threshold diameter below which the solidification rate is 

primarily governed by the heat absorption that occurs during recalescence, as discussed by 

Mehrabian et al.[2,3] 

The values of undercooling (∆T) and interface velocity (v), corresponding to the 

various particle sizes, are plotted in Figures 5(a) and (b). These values were obtained from 

the eutectic spacing (λ) measurements for the 18 wt pct alloy, using the Trivedi–Magnin–

Kurz (TMK) model [7] for eutectic growth at high velocity, and are based on the equations 

 
                                                                                                                                          (1) 

 

                                                                                                                       (2) 

 
where m, aL, and QL are defined by Eq. [16] in Reference 8, q is defined here as 

                                                                                                                                                                  

                                                                                          (3) 
and P is a function of phase fraction, solute partition coefficient, and Péclet number, as 

described in Reference 7. Note that the value of P approaches a constant for low Péclet 

numbers (λv/2D), and q approaches unity, where Eqs. [1] and [2] reduce to the Jackson–Hunt 

(JH) equations, λ∆T = 2maL and λ2v = aL/QL [7]. The material parameters used for the 
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undercooling and velocity estimates are given in Table I. For the low Péclet number (i.e., p < 

0.2) regime, corresponding to d > 10 µm and v > 20 µm/s, the JH and TMK models are in 

good agreement (Figure 6). Above this velocity (smaller particle diameter and higher Péclet 

number), there is a substantial difference between the models, indicating that nonequilibrium 

partitioning and temperature dependent diffusivity are important considerations. Figure 5(c) 

shows that this d > 10 µm threshold corresponds to a Péclet number of approximately 0.2. It 

is interesting to note that this threshold in the Péclet number, where rapid solidification 

effects become important, coincides with the observed transition to recalescence-controlled 

growth rate, indicated by Figure 4. 

Given the estimated undercooling values of Figure 5(b), the implications of the 

observed microstructure measurements can be considered in light of the morphology 

selection map previously proposed by Trivedi et al [4]. This map, along with the current 

experimental observations, is shown in Figure 7. The dashed vertical lines indicate the alloy 

compositions used for this study, and each symbol represents the indicated microstructural 

observation. It should be noted that these data indicate the dominant microstructure and do 

not imply that only a single morphology was observed. It should also be recognized that the 

analytical  predictions shown [4] indicate transitions in the favored growth morphology, 

where boundaries are defined by equal velocity at the given temperature. Such a calculation 

does not include any consideration of the time scale of competition dynamics and is not 

meant to imply that a single morphology would be observed in the microstructure. Rather, it 

is expected that several competing morphologies would be observed under many conditions. 

Finally, we point out that the prediction does not include any consideration of nucleation 

phenomena, which may play an important role in overall selection dynamics. 
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Focusing on the predicted transitions in growth morphology, observed 

microstructures are in good agreement with previously calculated microstructure regions. For 

example, the largest size particles of all compositions show primary Si formation being 

dominant. As particle size decreases, eutectic growth morphology becomes dominant for all 

compositions, although this transition occurs at a Si content that decreases with increas

powder diameter. Thus, the eutectic morphology is seen in powders of diameter 40 µm for 15 

wt pct Si, 30 µm for 18 wt pct, and 25 µm for 25 wt pct, corresponding to temperatures of 

840, 810, and 780 K respectively, in good agreement with the map. Examination of the 50 wt 

pct Si powders shows that the primary Si region extends to powders of size > 3 to 4 µm, at 

which point the microcellular structure becomes dominant. Similarly, the calculated 

transition from eutectic to primary Al growth at low Si compositions and smaller powder 

sizes is also well supported by experimental observations, being seen in 15, 18, and 25 wt pct 

alloys. 

In powders dominated by primary Al formation, a fairly continuous transition appears 

from dendritic to cellular to microcellular. The transition from cellular, where clearly 

identifiable lamellar eutectic formation is observable, to the refined microcellular structure 

begins approximately at a powder diameter of 10 µm (p ~0.2) for 15 to 25 wt pct Si alloys. 

While no sharp morphological transition was observed in any single particle, the existence of 

the microcellular structure shows a reasonable correlation with the convergent region in 

Figure 4, where recalescence appears to be controlling the growth rate. As we have noted, 

this transition is observed at a Péclet number that is coincident with the divergence of the 

TMK and JH models. 
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Conclusion 
Eutectic spacing measurements indicate that, for particle diameters less than 10 µm, 

the solidification rate may be unaffected by the type of gas used during atomization, 

suggesting that growth rate is governed by recalescence in this regime. Moreover, this 

diameter is consistent with the appearance of the microcellular growth morphology and with 

the divergence of the JH and TMK models for eutectic growth at Péclet numbers greater than 

~0.2. 

Microstructure observations of large powders for alloys in the composition range 

from 15 to 50 wt pct Si agree well with the microstructure map proposed by Trivedi et al [4]. 

The SEM and TEM observations of 18 wt pct Si indicate a continuous dendritic-cellular 

microcellular transition that occurs with decreasing particle size. While the lamellar eutectic 

structure is easily discernable at large and midrange powder sizes, the intercellular 

constituents of the smallest size powders appear to consist of a nanocrystalline mixture 

of Si and Al. 
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Figure 1. Representative microstructures of rapidly solidified powders (25-µm 

diameter): (a) Al-50 wt pct Si, showing faceted primary Si, eutectic, and dendritic 
structures; (b) Al-25 wt pct Si, showing a large amount of eutectic; (c) Al-18 wt pct Si, 

showing primary Al and eutectic; and (d) 15 wt pct Si, [6] showing primary Al and 
eutectic. 
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Figure 2. Al-18 wt pct Si microstructures in powder particles of various diameter: (a) 

30 µm, (b) 20 µm, (c) 10 µm, (d) 4 µm, and (e) and (f) 0.4 µm. Imaging: (a) and (b) 
secondary electron SEM, (c) and (e) bright-field TEM, and (d) and (f) dark-field TEM. 
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Figure 3. The relative amount of each observed microstructure type, as a function of 

composition and powder size. 
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Figure 4. Measured eutectic spacing vs powder diameter in 18 wt pct Si compared to 

results from [6]. 
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Figure 5. (a) Growth velocity, (b) undercooling, and (c) Péclet number for eutectic 

growth, all estimated from eutectic spacing measurements in the 18 wt pct Si powders. 
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Figure 6. The spacing-velocity relationship predicted by JH and TMK eutectic growth 

models for Al-18 wt pct Si, computed using the parameters in Table I. 
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Figure 7. Microstructure map [10] for the Al-Si system extended from the previously 
calculated map [4]. Lines 1 through 4 correspond to undercooling paths for Al-15 wt 

pct to 50 wt pct Si droplets. 
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Table 1. Parameters used in undercooling and velocity estimates. 

Parameter    
Symbol 

Parameter Value Unit Parameter Name 

D 5 x 10-9 m2/s Diffusion coefficient 
C 98.2 wt% Length of eutectic tie-line 
mα 7.5 K/wt% α phase liquidus slope 
mβ 17.5 K/wt% β phase liquidus slope 
Гα 1.96x10-7 Km Gibbs-Thomson 

Coefficient (α phase) 
Гβ 1.7x10-7 Km Gibbs-Thomson 

Coefficient (β phase) 
θα 30° 

0.524 
deg 
rads 

Angle of α phase 

θβ 65° 
1.134 

deg 
rads 

Angle of β phase 

Teut 577.2 °C Eutectic temperature 
Ceut 0.126 - Eutectic composition 
ρα 2.50x106 g/m3 Density (α phase) 
ρβ 2.33x106 g/m3 Density (β phase) 
Φ 3.2 - Extremum condition parameter 
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CHAPTER 3: CHARACTERIZATION OF A MARGINAL GLASS 
FORMER ALLOY SOLIDIFIED IN GAS ATOMIZATION POWDERS 

A paper published in Materials Science and Engineering A 

Y.E. Kalay1,2, L.S. Chumbley1,2, I.E. Anderson1,2 

Abstract 

Al90Sm10, a marginal glass former, was rapidly solidified using high pressure gas 

atomization (HPGA). Rapid solidification is a non-equilibrium process, with different 

degrees of departure from full equilibrium constituting a microstructural hierarchy that 

correlates with increasing solidification rate. In accordance with this the resultant HPGA 

powders show a variety of microstructures according to their particle diameters, 

corresponding to degree of undercooling, with an amorphous structure appearing at high 

cooling rates. Five distinct phases and microstructures have been identified at different 

undercoolings; Al solid solution, tetragonal Al11Sm3, two different orthorhombic phases, and 

an amorphous phase which exists in company with a high number density of Al nanocrystals. 

The product phases of the rapid solidification were identified and analyzed using high energy 

transmission X-ray diffraction (HEXRD), high resolution transmission electron microscopy 

(HRTEM), scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy 

(EDS) and thermal analysis (DSC). The results of the study will be helpful in identifying 

metastable phase hierarchy and glass formation during vitrification of marginal glass 

formers. 
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Introduction 

Al–rare earth (RE)-based alloys are known to be marginal glass formers, where 

amorphization is often accompanied by nano-crystalline phases due to kinetically related 

growth limitations [1] and [2]. The as-quenched phases formed in Al–RE binary systems 

show a diversity of crystal structures in the composition range where glass formation is 

observed, which typically lies in the range between the Al–RE eutectic point and Al11RE3 

(for ZRE ≤ 62) or Al3RE (ZRE ≥ 63, except yttrium) intermetallics [3] and [4]. Among the Al–

RE binary alloys, the Al–Sm system has the widest glass formation range, from 8 to 16 at.% 

Sm (33–52 wt% Sm) [4]. 

Amorphization and nano-crystalline phase formation in Al–Sm binary alloys has been 

extensively investigated using both melt spinning and mechanical mixing methods [5], [6], 

[7] and [8]. The common belief [5] for this binary system under non-equilibrium conditions 

is that the formation of an amorphous matrix accompanied with nano-crystalline phases is 

due to the growth of quenched-in nuclei, if the initial state is liquid before vitrification. 

Amorphous phase formation without any nanocrystals was reported for an Al–Sm binary 

alloy which underwent extensive mechanical deformation [10]. This shows that solid state 

mixing is one possible route for complete vitrification of this alloy system. Recent 

experiments that involved melt spinning of identical compositions using similar processing 

conditions has resulted in both partially, and completely, amorphous structures [7], [8] and 

[9]. Thus, studies to date have yet to provide a complete description and understanding of the 

vitrification process. Similarly, a complex phase selection sequence has been observed in 

devitrification within the same composition of glass [6], [7], [8] and [9]. 

In this study, the vitrification path of Al–Sm (38 wt% Sm) binary alloy was 

investigated using powders produced by a gas atomization technique. Among rapid 

solidification processes, gas atomization presents an opportunity to investigate the 

fundamentals of nucleation and growth in a containerless environment where a high amount 
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of undercooling can be reached. Droplets with different diameters that solidified at different 

undercooling values provide an opportunity to explore metastable phases and novel 

microstructures [10], [11], [12], [13] and [14] over a wide range of conditions within a single 

sample. Powders at different diameters were investigated systematically to characterize the 

microstructures, to determine the potential for metastable phase formation, and to examine 

whether nanocrystal formation can be suppressed at high undercoolings in this marginal glass 

former. 

Experimental Procedure 

Powders of an Al–38Sm (wt%) alloy were generated at Ames Laboratory using high 

pressure gas atomization (HPGA). High purity (99.99 wt%) Al and (99.9 wt%) Sm was used, 

with He atomization gas employed at a supply pressure of 5.5 MPa. The charge was 

induction melted at 1200 °C, 300 °C above the relevant liquidus temperature, in a hard-fired 

bottom-pouring crucible made from high purity (99.7 wt%) Al2O3. The collected powders 

were screened using a series of ASTM standard sieves with a vibratory shaker to obtain 

particles of 75 µm in diameter or less. Air classification was used to obtain 5–10 µm and 

<5 µm diameter powders. In order to obtain precise particle size for TEM investigation, 

powders ranging in size from submicron to 3 µm were separated using a sedimentation 

technique in Hexane (C6H14). The microstructural changes during vitrification were 

investigated using scanning electron microscopy (SEM) and scanning/transmission electron 

microscopy (S/TEM). Chemical compositions were measured using EDS. Powder specimens 

for SEM were mounted in epoxy resin and their surfaces were cut using a serial micro-cutter. 

This new cross-section method, which eliminates grinding and polishing steps, was found to 

be very effective. Samples were etched in a 2.5 ml nitric acid, 1.5 ml HCl, 1 ml HF, 95 ml 

H2O solution at room temperature. S/TEM specimens were dispersed in epoxy, the mixture 

cured, thinned, and argon-ion milled (4 kV acceleration voltage and 20° incident angle) to 
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perforation using a liquid nitrogen cooled stage. In order to remove any suspicion that sample 

heating during TEM preparation was occurring, powders smaller than 1 µm were dispersed 

on carbon-coated copper grids and directly examined using high resolution imaging 

(HRTEM). 

The solidification product phases, including crystal structures and vitrification results 

were investigated using HEXRD at the Advanced Photon Source at Argonne National 

Laboratory in collaboration with the Midwest Universities Collaborative Access Team 

(MUCAT). The as-atomized powders were sealed in silica capillaries and exposed to 

100 keV X-rays of wavelength 0.012347 nm at ambient temperature. The thermal stabilities 

of phases in as-rapidly solidified powders were determined by differential scanning 

calorimetry (DSC). 

Results 

Scanning electron microscopy 

A previous study of gas atomized Al–Si powders showed that particle size refinement 

through gas atomization has a measurable effect on increasing the undercooling at a constant 

alloy composition [11], [12], [13], [14] and [15]. In light of this observation as-atomized Al–

Sm powders were screened and classified for systematic characterization (Table 1). Particles 

with set numbers from 1 to 8 were investigated with SEM using electron back scattered 

imaging (BSE). The transition in solidification morphology from larger to smaller particle 

diameter is illustrated in Fig. 1. Note that for this study only spherical particles were 

considered for investigation as they are the ones that most likely solidified during free fall in 

the chamber. 

 

A dendritic morphology is seen for larger powders (>45 µm) where the undercooling 

is relatively low, Fig. 1a and b. Starting with powders 45–38 µm in size, the highly branched 
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primary dendrites are replaced with primary faceted flakes without significant secondary arm 

branching, Fig. 1c and d. According to EDS, both dendrites and faceted flakes are rich in Sm 

content compared to the matrix, which is consistent with the contrast observed using BSE, 

since the atomic number of Sm (62) is far bigger than Al [13]. No difference in contrast is 

observed between dendrites. However, EDS in SEM resolved slightly different compositions 

for the dendritic structures showing a compositional variation between dendrites having 

similar morphologies. Two distinct compositions, one having an average of 21 ± 1 at.% Sm 

and the second 16 ± 1 at.% Sm, were observed from similar size dendrites using EDS in 

SEM. Some of these larger powders showed peripheral featureless rims (as arrowed in Fig. 

1c), in agreement with previous observations by other investigators [16]. The smallest size 

particle groups observed using SEM (<25 µm), corresponding to high undercooling, show 

small faceted grains within a featureless matrix, Fig. 1e and f. 

High energy transmission X-ray diffraction (HEXRD) 

Fig. 2a shows a digitally processed image plate scan for powders at different 

diameters. This figure visually displays the changes in structure detectable using X-rays from 

large to small powder size. The lines indicate the location of Bragg peaks, with the contrast 

level being proportional to diffracted beam intensities. The intensity of crystalline peaks is 

seen to decrease as particle size decreases, and a partially amorphous hump is observed for 

the smallest size powder group of <5 µm. Fig. 2b shows XRD patterns integrated from the 

image plate scan for selected ranges of powder diameters. For the largest powder size group 

(63–75 µm), fcc-Al and peaks consistent with tetragonal Al–Sm phases can be resolved. 

According to Refs. [17] and [18], Al4Sm and Al11Sm3 are two different representations of the 

same high temperature metastable tetragonal phase [19], with common diffraction peaks and 

lattice parameters. These are isostructural with the Al4Ba compound with Al deficiency due 

to vacancies, resulting in a discrepancy in chemical composition. The atomic percentage of 
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Sm is 0.2 and 0.214 in Al4Sm and Al11Sm3, respectively. A Rietveld refinement of the 

selected powder groups yielded an atomic percentage of 0.214% Sm in the tetragonal phase 

(Table 2), which indicates an Al deficiency. Thus, this phase will be described as tetragonal 

Al11Sm3, and is associated with the highly dendritic microstructure observed in the SEM 

studies. The tetragonal Al11Sm3 phase has lattice parameters of a = 0.428 nm and 

c = 0.992 nm. 

There is only one unidentified Bragg peak at (2θ = 2.86) in largest powder size group. 

As the particle size decreases, additional Bragg reflections became visible (Fig. 2b). A body 

centered orthorhombic structure, corresponding to the Al4Sm [20] phase with lattice 

parameters of a = 0.444 nm, b = 0.638 nm, and c = 1.362 nm and isostructural with the Al4U, 

can be identified. A second phase, also determined on the basis of X-ray diffraction to be 

orthorhombic with lattice parameters with a = 0.416 nm, b = 0.634 nm, and c = 1.328 nm 

was also identified. This phase, designated ER, has a similar Bravais structure and lattice 

parameters to Al4Sm. However, ER and Al4Sm have different atom arrangements as deduced 

by the presence of extra reflections for the ER structure that are forbidden for Al4Sm. 

The Bragg peaks of all observed crystal structures become weak as the average 

particle size becomes smaller (Fig. 2b). However, even at the smallest powder sizes (<5 µm) 

crystalline peaks are still observed, although they are superimposed on a large amorphous 

hump. Fig. 3 shows the diffraction pattern of smallest powder size in detail. Two points 

should be noted here. First, the initial amorphous hump seen in Fig. 3 and located below 2° 

2θ is due to the quartz capillary used as a sample holder during the experiments, while the 

second amorphous hump indicates actual amorphous phase formation in this system. 

Secondly, it must be kept in mind that the X-ray samples consist of a large number of 

powders of different sizes. Thus, crystalline peaks superimposed on an amorphous hump in 

the XRD pattern for smaller size powder do not mean that crystalline and amorphous phases 

coexist in every particle. For example, the sample may consist of fully or partially amorphous 
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powders, and entirely crystalline powders. In other words, the XRD data gives phase 

information as an average for the sample, not individually for each powder. 

In order to investigate the stability of the observed phases, powders of size 63–75 µm 

(containing Al11Sm3 and fcc-Al) were annealed at 873 K for 86.4 ks. As shown by the X-ray 

scans in Fig. 4, the Al11Sm3 completely transforms to Al4Sm, with a few peaks from the low 

temperature stable hexagonal Al3Sm phase also being observed. The types of crystalline 

phases observed in this study, in addition to amorphous materials, are summarized in Table3. 

Transmission electron microscopy (TEM) 

Powders in the smallest size group (<5 µm) were investigated using TEM. Fig. 5a 

shows a bright field (BF) image of a crystalline powder in this size group. The powder 

possesses what appears to be a primary solidification phase (Fig. 6) and an eutectic structure. 

EDS results in TEM reveal that the white contrast phase is almost pure Al (average atomic 

composition of ≈1 at.% Sm) and the dark contrast phase is rich in Sm (average atomic 

composition of 19 at.% Sm). The inset in Fig. 5a shows the SAD of taken from the circled 

area. Measured d-spacings for the most intense reflections, designated by g1 and g2, as well 

as the closest planar spacing corresponding to Al and Al11Sm3, are shown in Table 4. 

Comparison of these values indicates the likely candidate for the phase showing the most 

diffracted intensity (i.e. the dark phase of Fig. 5a) is Al11Sm3. Fig. 5b shows a simulated 

[0 0 1] diffraction pattern for tetragonal Al11Sm3 phase (I4/mmm) which is in good agreement 

with the observed major reflections, and also agrees with the EDS results. The remaining 

weaker reflections of Fig. 5a (inset), attributed to the Al-rich, light contrast, weakly 

diffracting phase of Fig. 5a, match a number of Al d-spacings oriented at different zone axis, 

and are assumed to be a combination of allowed fcc Al reflections and double diffraction.  
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Fig. 6a shows the BF image of the primary solidification phase and Fig. 6b illustrates 

observed and simulated SAD patterns of o-Al4Sm (Imma) taken at different zone axes. The 

observed and simulated patterns are in good agreement. 

Fig. 7 shows a powder approximately 5 µm in diameter. This particular powder 

consists of equiaxed grains and an amorphous matrix detected by SAD. EDS in TEM gave an 

approximate average atomic composition of 16 at.% Sm. The interplanar spacings obtained at 

different zone axis through tilting experiments are in good agreement with the ones obtained 

for ER phase by using HEXRD analysis (Table 5). 

Fig. 8 shows a region of a powder classified by the sedimentation method as being 

less than 3 µm in diameter. (N.B. Since the entire particle was not visible there is always the 

possibility that the region shown had fractured from a powder with a diameter larger than 

3 µm. The dominant amorphous microstructure, appearing jointly with the presence of 

nanocrystals, makes this possibility unlikely.) A high nucleation density (1.25 × 1023 m−3) of 

Al nanocrystals detected by SAD was observed in Region A (Fig. 8). Fig. 9a shows a high 

angle annular dark field image (HAADF image) and EDS line scan across a nanocrystal with 

approximate size of 25 nm diameter. EDS shows (Fig. 9b) relatively high Sm content in the 

amorphous matrix near the nanocrystal as compared to the crystal itself. Fig. 10 shows a 

representative HRTEM micrograph of a submicron-sized powder. The as-solidified structure 

consists of large number of clusters, roughly ellipsoidal in shape and randomly distributed, 

within an amorphous matrix. The sizes of these clusters are much smaller than the 

nanocrystals shown in Fig. 8, and lattice fringes can be seen using HRTEM imaging. Using 

fast Fourier transform (FFT) analysis (Fig. 10a, inset) the distance and the small intersecting 

angle between adjacent planes was found to be 0.240 ± 0.002 nm and 70.80°, respectively, 

which agrees well with the planar spacings and interplanar angles for (1 1 1) planes in fcc-Al 

when viewed along 1 1 0 . For comparison, the distance between the (1 1 1) planes of pure 

Al was measured as 0.237 ± 0.002 nm using HRTEM under the similar conditions. Using this 



 88

indexing scheme the lattice parameters were calculated as 0.416 nm, which varies slightly 

from those of measured and calculated pure fcc-Al where the lattice parameters are 0.410 and 

0.405 nm, respectively. The EDS profiles taken from amorphous and cluster regions show no 

appreciable difference in the intensities of Al and Sm peaks. 

Thermal analysis (DSC) 

Fig. 11 shows the results of isochronal DSC scans conducted on powders in six 

different size ranges at a heating rate of 40 K/s. Starting with powders in the 20–25 µm size 

range, a series of clear broad exothermic peaks is detected, Fig. 11. This size range 

corresponds to the point at which a featureless region was seen in some of powders using 

SEM. These peaks become more defined and of higher intensity as powder size decreases. 

The three peak temperatures for the powders of <5 µm are found to be 488, 576 and 714 K. 

No evidence of a second order phase transition at lower temperatures was seen, which might 

indicate the existence of a glass transition temperature (Tg), if observed. 

Discussion 

While a binary phase diagram for the Al–Sm is shown in Fig. 12a, it should be noted 

that the equilibrium phase diagram of the Al–Sm binary system is not completely known. In 

a previous study [7], it was speculated that orthorhombic Al11Sm3 with the Immm space 

group is the low-temperature stable phase in the Al-rich region of the phase diagram. 

However, according to Refs. [17] and [18] orthorhombic Al11Sm3 decomposes, producing 

hexagonal Al3Sm (h-Al3Sm) with P63/mmc space group. Neither orthorhombic Al11Sm3 with 

Immm space group, nor hexagonal Al3Sm with P63/mmc space group, were observed in as-

solidified powders. This is not surprising considering the non-equilibrium solidification 

conditions that exist as a result of gas atomization. Heat treatment of powders in the 63–

75 µm size range did result in the presence of hexagonal Al3Sm peaks, which agrees with 

what is predicted in Refs. [17] and [18]. 
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The predominant intermetallic found in all powder sizes in the present study is 

tetragonal Al11Sm3, in a matrix of fcc-Al. According to Ref. [21], Al11Sm3 is a high 

temperature metastable phase that appears between 1339 and 1723 K. The existence of 

Al11Sm3 at room temperature can be explained by extension of the metastable liquidus curves 

as shown on the schematic phase diagram of Fig. 12b. Solidification under metastable 

equilibrium conditions, present due to rapid solidification, probably results in a bypassing of 

the equilibrium hexagonal Al3Sm to retain the metastable Al11Sm3 at low temperatures. Thus, 

the eutectic structure consists of fcc-Al and Al11Sm3 as shown by BF and SAD analyses in 

Fig. 5a, rather than stable Al3Sm. The dendritic nature of the microstructure seen in large 

powders may also contribute to the formation of Al11Sm3. As the formation of primary and 

secondary arms proceeds, an increase in the interfacial area between the intermetallic and 

matrix phases occurs. As interfacial area increases, a concomitant increase in vacancy sites at 

these interfaces can occur, causing a deficiency in Al, which tends to favor Al11Sm3 

formation. 

Orthorhombic Al4Sm starts to appear in powders within the 45–53 µm size range. It is 

expected that Al11Sm3 and Al4Sm are competing phases and the change from tetragonal to 

orthorhombic with increasing undercooling is due to Al4Sm nucleation being more 

kinetically favored. However, the presence of Al4Sm and Al11Sm3 within a single powder 

(Fig. 5a) might also indicate a solid–solid phase transformation of Al11Sm3 to Al4Sm due to 

recalescence after solidification. Al4Sm is only seen to exist in conjunction with the 

crystalline eutectic structure and it is possible that the latent heat released due to 

solidification drives the phase transformation. This is somewhat supported by studies [6] and 

[8] where a similar decomposition has been seen upon devitrification of Al–Sm during 

heating. However, the amount of heat available due to recalescence is much less than what is 

necessary for devitrification. Thus, external heating in addition to recalescence effects within 
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a single powder would appear to be required to cause such a solid–solid transformation to 

occur. 

Peaks corresponding to a metastable phase, designated ER, were observed in all 

powder sizes using XRD. Only one Bragg peak was distinguishable in the 65–73 µm range 

but several peaks become apparent as powder size decreased below 32 µm. This phase has 

not been previously reported in studies of Al–Sm, but ER's presence at all powder sizes (and, 

therefore, undercoolings) suggests that it forms upon solidification rather than as a result of a 

solid–solid phase transformation, with increasing amounts seen as a function of increased 

undercooling. XRD and TEM results indicated existence of a second orthorhombic phase 

(ER) in this highly driven binary system. EDS in TEM showed that ER has an approximate 

average atomic composition of 16 at.% Sm. No information has been reported about the 

formation of this phase during devitrification of Al–Sm system at any other composition. 

This may indicate that ER is competitive with Al11Sm3 and forms during solidification due to 

the diffusion limited solidification conditions. 

Complete glass formation was not observed in any powder particle. HRTEM revealed 

a large number of clusters (<10 nm) and nanocrystals even in the smallest powders. The 

number and distribution of nanocrystals varied with powder diameter. It is believed that the 

nanocrystals observed resulted from growth of that clusters and the variation in distributions 

seen within a powder (e.g. Fig. 8), and from powder to powder is due to the chaotic nature of 

gas atomization. Powders that undergo collisions during solidification may exhibit a different 

morphology than powders that remain isolated in the gas stream. In the latter case powders 

might be expected to show restricted growth of clusters due to recalescence or reduced 

temperature during quenching. The appearance of a high number of Al nanocrystals within a 

confined region of a powder particle, such as seen in Fig. 8, may be an example of evidence 

that the particle underwent a collision during solidification, resulting in a burst of growth of 

clusters in one area of the powder near the point of collision. As the Al nanocrystals grow, 



 91

rapid rejection of solute atoms into the amorphous matrix could result in diffusion field 

impingement that interrupts growth. Such a condition would exist in a region where a large 

number of nanocrystals nucleate and grow within nanometers of each other, and this 

hypothesis has been proposed by others [5]. The STEM EDS results of this study clearly 

show an elevated Sm content in regions adjacent to Al nanocrystals (≥10 nm), and it is 

reasonable to assume that if a high density of nanocrystals do exist within a restricted volume 

(as in the case of Fig. 8), diffusion field impingement could result. 

From isochronal DSC scans, a glass transition temperature (Tg) was not resolved. The 

absence of a distinct glass transition temperature (Tg) upon reheating during the isochronal 

calorimetry experiments supports the hypothesis that the observed clusters act as nucleation 

sites for subsequent nano-crystalline formation. This lack of Tg has been previously reported 

in marginal glass formers quenched from the liquid state [22]. One should note, however, 

that calorimetric data, like XRD data, is an average over a range of powder sizes in any given 

sample. Therefore, a uniform and fully amorphous state could exist in powders of the 

smallest size. A more detailed study of as-solidified submicron powders using HRTEM is 

needed before any definite conclusions can be drawn. 

Conclusion 

Rapid solidification of Al–38Sm (wt%) alloy by gas (He) atomization resulted in the 

formation of metastable and amorphous phases. Droplets with different diameters solidified 

at different undercooling values and resulted in formation of fcc-Al, tetragonal Al11Sm3, 

orthorhombic Al4Sm, and a new orthorhombic phase designated as ER. The room 

temperature stable phases are not observed in any of the powder size groups. It is believed 

that Al11Sm3 and ER are competing metastable phases at different levels of undercooling. 

The crystallization path of orthorhombic Al4Sm is not clear. It may possibly be formed by 

decomposition of solid Al11Sm3 or by solidification of highly undercooled melt. 
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Decrease of particle size in powders tends to decrease the internal nucleant 

concentration which promotes larger undercoolings. This results in formation of amorphous 

phases with a high density of supersaturated fcc-Al nanoclusters. In the smallest observed 

powders some of these clusters showed a restricted growth by rejecting solute into the 

amorphous matrix that, in turn, yields a diffusion field impingement. Clusters with a critical 

diameter of less than 10 nm did not show any obvious partitioning according to EDS. The 

formation of Al nanocrystals was not suppressed at any powder size, but vitrification was 

always accompanied by crystal cluster formation during gas atomization. 
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Figure 1. Representative cross-sectional BSE micrographs of Al–Sm alloy at different 

particle sizes: (a) 58 µm, (b) 50µm, (c) 35 µm, (d) 28 µm, (e) 23 µm, and (f) 18 µm size in 
average diameter. 
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Figure 2. (a) Image plate scan of powders at different diameters. (b) X-ray diffraction 

patterns extracted from image plate scan (a) for selected powder diameters. 
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Figure 3. X-ray diffraction patterns of below 5 µm average diameter particles. 
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Figure 4. X-ray diffraction patterns of as-solidified and annealed powders with 75–

63 µm size diameter. 
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Figure 5. (a) BF image of an Al–Sm powder showing a primary phase and a eutectic 

matrix, inset shows SAD taken from the area circled. Arrows show the possible fcc-Al 
reflections. (b) Simulated [0 0 1] diffraction pattern for tetragonal Al11Sm3. Note that 

possible Al reflections overlap the brightest Al11Sm3 reflections. 
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Figure 6. (a) BF image of the grain in Fig. 5(a), and (b) corresponding SAD and 

simulations at different zone axes. The (x) denotes double diffraction. 
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Figure 7. BF image of an Al–Sm powder showing equiaxed grains. 
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Figure 8. Al–Sm powder (diameter ≤3 µm) exhibiting nano-crystalline (Region A) and 
amorphous regions (Region B). The insets show the SAD patterns of Regions A and B. 
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Figure 9. (a) HAADF image of nanoparticles and (b) EDS line scan across a 

nanoparticle. 
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Figure 10.  (a) High resolution TEM image taken from a submicron size Al–Sm powder. 

Insets show fast Fourier transform of the full area (left) and inverse Fourier 
transformed image (right) of the area denoted by the square. The image was calculated 
using only the reflections denoted by arrows in the FFT. An isolated Al nanocrystal is 
shown in the as-solidified powder. Lattice fringes corresponding to (1 1 1) spacing of 

fcc-Al are indicated. 
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Figure 11. Isochronal DSC scans of powders from different size groups at a heating rate 
of 40 K/s. Peak temperatures of three crystallization events are shown for below 5 µm 

average diameter particles. 

 

 

 

 

 

 

 

 

 

 



 105

 

 
Figure 12. (a) Phase diagram of Al–Sm binary system [19]. (b) Schematic illustration of 

Al-rich portion of Al–Sm phase diagram (not to scale) under a different level of 
hierarchy of equilibrium. Metastable liquidus and eutectic are shown as dashed lines. 
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Table 1. Classification of a rapidly solidified gas atomized Al-Sm powders 

Set No 1 2 3 4 5 6 7 8 9 10 11† 

Diameter 

(µm) 

max 

min 
75 

63 

63 

53 

53 

45 

45 

38 

38 

32 

32 

25 

25 

20 

20 

15 

15 

10 

10 

05 

<05 

† Please note that below 5 µm diameter particle size was further classified using sedimentation 
method for TEM analyses.   
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Table 2. Rietveld refinement results for selected powder groups showing 
the atomic percentages (at %) of Sm in tetragonal phase. 

Occupancies (Occ) Names of the Atomic 
Sites 

Multiplicity
(m) 

75 – 63 µm 63 – 53 µm 53 – 45 µm 

Aluminum(1) 2 1.0000 1.0000 1.000 
Aluminum (2) 4 0.6180 0.6148 0.6171 
Samarium (1) 2 0.6025 0.6078 0.6106 

At% Sm  0.213 0.214 0.214 
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Table 3. Phases observed in gas atomized Al-Sm powders 

Component Structure (HEXRD) Space Group Lattice 

Parameter (nm) 

Reference 

Amorphous    [6, 9] 
Al Solid Solution FCC F m 3 m a = 0.405 -0.420  

t-Al11Sm3 Tetragonal I4 / m m m a = 0.428 
c = 0.992 

[17, 18] 

o-Al4Sm Orthorhombic I m m a a = 0.444 
b = 0.638 
c = 1.362 

[20] 

  ER Orthorhombic  a = 0.416 
b = 0.634 
c = 1.328 

This study 
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Table 4. The measured (Fig5a (inset) and calculated interplanar spacings 
for fcc-Al and t-Al11Sm3 for allowed reflections. (*double diffraction) 

Interplanar Spacings (nm) 

          Measured                                      Calculated 

 t-Al11Sm3 fcc-Al 
0.301 (g1) 0.4950 0.2338 

0.234 0.3929 0.2024 
0.207 0.3026 0.1431 

0.211 (g2) 0.2613 0.1221 
0.163* 0.2582 0.1169 
0.132* 0.2140 0.1012 
0.115 0.1964 0.9290 
0.106 0.1879 0.9050 
0.101 0.1656 0.8260 
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Table 5. Interplanar spacings for ER measured by HEXRD and TEM 

Interplanar Spacings (nm) 

HEXRD TEM 
0.633  
0.573 0.571 
0.461  
0.357 0.358 
0.337 0.331 
0.309  
0.303  
0.295  
0.286  
0.274  
0.259 0.254 
0.248 0.247 
0.234 0.232 
0.224 0.222 
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CHAPTER 4: CRYSTALLIZATION BEHAVIOR IN A HIGHLY DRIVEN 
MARGINAL GLASS FORMING ALLOY 

A paper published in Journal of Non-Crystalline Solids 

Y.E. Kalay1,2, L.S. Chumbley1,2, I.E. Anderson1,2 

Abstract 

Al90Sm10, a marginal glass former, was rapidly solidified using Cu-block single roller 

melt spinning at wheel speeds of 30 and 40 m/s. The product phases of rapid solidification 

were identified and analyzed using high energy synchrotron X-ray diffraction (HEXRD), 

high resolution transmission electron microscopy, and atom probe tomography. The as-

quenched structure consists of a saturated amorphous phase and nanocrystalline Al with 

typical length scale of about 5 nm. The appearance of a pre-peak on HEXRD diffraction 

patterns and a low activation energy for first crystallization as determined using the Kissinger 

and Ozawa methods indicate some local ordering in the amorphous phase. The devitrification 

phase transformation path was determined using in-situ high energy synchrotron radiation. 

Three phases, MS1, H1, and Al4Sm, were identified during decomposition of the amorphous 

phase. MS1, H1 and Al4Sm are cubic, hexagonal and orthorhombic metastable phases, 

respectively. 

Introduction 

In marginal glass formers amorphization is often accompanied by the presence of 

nanocrystals after quenching from the liquid [1], [2] and [3]. The presence of nano-sized 

crystalline precursors in the amorphous matrix can result in several important improvements 
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such as a remarkable increase in strength and ductility, compared to single phase amorphous 

structures in lightweight Al alloys [3], [4] and [5]. 

Al–Rare Earth (RE) based alloys constitute an important part of the marginal glass 

forming alloy family, where glass formation is observed between the Al–RE eutectic point 

and Al11RE3 or Al3RE intermetallics [3] and [6]. Among the Al–RE binary alloys the Al–Sm 

system has recently attracted considerable interest due to its wide glass formation range, 

being from 8 to 16 at.% Sm [3]. 

Studies have shown that vitrification of Al–Sm alloys within the glass formation 

composition range is a complicated process. Even when using the same processing route, 

such as melt spinning of identical compositions with similar processing conditions to produce 

amorphous phase, various studies have identified different product phases [7], [8] and [9]. 

Similarly, the devitrification of amorphous Al–Sm is not understood clearly since 

crystallization from the same amorphous phase has resulted in different decomposition paths 

[9], [10] and [11]. Examples of the various decomposition paths identified for Al90Sm10 are 

given in Table 1, with information concerning the identified phases summarized in Table 2. 

The phases shown in Table 2 were identified using conventional X-ray diffraction (XRD) 

instruments with either Cu [10] or Co [9] and [11] targets. 

In the present study the devitrification path of melt-spun Al90Sm10 alloy was 

investigated in-situ using high energy synchrotron X-ray diffraction (HEXRD). Synchrotron 

radiation has many benefits over conventional laboratory X-ray sources. For example, the 

shorter wavelength of synchrotron X-ray radiation, coupled with high coherency and highly 

sensitive photon detection system, helps to detect smaller features such as nanocrystals 

during devitrification. Since a Debye–Scherrer (transmission X-ray diffraction) geometry is 

employed, data can be collected from the entire sample over a wider angular range [12]. 

Moreover, collection of X-ray diffraction data in-situ can avoid many of the problems 
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associated with using samples that have been quenched to room temperatures to facilitate X-

ray diffraction analysis. 

The structure and chemistry of as-quenched samples prior to devitrification was 

investigated using high resolution electron microscopy (HRTEM), and atom probe 

tomography (APT). The crystallization kinetics of amorphous Al90Sm10 was studied by using 

differential scanning calorimetry (DSC) under isochronal heating conditions. 

Experimental Procedure 

Ingots of Al90Sm10 were prepared by arc melting under an Ar atmosphere from highly 

pure Al (99.99 wt%.) and Sm (99.9 wt%.) elements. Rapidly-solidified ribbons with a 

thickness of 20–30 µm were produced by Cu-block melt spinning techniques under an Ar 

atmosphere at tangential wheel speeds of 30 and 40 m/s. 

Isochronal analysis of as-rapidly-solidified ribbons was performed using a Perkin 

Elmer Pyris 7 DSC at scanning rates of 5–60 K/min to assess the crystallization kinetics. 

The as-solidified and devitrification product phases were investigated in-situ using 

HEXRD at the Advanced Photon Source at Argonne National Laboratory in collaboration 

with the Midwest Universities Collaborative Access Team (MUCAT). The as-solidified 

ribbons were cut to around 10 mm lengths and inserted into 2 mm diameter thin-walled 

quartz tubes that were evacuated and sealed in Ar for high temperature experiments. The 

sealed capillary tubes were exposed to 100 keV X-rays of wavelength 0.012347 nm during 

in-situ devitrification experiments. The diffraction data were collected with Debye–Scherrer 

geometry by a CCD camera every 20 s. The onset (Tx) and peak temperatures (Tp) measured 

using DSC and in-situ HEXRD contain an error of ±1°. 

The as-solidified ribbons were investigated using a Tecnai G2 F20 

scanning/transmission electron microscope (S/TEM) before the devitrification process. 
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Samples for HRTEM were thinned using electropolishing at −25 °C with a solution of 

3 vol.% HCl, 36 vol.% methanol and distilled water. 

Chemical distributions in the as-solidified ribbons was investigated using 3D APT 

microscopy (LEAP 3000X) in collaboration with the University of North Texas. Sharp 

needle-shaped samples for atom probe tomography analysis were prepared using a focused 

ion beam (FIB) instrument with Ga ion milling 

Results 

Thermal analysis 

Heating amorphous Al90Sm10 from room temperature at selected heating rates of 5, 

10, 20, 30, 40 and 60 K/min resulted in three exothermic events corresponding to 

crystallization processes, as shown in Fig. 1. No obvious endothermic event, indicative of a 

glass transition, was seen at any heating rate. As the heating rate increased from 5 to 

60 K/min, the crystallization temperatures of all three exothermic events shift towards higher 

temperatures. The onset (Tx) and peak (Tp) temperatures of crystallization events are shown 

in Table 3. 

The activation energies for these crystallization events were determined by the 

Kissinger [13] and Ozawa [14] equations, given as Eqs. (1) and (2), respectively: 
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where β is the heating rate, T is the specific temperature, R is the gas constant and E is the 

activation energy for a specific reaction. Fig. 2(a) and (b) shows Kissinger and Ozawa plots 

of the different crystallization events, respectively. Based upon the slopes of the plotted data, 

the activation energies were calculated and are shown in Table 4. The activation energies 
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found by using both methods are in excellent agreement. When comparing the different 

crystallization events, the activation energy of the third event is the highest, while the second 

crystallization has the lowest values, based on the peak temperature calculations. 

In-situ high energy XRD experiments 

X-ray diffraction experiments were conducted in-situ, while heating the Al–Sm 

ribbons at 5 K/min. Fig. 3(a) shows the change in maximum diffraction intensity at one fixed 

peak position with respect to temperature in the range of 468–510 K. The temperature 

corresponding to the onset of initial devitrification as measured by high temperature X-ray 

diffraction is in good agreement with the onset temperature (472 K) measured by DSC at a 

heating rate of 5 K/min (Fig. 3). 

Fig. 4, Fig. 5 and Fig. 6show the image surface plots and three dimensional surface 

plots of first, second and thirds crystallization events, respectively. These plots show 

crystallization events in-situ during isochronal heating with a rate of 5 K/min. The plots are 

created by collecting diffraction patterns every 20 s with a CCD camera. These patterns (in 

the form of Debye–Scherrer images) are stored and subsequently integrated to produce an 

intensity vs. Q (or 2θ) plot for each temperature, where the lines on the images indicate the 

location of Bragg peaks, with the contrast level being proportional to diffracted beam 

intensities. All of the individual plots are then assembled to produce the displayed 3D image. 

Thus, the 2D image surface plots which show the amorphous diffracted intensity as a broad 

line in Fig. 4(a) and sharper lines corresponding to crystalline peaks visible in Fig. 4, Fig. 5 

and Fig. 6(a) can be displayed as a 3D surface plot which is easier to interpret. In addition to 

X and Y axes which show the 2θ and temperature, the Z axis shows the absolute diffracted 

intensity. 

The three different crystallization events seen in HEXRD are in good agreement with 

DSC results that show three exothermic reactions below the melting point. Fig. 4 shows the 
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initial crystallization with the major broad peak of the amorphous phase located at 2.94° 2θ. 

This peak decomposes to crystalline phase(s) at approximately 472 K for a heating rate of 

5 K/s. An interesting observation is the existence of a minor broad peak located at 1.42° 2θ, 

well below the position of the amorphous hump. Possible implications of this peak will be 

discussed later. 

Fig. 5 and Fig. 6 show the solid–solid phase transformations corresponding to the last 

two exothermic events detected by DSC. According to HEXRD, each transformation occurs 

by nucleation and growth of a new phase at the expense of the previous phase. Thus, the 

initial phase is replaced by a second phase, which in turn is replaced by the third phase. The 

peak temperatures corresponding to the point where approximately 50% of the phase 

transformation is complete are 542 and 667 K, respectively, at a heating rate of 5 K/min. 

These values also are in good agreement with the DSC data. 

Identification of the devitrification product phases were determined from intensity 

versus 2θ scans at specific temperatures extracted from the three dimensional surface plots. 

Temperatures were chosen where the exothermic reaction for each transformation as 

measured by DSC is fully completed and a local equilibrium apparently is established. These 

temperatures were 503, 604 and 773 K. The first crystalline phase after devitrification was 

found to be a cubic phase with a lattice parameter of a = 0.9831 nm. This phase decomposes 

and is replaced by an hexagonal phase with lattice parameters of a = 0.4619 and 

c = 1.2772 nm. This hexagonal phase subsequently decomposes and is replaced by an 

orthorhombic phase with lattice parameters of a = 1.3872, b = 0.6441 and c = 0.4494 nm  

Peaks from what appears to be fcc-Al could also be identified at all temperatures after 

initial devitrification has occurred at 503 K. The peaks were small initially, but grew in 

intensity as temperature increased. It should be noted that the Bragg peaks coming from fcc-

Al phase would overlap many of the peaks associated with the primary crystallization of the 

identified cubic phase. Thus, it is possible that fcc-Al nucleation occurs early in the 
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transformation sequence. Fig. 7 summarizes all the phases identified at different 

temperatures. 

HRTEM and APT 

The as-solidified microstructure of melt-spun ribbons was investigated using 

HRTEM. Fig. 8 shows a HRTEM image of a ribbon produced at a wheel speed of 40 m/s. 

While nanocrystal formation is not easily recognized from the original HRTEM image at 

room temperature, the Fourier transform of the image (Fig. 8(a), inset) shows slight 

diffracted intensity superimposed on the amorphous halo, indicative of the existence of 

crystalline material within the amorphous matrix. Fig. 8(b) shows the inverse-Fourier-

transform image of the full area shown in Fig. 8(a) by masking all but the outer ring of the 

Fourier transformed image. The inverse-Fourier-transform image clearly demonstrates that 

nanocrystals with an approximate size of less than 5 nm are formed during melt quenching. 

The formation of nanocrystals is more clearly seen in ribbons produced at a wheel 

speed of 30 m/s. As shown in Fig. 9, both the HRTEM and filtered inverse Fourier images 

reveal clusters of nanocrystals in the amorphous matrix. Their sizes are on the order of 5 nm, 

larger in diameter than those observed in ribbons produced at 40 m/s wheel speed. The lattice 

spacings between two adjacent planes (0.24 nm) in the clusters observed in Fig. 9(b) are in 

good agreement with the distance between (1 1 1) planes in fcc-Al. 

Atom probe tomography (APT) was also used to study ribbons solidified at a wheel 

speed of 30 m/s. Since APT samples were thinned by FIB, a thin damaged layer enriched in 

Ga ions was formed in the thinnest region. Thus, only the region beneath the line (shown by 

arrows in Fig. 10) was taken under consideration. As shown in Fig. 10, images obtained 

show clusters of Al atoms on the order of 5 nm, which is in good agreement with HRTEM 

observations. Since two different sample preparation techniques (electropolishing and FIB, 

for HRTEM and APT, respectively) show similar structures, the local heating and structural 
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damage caused by FIB is apparently minor. The local nano-sized structures seen in 

amorphous Al90Sm10 alloy are therefore believed to be an accurate representation of atomic 

structure. The Sm atoms appear to form a network surrounding the Al clusters, with a small 

amount of Sm trapped inside the clusters. The Sm-rich regions between the nanocrystalline 

fcc-Al phases represent the amorphous regions seen in HRTEM images. 

Discussion 

Before a discussion of the crystallization of the amorphous phase can take place it is 

imperative that the as-solidified structure is well-defined. Under the kinetic constraints of a 

rapid solidification process such as melt spinning, the nucleation of equilibrium phases can 

be suppressed [15]. According to the current Al–Sm binary phase diagram [16], the predicted 

phases forming upon equilibrium solidification of Al90Sm10 alloy are hexagonal Al3Sm and 

fcc-Al, with the microstructure consisting of proeutectic Al3Sm and fcc-Al/Al3Sm eutectic. 

HRTEM images show that fcc-Al solid solution nanocrystals form within an amorphous 

phase, and this is supported by APT data where Al atom clusters of similar size are clearly 

identifiable. Similarly sized nanocrystals were observed in powders of the same composition 

that were solidified having high undercoolings produced using high pressure gas atomization 

(HPGA) [17]. Both of these observations indicate that solidification of Al90Sm10 under 

metastable conditions results in bypassing of the equilibrium hexagonal Al3Sm and eutectic 

structures to retain the fcc-Al structure in an amorphous matrix. The size of fcc crystallites in 

melt-spun ribbons is on the order of 2–5 nm for 30 and 40 m/s wheel speeds. Previous [17] 

and current results show a high density of nanocrystalline formation in the amorphous matrix 

(within the range of 1022–1023 m−3) as estimated from HRTEM. Similar results in different 

alloy systems including Al92Sm8 are reported in the literature [18], [19], [20] and [21]. The 

mechanism of formation of such a high density of crystallites in amorphous alloys is not fully 

understood [18]. Classical nucleation theory predicts a much smaller number for the number 
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of nuclei [21] and [22], and different crystallization mechanisms alternative to classical 

theory have been developed to explain unusual high-density nanocrystallization in certain 

amorphous alloys [18], [19], [20], [21], [22], [23], [24] and [25]. One hypothesis for the 

existence of such high nanocrystalline densities is the growth of “quenched-in” nuclei formed 

by growth kinetic limitations [19] and [20]. During rapid solidification of Al90Sm10 ribbons, a 

relatively high fraction of crystallites may nucleate initially in the liquid state, but show a 

restricted growth in the amorphous matrix. Reasons for this restricted growth have been 

attributed to the effects of increased viscosity [19] and diffusion field impingement [20] 

during continuous cooling in the melt spinning process. 

Room temperature HEXRD pattern of as-rapidly-solidified Al90Sm10 ribbons showed 

no crystalline peaks (Fig. 7). It is interesting that the fcc-Al nanocrystals easily seen in 

HRTEM are not detectable using synchrotron radiation. One possible reason for this may be 

the broadening of the Bragg peaks due to the small size (2–3 nm) of the nanoclusters (Fig. 8). 

As noted earlier, a small pre-peak is observed well below the major amorphous peak position 

(Fig. 4 and Fig. 7 (Room Temp) at 1.42° 2θ). Fig. 11 shows the positions of the pre-peak and 

major amorphous peak positions in reciprocal space (Q, nm−1). The pre-peak (Fig. 11 at 

12.6 nm−1 Q) evolved into strong Bragg diffraction of cubic MS1 phase at the first 

crystallization temperature. Thus, the appearance of the pre-peak may be an indication of 

local ordering in the amorphous phase. According to HRTEM, APT and HEXRD results the 

as-solidified structure consists of nano-sized Al crystallites dispersed in the amorphous 

matrix. Previous studies on devitrification of Al90Sm10 melt-spun ribbons [9], [10] and [11] 

employed conventional Cu or Co Kα radiation rather than in-situ diffraction using 

synchrotron radiation, which has a far shorter wavelength and higher signal to noise ratio. 

Therefore, the presence of nanosized, pre-existing clusters in the amorphous matrix would 

have been extremely difficult to detect. 
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DSC scans do not show any obvious endothermic event indicative of a glass 

transition at any heating rate (Fig. 1). A previous study showed that an amorphous Al92Sm8 

alloy, presumably free of any quench-in nuclei produced by solid-state processing, exhibited 

a clear separation between a glass transition and the crystallization temperatures upon 

reheating of the sample in the DSC [28]. Thus, the pre-existing Al nanocrystals seen in 

HRTEM are believed to not only catalyze nucleation of the first crystalline phase, but also to 

cause Tg to coincide with Tx, obscuring a clear separation between these two temperatures 

[19] and [20]. It should be noted that the absence of a Tg upon reheating in the DSC is a 

general observation for samples of marginal glass formers [3] that were quenched from a 

liquid alloy. Also, the possible role in the catalysis reaction of MS1 phase in a pre-cluster 

form within the glass is not known. 

The activation energies of the first crystallization event calculated by Kissinger and 

Ozawa plots (Fig. 2) were found to be relatively low compared to many other bulk 

amorphous alloys [26] and [27], which indicates a low thermal stability against 

crystallization. This statement is in good agreement with the observed HRTEM and APT 

data, which show the amorphous phase existing with a high density of Al nanocrystals. The 

nanocrystals presumably act as heterogeneous nucleation sites, decreasing the energy 

required for crystallization of the cubic crystalline phase (MS1) identified as being the first 

phase to form in the amorphous matrix. The preliminary evidence of MS1 pre-clusters in the 

glass may also help to lower the barrier for crystallization of MS1 phase. 

The crystallization temperatures obtained by in-situ synchrotron experiments and 

DSC analyses are in good agreement. The first crystallization resulted in formation of a cubic 

phase with a = 0.9831 (lattice parameter measured for T = 503 K). A similar cubic phase was 

seen in [9] with a smaller lattice parameter (Table 2). However, it should be noted that the 

lattice parameters analyzed in this study came from the in-situ diffraction patterns, which 

were obtained at high temperatures. Therefore, it is reasonable that the higher values for 
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lattice parameters of the cubic phase observed in this study are the same as for MS1 in [9]. At 

higher temperatures MS1 decomposes and a hexagonal phase (designated H1) forms with 

lattice parameters of a = 0.4619 and c = 1.2772 nm (lattice parameter measured for 

T = 603 K). Finally, hexagonal H1 decomposes to orthorhombic Al4Sm with lattice 

parameters of a = 1.3872, b = 0.6441, and c = 0.4494 nm, as analyzed for T = 773 K. 

As discussed previously, fcc-Al does not appear to nucleate but already exists as 

nanoclusters in the amorphous matrix and grows with increasing annealing temperature. Peak 

position overlap between fcc-Al and cubic MS1 most likely prevents the presence of the fcc-

Al nanocrystals from being discernable using X-ray diffraction at the lower temperatures. A 

more detailed study including high resolution and energy filtered transmission electron 

microscopy at different stages of devitrification is in progress. Such a study will be helpful in 

elucidating phase transformation mechanisms and solute concentration distribution at 

different stages of devitrification. 

Conclusion 

Rapid solidification of Al90Sm10 by Cu-block melt spinning with wheel speeds of 30 

and 40 m/s resulted in formation of an amorphous phase accompanied by nanocrystalline fcc-

Al. The results of the current work show that HRTEM and/or APT are very important tools 

when examining the amorphization level of as-quenched samples. HRTEM and APT data 

showed that fcc-Al nanocrystals in size range of 2–5 nm are present in melt-spun material 

obtained using 40 and 30 m/s wheel speeds. The high nucleation density indicates that these 

fcc-Al nanocrystals may have originated from “quenched-in” nuclei that formed during rapid 

solidification. The existence of nanocrystalline fcc-Al influences both the composition and 

kinetics of the first bulk phase crystallization. Isochronal analyses using the Kissinger and 

Ozawa method indicate that the as-quenched material has a relatively low thermal stability 

against crystallization. High energy synchrotron X-ray diffraction shows a major amorphous 
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peak with a pre-peak formation in as-solidified ribbons. While fcc-Al nanocrystalline 

material is seen using HRTEM it can not be discerned in the HEXRD of as-solidified 

material due to broadening of the Bragg peaks. Devitrification of the as-quenched structure 

over the temperature range 298–773 K at a heating rate of 5 K/min was investigated in-situ 

using high energy synchrotron X-ray radiation and can be summarized as follows: 

Amorphous → MS1 (cubic) → H1 (hexagonal) → Al4Sm (orthorhombic). 

The temperatures corresponding to 50% completing of each transformation during 

devitrification are 483, 542 and 667 K, respectively, at a heating rate of 5 K/min. 

The results of HEXRD experiments indicate that local chemical ordering is occurring 

to a certain degree in the amorphous phase. Further studies are in progress to identify the 

glass structure in detail in the Al–Sm system. 
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Figure 1. Isochronal DSC traces of Al90Sm10 amorphous alloy at heating rates of 5–

60 K/min. The positions of Tx and Tp temperatures are shown as an example for 
60 K/min heating rate. 
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Figure 2. The Kissinger (a) and Ozawa (b) plots of Al90Sm10 amorphous alloy. 
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Figure 3. (a) Maximum diffraction intensity (at 2.96 2θ) as a function of temperature 
for a heating rate of 5 K/min. (b) Change in the crystallized volume fraction during first 

crystallization as a function of temperature as measured by DSC for a heating rate of 
5 K/min. 
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Figure 4. (a) Image plate scan and (b) surface plot of diffraction for first crystallization 
event. 
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Figure 5. (a) Image plate scan and (b) surface plot of diffraction for second 
crystallization event.  
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Figure 6. (a) Image plate scan and (b) surface plot of diffraction for second 

crystallization event.  
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Figure 7. HEXRD patterns of rapidly-solidified Al90Sm10 ribbons (40 m/s wheel speed) 
in as-quenched condition and, after first (503 K), after second (603 K), and after third 

(773 K) crystallization events (heating rate is 5 K/min). 
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Figure 8. (a) HRTEM image of as-solidified Al90Sm10 (40 m/s wheel speed), insets show 
the Fourier transformed image of the full area (left), and a magnified view of the circled 

area (right). (b) The inverse Fourier transformed image shown in (a). The image was 
created by masking all but the outer ring in Fourier transformed image ((a) inset). Inset 

shows a magnified view of a nanocrystal shown by an arrow ((b) inset). 
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Figure 9. (a) HRTEM image of as-solidified Al90Sm10 (30 m/s wheel speed), inset shows 
the Fourier transformed image of the full area. (b) The inverse Fourier transformed 
image of the full area. The image was created by masking all but the spots shown by 

arrows in the outer ring in Fourier transformed image ((a) inset). 
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Figure 10. (a) HRTEM image of as-solidified Al90Sm10 (30 m/s wheel speed), inset 
shows the Fourier transformed image of the full area. (b) The inverse Fourier 

transformed image of the full area. The image was created by masking all but the spots 
shown by arrows in the outer ring in Fourier transformed image ((a) inset). 
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Figure 11. Isochronal diffraction spectra evolution for initial crystallization. First and 

second lines show the positions of the pre-peak and main amorphous peak, respectively. 
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Table 1. Summary of crystallization processes of rapidly solidified 
Al90Sm10 alloy 

Initial Stage First Crystallization Second Crystallization Third Cystallization  

Am. MS1 α-Al +Al11Sm3 + M1 α-Al + Al4Sm [9] 
Am. + α-Al + 

M2 
Am + α-Al + M2 α-Al +Al11Sm3 α-Al + Al4Sm  

Am. α-Al + Al4Sm + M1 α-Al + S3  [10] 
Am. MS1 α-Al  + MS2 α-Al + Al4Sm [11] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 137

Table 2. Phases observed during crystallization of rapidly solidified 
Al90Sm10 alloy 

 Crystal Structure Lattice Parameters (nm) 
Am. Amorphous  
M1 Hexagonal a = 0.4597, c = 0.6358 
S3 Orthorhombic a = 1.3781, b = 1.1019, c = 0.7303 

MS1 Cubic a = 0.976 
M2 Cubic a = 1.9154 
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Table 3. The isochronal DSC data of Al90Sm10 

1st Peak 1st Peak 2nd Peak 3
rd Peak β (K.min-1) 

Tx (K) Tp (K) Tp (K) Tp (K) 

5 472 483 542 667 
20 489 498 562 693 
30 495 504 568 700 
40 497 506 572 707 
60 500 510 578 714 
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Table 4. Activation Energies calculated according to Kissinger and 
Ozawa plots 

Crystallization Event Kissinger Ozawa 
 Ec (kJ/mol) |r| Ec (kJ/mol) |r| 

1st Event (Tx) 158 ± 2 0.9862 157 ± 2 0.9874 
1st Event (Tp) 171 ± 3 0.9950 171 ± 2 0.9954 
2nd Event (Tp) 168 ± 2 0.9970 169 ± 1 0.9970 
3rd Event (Tp) 195 ± 2 0.9991 195 ± 2 0.9992 
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CHAPTER 5: LOCAL STRUCTURE OF THE MARGINAL GLASS 
FORMING Al-Sm ALLOYS: LIQUID AND AMORPHOUS STATES 

A paper to be submitted to Philosophical Magazine A 

Y.E. Kalay1,2, L.S. Chumbley1,2, M.J. Kramer1,2, I.E. Anderson1,2 

Abstract 

The local structure in rapidly quenched Al(100-x)Smx (x = 8, 10, and 12) and liquid 

Al90Sm10 has been investigated using a combination of high resolution electron microscopy 

(HRTEM) and high energy synchrotron X-ray diffraction (HEXRD). The as-quenched alloys 

possess crystalline clusters of fcc-Al on the order of 2-5 nm which are embedded in a non-

crystalline matrix. Total structure factor analysis of the liquid and as-quenched alloys showed 

a distinct pre-peak located well below the main amorphous peak. The same pre-peak was 

also resolved in rotationally averaged Fourier transformed (FT) diffractograms of the as-

quenched HRTEM images. The structural unit size corresponding to the pre-peak remains 

constant for both the liquid and as-quenched states, but the correlation length is increased 

after quenching. The presence of the pre-peak is related to the formation of medium-range 

order (MRO) in the liquid that is retained in the as-quenched alloys. The structural unit size 

corresponding to the MRO is similar to the (002) interplanar distances of the high 

temperature metastable Al11Sm3 tetragonal phase.  Atomic structure models constructed using 

Reverse Monte Carlo (RMC) simulations from experimentally determined total structure 

factors and coupled with Voronoi Tesselation analysis indicated icosahedral and deformed 

bcc-like clusters surrounding Al and primarily Sm atoms, respectively. The existence of the 

MRO clusters in the as-quenched state is believed to promote the high nucleation density of 
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fcc-Al nanocrystals that form when the material is devitrified by acting as catalyst sites. 

These sites promote heterogeneous nucleation of the fcc-Al, while blocking long range 

diffusion and preventing formation of the thermodynamically stable phases.  

Introduction 

In marginal glass forming amorphous alloys, the first crystallization to occur is often 

related to ease of nucleation of metastable phases rather than enhanced driving force for the 

thermodynamically favored phases. This results in the formation of a very high nucleation 

density of nanocrystals, on the order of 1020 to 1023 m-3, in the amorphous matrix [1-4]. An 

exact mechanism to explain the presence of such a high nanocrystal density after complete or 

partial devitrification has not been identified to date. Classical nucleation theory fails to 

predict the observed number density of nanocrystals [5]. Several mechanisms have been 

proposed, including heterogeneous nucleation with a high density of insoluble impurities [6]; 

a high density of quenched-in nuclei [3,7]; phase separation in the amorphous state [8, 9]; 

and time-dependent homogeneous nucleation [10, 11]. However, there is still no agreement 

on the mechanism of high-density nanocrystal or nano-cluster formation. Thus, a detailed 

analysis of the as-quenched and liquid structures is crucial in developing a better 

understanding of the unusual behavior of such marginal glass formers. 

Among the marginal glass forming alloys, Al based alloys have recently attracted 

much attention due to their high fracture strengths, exceeding 1 GPa [12] and their low 

densities. In these alloys, an amorphous structure is often observed for Al rich (between 80 

and 92 at% Al) Al-RE and Al-TM-RE (TM: transition metals; RE: rare earth elements)  by 

either mechanical deformation or rapid quenching [1,13]. The Al-Sm binary alloy has the 

widest glass formation range (from 8 to 16 at. % Sm) of all similar Al-RE systems [1]. In 

accordance with this, the binary Al-Sm system has been chosen as a model to investigate the 

liquid and the amorphous structures. 
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In a previous study [14] it has been shown that amorphous samples of cold-rolled 

(transformed in the solid state) Al92Sm8 exhibit a calorimetric signal of glass transition (Tg) 

that is separated from the first crystallization peak. However, alloys of the same composition 

quenched from the liquid state using melt spinning do not show any distinct Tg [14]. 

Fluctuation electron microcopy (FEM) studies identified fcc-Al-like medium range order 

structures for the as-quenched melt-spun alloy but not for the cold-rolled sample, where a 

different nanoscale ordering was observed [15]. The size of the clusters in the as-quenched 

melt-spun state is between 1 and 2 nm, which makes it difficult to detect them using 

conventional TEM and XRD. Upon heating, these sub-size nuclei showed a restricted growth 

and no distinct glass transition temperature was measured for as-quenched amorphous alloys. 

Further studies using atom probe tomography (APT) of as-quenched Al90Sm10 revealed 

clusters of Al atoms in a size range of 2-5 nm [16], indicative of compositional fluctuations 

in the amorphous state. The APT results also indicated that amorphous Al-Sm forms a 

skeleton-like structure, similar to cross-linking in a polymer, and that fcc-Al nucleates 

between the links of this structure. Partial devitrification of as-quenched melt-spun ribbons 

[16], as well as high pressure gas atomized [17] powders, yields a high nucleation density 

(population) of fcc-Al, similar to Al92Sm8 as-quenched samples [14].  

An interesting observation noted in Al90Sm10 as-quenched melt-spun samples [16] is 

the presence of a pre-peak located well below the primary diffuse scattering peak in HEXRD 

patterns. Similar types of pre-peaks have previously been observed in other systems [18-20], 

often being interpreted as topological or chemical ordering occurring to a certain degree in 

the amorphous phase. However, the structural origin of this pre-peak has not been understood 

or fully described, yet.  

In this study, as-quenched samples of Al100-xSmx (x=8, 10, and 12) and the liquid 

structure of Al90Sm10 alloy were analyzed using a combination of HEXRD and transmission 

electron microscopy. Three-dimensional atomic configurations of amorphous structures were 



 143

modeled using the Reverse Monte Carlo (RMC) technique [21], coupled with Voronoi 

Tesselation analyses [22], based on the HEXRD experiments. The existence of the pre-peak 

and possible implications that may apply to the observed fcc-Al nanocrystallization with 

extremely high nucleation density seen in Al-Sm alloys are discussed.  

Experimental Procedure 

Ingots of Al(100-x)Smx (x = 8,10, and 12) were prepared by electric arc melting under 

Ar atmosphere from highly pure Al (99.99 wt%) and Sm (99.9 wt%) elements [23]. 

Amorphous ribbons with a thickness of 20-30 µm and a width of 1.0 – 1.2 mm were 

produced from bulk alloy by Cu block single melt spinning technique under Ar atmosphere at 

a tangential speed of 30 m/s [23].  

X-ray diffraction studies were carried out using high-energy transmission synchrotron 

X-ray diffraction (HEXRD) at the Advanced Photon Source at Argonne National Laboratory 

in collaboration with the Midwest Universities Collaborative Access Team (MUCAT). For 

liquid structure analysis, samples were cast into rods initially then pieces of the rod were 

inserted into 2 mm diameter, carbon-lined quartz capillaries and sealed in Ar. The sealed 

quartz capillaries were exposed to 99.586 keV of x-rays corresponding to a wavelength of 

0.012450 nm. The diffraction data were collected in a Debye-Scherrer geometry by a MAR 

charge coupled device (CCD), with up to 60 seconds of exposure time. No reaction between 

the liquid melt and the carbon-lined quartz capillary was observed within the experimental 

time duration. A diffraction pattern from a similar carbon-lined empty quartz capillary was 

collected and subtracted from the liquid data sets for the background corrections. The 

diffraction data from the solid amorphous samples were collected without using any sample 

holder at room temperature.    

The raw HEXRD data were corrected for the background and converted to the total 

structure factor function, S(Q), according to [24,25] 
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where Ic(Q) is the coherent scattering intensity normalized to the atomic concentrations, a, 

and f(Q) is the atomic structure factors for each component in the system as corrected for 

polarization, absorption, multiple and Compton scattering [26].  

In order to construct 3D structural models of amorphous structures, reverse-Monte-

Carlo (RMC) simulations [27,28] were carried out with an RMC analysis program using the 

S(Q) data derived from the HEXRD experiments. In these simulations random configurations 

of 10,000 atoms were distributed in a cubic cell with periodic boundary conditions. The 

random configurations for each amorphous composition contain the proper stoichiometry, 

density and nearest neighbor distances, as determined from the data. The densities for the 

model configurations were estimated to be on the order of 3.07 – 3.13 g/cm3 from density 

measurements of as-quenched ribbon samples using a pycnometer with He gas. The cut-off 

distances of the interatomic distances in the RMC calculations were chosen from direct 

Fourier transforms and ab-initio calculations as 0.22, 0.24, and 0.27 nm for Al-Al, Al-Sm and 

Sm-Sm, respectively [29]. The difference between the measured S(Q) from HEXRD 

experiments and the calculated SC(Q) from each RMC modeled configuration is determined 

by χ2.  

 ∑
=

−
=

n

i i

i
C

i
o Q

QSQS
1

2

2
002

)(
)]()([

σ
χ                                                                           (2) 

In order to minimize the χ2, approximately 106 iterations were performed for a 

constant σ(Q) value of 0.001. The local atomic environment was investigated by applying 

Voronoi Tessellation analyses [30]. In this analysis, different types of polyhedrons are 

defined with 6 digit indices in the form of Ni (i = 3-8) where N represents the number of 
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faces having “i” edges around the central atom (Al or Sm). The summation of N (∑i
N ) 

gives the coordination number around a specific atom.  

Conventional transmission and high-resolution transmission electron microscopy 

(TEM, HRTEM) analyses were performed using an FEI Inc. Tecnai G2 F20 

scanning/transmission electron microscope. Samples for electron microscopy were thinned 

using double jet polishing at 248 K with a solution of 3 vol% HCl, 36 vol% Methanol, and 

distilled water.  

Results 

As-Quenched and Liquid Structures 

The rapidly solidified microstructures of melt-spun ribbons as revealed using TEM 

are shown in Fig. 1. Bright field (BF) images and selected area electron diffraction (SAED) 

patterns (inset) of each as-quenched Al(100-x)Smx (x = 8, 10, and 12) alloy ribbon show a 

featureless microstructure, while SAED patterns indicate a diffuse ring, typical for an 

amorphous phase.   

Although no indication of crystallinity was observed for each of these three different 

compositions, within the limitations of conventional TEM, existence of nano-sized crystals 

was detected using HRTEM. Fig.2 shows HRTEM images of as-quenched ribbons produced 

at a wheel speed of 30 m/s. Fourier transformed images (Fig.2 insets) resolve individual 

diffracted spots on the diffuse halo, indicative of crystallization in the amorphous matrix, and 

nanocrystal formation can be recognized easily in the HRTEM images. 

The size of the nanocrystals observed in the as-quenched state is on the order of 5 nm. 

The lattice spacings observed within these nanocrystals are in good agreement with fcc-Al. 

During the HRTEM investigations, care was taken to avoid radiation damage by minimizing 

exposure to the beam. 
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Fig.3 shows HEXRD patterns of as-rapidly-solidified ribbons of different 

compositions.  Note that HEXRD does not show any sharp crystalline peaks in the diffraction 

patterns. However, two broad peaks appear at scattering vector magnitudes of 12.6 nm-1, and 

33.4 nm-1 where 
λ

θπ )sin(4
=Q .  Since this data was collected without using any sample 

holder, these extra peaks should be an intrinsic feature of the Al-Sm system. Comparison of 

the peaks to the positions expected for fcc-Al diffraction (dashed lines of Fig.3) reveals that 

this broad scattering is not due to any Al-Al correlations expected for fcc-Al.  

Fig.4 shows the HEXRD pattern of liquid Al90Sm10 alloy at a temperature of 1273 K 

in comparison with that obtained from the amorphous solid. The most interesting observation 

is that the pre-peak in the liquid after the alloy is melted appears in a similar position to that 

seen for the solid amorphous alloy.  Thus, the appearance of the two broad scattering peaks 

seen in the amorphous solid may be an indication of an ordered structure other than fcc-Al in 

rapidly-solidified ribbon, of particular interest is the pre-peak (Q = 12.6 nm-1), located well 

below the major amorphous peak (Q = 26.1 nm-1), that is also present in the liquid.  

Another intriguing observation is the detection of a similar type of pre-peak in 

HRTEM analyses. Fig.5 (a) shows the rotationally averaged FFT patterns collected at 

different defocus (∆f) values for Al90Sm10 alloys. Although no indication of any ordered 

structure other than fcc-Al was detected in HRTEM, a broad peak is observed in the FFT 

patterns. A similar peak is also detected for Al92Sm8 and Al88Sm12, as shown in the data in 

Fig. 5 (b) and in the broad halo seen in the inset. The position of the first broad halo 

measured from the rotationally averaged FFT is independent of the defocus value and is in 

good agreement with the position of the pre-peak calculated from HEXRD.  

Calculations of the Total Structure Factor  

Fig.6 and Fig.7 show the total structure factor (S(Q)), calculated for amorphous and 

liquid alloys. The amorphous structure factors were calculated for three different 
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compositions, whereas the liquid structure factor was calculated for Al90Sm10 at 1273 K. The 

negative values of the S(Q) in the low-Q region are due to a large difference in Al and Sm 

atomic scattering factors [26]. The existence of a pre-peak can also be seen in these 

calculated values. An expression similar to the Scherrer equation used for crystalline 

materials is often applied for disordered materials in order to estimate the size of any short or 

medium range ordered structure. This expression is given as D ≈ 2π/∆Qpre-peak , where D is 

the correlation length and ∆Q is the half-width of the pre-peak on the S(Q)-Q graph. The 

structural unit size (R) corresponding to the pre-peak can be estimated using the relationship 

R ≈ 2π/Qpre-peak [31]. In order to identify the position and the width of the pre-peak, a 

Lorentzian function was fit to the low-Q part of the S(Q)-Q data [32]. In doing this, the 

intensity of the pre-peak is seen to decrease but its position remains almost constant for the 

liquid structure, as compared to the amorphous material. Table 2 summarizes peak positions, 

structural unit sizes, and correlation lengths determined for the pre-peaks observed in 

amorphous and liquid samples.  

Reverse Monte Carlo Simulations (RMC) 

Figure 8 shows comparisons of the total structure factor measured from HEXRD 

experiments to results obtained when the data is fit using the indirect RMC method for as-

quenched Al(100-x)Smx (x=8, 10, and 12) alloys to produce the same S(Q).  A good fit is 

obtained in both the low-Q regions (including the pre-peak) and the high-Q regions.  

Figure 9 shows the partial structure factors (SAl-Al(Q), SAl-Sm(Q), and  SSm-Sm(Q)) 

determined for as-quenched Al(100-x)Smx (x=8, 10, and 12) alloys. In the low-Q region 

(Q~12.6 nm-1) of the partial structure factors, a pre-peak (arrowed) is seen for both SAl-Sm(Q), 

and  SSm-Sm(Q), being somewhat more intense for SSm-Sm(Q).  Interestingly, the pre-peak is 

absent from the SAl-Al(Q), indicating that the pre-peak seen in the total structure factor arises 

due to strong Al-Sm and especially Sm-Sm correlations in the as-quenched alloys.  
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The second broad peak at 33.4 nm-1, noted in Figure 3, can also be seen on the SAl-

Sm(Q), and  SSm-Sm(Q) curves, although it is not as strong as the pre-peak. The pair 

distribution functions and their partials for the as-quenched amorphous alloys were 

calculated from RMC results and are shown in Figure 10. The nearest neighbor coordination 

numbers (CN) and bond lengths for Al-Al, Al-Sm, and Sm-Sm atom pairs are summarized in 

Table 2. The average CN for Sm-Al pairs is higher than Al-Al pairs for all compositions, 

indicating a more densely packed structure around Sm atoms. The average CN for Al-Al and 

Sm-Al pairs is seen to decrease as Sm content in the alloy increases.   

The distribution of bond-orientation angles are calculated for Al-Al-Al, Al-Sm-Al, 

and Sm-Al-Sm triplets within their first coordination shell for as-quenched Al(100-x)Smx (x=8, 

10, and 12) alloys based on the RMC simulations, and are shown in Fig.11.  The distributions 

of the first shell bond angles are centered at 56°, 52°, and 60° for Al-Al-Al, Al-Sm-Al, and 

Sm-Al-Sm, respectively. While the average bond angles calculated for these three triplets 

remain fairly constant, the peak frequencies decrease slightly as composition changes from 8 

to 12 at% Sm.  Angular analysis of bond-orientations shows a broad distribution of angles, 

indicating irregular polyhedral coordination in the first shell for these three compositions.  

Because of the complexity of polyhedron coordination, it is difficult to analyze local 

structure by using solely bond-orientation angles or coordination number. Therefore, the 

complex polyhedral structure in the local atomic configurations generated by RMC was 

further investigated by Voronoi Tesselation analyses, as shown in Fig. 12. Thirteen and 

fourteen-coordinated polyhedrons with indices <0,3,6,4,0,0>, <0,2,8,4,0,0>, <0,3,6,5,0,0> 

are dominant for Al-centered structures. Polyhedrons with such indices correspond to 

deformed bcc structure [33]. It is also found that some icosahedral-like clusters with indices 

<0,0,12,0,0,0>, <0,1,10,2,0,0), or <0,2,8,2,0,0> and coordination of 12 and 13 atoms are 

formed around Al. The Sm-centered polyhedrons almost always have higher coordination as 

compared to Al-centered polyhedrons. The indices <0,2,8,4,0,0>, <0,2,8,5,0,0>, 
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<0,3,6,5,0,0>, <0,3,6,6,0,0>, and <0,2,8,6,0,0> corresponding to deformed bcc structures, are 

the most frequent polyhedral forming around Sm atoms. Another interesting observation is 

the change in the frequency of Sm centered polyhedrons as a function of composition. As 

shown in Fig. 12, describing the number of Sm centered polyhedrons as a function of 

composition is difficult. For example, <0,2,8,4,0,0>, <0,2,8,5,0,0>, <0,1,10,4,0,0>, and 

<0,1,10,3,0,0> type polyhedron are highly populated for Al92Sm8, but for Al90Sm10 the most 

common are <0,2,8,4,0,0>, <0,2,8,5,0,0>, <0,3,6,6,0,0>, and <0,2,8,6,0,0>. This changes yet 

again for Al88Sm12 where <0,3,6,5,0,0>, <0,2,8,5,0,0>, <0,3,6,6,0,0>, and <0,2,8,4,0,0> are 

the most frequent polyhedra. However, the number of specific polyhedron with respect to 

composition is quite stable for Al. Fig.13 (a) shows an example of 3D atomic configuration 

obtained from RMC simulations for Al90Sm10 compositions. The spatial distributions of the 

Sm atoms that form a deformed bcc-like structure with 14 and higher Al coordination is 

shown in Fig. 13 (b).  

Discussion 

According to current and previous high resolution electron microscopy studies [16, 

17, as-quenched Al(100-x)Smx (x=8, 10, and 12) alloys produced by melt-spinning with wheel 

speeds of 30 and 40 m/s contain clusters of fcc-Al in a size range of 2-5 nm embedded in an 

amorphous matrix. The average size of fcc-Al clusters is considerably smaller for 40 m/s 

compared to 30 m/s wheel speed. In another study [15], clusters that are fcc-Al like showing 

MRO and having sizes in the range of 0.8 – 1.5 nm were resolved using fluctuation electron 

microscopy (FEM) in melt-spun Al92Sm8 produced at a wheel speed of 55 m/s. These results 

clearly show that the size of fcc-Al-like clusters decrease with increasing wheel speeds of 

melt spinner (i.e. increasing cooling rate). The results presented above show that MRO or 

nanocrystals of an fcc-Al-like structure always exist in Al(100-x)Smx (x=8, 10, and 12) alloys 

that are quenched from the liquid state, at least for the conditions used in this study. These 



 150

fcc-Al nanoclusters show a restricted growth upon annealing below their crystallization 

temperatures (Tx) and a high density of nanocrystals on the order of 1021-1023 m-3 in the 

amorphous matrix. The small size of clusters in the as-quenched state makes them difficult to 

detect in conventional bright field TEM (Fig.1) but they can be detected easily using 

HRTEM coupled with FFT (Fig.2). While these fcc-Al nanoclusters also are not detectable 

with HEXRD, as shown in Fig.3, an intriguing observation is the existence of a pre-peak (Q 

~ 12.6 nm-1) at a position well below the major diffuse scattering position for all three as-

quenched compositions. Similar types of pre-peaks have been reported for other alloy 

systems [18-20]. The physical origin of such pre-peaks in not clear and their existence is 

usually attributed to the formation of MRO structures [34,35].  Figures 3 and 4 show the 

positions of pre-peaks for as-quenched Al(100-x)Smx (x=8, 10, and 12) and liquid Al90Sm10, 

respectively. This data was collected at room temperature without using any sample holder, 

thus eliminating any possible effect due to the quartz capillaries that were used at higher 

temperatures. Another interesting observation is the detection of a halo located in the small Q 

region in the FFT diffractograms of HRTEM images for as-quenched Al(100-x)Smx (x=8, 10, 

and 12) as seen in Fig.2. The corresponding HRTEM images and FFT patterns only show 

fcc-Al nanocrystals; no other crystalline structure can be observed. The rotationally averaged 

FFT patterns (Fig.5) clearly show two peaks at approximately 13 and 27 nm-1, which are in 

good agreement with the positions of the pre-peak and the main amorphous peak observed 

using HEXRD.  

In order to clarify the influence of defocus, FFTs were rotationally averaged at 

different defocus values for as-quenched Al90Sm10. As shown in Fig. 5 (a) the positions of 

the pre-peak and the main peak remain constant with respect to defocus. As shown in Fig. 5b, 

the existence of the pre-peak is also consistent with the change in composition, with the pre-

peak located at around 13 nm-1.  These observations indicate that the pre-peak is not an 

anomaly of the manner in which the HEXRD data was obtained or the HRTEM images.  It is 
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therefore concluded that the as-solidified structures examined in this study all consist of fcc-

Al nanoclusters coupled with a MRO structure according to HEXRD and HRTEM analysis.  

The MRO structure is further investigated using the total structure factor function, 

S(Q). As it is shown in Fig. 6, the pre-peak is a distinct feature in the total structure function 

calculated for as-quenched Al(100-x)Smx (x=8, 10, and 12). There is a slight increase in the 

intensity of the pre-peak with increasing Sm content, which is more pronounced for the 

second broad peak located approximately at 33.4 nm-1. Another interesting observation is that 

the partial structure factor analysis (Fig. 8) shows strong Al-Sm and Sm-Sm correlations in 

their Fourier component of low Q-regions, which is the area of origin of the pre-peak seen in 

the total structure factor function. The pre-peak in the partial structure factor is absent for Al-

Al interactions but stronger for Sm-Sm ones. 

From the current observations it appears the origin of the pre-peak in as-quenched 

alloys is based on the pre-existing liquid structure. Figures 4 and 7 show the raw data and 

total structure factor function after background corrections for liquid Al90Sm10 at 1273 K 

approximately 300 K above the liquidus temperature. A pre-peak is clearly seen in both 

graphs and the position is in good agreement with the pre-peaks observed at room 

temperatures in the as-quenched samples. Thus, it appears evident that the MRO structure 

survives in the liquid state even at temperatures that far exceed the melting point. The 

correlation lengths and structural unit sizes calculated from the position of the pre-peak for 

as-quenched Al(100-x)Smx (x=8, 10, and 12) and liquid Al90Sm10 are summarized in Table 1. 

Note that the correlation lengths of the MRO calculated from pre-peak broadening differ for 

solid and liquid structures. For as-quenched solids the correlation length is on the order of 2.5 

nm and is almost constant with respect to composition.  However, correlation length is much 

smaller in the liquid, being on the order of 1.6 nm. This suggests an agglomeration of the 

clusters corresponding to pre-peak formation upon quenching from liquid structures.  
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The structural unit sizes calculated from the positions of the pre-peaks for the as-

quenched samples are almost constant with respect to compositions, indicating that they all 

possess a similar type of MRO, similar to that of liquid Al90Sm10. This indicates that the 

MRO structure formed in the liquid state has been retained in the as-quenched state with an 

increase in correlation length.  The positions of the extra peaks observed in liquid and as-

quenched states are close to some of the major diffraction peaks in a high temperature 

metastable body centered tetragonal phase, Al11Sm3. This compound is stable between 1351 

and 1733 K.  The interplanar spacing for (002) and (211) planes are given as 0.495 and 0.188 

nm, respectively. These planar spacings are close in value to those calculated from the 

positions of the pre-peaks at 12.6 and 33.4 nm-1 for as-quenched Al(100-x)Smx (x=8, 10, and 

12) and liquid Al90Sm10. The extra peaks observed in the diffraction patterns of Figure 3 are 

probably due to broadening caused by the fine size MRO structure.  

According to total structure factor and Voronoi analysis, it is hypothesized that the 

MRO observed in liquid and as-quenched states have structural similarities with the high 

temperature metastable Al11Sm3 tetragonal phase. Fig.14 shows the atomic configuration of 

this phase, which has the I4/mmm space group symmetry. If the Sm atom located at the 

center is considered, this structure consists of Sm atoms surrounded by 8 Al atoms at a 

distance of 0.325 nm and another 8 Al atoms at a distance of 0.327 nm. Therefore, every Sm 

atoms in this structure is highly coordinated with Al in their first and second shells and 16 Al 

atoms exist at a distance of 0.327 nm or less. In a study where the local atomic structure of 

amorphous Al92Sm8 was investigated using X-ray absorption fine structure (XAFS) [36], the 

best fit to the experimental XAFS data was obtained by considering a “single shell” structure 

of 16 Al atoms surrounding Sm atoms with a first coordination shell radius of 0.32 nm. It is 

interesting that if one takes the literature values for the radii of Al and Sm atoms (0.143 and 

0.181 nm, respectively [37]) and assumes metallic bonding, a simple summation of the radii 

produces an average bond distance of 0.324, close to the experimental XAFS data [31].  This 
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is also in agreement with the results of the current pair distribution data of Fig. 10 which 

shows that Sm-Al bonding for the three compositions investigated in this study is on the 

order of 0.32 nm, with a maximum experimental error of 2.4 %.  

The average coordination number (CN) determined for Al atoms surrounding a Sm 

atom, shown in Table 2, is on the order of 12 to 13, which usually indicates an icosahedral 

order. However, the bond angles calculated for the three compositions examined (Fig.11) do 

not match with the first shell bonds in an icosahedral cluster, as the latter are around 60-63°. 

Also, according to the Voronoi analyses results, which include the Sm atoms in the near-

neighbor cell, the average CN for each Sm atom is given as 15.11, 15.18, and 15.36 for 

Al92Sm8, Al90Sm10 and Al88Sm12, respectively. Therefore, a high coordination around Sm 

atoms is detected for the MRO structure that is similar to tetragonal Al11Sm3.  

The MRO clustering in liquid is believed to form due to strong interactions between 

Al and Sm atoms. The MRO clusters essentially act like distinct “superatoms” with a slightly 

broad size distribution and huge diameters as compared to individual Al and Sm atoms in the 

matrix.  Upon rapid solidification it is hypothesized that these clusters cause a local atomic 

size effect, similar to that seen in multi-component bulk amorphous alloys in some sense, 

preventing the complete crystallization of the Al rich matrix. This results in the as-quenched 

structure being divided into nano-scale regions by a network of MRO clusters.  Depending 

on size of these regions a certain percentage of fcc-Al clusters will reach the critical nucleus 

size with the remainder staying below this size. This explanation agrees with results obtained 

for Al90Sm10 using three dimensional atom probe tomography (3D APT) [16]. 

The cooling rate appears to be directly correlated with the percentage of Al that 

cannot reach the critical nucleation size. However, it should be noted that cooling rate has a 

minor effect on the presence of MRO in the as-quenched state. MRO was observed in all 

liquids for all initial melt temperatures used in this study. Therefore, MRO stability in the 

liquid needs be studied directly with respect to initial melt temperature, rather than assuming 
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that the quenched structure varies with cooling rate of the melt. New experimental variable 

may be used to determine a more accurate representation of the liquid structure.   

When as-quenched alloys are annealed, the MRO appears to act as a catalyst site for 

nucleation of fcc-Al. It should be noted that for the assumed hypothesis, long range diffusion 

between fcc-Al clusters would be blocked by the Sm rich MRO structure in the matrix, 

resulting in restricted growth of fcc-Al. Al rich regions with size below critical size for 

homogeneous nucleation can nucleate via a heterogeneous nucleation mechanism in the 

vicinity of the MRO clusters.  A more detailed study that includes atom probe tomography 

and scanning transmission electron microscopy equipped with a high angle annular dark field 

detector is in progress. Such a study should be helpful for identifying the spatial distribution 

of the MRO and fcc-Al in the as-quenched state, to help elucidate the effect of MRO on 

producing the observed high nucleation density of fcc-Al in these alloys.  

Conclusion 

Rapid solidification of Al(100-x)Smx (x=8, 10, and 12) using a melt-spinning technique 

at a wheel speed of 30 m/s resulted in formation of fcc-Al nanocrystals embedded in a non-

crystalline matrix. Detailed analysis of the as-quenched structure by HRTEM and HEXRD 

revealed a pre-peak well below the major amorphous peak in the Fourier transform patterns 

and total structure factor graphs, respectively. Partial structure factor analysis showed that the 

pre-peak arises due to Al-Sm and particularly Sm-Sm correlations. A similar type of pre-peak 

was also resolved for the liquid Al90Sm10 using HEXRD at 1273 K. The formation of the pre-

peak is related to the formation of MRO clusters in the liquid. After a liquid alloy is 

quenched, the position of the pre-peak remains almost constant, indicating that the MRO in 

the liquid is retained in the as-quenched structure.  While the size of the MRO cluster is 

larger in the as-quenched alloys, cluster size appears relatively insensitive to an increase in 

Sm content. The Voronoi analysis of local atomic structures based on RMC simulation 
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suggests a deformed bcc-like structure surrounding Sm with CN higher than 15 atoms for as-

quenched alloys. These experimental results and simulations indicate the MRO in the liquid 

and as-quenched states is structurally similar to the high temperature metastable Al11Sm3 

tetragonal phase. The MRO in liquid seems to act as a “superatom” of huge diameter to 

prevent complete crystallization of fcc-Al upon rapid solidification. When as-quenched 

alloys are annealed, the Sm-rich MRO clusters act as catalyst sites promoting heterogeneous 

nucleation of fcc-Al, while inhibiting long range diffusion processes between fcc-Al clusters.  

Acknowledgment 

Appreciation is expressed to Shaogang Hao for his valuable help in Voronoi analyses. 

The work at Ames Laboratory was supported by the United States Department of Energy 

(USDOE), Office of Science (OS), Office of Basic Energy Science (BES), under Ames 

Laboratory Contract No. DE-AC02-07CH11358, the high-energy X-ray work at the MUCAT 

sector of the APS was supported by the US Department of Energy, Office of Science, Basic 

Energy Sciences under Contract No. DE-AC02-06CH11357. The assistance of Materials 

Preparation Center of the Ames Laboratory is acknowledge for supplying our samples [23]. 

Reference 
1. A. Inoue, Progress in Materials Science,  43, 365-520, (1998). 

2. J.C. Foley and J.H. Perepezko, Journal of Non-Crystalline Solids, 205-207, 559-562, 

(1996). 

3. J.C. Foley, D.R. Allen, and J.H. Perepezko, Scripta Materialia, 35, 655-660, (1996). 

4. A. Hirata, Y. Hirotsu, E. Matsubara, T. Ohkubo, and K. Hono, Physical Review B, 

74, 184204, (2006). 

5. J. Schroers, R. Busch, A. Masuhr, and W.L. Johnson, Applied Physical Letters, 74, 

2806-2808, (1999). 



 156

6. K. Hono, D.H. Ping, M. Ohnuma, and H. Onodera,  Acta Materialia, 47,  997, (1999).  

7. D.R. Allen, J.C. Foley, and J.H. Perepezko, Acta Metallurgica,  46(No.2), 431-440, 

(1998). 

8. X.L. Wang, J. Almer, C.T. Liu, Y.D. Wang, J.K. Zhao, A.D. Stoica, D.R. Haeffner, 

and W.H. Wang, Physical Review Letters, 91. 265501, (2003). 

9. S. Schneider, P. Thiyagarajan, and W.L. Johnson, Applied Physical Letters, 68, 493-

495, (1995).  

10. K.F. Kelton, Acta Materialia, 48, 1967-1980, (2000). 

11. K.F. Kelton, Journal of Non-Crystalline Solids,274, 147-154, (2000). 

12. T. Kulik, Journal of Non-Crystalline Solids, 287, 145-161, (2001). 

13. Y. He, S.J. Poon, and G.J. Shiflet, Science, 241, 1640-1642, (1988). 

14. G. Wilde, H. Sieber, and J.H. Perepezko, Scripta Materialia, 40, 779-783, (1999). 

15. W.G. Stratton, J. Hamann, J.H. Perepezko, P.M. Voyles, X. Mao, and S.V. Khare, 

Applied Physical Letters, 86, 141910, (2005). 

16. Y.E. Kalay, L.S. Chumbley, and I.E. Anderson, Journal of Non-Crystalline Solids, 

354, 3040-3048, (2008). 

17. Y.E. Kalay, L.S. Chumbley, and I.E. Anderson, Materials Science and Engineering 

A, 490, 72-80, (2008). 

18. L. Yang, J.Z. Jiang, K. Saksl, and H. Franz, Journal of Physics: Condensed Materials, 

19, 1-6, (2007). 

19. Z. Lin, W. Youshi, B. Xiaufang, L. Hui, W. Weimin, L. Jinguo, and L. Ning, Journal 

of Physics: Condensed Materials, 11, 7959-7969, (1999). 



 157

20. J. Fang, W. Youshi, S. Yuanchang, Z. Chuanjiang, and Z. Zhiqian, Materials Science 

and Engineering A, 340, 212-215, (2001). 

21. R.L McGreevy and M.A. Howe, Annual Review of Materials Science, 22, 217, 

(1992). 

22. J.L. Finney, Proceedings of the Royal Society of London Series A Mathematical and 

Physical Sciences, 319, 495, (1970). 

23. Materials Preparation Center, A.L., US DOE Basic Energy Sciences, Ames, IA, USA. 

Avaliable from: <www.mpc.ameslab.gov>. 

24. X. Qiu, J.W. Thompson, and S.J.L. Billinge, Journal of Applied Crystallography, 37, 

678, (2004). 

25. M.J. Kramer and D.J. Sordelet, Journal of Non-Crystalline Solids, 351(19-20), 1586-

1593, (2005). 

26. Waseda Y., The Structure of Non-Crystalline Materials. 1980: Mc-Graw-Hill, Inc. 

27. R.L. McGreevy and M.A. Howe, Annual Review of Materials Science, 22, 217-242, 

(1992). 

28. R.L. McGreevy and L. Pusztai,  Molecular Simulation, 1, 359-367, (1998). 

29. H. Shaogang, Unpublished Work. 2008: Ames. 

30. N.N. Medvedev Journal of Computational Physics, 67, 223, (1986). 

31. E. Vateva and E. Savova, Journal of Non-Crystalline Solids, 145, 192-193, (1995). 

32. A.P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, Pysical Review Letters, 

69(10), 1540-1543, (1992).  

33. A. Hirata, Y. Hirotsu, T. Ohkubo, T. Hanada, and V.Z. Bengus, Physical Review B, 

74, 214206, (2006). 



 158

34. S.R. Elliott, Nature, 354: p. 445-452, (1991). 

35. S.Y. Wang, C.Z. Wang, M.Z. Li, L. Huang, R.T. Ott, M.J. Kramer, D.J. Sordelet, 

K.M. Ho, Physical Review B, 78, 184204, (2008). 

36. W. Zalewski, J. Antonowicz, R. Bacewicz, and J. Latuch, Journal of Alloys and 

Compounds, in press, (2008). 

37. D.B. Miracle, Acta Materialia, 54, 4317-4336, (2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 159

 
Figure 1. BF images with SAED (inset) showing a featureless matrix and diffuse rings 

for (a) Al92Sm8, (b) Al90Sm10, and (c) Al88Sm12 respectively. 
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Figure 2. HRTEM images of as-solidified (a) Al92Sm8, (b) Al90Sm10, and (c) Al88Sm12 
respectively. Insets show the Fourier transformed images of the full area. Several fcc-Al 

nanocrystals are circled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 161

 
Figure 3. HEXRD patterns of as-rapidly-solidified ribbons. The dash lines show the 
positions of first five fcc-Al reflections. Two extra reflections are shown with arrows.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 162

 
Figure 4. HEXRD pattern of amorphous solid and liquid alloys at 1273 K. Inset shows 

low Q part of the diffraction pattern. 

 

 

 

 

 

 

 

 

 

 

 



 163

Figure 5. Rotationally averaged FFT at (a) different defocus for Al90Sm10 and (b) 
different compositions for Scherzer defocus. Inset shows example of FFT and the 

position of Qpp for Al90Sm10. 
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Figure 6. Total structure function data for as-quenched Al(100-x)Smx (x=8, 10, and 12). 
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Figure 7. Total structure function data for as-quenched amorphous and liquid Al90Sm10 

alloy at 1273 K.  
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Figure 8. Total structure function data measured (solid line) and calculated using RMC 
(dot points) for as-quenched Al(100-x)Smx (x=8, 10, and 12) alloys. The line at the bottom 

shows the difference between measured and calculated S(Q).  
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Figure 9. Partial structure factors (SAl-Al(Q), SAl-Sm(Q), and  SSm-Sm(Q)) calculated for as-

quenched Al(100-x)Smx (x=8, 10, and 12) alloys.  
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 Figure 10. Atomic pair distribution function for as-quenched (a) Al92Sm8, (b) 
Al90Sm10, and (c) Al88Sm12 alloys based on RMC simulations and their partial pair 

distributions (as-indicated on legends).  
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Figure 11. The distribution of bond-orientation angles for as-quenched Al(100-x)Smx 

(x=8, 10, and 12) alloys based on RMC simulations. 
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Figure 12.  Voronoi polyhedron histograms of (a) Al and (b) Sm centered structure 

models for as-quenched Al(100-x)Smx (x=8, 10, and 12).  
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Figure 13. 3-D atomic configurations of as-quenched Al90Sm10 calculated from RMC 

simulations. (a) General view of 3-D configurations. Red and black colors represent Al 
and Sm atoms respectively. (b) 3-D configuration showing Sm atoms with 14 or higher 

Al coordination. The red dots represent the Al atoms. Atomic radii are not in scale.  
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Figure 14. Atomic structure of high temperature metastable tetragonal phase Al11Sm3 

with I4/mmm space group symmetry. Red and black colors represent Al and Sm atoms 
respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 173

Table 1. Peak positions, the structural unit sizes, and the correlation 
lengths for the pre-peak observed for amorphous and liquid alloys. 

Alloy Pre-Peak 
Position (10nm-1) 

Structural 
Unit Size (nm) 

Correlation 
Length (nm) 

Amorphous    
Al92Sm8 1.261 0.498 2.3 
Al90Sm10 1.263 0.497 2.3 
Al88Sm12 1.269 0.495 2.4 
Liquid    

Al90Sm10 1.261 0.498 1.6 
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Table 2. The average coordination numbers (CN) and bond lengths foras-
quenched Al(100-x)Smx (x=8, 10, and 12) alloys based on RMC simulations. 

 Al92Sm8 Al90Sm10 Al88Sm12 
 CN r (nm) CN r (nm) CN r (nm) 

Al-Al 11.70 0.28(7) 11.44 0.28(6) 11.10 0.28(2) 
Sm-Al 13.35 0.32(0) 12.54 0.31(8) 12.33 0.31(6) 
Sm-Sm 1.02 0.32(8) 1.39 0.33(2) 1.58 0.32(6) 
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CHAPTER 6: INITIAL CRYSTALLIZATION IN A NANOSTRUCTURED 
Al-Sm RARE EARTH ALLOY 

A paper to be submitted to Journal of Non-Crystalline Solids 

Y.E. Kalay1,2, C. Yeager,3 L.S. Chumbley1,2, M.J. Kramer1,2, I.E. Anderson1,2 

Abstract 

The transformation kinetics and microstructural evolution during initial crystallization 

in highly driven Al90Sm10 was investigated using transmission electron microscopy (TEM), 

conventional Cu Kα and high energy synchrotron X-ray diffraction (HEXRD) and differential 

scanning calorimetry (DSC). The as-solidified structures corresponding to different cooling 

rates showed a variety of metastable structures. The highest cooling rate obtained in this 

study yielded a high number density of fcc-Al nanocrystals, with sizes on the order of 2-5 

nm, embedded in a disordered matrix rich in an Al-Sm medium range order (MRO) structure. 

Isothermal in-situ HEXRD results indicated a single crystallization of a large primitive cubic 

phase from the disordered state. Further analysis using DSC showed two crystallization 

events; a small peak overlapping the peak from the main crystallization event. TEM analysis 

performed on samples where the crystallization process was interrupted at various 

temperatures (selected on the basis of DSC curves) resolved pre-existing fcc-Al crystals, 

further crystallization of fcc-Al, (corresponding to the first small peak) and evolution of the 

cubic phase, corresponding to the main crystallization event. Fcc-Al nanocrystals showed a 

restricted growth and stayed at an average size of 16 nm after full crystallization was 

established. Transformation kinetics were determined after deconvolution of the overlapping 
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crystallization peaks using a Gaussian approximation. An Avrami exponent close to 3 

suggests a site saturated nucleation for the fcc-Al, forming during solid-state annealing. The 

long range diffusion of fcc-Al in the matric was prevented by Sm rich clusters. The cubic 

phase was found to from via a polymorphic crystallization presumably nucleating from Sm-

rich clusters that existed in the as-quenched state. The crystallization kinetics were described 

using an analytical Johnson-Mehl-Avrami (JMA) approach.   

Introduction 

Al-RE and Al-RE-TM (RE: rare earth element; TM: transition metal) constitute an 

important class of alloys where a limited glass-forming ability is often observed upon 

quenching from the liquid state [1, 2]. Partial crystallization of such alloys with high Al 

content (between 80 and 92 at% Al) has resulted in formation of a very high nucleation 

density of fcc-Al nanocrystals, on the order of 1020 to 1023 m-3 in the amorphous matrix [3-6]. 

The resultant composite microstructure of fcc-Al nanocrystals embedded in amorphous 

matrix has attracted much attention due to the alloy’s lightweight structural properties [7, 8]. 

Several models [4, 9-13] have been proposed to explain the unusual crystallization behavior 

observed in such systems but there is still no agreement on the mechanism for forming such a 

high-density of nanocrystals.  

The Al-Sm binary system is a simple marginal glass forming alloy which has been 

reported to form an amorphous phase within a wide range of composition, from 8 to 16 at% 

Sm [1]. The as-quenched structure of Al-Sm within this range often contains fcc-Al 

nanocrystals embedded in an amorphous matrix [6, 14]. The size and percentage of these 

nanocrystals is related to the cooling rate applied to the melt. At high cooling rates, the size 

of these crystals is so small that conventional TEM and XRD cannot resolve them. However, 

using new techniques such as fluctuation electron microscopy (FEM), pseudo fcc-Al clusters 

were identified embedded in an amorphous matrix.  These Al clusters appear to show more 
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coherency in their scattering compared to a glassy alloy yet still lack sharp diffraction, 

termed medium range order (MRO) [15]. At relatively low cooling rates, fcc-Al can be 

recognized easily using high resolution electron microscopy (HRTEM) [6]. In a previous 

study using atom probe tomography (APT) and HRTEM it has been shown that as-solidified 

Al90Sm10 consists of a skeleton-like structure of Al-Sm and fcc-Al preferentially nucleated 

between the links of the structure [6].  We postutated that the Al-Sm MRO clusters form into 

a skeleton-like structure that originated because of the strong interactions between Al and Sm 

in the liquid state [16]. The existence of the Al-Sm MRO structure is evidenced by a pre-

peak located well below the main diffuse scattering peak in HEXRD patterns for both liquid 

and as-quenched alloys and has been described by use of a Reverse Monte Carlo (RMC) 

technique coupled with Voronoi Tessellation analyses [16].  Upon quenching, the amorphous 

structure is divided into nano-scale regions by a network of Al-Sm clusters and, depending 

on the size of these regions, only a certain percentage of fcc-Al clusters reach the critical 

nucleus size. The remaining Al atoms stay below the critical size, either as amorphous 

material or fcc-Al MRO [16].  

The present study investigates initial crystallization of an amorphous melt-spun 

Al90Sm10 alloy containing pre-existing fcc-Al nanocrystals. Structural characterization of 

specimens at various stages of crystallization was performed using transmission electron 

microscopy and X-ray diffraction. The transformation kinetics was studied by use of 

differential scanning calorimetry (DSC) under isothermal heating conditions.   

Experimental Procedure 

Ingots of Al90Sm10 were prepared by electric arc melting under Ar atmosphere from 

highly pure Al (99.99 wt%) and Sm (99.9 wt%) elements [17]. Amorphous ribbons with a 

thickness of 20-30 µm and a width of 1.0 – 1.2 mm were produced from bulk alloy by a Cu 
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chill block single-roller melt spinning technique under Ar atmosphere at various tangential 

speeds of 10, 20, and 30 m/s.  

High temperature X-ray diffraction studies were carried out using high-energy 

transmission synchrotron X-ray diffraction (HEXRD) at the Advanced Photon Source at 

Argonne National Laboratory in collaboration with the Midwest Universities Collaborative 

Access Team (MUCAT) at sector 6-IDD-D. The as-quenched ribbons were inserted into 2 

mm diameter X-ray transparent quartz capillaries and sealed under Ar. The sealed quartz 

capillaries were exposed to 99.954 keV of X-rays corresponding to a wavelength of 0.012404 

nm. As-quenched ribbons were heated and isothermally held at 457 K until fully crystallized. 

The diffraction data were collected in-situ at Debye-Scherrer geometry by a MAR charge 

coupled device (CCD) after every 20 seconds of exposure time. A diffraction pattern from a 

similar empty quartz capillary was collected and subtracted from the high temperature data 

sets for the background corrections. The room temperature diffraction studies were 

conducted using a conventional horizontal goniometer axis Cu-Kα X-ray diffractometer in 

combination with the Bragg-Brentano focusing geometry. The as-quenched ribbon specimens 

were fixed onto a specially cut zero-background quartz holder with Vaseline® and scanned 

between 10° ≤ 2θ ≤ 90° with a step size of 0.02°. 

For differential scanning calorimetry (DSC) experiments, the Al sample pans were 

filled with an average sample weight of 10 mg of ribbon and sealed with an Al cover. 

Samples were heated-up at 100 K/min heating rate and isothermally held below the 

crystallization temperature in the temperature range between 451 and 461 K.  After each 

isothermal DSC scan a subsequent run with empty pans was performed to calculate the 

baseline. A protective gas atmosphere of pure N2 was employed for each calorimetric 

experiment. 

Transmission and high-resolution electron microscopy (TEM, HRTEM) analyses 

were performed using an FEI Inc. Tecnai G2 F20 scanning/transmission electron microscope. 



 179

Samples for electron microscopy were thinned using double jet polishing at 248 K with a 

solution of 3 vol% HCl, 36 vol% methanol, and distilled water. The thickness of  each TEM 

specimens was estimated using electron energy loss spectroscopy (EELS) as described in 

[18].  

Results 

As-Quenched Structure 

The solidification products of as-quenched Al90Sm10, produced at wheel speeds of 10, 

20, and 30 m/s, are shown by the XRD patterns in Fig. 1. The as-quenched solidification 

structures differed according to wheel speeds (or cooling rates). The as-quenched ribbons 

that were quenched at a wheel speed of 10 m/s consist of several metastable phases, namely 

tetragonal Al4Sm, fcc-Al, an orthorhombic phase called ER [14], and a primary diffuse 

scattering peak indicating an amorphous structure to some degree. Increasing the wheel 

speed from 10 to 20 m/s, the intensities of the metastable phases decreased. For samples 

quenched at 30 m/s, formation of any metastable crystalline phases was suppressed according 

to Cu Kα XRD results. The as-quenched samples of 30 m/s wheel speed were investigated 

further using transmission HEXRD, and TEM Fig. 2).   

The HEXRD pattern (Fig. 2a) shows no crystalline peaks, but two broad peaks at 

scattering vectors of 12.6 nm-1, and 33.4 nm-1, below and above the major amorphous peak at 

26.1 nm-1, respectively. The inset in Fig. 2a showing a bright field (BF) image and the 

corresponding selected area electron diffraction (SAED) pattern exhibit a featureless 

microstructure and a diffuse ring typical of an amorphous phase, respectively. Although the 

crystalline grains are difficult to discern using BF imaging due to their size and small 

percentage of the total volume resulting, fcc-Al nanocrystals (arrows in Fig. 2b) can be 

resolved in HRTEM and fast Fourier transform (FFT) of those images. The average size of 

fcc-Al nanocrystals is on the order of 5 nm. 
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Crystallization Studies 

The melt spun ribbon was next investigated using differential scanning calorimetry 

(DSC). Fig. 3 shows isothermal DSC traces of Al90Sm10 samples produced at 10, 20 and 30 

m/s at 451 K. All of the isothermal traces showed an exothermic event after a certain 

incubation time. While the 10 and 20 m/s samples show a single exothermic event, an 

interesting observation is the appearance of a small peak overlapping the main exothermic 

event for the 30 m/s sample, identified with an arrow in Fig. 3.  

Fig. 4a shows isothermal DSC traces obtained between 451 and 461 K for the 30 m/s 

material in greater detail. All of the isothermal curves showed two exothermic events after a 

certain incubation time (τ). The first exothermic event is subtle and overlaps the second, 

more dominant exothermic event. These two events are better separated for lower annealing 

temperatures. Fig. 4b shows the crystallized volume fractions with respect to annealing 

times, calculated by integrating isothermal DSC traces. The incubation times at different 

annealing temperatures were found to decrease with increasing annealing temperature, as 

expected 

The Cu Kα XRD patterns of melt-spun ribbons indicate that the sample is fully 

crystallized after a hold of 451 K for 80 min (Fig. 5). The patterns of Al90Sm10 melt-spun at 

10 and 20 m/s contain reflections of t-Al4Sm and ER phases (noted in Fig. 1), which form 

during solidification, in addition to MS1 that forms after crystallization.  

The melt-spun sample produced at 30 m/s contains only reflections of MS1 after the 

first crystallization as noted by DSC, indicating that the formation of t-Al4Sm and ER crystal 

phases are suppressed at this wheel speed. It is difficult to distinguish fcc-Al reflections for 

the 30 m/s sample because peak overlaping with cubic MS1. However, fcc-Al nanocrystals 

were resolved before and after the first DSC crystallization event using TEM. Thus, 

conventional x-ray diffraction does not have the necessary sensitivity to fully resolve all 
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phases present.  The phases observed during rapid solidification and after first crystallization 

of Al90Sm10 are listed in Table 1.   

In an attempt to overcome the poor sensitivity of conventional XRD, in-situ HEXRD 

data was taken.  Fig. 6a shows the HEXRD image plate scans of Al90Sm10 melt spun (30m/s) 

material isothermally held at 457 K until the first crystallization as noted by DSC is 

established. The image plate scans are stored in the form of Debye-Scherrer images and 

subsequently integrated to produce an intensity vs. Q (or 2θ) plot every 20 seconds. The lines 

on Fig. 6a indicate the location of Bragg peaks, with the contrast level being proportional to 

diffracted beam intensities. Similar to DSC analysis, after a certain amount of incubation 

time, crystallization occurs and crystalline peaks of MS1 phase appear on the diffraction 

pattern. Unfortunately, unlike DSC analysis the HEXRD shows only a single crystallization 

event, similar to conventional XRD.  No peaks of fcc-Al are resolved in the as-quenched 

material or during the initial stage of crystallization. However, what is interesting is that the 

pre-peak observed in the as-quenched state evolves into the Bragg reflection of MS1. 

In order to clarify crystallization in the 30 m/s melt spun material S/TEM analysis 

was performed from samples isothermally annealed at 451 K then quenched. Critical 

annealing points were chosen on the basis of the DSC data and are marked as A, B, C and D 

on Fig. 7. Fig. 8a and b shows BF TEM and High Angle Annular Dark Field (HAADF) 

STEM images, respectively, of Al90Sm10 alloy annealed to point A, just after the onset 

temperature. SAED patterns exhibit broad rings corresponding to the 200 and 220 reflections 

of fcc-Al. Nanocrystals of fcc-Al in the range of 5-10 nm can be resolved now on BF images 

as shown by arrows in Fig. 8a.  

The nanocrystals of fcc-Al can also be easily recognized in Fig. 8b as dark contrast 

spherical clusters separated by Sm rich (white contrast) regions.  The size of the clusters at 

this stage of crystallization is on the order of 7 nm. Fig. 9a shows multiple MS1 cubic 

crystals, ≈120 nm wide, that appear after 10 minutes at 451 K. The inset shows the SAED 
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pattern taken from the surrounding matrix region.  The MS1 continues to grow (Fig. 9b, c) 

until the grains impinge on one another, Fig. 9d. An intriguing observation is the existence of 

a high nucleation density of fcc-Al inside the cubic crystals. This is initially evident in Fig. 

9c and is shown more clearly in Fig. 10. The inset in Fig. 10a shows an SAED obtained from 

the cubic structure with the MS1 reflections indexed, as well as the rings corresponding to 

fcc-Al.  From the rings it can be concluded that fcc-Al nanocrystals are randomly distributed 

and that no specific epitaxial orientation was observed between the MS1 and fcc-Al phases. 

Fig.10b shows the DF images of fcc-Al nanocrystals imaged using the (111) fcc-Al 

diffraction ring. Fig. 11 shows the particle size distribution for fcc-Al in as-quenched and 

annealed samples. The number of particles was counted within the resolution limit of 

HRTEM and BF conditions for as-quenched and isothermal annealed specimens, 

respectively. The particle size distribution analysis showed an increase in size distribution 

with increasing time. This increase saturates for 36 and 80 min annealed samples. The 

average particle size and number density of particles estimated from BF images are given in 

Table 2. The particle number density showed a clear increase after the first crystallization 

event. The average particle size of fcc-Al increased from 7.5 to 15 nm and remained around 

16 nm after 80 min 

Discussion 

The XRD analysis resolved two metastable phases, namely, t-Al11Sm3 and ER, 

accompanied by amorphous material and fcc-Al for the Al90Sm10 ribbons solidified at wheel 

speeds of 10 and 20 m/s. A very similar type of solidification path was previously observed 

for Al90Sm10 high pressure He gas atomized powders that were sieved to a size range of less 

than 5 µm in diameter [14]. In that study t-Al11Sm3 and fcc-Al formed an eutectic structure 

and ER solidified as dendrites, according to [14]. The ribbons produced at 30 m/s wheel 

speeds do not possess metastable t-Al11Sm3 or ER phases but contain clusters of fcc-Al on 
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the order of 5 nm embedded in a disordered matrix (Fig. 2). Previous studies of the same 

alloy system [6, 14, 16, 22, 23] showed that in the compositional range resulting in 

amorphous formation [22] nanocrystals of fcc-Al are always present if the alloy is quenched 

from the liquid state. However, if the glassy state is achieved by changing the processing 

path from melt-quenching to cold-rolling, formation of fcc-Al nanocrystals is completely 

avoided, as evidenced by the results of  isothermal crystallization experiments [22]. This 

result was explained by hypothesizing pre-existing “quenched-in” fcc-Al nuclei [22, 24, 25]. 

However, the origin of these possible “quenched in” nucleation sites was not discussed. In a 

previous study using Al100-xSmx (x=8, 10, and 12) alloys, it was speculated that an Al-Sm 

MRO structure may survive in the melt, creating clusters of Al-Sm atoms which essentially 

act like distinct “superatoms” with a slightly broad size distribution and huge diameters as 

compared to individual Al and Sm atoms in the matrix [16]. It was hypothesized that upon 

rapid solidification these clusters create a local atomic size effect, similar to that seen in 

multi-component bulk amorphous alloys, preventing the complete crystallization of the Al 

rich matrix. Evidence of the Al-Sm ordered structure is suggested by the presence of extra 

reflections at scattering vectors of 12.6 nm-1, and 33.4 nm-1 below and above the major 

amorphous peak at 26.1 nm-1 in the HEXRD diffraction pattern of Fig. 2a. Possible structures 

for this Al-Sm ordered structure calculated using reverse Monte Carlo and Voronoi 

Tessellation analysis techniques were discussed in [16].  

The persistence of structural rearrangement in the as-quenched structure resulting in 

formation of a network of Al-Sm clusters was observed by atom probe tomography [6]. 

These clusters appeared to divide the matrix into nano-scale regions and, depending upon the 

size of theses regions, some percentage of fcc-Al clusters reach the critical nucleus size and 

grow within the network while the remainders stay at subcritical size. When these as-

quenched samples are annealed the subcritical Al regions act as pre-cursors for fcc-Al 

crystals. 



 184

The percentage of subcritical Al clusters and the number of supercritical size particles 

after nucleation is determined by the cooling rate. In a previous study it was shown that the 

average size of supercritical fcc-Al particles in Al90Sm10 ribbons produced at 40 m/s wheel 

speed is considerably smaller than ones produced at 30 m/s [6]. Also, in a study of Al92Sm8 

the size of supercritical Al particles in a ribbon specimen produced at 55 m/s was so small 

that they could only be detected with fluctuation electron microscopy [15].  

The effect of cooling rate can also be seen on the isothermal DSC traces of Al90Sm10 

produced at 10, 20, and 30 m/s shown in Fig. 3. The as-quenched structures of Al90Sm10 for 

these three wheel speeds (cooling rates) resulted in formation of a glassy state up to some 

degree (Fig. 1). The XRD results after isothermal crystallization showed that the glassy state 

crystallizes to the same metastable cubic phase independent of the cooling rate applied in this 

study. However, for the 30 m/s wheel speed samples, DSC shows two exothermic events 

while for 10 and 20 m/s samples it only shows a single exothermic event (Fig. 3 and Fig. 4). 

The room temperature (Fig. 5) XRD and high temperature in-situ (Fig. 6) HEXRD analysis 

indicated that the major crystallization event is the formation of the cubic phase (MS1). TEM 

analysis of the 30 m/s sample before and after the onset point (Fig. 7) revealed that the initial 

exothermic event observed in DSC corresponds to crystallization of fcc-Al. The fcc-Al 

particles are large enough to be resolved with BF in annealed samples (e.g. point “A” in Fig. 

7), but are so small that they can only be resolved using HRTEM conditions (Fig. 2).  Thus, 

the trend of ever-decreasing fcc-particle size with cooling rate appears valid. 

The average fcc-Al particle size is on the order of 7.5 nm with a standard deviation 

(STD) of 2.1 nm after an isothermal anneal at 451 K for 5 min (Table 2). The size of the fcc-

Al particles reaches an average value of 15.1 nm with further annealing for 36 min. (point 

“C” in Fig. 7) and saturates around 16 nm for 80 min. (point “D” in Fig. 7) when the 

amorphous material is fully crystallized. This result shows that fcc-Al nanocrystals 

demonstrate a restricted growth, with long-range diffusion possibly being blocked by the 
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observed Sm rich clusters, which will be slow to diffuse. This structure is best seen in the 

HAADF image in Fig. 8b, where the fcc-Al nanocrystals (dark contrast) surrounded by Sm 

rich (bright contrast) matrix. Moreover, this is also in good agreement with the idea of having 

regions containing clusters of super and subcritical Al divided by Al-Sm “superatoms” in the 

as-quenched state. For 30 m/s wheel speed samples the cooling rate is high enough to retain a 

sufficient number of subcritical Al clusters in the as-quenched state. When these samples are 

isothermally annealed supercritical size fcc-Al crystals form (nucleate) from subcritical size 

Al clusters. Therefore, in the fully crystal samples fcc-Al are present that originated both 

from supercritical size particles formed during rapid solidification and subcritical size Al 

clusters from which supercritical-sized particles nucleate during solid-state annealing. The 

latter event appears as an exothermic peak on DSC scans (Fig. 3 and Fig. 4). Moreover, 

particle density measurements (Table 2) performed before and after the first crystallization 

peak indicate an increase of particle density that agrees with an additional nucleation process. 

High temperature in-situ HEXRD (Fig. 6) does not resolve the fcc-Al observed in TEM BF 

images (Fig. 8) during the early stages of crystallization simply due to low volume 

percentage and small size of the fcc-Al crystals, which at best would manifest itself as a 

slight line broadening.    

Detailed analysis of the crystallization kinetics of Al90Sm10 melt spun (30m/s) 

samples carried out by isothermal DSC measurements (Fig. 4) showed two overlapped 

exothermic peaks, indicating two crystallization reactions after a certain incubation time 

(τ).This is in good agreement with TEM analysis which indicates crystallization of fcc-Al 

and MS1 phases after initial crystallization. In order to separate these two exothermic peaks, 

the DSC trace at 451 K was selected and the peaks were deconvoluted using a Gaussian 

approximation. Fig. 12a and b shows the deconvoluted and integrated DSC traces, 

respectively.  
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The volume fraction x can be described by the well know Johnson-Mehl-Avrami 

(JMA) equation [26]: 
    [ ]{ }ntkx )(exp1 τ−−−=                                                           (1) 

where x is the volume fraction of crystallized phase, t annealing time, τ incubation time, k 

reaction rate constant, and n is the Avrami exponent which represents the characteristics of 

nucleation and growth kinetic mechanisms [27].  These values are shown in Figure 12b.  The 

JMA plots of ln[-ln(1-x)] versus ln(t-t0) over the range of 20-80% transformation at 451 K is 

shown in Fig.13a. The Avrami exponents derived from the slopes of the lines in Fig.13a are 

found to be 2.9 and 2.93 for fcc-Al and MS1, respectively. It should be noted that Avrami 

exponents calculated here give an average values of n for a predetermined crystallization 

regime. It has been proposed [28, 29] that the first derivative of JMA plots with respect to 

crystallized volume fraction, which is the change of Avrami exponents (also called the local 

Avrami exponent, n(x)), gives more detailed information during crystallization. The local 

Avrami exponents calculated for fcc-Al and MS1 reflect variations in nucleation and growth 

during crystallization. In both cases the local Avrami exponent starts from a value lower than 

2 and increases to approximately 3 for fcc-Al and 3.2 for MS1 after 20% of crystallization is 

completed. During the main crystallization regime (20<x<90%), it stays around 3 and 3.2 for 

fcc-Al and MS1, respectively. For the final stage (x>90%), it shows a slight decrease 

followed by a sharp increase towards a value of 4.  

The average value of the Avrami exponent calculated for fcc-Al is 2.9. This number 

is close to n=3, which indicates a zero nucleation rate with interface controlled growth or an 

increasing nucleation rate with diffusion controlled growth [27]. As was discussed before, 

there are two distinct origins for fcc-Al particles that form during full crystallization, 

supercritical particles that nucleate during rapid solidification and subcritical clusters that 

grow to supercritical size during solid-state annealing at high temperatures. The latter gives 

rise to the initial peak in the isothermal DSC trace in Fig. 12. Fig. 12b shows that 
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crystallization of the secondary fcc-Al peak that occurs during solid-state annealing is much 

faster than the crystallization of the MS1 cubic phase. These results are in good agreement 

with TEM observations (Fig. 9). It has also been shown that the average size of fcc-Al 

clusters saturates at around 16 nm before the crystallization of MS1 is completed, as 

indicated in Table 2. According to TEM and APT [6] results a realistic model for fcc-Al 

formation during solid-state annealing can be site saturation and interface controlled growth 

as predicted with JMA. This might seem to conflict with the findings in Table 2 where the 

average particle density of fcc-Al was found to increase with isothermal annealing. However, 

it must be remembered that the first exothermic DSC peak represents the nucleation of fcc-Al 

forming during solid state annealing from subcritical clusters. The average particle density 

measurements of fcc-Al as determined using TEM and shown in Table 2 give an average 

value that includes fcc-Al forming both initially during solidification and secondarily as a 

result of devitrification, since the two are indistinguishable. Therefore, it is not possible to 

comment on the nucleation rate of the secondary fcc-Al from TEM analysis.  

The Sm rich clusters revealed in HAADF and BF images in Fig. 8 and Fig. 9, 

respectively, is hypothesized to block long-range diffusion of Al in the matrix. Therefore, the 

growth process of fcc-Al particles should be mostly controlled by the interplay between them 

and the Sm rich clusters. It is possible that initially growth of fcc-Al is under interface 

control; once a particular size is attained further growth is controlled by diffusion within the 

nanoregions defined by the Sm-rich network. The observed saturation in average particle size 

may indicate point as which the Sm rich clusters prevent long-range diffusion. If such a 

mixed growth model is active for fcc-Al formation, a key assumption of JMA is violated and 

further studies beyond JMA modeling are required to explain this mechanism. The normal 

definition related to the value of the Avrami exponent calculated for solid-state fcc-Al 

formation is also not applicable as this number does not represent the whole crystallization of 

fcc-Al.  A great portion of fcc-Al has already nucleated before solid-state annealing.  
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The MS1 phase is a metastable compound and decomposes to a metastable hexagonal 

phase upon isochronal heating [6]. In this study no crystallographic relationship was found 

(Fig. 10) between fcc-Al and the MS1 phase and MS1 is assumed to be randomly nucleate in 

the matrix. The growth rate of MS1 during isothermal annealing at 451K was estimated to be 

constant and on the order of 15 nm/min from TEM analysis. The migration of Sm atoms 

during the growth of Al phase may trigger the nucleation for MS1. However, due to the 

restriction of long range diffusion in the matrix a polymorphic-type of reaction is more 

probable for MS1 where the phase crystallizes presumably from the same composition in 

matrix. The in-situ isothermal HEXRD analysis (Fig. 6) showed that the pre-peak evolves 

into the Bragg reflection of MS1. Moreover, the activation energy for the formation of MS1 

was found to be relatively low as compared to many other amorphous alloys [6] which 

indicates a low thermal stability against crystallization. All of these results indicate that it is 

quite possible MS1 nucleates from the Sm-rich clusters (MRO) found in the as-quenched 

structures [16].  

Assuming a polymorphic crystallization with constant growth rate, the Avrami 

exponent estimated for MS1 is in close vicinity to n=3, similar to that determined for 

crystallization of fcc-Al.  While it has been noted that the Avrami exponent calculated for 

fcc-Al does not represent the formation of all fcc-Al after crystallization, and therefore is not 

applicable, this is presumably not the case for formation of MS1. Thus, site-saturation may 

be occurring as regards MS1 formation.  

If the ratio of the fcc-Al nucleated during rapid solidification versus solid-state 

annealing is changed (such as when the cooling rate is altered) the crystallization mechanism 

may differ.  This is an interesting possibility that still remains to be explored. Such a study 

could further elucidate the complex devitrification sequence seen in the Al-Sm system. 
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Conclusion 

Cu-block melt-spinning of Al90Sm10 at different wheel speeds of 10, 20, and 30 m/s 

resulted in formation of an amorphous phase with a variety of metastable crystalline 

compounds and fcc-Al. The formation of metastable compounds was suppressed with 

increasing wheel speeds. The highest cooling rate achieved in this study (at 30 m/s wheel 

speed) yielded a high number density of fcc-Al crystals in the size range of 2-5 nm, 

embedded in a disordered matrix. The isothermal crystallization of samples produced at 30 

m/s resulted in two exothermic events while the 10 and 20 m/s samples show only a single 

exothermic event. Further XRD analyses showed that the major crystallization event is the 

formation of MS1, which is a metastable cubic phase. TEM analysis showed that the minor 

crystallization event for 30 m/s is the additional nucleation of fcc-Al. The number of 

subcritical size Al particles retained during quenching appears to be enough to create an 

exothermic peak on the isothermal DSC trace for 30 m/s samples. These results are in good 

agreement with the idea of having Sm rich clusters (MRO) in the as-quenched state, which 

divide the Al rich matrix into nanoscale regions. The subcritical size Al regions act as pre-

cursors for formation of fcc-Al formation upon high temperature heat treatment. The average 

particle density and size of fcc-Al were found to saturate before complete crystallization is 

established. This indicates that fcc-Al shows a restricted growth and that long range diffusion 

of Al was prevented by the presence of Sm rich clusters.  

The crystallization mechanism was investigated through a JMA approach using 

isothermal DSC studies at 451 K. The Avrami exponent estimated for fcc-Al represents only 

the crystallization during solid-state annealing and suggests a zero nucleation rate with 

interface-controlled growth. The observed saturation point in average particle size may 

indicate a change in growth mode from interface to diffusion control. The Avrami exponent 

calculated in this study represents only a portion of fcc-Al crystallization since some fcc-Al 

was found to pre-exist in the as quenched structure. Thus, the determined exponent it does 
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not illustrate the total crystallization event for fcc-Al.  A similar Avrami exponent was 

calculated for MS1 also indicating that the reaction was dominated by a fixed number of 

nuclei.  This suggests that MS1 forms by a polymorphic crystallization. The pre-peak 

observed in the as-quenched samples may indicate that Sm-rich clusters act as the pre-cursors 

of MS1. Further experimental and theoretical studies are in progress to identify the possible 

mechanisms behind the high number density of nanocrystals seen. 
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Figure 1.  Cu Kα XRD patterns of as-quenched Al90Sm10 samples produced at wheel 

speeds of 10, 20 and 30 m/s. 
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(a) (b)(a) (b)

 
Figure 2. (a) HEXRD pattern and (b) HRTEM image of as-quenched Al90Sm10 

produced at a wheel speed of 30 m/s. Insets shows BF image and SAD patterns (a) and a 
fast Fourier transformed (FFT) version of the HRTEM image of the square shown in 

(b). Arrows show the fcc-Al nanocrystals.  
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Figure 3. Isothermal DSC traces of Al90Sm10 samples produced at 10, 20 and 30 m/s at 

451 K. 
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(a) (b)(a) (b)  
Figure 4. (a) Isothermal DSC traces of Al90Sm10 samples produced at 30 m/s between 
451 and 461 K. (b) Crystallized volume fractions and incubation times with respect to 

annealing temperatures. 
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Figure 5. XRD patterns of Al90Sm10 samples produced at 10, 20 and 30 m/s after full 

crystallization at 451 K. Inset shows the position of (200) Bragg reflection for MS1 and 
t-Al4Sm phases. 
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(a) (b)(a) (b)

 
Figure 6. (a) HEXRD image plate scans and (b) integrated XRD pattern series with 

respect to annealing time at 457 K for melt-spun Al90Sm10 at a wheel speed of 30 m/s.  
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Figure 7. Isothermal DSC trace at 451 K showing the critical annealing points for 

Al90Sm10 produced at 30 m/s wheel speeds for S/TEM analysis.  
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(a) (b)(a) (b)

 
Figure 8. (a) BF image showing the fcc-Al nanocrystals formed after isothermally 
holding the as-quenched sample up to point A in Fig. 7. Insets represent the fcc-Al 

nanocrystals (right corner) and corresponding SAED pattern (left corner). (b) HAADF 
image showing fcc-Al nanocrystals (dark) surrounded by Sm rich matrix (bright).  
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Figure 9. BF images of Al90Sm10 alloy (produced at 30 m/s wheel speed)  and quenched 
at 451 K for (a) 24 min. inset shows the SAD for the amorphous like region, (b) and (c) 

36 min., and (d) 80 min, inset shows the SAD for the MS1 phase at (001) zone axis.   
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(a) (b)(a) (b)

 
Figure 10. (a) BF image and SAED pattern (inset) of fcc-Al nanocrystals located in 

MS1. (b) DF image of fcc-Al nanocrystals from (111) reflections.  
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Figure 11. The fcc-Al particle size distributions for as-quenched and isothermally 

annealed Al90Sm10 specimens at 451 K for 5, 36, and 80 min.  
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(a) (b)(a) (b)

 
Figure 12. (a) Deconvoluted fcc-Al and cubic events and the raw DSC trace at 451 K (b) 

The crystallized fraction vs annealing time curve separated fcc-Al and cubic events.    
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Figure 13. (a) The JMA plots of ln[-ln(1-x)] versus ln(t-t0) for crystallization of fcc-Al 

and MS1 phases (b) The derivatives of JMA plots with respect to crystallized fractions. 
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Table 1. Phases observed in melt-spun Al90Sm10 

Component Structure Space Group Lattice Parameters (nm) Reference 
Amorphous     

fcc-Al cubic Fm3m a=0.405  
t-Al11Sm3 tetragonal I4/mmm a=0.428; c=0.992 [14, 19, 

20] 

ER orthorhombic  a=0.416; b=0.634; c=1.328 [14] 
MS1 cubic  a=0.9831 [6, 21] 
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Table 2. Particle density (Nv) and average particle size with standard 
deviation (d) for fcc-Al nanocrystals after isothermally annealed at 451 K.  

Isothermal at 
451 K 

5min 36 min 80 min 

Nv (m-3) 1.31x1022 3.7 x 1022 3.9x1022 

d (nm) 7.5 (2.1) 15.1 (5.2) 16.0 (6.8) 
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CHAPTER 7: GENERAL CONCLUSION 

Summary 

The research effort detailed in this study couples experimental investigations with 

computational and analytical methods to investigate the structural dynamics in highly driven 

metallic systems. The research was mainly focused on two different Al based alloys, Al-Si 

and Al-Sm, each possessing favorable yet different characteristics to be explored under far-

from equilibrium conditions. The methodology of this study was to examine the effects of 

non-equilibrium solidification on Al-Si and Al-Sm alloys at different compositions. The 

effects are considered in terms of (i) change in solidification morphology, (ii) amorphous vs 

nanocrystal formation, (iii) liquid-glass, glass-crystal, crystal-crystal transitions with respect 

to degree of undercooling, type of solute atom (Si or Sm), and composition, as well as 

processing methods (gas atomization or melt spinning). Analytical models such as TMK, 

JMA and simulation techniques such as RMC and Voronoi Tessellation analysis were 

performed and coupled with experimental observations. The following conclusions can be 

summarized as the major findings achieved in this study.  

The relationship of solidification microstructure and growth morphology to alloy 

liquid undercooling was investigated in a range of Al-Si alloys. Five alloy powder batches of 

Al-Si xwt% (x = 12.6, 15, 18, 25, and 50) were generated by using high pressure gas 

atomization with N2 and He atomization gas [1]. Al-50wt% atomized particles showed a 

large number of primary Si crystals surrounded by aluminum rich matrix which may take the 

form of cells or dendrites. The sizes of the individual primary Si crystals decrease with 

particle size. Al-25wt%Si atomized particles with relatively large diameters showed primary 

Si, Al dendrites and a coarse eutectic microstructure. In all microstructures, Si crystals are 

surrounded by Al dendrites, indicating that Si acts as a catalytic site for Al dendrites in the 

interior of the powder rather than at the surfaces. The eutectic percentage increases with 
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decreasing Si content and reaches its maximum value at 18 wt%Si.  In very fine droplets of 

Al-18, 15 and 12.6 wt% Si observed using TEM, most bulk catalytic sites (like primary Si) 

are removed. In these particles, nucleation often occurs at the surface of the droplets and 

solidification proceeds with the formation of microcells surrounded by a fine eutectic 

structure. The relationship between the particle size and eutectic spacing were also 

investigated and the results were combined with a previous study [2]. SEM and TEM 

micrographs were used to measure the coupled eutectic spacing for different compositions 

and particle sizes. Both the atomization gas and particle diameter have an effect on average 

eutectic spacing in the particles. Increasing the solute composition, or changing the 

atomization gas from He to N2, causes an increase in eutectic spacing. It is expected that a 

lighter gas such as He will produce faster cooling as it has a greater heat capacity and thermal 

conductivity.  However, the type of atomization gas (He or N2) has no major effect when 

considering powders below 10 microns in diameter. Extremely fine eutectic structures were 

resolved with TEM.  

The relationship between interface velocity and interface undercooling with eutectic 

spacing was calculated using the eutectic growth model developed by Jackson-Hunt (JH) [3] 

for Al-18wt%Si. The results are consistent with the fact that small diameter droplets will 

have a larger undercooling for nucleation. It is also seen that the change in interface 

temperature is large for small droplets since they are more subject to the effect of 

recalesence. The change in velocity and undercooling becomes small after particle size 

becomes larger than 30 µm, indicating that the effect of recalesence decreases. The JH model 

was developed under the condition that the diffusion distance in the liquid is much larger 

than the eutectic spacing, which is justified for eutectic growth at low velocities but not under 

rapid solidification conditions. A eutectic growth model under rapid solidification conditions 

developed by Trivedi, Magnin and Kurz (TMK) [4] was also employed. A numerical 

program in MathCAD was used to relate the eutectic spacing to the eutectic front velocity in 
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different size particles subjected to high cooling rate solidification. At low Péclet numbers 

TMK and JH are in good agreement, however, at high Péclet numbers TMK deviates from 

JH prediction. It is interesting that this divergence point corresponds to the particle diameters 

where the type of gas used during atomization ceases to affect the microstructure, suggesting 

that growth rate is governed by recalesence in this regime. Moreover, this diameter is 

consistent with the appearance of the microcellular growth morphology and with the 

divergence of the JH and TMK models for eutectic growth at Péclet numbers greater than 

~0.2.  

The Al-Si powders exhibiting different “classes” of microstructures (eutectic, 

dendritic and microcellular) were collected and extruded at 300°C to compare their 

mechanical strengths [5]. The results of the tensile test measurements indicate that yield 

strength (YS) and ultimate tensile strength (UTS) of microcellular Al-12.6 wt% Si is as high 

as that for eutectic Al-18 wt%, with a large increase in ductility. Microcellular Al-Si alloys 

may be an alternative structure to a fine eutectic in structural designs where high strength and 

ductility is required. 

The Al-Sm system is an Al-RE marginal glass former system with complex 

devitrification and solidification behaviors. Rapid solidification of Al-Sm alloys was 

obtained by He gas atomization (for Al90Sm10) and Cu block free-jet melt spinning for           

Al(100-x)Smx (x=8, 10, and 12). For a given atomization process, droplet diameter can be 

directly correlated to undercooling, and decreasing particle size was shown to give rise to the 

formation of fcc-Al, tetragonal Al11Sm3, orthorhombic Al4Sm, and a new orthorhombic 

phase called ER. Decreasing particle size tends to decrease the internal nucleant 

concentration, which promotes larger undercoolings. This results in formation of amorphous 

phases with a high density of fcc-Al nanoclusters. Fcc-Al nanocrystals (2-5 nm) were also 

observed after melt-spinning (30 and 40 m/s wheel speeds). Interestingly these nanocrystals 

cannot be detected in HEXRD, but atom probe tomography APT data clearly shows 
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nanoscale chemical partitioning within a network of homogeneous matrix. The existence of 

nanocrystalline fcc-Al influences the kinetics of crystallization, and isochronal heating 

experiments indicate that the melt-spun material has a relatively low thermal stability against 

crystallization. Devitrification of the as-quenched structure over the temperature range 298-

773 K at a heating rate of 5 K/min was investigated in-situ using high energy synchrotron X-

ray radiation and the devitrification sequence was revealed as Amorphous → MS1 (cubic) → 

H1(hexagonal) → Al4Sm (orthorhombic) [6]. It should be noted that fcc-Al nanocrystals 

exist with amorphous phase as confirmed with ATP and HRTEM.  

Detailed analysis of the as-quenched Al(100-x)Smx (x=8, 10, and 12) structures by 

HEXRD and HRTEM revealed a pre-peak well below the major amorphous peak in total 

structure factor and rotationally averaged Fourier transform patterns, respectively. A very 

similar type of a pre-peak was also resolved in Al90Sm10 approximately 300 K above the 

liquidus temperature. This result shows that the local chemical or topological ordering 

present in the liquid persists in the amorphous solid. Simple calculations based on the 

position and width of the pre-peak indicate clustering on the order of 1.5 nm for liquid and 

2.5 nm for the amorphous phase with a structural unit dimension of 0.495 nm. The Voronoi 

tessellation analysis of the local atomic structures based on RMC simulation suggests a 

deformed bcc-like structure surrounding Sm with coordination of higher than 15 atoms for 

as-quenched alloys. The “d” spacing of the high temperature metastable tetragonal phase and 

the first cubic phase observed in the devitrification sequence match the structural unit 

dimension measured for as-solidified structures. These are the d-spacings associated with the 

Sm-bearing planes, consistent with the RMC results, and indicate that the pre-peak can be 

attributed to a strong Sm-Sm correlation in the amorphous state. The MRO clustering in the 

liquid is believed to form due to strong interactions between Al and Sm atoms. The MRO 

clusters essentially may act like distinct “superatoms” with a slightly broad size distribution 

and huge diameters as compared to individual Al and Sm atoms in the matrix.  Upon rapid 
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solidification it is hypothesized that these clusters cause a local atomic size effect, similar to 

that seen in multi-component bulk amorphous alloys, preventing the complete crystallization 

of the Al rich matrix. This results in the as-quenched structure being divided into nano-scale 

regions by a network of MRO clusters.  Depending upon size of these regions a certain 

percentage of fcc-Al clusters will reach the critical nucleus size with the remainder staying 

below this size. This explanation is supported by results obtained for Al90Sm10 using three 

dimensional atom probe tomography (3D APT). The cooling rate appears to be directly 

correlated with the percentage of Al that cannot reach the critical nucleation size. However, it 

should be noted that cooling rate has a minor effect on the presence of MRO in the as-

quenched state. MRO was observed in all liquids for all initial melt temperatures used in this 

study. Therefore, MRO stability in the liquid needs be studied directly with respect to initial 

melt temperature, rather than assuming that the quenched structure varies with cooling rate of 

the melt.  

The hypothesis of having structural arrangements in the as-quenched state in the form 

of an Al-Sm network which divides the matrix into nano-scale regions is also supported by 

the crystallization analyses results. If one considers the isothermal DSC traces of Al90Sm10 

produced at 10, 20, and 30 m/s, the as-quenched structures of Al90Sm10 for these three wheel 

speeds (cooling rates) resulted in formation of a glassy state up to a certain degree; the 

metastable glass then transforms to the same metastable cubic phase independent of the 

cooling rate applied in this study. However, for the 30 m/s wheel speed samples DSC shows 

two exothermic events while for the 10 and 20 m/s samples it only shows a single exothermic 

event. TEM showed that the extra exothermic event is coming from nucleation and growth of 

fcc-Al.  These results can be explained by positing that for the 30 m/s wheel speed samples 

the cooling rate is high enough to keep a sufficient number of subcritical Al particles in the 

as-quenched state. When these samples are isothermally annealed supercritical size fcc-Al 

crystals form (nucleate) from subcritical size Al. Therefore, in the fully crystalline samples 
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fcc-Al originates both from supercritical size particles formed during rapid solidification and 

subcritical size Al that nucleates during solid-state annealing, with the latter causing the 

exothermic event resolved in DSC. 

The crystallization mechanism was investigated through a JMA approach using 

isothermal DSC experiments conducted at 451 K. The Avrami exponent estimated for fcc-Al 

represents only the crystallization during solid-state annealing, and it suggests a zero 

nucleation rate with interface controlled growth. A similar Avrami exponent calculated for 

MS1 also indicated that the reaction was dominated by a fixed number of nuclei with a 

polymorphic crystallization. The pre-peak observed in the as-quenched state may indicate 

that Sm-rich clusters act as the pre-cursors of MS1. The Avrami exponent calculated in this 

study represents only some portion of the fcc-Al crystallization since some fcc-Al was found 

to pre-exist in as quenched structure.  Thus, it does not illustrate the total crystallization event 

for fcc-Al. 

Recommendation for Future Work 

The Al-Sm system is a representative of the Al-RE and Al-RE-TM class marginal 

glass formers. These types of alloys have attracted much attention due to their fascinating 

lightweight structural properties. Apart from their possible engineering applications they also 

constitute an important class of materials that may aid in understanding the long-time 

mysterious metallic glass structure. Based on prior results discussed in this dissertation, 

obtaining answers to the following questions can be considered as a possible future direction 

of study. 

Can a fully amorphous state be obtained by rapid quenching of this alloy at any 

composition? 
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What is the effect of the structural rearrangement (the pre-peak) in the liquid on 

amorphous solid formation? Does the rearrangement in the liquid favor amorphous solid 

formation? 

What is the structural origin of the pre-peak, is it related to identifiable cluster 

populations? 

What specific structures give rise to the observed MRO in amorphous Al-Sm, and 

how it this structure spatially distributed within the amorphous phase? 

Is the fcc-Al nucleation in the amorphous matrix homogeneous or heterogeneous and 

what is the origin of the very high nucleation density observed? 

In order to address these questions, rapid solidification techniques with very high-

solidification rates and initial liquid temperatures are required. One possible means to obtain 

these conditions is the new electromagnetic levitation chamber (Figure 1) equipped with 

supplemental laser/incandescent heating sources, gas cooling ports for enhanced temperature 

control, and a double-anvil splat quenching apparatus for rapid solidification, now located in 

Ames Laboratory.  This apparatus could be a good choice to investigate the structural origin 

of the pre-peak observed in low-Q region of total structural factor analysis for Al-Sm 

liquid/glass alloys for a number of reasons. Electrostatic levitation will allow us to superheat 

Al-Sm alloys in a non-contact, contamination free environment. The as-quenched ribbons of 

Al-Sm superheated at predetermined temperatures (specifically within a temperature range of 

900 and 1600 ° C) can be characterized using X-ray and electron diffraction methods. At this 

point FEM is particularly useful to resolve any MRO structures. A decrease in the amount of 

MRO (intensity of the pre-peak) with respect to increase in quench temperature is an 

expected result. Any structural ordering should decompose and the  liquid alloy is expected 

to act as a single phase as a result of increasing the liquid temperature. However, its effect on 

amorphous solid formation and the transformation mechanism is mysterious and is worthy of 

further study.  
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Another critical measurement is the distribution of the MRO Al-Sm clusters. One of 

the important hypotheses of this dissertation is the formation of nano-zones of MRO in liquid 

which can act as nucleation sites for fcc-Al. Therefore, the size of the nano-zones is a critical 

parameter to measure. This can be conducted using APT, HRTEM, and HAADF at different 

compositions, quench temperature and cooling rates. The critical issue here is the size of the 

nano-zone with respect to the critical nucleus size for the fcc phase. The application of the 

classical theory to this situatin requires reliable calculations of bulk free and interfacial free 

energies. 

If a fully amorphous Al-Sm alloy phase cannot be produced using levitation melting, 

other alternatives such as spark erosion processing may be worth attempting. Grams of 

nanoparticulates of Al-Sm can be produced using this technique. One of the advantages this 

technique would be that using nanoparticles eases TEM sample preparation. Fully amorphous 

samples can be devitrified and the devitrification path can be compared to those obtained 

from samples possessing structural rearrangements. The nucleation density of fcc-Al should 

be lowered for the fully amorphous case as the MRO, which is hypothesized to act as a 

catalyst, will be absent. The number densities could be calculated from isothermally heated 

samples using BF, DF techniques coupled with thickness measurements conducted using 

EELS. Such a study will be helpful in determining the role of MRO in formation of a high 

nucleation density of fcc-Al. Chemical fluctuation effects could theoretically be monitored 

using APT. Unfortunately, nanoparticles can be problematic with APT, but small angle X-ray 

scattering could be an alternative. 

Lastly, Al-Sm is only a representative alloy system. While the results presented in 

this dissertation are applicable to other Al-RE, and Al-RE-TM marginal glass former alloys, 

some other Al based or Fe based marginal glass forming alloy should be investigated using a 

similar concept and experimental procedures to further validate the conclusions and 

hypotheses raised by the current study on Al-Sm.  
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Figure 1. (a) Levitation melting set-up in Ames Laboratory, (b) levitation melting in 
operation with an Al test sample, the double anvil splat quench is shown by an arrow.  
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