skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Portable, Low-cost NMR with Laser-Lathe Lithography Produced

Journal Article · · Journal of Magnetic Resonance
OSTI ID:925997

Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5 mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or 'ex-situ' shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on a laser-fabricated microcoil and homebuilt probe design. For testing this probe, we used a hand-held 2 kg Halbach magnet that can fit into the palm of a hand, and an RF probe with laser-fabricated microcoils. The focus of the paper is on the evaluation of the microcoils, RF probe, and first generation gradient coils. The setup of this system, initial results, sensitivity measurements, and future plans are discussed. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
925997
Report Number(s):
UCRL-JRNL-231726; JMARF3; TRN: US200807%%461
Journal Information:
Journal of Magnetic Resonance, Vol. 189; ISSN 1090-7807
Country of Publication:
United States
Language:
English