skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MODELING THE UREX-PLUS-3A PROCESS USING ASPEN PLUS COUPLED WITH AMUSE

Conference ·
OSTI ID:922285

A plant level simulation of the UREX+3a separations process has been developed using AMUSE for solvent extraction calculations coupled with Aspen Plus for other operations. AMUSE, an Excel based application developed at Argonne National Laboratory [1], performs a rigorous calculation of countercurrent solvent extraction processes using thermodynamically based distribution coefficients specifically designed for nuclear separations. Aspen Plus [2] models simulate other separations plant operations such as head end assembly chopping and dissolution, product solidification, acid recovery, off-gas treatment and waste water treatment. The model predicts that 55 feed streams and 14 output streams will be generated by separations plant operation. On the basis of one metric ton of initial reactor fuel, the model predicts a plant throughput of approximately 200 metric tonnes of material. Approximately half is treated waste water. Another 30% is gas emissions arising from feed to the calcination furnaces. The gas stream is treated for discharge to the environment. About 5% of the throughput is product material. Another 10% is recovered organics and acid that may be recycled. The remaining 5% is contaminated waste that requires disposal. While these results are preliminary, the model has successfully simulated operation of the UREX+3a separations process. Coupling AMUSE to Aspen Plus provides rigorous solvent extraction calculations directly within the plant simulation, greatly increasing the accuracy of the model. Many areas, such as acid recycle, can be optimized to improve performance and reduce material usage and waste generation. The rigorous plant simulation model resulting from this work provides a framework to conduct such studies. The model is easily modified to simulate other variations of the UREX+ process.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-96SR18500
OSTI ID:
922285
Report Number(s):
WSRC-STI-2008-00013; TRN: US0801120
Resource Relation:
Conference: ANS 2008 Annual Meeting
Country of Publication:
United States
Language:
English