skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and Construction of a Gamma Reaction History Diagnostic for the National Ignition Facility

Conference ·
OSTI ID:961544

Gas Cherenkov detectors have been used to convert fusion gammas into photons to achieve gamma reaction history (GRH) measurements. These gas detectors include a converter, pressurized gas volume, relay optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90º Off-Axis Parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion.1 Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (our response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The detector optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO2 or SF6) volume. Because light is collected from source locations throughout the gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation locations along the gas cell. This design incorporates a fixed time delay that allows the detector to recover from prompt radiation. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they traverse the gas volume. A Monte Carlo model of the conversion process from gammas to Cherenkov photons is used to generate photon trajectories. The collection efficiencies for different gamma energies are evaluated. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds. This GRH design is compared to a gas Cherenkov detector that utilizes a Cassegrain reflector now used at the OMEGA laser facility. 1. R. M. Malone, H. W. Herrmann, W. Stoeffl, J. M. Mack, C. S. Young, “Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90º off-axis parabolic mirrors,” Rev. Sci. Instrum. 79, 10E532 (2008).

Research Organization:
National Security Technologies, LLC (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NA)
DOE Contract Number:
DE-AC52-06NA25946
OSTI ID:
961544
Report Number(s):
DOE/NV/25946-732; TRN: US0903148
Resource Relation:
Conference: 36th International Conference on Plasma Science (ICOPS) and 23rd Symposium on Fusion Engineering (SOFE); San Diego, California; May 31-June 5, 2009
Country of Publication:
United States
Language:
English