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1 Project Objectives

The project focused on development of efficient but robust non-linear inversion algorithms
for electromagnetic induction data, in particular for data collected with multiple receivers,
and multiple transmitters (i.e., at multiple frequencies or with multiple source geometries).
This situation is extremely common in geophysical EM subsurface imaging methods (but
note that in some multi-transmitter problems, e.g., helicopter-borne electromagnetic data,
there is essentially only one receiver for each transmitter; the methods we describe here are
not particularly suited to this challenging problem). Our formulation of the inverse problem
is fairly standard: we seek to construct models that fit observational data, and possibly other
constraints, by minimizing a functional penalizing both data misfit, and deviations of the
modeled conductivity from prior assumptions. Once the penalty functional is defined, inver-
sion is essentially reduced to a problem in non-linear optimization. A focus of our research
has been on development and testing more efficient approaches to solving this optimiza-
tion problem, by taking advantage of some special features of multi-transmitter EM inverse
problems.

A key observation is that for such multi-transmitter problems each step in commonly used
linearized iterative limited memory search schemes such as conjugate gradients (CG) requires
solution of forward and adjoint EM problems for each of the N; frequencies or sources,
essentially generating data sensitivities for an Ny dimensional data-subspace. These multiple
sensitivities allow a good approximation to the full Jacobian of the data mapping to be built
up in many fewer search steps than would be required by application of textbook optimization
methods, which take no account of the multiplicity of forward problems that must be solved
for each search step. We have applied this idea to a develop a hybrid inversion scheme that
combines features of the iterative limited memory type methods with a Newton-type approach
using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new
approach produces results essentially identical to a Newton type Occam minimum structure
inversion, while running more rapidly than an iterative (fixed regularization parameter) CG
style inversion. Memory requirements, while greater than for something like CG, are modest
enough that even in 3D the scheme should allow 3D inverse problems to be solved on a
common desktop PC, at least for modest ( 100 sites, 15-20 frequencies) data sets.

There are a number of alternatives to the specific approach we have developed for multi-
transmitter problems, for example using formulations of the search algorithm in the data
or model spaces. To more effectively test and compare a range of possible approaches we
have developed 2D and 3D inversion software using a modular, object oriented, approach.
Although originally envisaged as an efficient way to prototype the specialized inversion al-
gorithms we are developing, in the course of this project it has become clear that there are
many other justifications for this programming approach. For example, the modular sys-
tem that we have developed cleanly separates the forward modeling code (the core of any
inversion scheme), the optimization algorithms, conductivity parameterizations and regular-
ization, and data functionals. Modifications and extensions (e.g., to consider new data types;
or to parameterize the model differently) require modifications of only a few specific modules,
with minimal or no impact on other modules. Solvers tailored to very different EM inverse
problem (e.g., for active source methods widely used in shallow and commercial applications,
or passive source methods such as magnetotellurics (MT)) can be built from essentially the



same pieces. New developments in modeling methodology (e.g., finite element schemes, now
being developed for more efficient and accurate modeling of sea-floor EM data) could also
in future be “plugged in” to our general framework, as most inversion methods operate in
either the data or model space, and none of the operations in these spaces need depend on
details of the forward mapping. We believe that the results of our efforts to develop modular
3D EM inversion software will prove as valuable as the new search schemes develop using
this system.

2 Accomplishments

Accomplishments during this project are in three general areas, as detailed below, and in the
attached preprint, which has been submitted to Inverse Problems.

2.1 Development of a 3D data space MT inversion

In collaboration with Dr. Weerachai Siripunvaraporn of Mahidol University in Bangkok,
Thailand, we have developed 3D MT forward modeling and inversion codes. The forward
modeling code (Siripunvaraporn et al., 2002) is based on solution of the 3D quasi-static
frequency domain induction equations, formulated in terms of a second order system for
the electric fields on a staggered grid. The inversion (Siripunvaraporn et al., 2005a) is
a data space Gauss-Newton scheme, using a full calculation of the Jacobian. Although
subsequent developments show that considerably more efficient schemes are possible, this
initial work already demonstrates that a Gauss-Newton type inversion based on sensitiv-
ity calculations can be practical, if a dataspace approach is used. For modest model pa-
rameterizations (e.g., N, = 35, N, = 35, N, = 30) and data sets (full impedances (8 real
responses) for N, = 36 sites, Ny = 10 frequencies) the code will run on a modern PC
with sufficient memory (2 Gb) in roughly 1-2 days. We have applied the codes to stud-
ies with synthetic (Siripunvaraporn et al., 2005b) and real data (Siripunvaraporn et al.,
2004). The source code has recently been made available for free non-commercial use at
http://mucc.mahidol.ac.th/Scwsp/wsinv3dmt /index.htm, and use of the code has been cited
in at least a half dozen other publications already.

This 3D inversion code was not developed using the modular approach that we discuss
next, but it has provided a good starting point for further developments, giving us experience
with all of the components needed for the modular code. These 3D codes, which have now
been thoroughly tested and applied to a number of synthetic and real test cases, have also
been very useful for debugging and validating the modular versions. The bulk of this work
was done by Dr. Siripunvaraporn, in consultation with the PI, and other colleagues in
Japan. We have exchanged visits, and maintained an active collaboration, resulting in 4
joint publications over the project period (Siripunvaraporn et al., 2002; 2004, 2005a,b), plus
a number of presentations at international meetings.
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Figure 1: Dependencu structure for 2D modular inverion system. Upper level routines are designed to be completely general
(and in particular will work for both 2D and 3D problems). Second level is specific to the 2D MT problem, but is mostly
independent of the specific modeling approach; much of this code could also be reused for other 2D problems, e.g., active
source. . The model parameter module is self—containted, with all attributes of model parameter objects private.



2.2 Development of a modular inversion and modeling system

The second part of this project has been to develop a modular inversion system for 2D
and 3D frequency domain EM inverse problems. The basis for this modular approach is
the observation that a wide range of different inversion algorithms can be expressed using
a common abstract notation, in terms of a relatively small number of symbols representing
objects such as parameter and data vectors (m, d), the non-linear mapping between model
and data (f(m)), model or data covariances (Cq, Cp,), and the sensitivity matrix or Jacobian
(J with ij element J;; = 0f;/0m;). The sensitivity matrix in turn can be formally represented
in terms of in terms of objects such as EM field vectors (e), differential operators (S, m),
data functionals (f) and their linearizations (L, Q), and a sparse operator (P), which depends
on details of the model parameterization and grid discretization. A fairly general explicit
expression for the Jacobian is

J=LS;,P+Q. (1)

A more detailed definition of all of the component operators, and examples for specific inverse
problem implementations are given in the attached preprint.

Some of the objects represented by these abstract symbols are very large dense matrices
(e.g., S;k) which could not plausibly be formed; and many of the inversion algorithms
discussed do not require actually forming the Jacobian J. In fact, these, and even the sparse
matrices P, L, Q should be viewed as operators which can act on an arbitrary input vector,
producing an output of the appropriate type (e.g., multiplication by S;}m means “apply the
EM forward solver to the input source/boundary condition vector, to get an electric field
object”). A modular system requires development of classes of model parameter, electric
field solution, and data space objects, together with the necessary operators. Individual
modules have been constructed to be as self-contained as possible, and are coded so as to
be as independent as possible from other modules. For example, data space objects connect
to model parameters so indirectly that these objects never need know any details about the
internal representation or methods of the other.

We have developed a prototype of all of the essential modules for both 2D and 3D MT
inversion, using an object oriented approach in Fortran 95. The dependency structure for
the 2D version is given in Figure 1. The top level of the modular system consists of data
space, data sensitivity, and ultimately a number of inversion routines (only one, DCG for
“Dataspace Conjugate Gradients” is illustrated in the figure). Basic object classes that are
manipulated at this top level, such as m, e, d are treated as abstract data types (ADTs), with
generic names, and a set of basic methods for creation, destruction, I/O, basic linear algebra
and dot products. Different instances of these objects and methods are implemented for
different EM problems (in particular, for 2D and for 3D) in the lower level modules. Derived
data types in Fortran 95 are used to define the basic data objects, symbolic operators like "+,
-, %, /7 or ”.dot., =" are overloaded so that top level code for different inversion approaches
can be written almost as abstractly and succinctly as in a text book discussion of geophysical
inverse methods.

Just below the top-level generic inversion modules sits a layer of modules that are specific
to a specific class of EM inverse problem, e.g., 3D MT vs 2D MT vs. active source 2D vs.
global observatory. The modules we have created (so far for 2D and 3D MT) provide tem-
plates for other EM inverse problems. Significant changes from the finite difference modeling
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approach we have focused on would probably require some changes in modules at this level,
but even with significant changes (e.g., to a finite element or integral equations modeling ap-
proach) much of the code at this level could be reused. Adding new measurement operators
would require additions at this level. One key module at this level defines implementation of
the generic EM solution space data type used as an ADT by the top level routines. Note that
for 2D the basic EM solution could be a scalar field (e.g., E, or H, for TE or TM modes),
together with tags to keep track of mode, and pointers to transmitter and model parameters.
For 3D the basic EM solution would have to include 3 component vector fields for 2 source
polarizations (corresponding to different boundary conditions). To allow an abstract treat-
ment of EM solutions at the top level both vector fields must be merged into a single EM
solution object; e.g., evaluation of linearized (and non-linear) data functionals requires both
solutions. Similarly it is necessary to define objects to represent data functionals with suffi-
cient abstraction to accommodate multi-source vector fields, single component scalar fields,
and other possibilities. Generic methods for these data types (including basic, linear algebra,
and dot products) are also required to support the top level routines. Other key modules at
this second, problem specific, level include: data functional definitions; EM solver control,
providing an abstract interface for initializing and using the equation solver; managing and
storing EM solution objects needed for further computations; and implementation of model
parameter /solver coefficient sensitivity mappings.

Finally, we note that the model parameterization is constructed as a single module, allow-
ing the model parameter to be treated as an ADT by all other modules. Components of the
model parameterization model include the basic definition of the model parameter data type,
basic operations (including model space linear algebra and dot products), plus model covari-
ances, and operations for mapping the conductivity to the coefficients of the EM differential
equations. Ultimately constraints on model parameters could be allowed for by modifying
this module, although we have not implemented any examples of this yet. By keeping all
attributes of model parameters private we guarantee that the model parameterization can be
modified independently of all other modules.

2.3 An efficient data space OCCAM scheme : 2D MT example

Siripunvaraporn et al. (2002) have demonstrated that with a data space approach a Gauss-
Newton (GN) type inversion scheme (Data Space Occam, or DASSOC) based on a full
sensitivity calculation is at least feasible, even in 3D. However, the full sensitivity calculation
is still very time consuming, and the need to store the full Jacobian rather severely limits
model discretization, and dataset size. Conjugate gradient (CG) methods would appear still
to have substantial advantages for 3D problems, as they avoid direct computation and storage
of the data sensitivities, and also avoid the need to directly store or invert the large model
(or data) space matrix.

We have developed a new efficient algorithm for inversion of multi-frequency EM data that
combines elements of both the GN and CG approaches. To generate one search direction CG
and related schemes require two solutions of the governing differential equations per frequency.
These calculations effectively generate data sensitivities for one linear data contrast for each
frequency. By saving these sensitivities a good approximation to the full Jacobian can be built
up in a comparatively small number of CG steps, allowing use of approximate GN methods.
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Using this idea we have develop a new algorithm combining elements of the standard CG
and “Occam” minimum structure inversions. Tests on synthetic data for a two-dimensional
magnetotelluric problem show the method provides essentially the same solutions as those
obtained using a GN method requiring full calculation of the Jacobian, but at a fraction
of the computational cost. The new approach is also more efficient than the standard CG
approach, and can be readily generalized to multi-frequency three-dimensional EM inverse
problems. The approach and the initial tests are described in further detail in the attached
preprint.
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1. Introduction

One of the most widely used approaches in electromagnetic (EM) geophysics for inversion
of field data is to seek an Earth conductivity model that fits the observations adequately,
while minimizing some measure of model size or roughness. This is accomplished by
defining a penalty functional including data misfit and model norm terms, and then
minimizing this using some mathematical optimization method. Although general
purpose derivative—free methods such as simulated annealing and genetic algorithms
have been tried (e.g., Schultz et al., 1993; Everett and Schultz, 1993), these methods have
not yet proven practical for realistic two- and three-dimensional EM inverse problems,
where the number of unknown model parameters is very large. For real datasets there
are presently two practical options: imaging schemes based on approximation of the
forward problem (e.g., Torres-Verdin et al., 2000; Xie et al., 2000; Zhdanov et al., 2000;
Zhdanov and Tartaras, 2002), and gradient-based optimization methods based on more
rigorous linearization of the model parameter-data relationship. Our focus here is on
the later "linearized inversion” approach.

The most direct approach to linearized inversion is to calculate the full Jacobian of
the data mapping, and then use some variant on a Gauss-Newton (GN) approach;
e.g., Parker (1994) discusses several widely used algorithms in the general context
of geophysical inverse problems. This direct approach has long been used for one-
dimensional EM (and other geophysical) inverse problems (e.g., Constable et al. (1987)
and Smith and Booker (1988) discuss EM applications). These sensitivity based
methods have also been used successfully for routine two-dimensional EM inversion
(e.g., deGroot-Hedlin and Constable, 1990; Uchida, 1993; Siripunvaraporn and Egbert,
2000), and with some modifications, for three-dimensional problems (Sasaki, 2004;
Siripunvaraporn et al., 2004, 2005). However, for multi-dimensional EM inverse
problems calculation of the full Jacobian requires numerical solution of many forward
problems, and direct application of a GN-type approach also typically requires solution
of a very large dense system of linear equations. Thus, other approaches such as
conjugate gradients (CG; e.g., Mackie and Madden, 1993; Newman and Alumbaugh,
1996; Rodi and Mackie, 2001), non-linear CG (NLCG; Rodi and Mackie, 2001) or
quasi-Newton methods (QN; Newman and Boggs, 2004; Avdeev, 2005), which do not
require calculation or storage of the full Jacobian, have become the preferred approach
for multi-dimensional inversion of EM data.

CG, NLCG, and QN (generically CG) are limited memory optimization schemes
which require only the gradient of the penalty functional to define a new search direction.
In fact, these gradients are linear combinations of the data sensitivities required for the
Jacobian calculation, so both GN and CG approaches require similar sorts of numerical
calculations. The key difference is that GN uses the full Jacobian to approximate the
Hessian of the penalty functional, while CG type approaches build up second derivative
information about penalty functional curvature sequentially over a series of search steps
(e.g., Press et al., 1986).
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Methods such as CG avoid storage and direct inversion of large dense matrices and
thus unquestionably have a major advantage over GN with respect to computer memory
requirements. However, CG approaches converge slowly relative to GN and thus still
require long run times and many solutions to the forward EM problem (e.g., Newman
and Boggs, 2004). In fact, in the common situation where EM data are collected for
multiple frequencies or sources, it is far from clear that standard CG schemes actually
require fewer forward modeling steps than a GN approach. Consider the case where
there are M model parameters with a total of Ny = N,N; data collected at NV, sites
and Ny frequencies. As discussed more fully below, computation of the full M x Ny
Jacobian nominally requires solution of N; modeling problems. In the CG approach
(Mackie and Madden, 1993; Newman and Alumbaugh, 1997) the M x M system of
GN equations is solved iteratively in an increasing sequence of subspaces constructed
from successively calculated directions of steepest descent. Each additional direction
added to the search space requires solving the forward modeling equations twice for each
frequency. Essentially the same computations would generate 2Ny rows of the sensitivity
matrix, so searching N;/2 directions in the model space will require roughly the same
amount of CPU time as computing the Jacobian. In fact, as shown in Siripunvaraporn
and Egbert (2000), only a portion of the sensitivity matrix is required to form a very
good approximation to the Hessian of the penalty functional. Thus to be efficient with
respect to operation counts this CG scheme would have to achieve convergence in a small
number of iterations, significantly less than half the total number of sites. Convergence
tests for 2D magnetotelluric (MT) inverse problems reported in Rodi and Mackie (2001)
and Siripunvaraporn and Egbert (2006) suggest that such rapid convergence will not
generally be achieved.

Our thesis in this paper is that information about the Jacobian is actually
obtained for an N; dimensional subspace of the effective model space in each search
step. Standard CG approaches collapse this to a single model space search direction,
effectively discarding much useful information about penalty functional curvature.
Our goals here are to further elucidate this statement, and then to begin exploring
alternative linearized inversion schemes which make better use of the multi-frequency
data sensitivity information that is generated in each search step of a CG scheme. We
begin in section 2 with a brief review of the linearized inversion methods typically applied
to EM data, including both GN and CG approaches. Then, in section 3 we review the
CG algorithm in more detail, and show that these schemes can be slightly modified to
generate a sequence of data sensitivities for linear combinations of data. At the cost
of storing the results of these calculations separately for each frequency, a very good
approximation to the Hessian of the penalty functional can be built in a comparatively
small number of search steps. In section 4 we develop a new inversion scheme based on
these ideas. In the new approach we save sensitivities for linear combinations of data
generated by applying CG separately to each frequency, and then use these in a reduced
data space minimum structure inversion. In section 5 we present synthetic data tests for
a 2D MT problem, demonstrating that the new approach produces results essentially
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identical to a 2D minimum structure inversion based on a full Jacobian calculation, but
at a fraction of the computational cost. The new scheme, which generalizes readily to
3D problems, is also more efficient than previously proposed CG approaches. Memory
requirements for the new approach, while significantly greater than for CG, are still
modest enough to allow reasonable sized 3D inverse problems to be practical on a
modern desktop workstation with several gigibytes of memory.

2. Linearized EM inversion

Aspects of a number of previously described linearized EM inversion methods enter
into the development of the new algorithm described here. We thus begin with a brief
review of key elements of these now standard approaches using a consistent notation.
Siripunvaraporn and Egbert (2000), Rodi and Mackie (2001), Newman and Boggs
(2004), and Avdeev (2005) provide further details on these and related methods.

We consider regularized inversion based on gradient-based minimization of a penalty
functional of the form

J(m,d) = (d—f(m))"Cq7!(d - f(m)) +rv(m — my) ' Cp, * (m — my)(1)

to recover, in a stable manner, Earth conductivity distributions which provide an
adequate fit to a data vector d of dimension Ny. In (1) Cq is the covariance of data
errors, m is the M-dimensional model parameter vector (e.g., In(o) for discrete blocks),
f(m) defines the forward mapping (which must be computed numerically), mq is a
prior or first guess model parameter, v is a regularization parameter, and Cy, (or more
properly v~ 'C,,) defines the model covariance or regularization term. In practice Cgq is
always taken to be diagonal, so by a simple rescaling of the data and forward mapping
(Ca~2d, C47/?f), we may eliminate Cq~" from the definition of 7. Similarly we can
transform m (and the forward mapping f) to eliminate the prior model, so without loss
of generality we may assume my = 0,Cq = L.

Before proceeding we note that many of the computations in frequency domain EM
problems are most efficiently implemented (and described) using complex arithmetic,
but the model conductivity parameter m is real. Data might be complex (an impedance)
or real (an apparent resistivity and/or phase). For simplicity we will assume that all
data are real, i.e., real and imaginary parts of a complex impedance element will be
treated as separate elements of the real data vector d, and that all operators map real
vectors to real vectors. These mappings can always be recast in this form, although
in practice many of these will actually be implemented most efficiently using complex
arithmetic. See the Appendix for further details.

The derivative of f with respect to the model parameters is the Ny x M sensitivity
matrix (or Jacobian) J, with ij element J;; = 0f;/0m;. Search for a minimizer of (1)
using J is iterative, as for example in the classical GN method. Denoting by m, the
model parameter at the nth iteration and J" the sensitivity matrix evaluated at m,, the



Efficient Inversion of Multi-frequency EM Data )

penalty functional for m, + ém can be approximated as
Jpn = (d —J"6m))"(d' — J"6m) + v(m,, + ém)" C,,"}(m, + dm), (2)

where d’ = d — f(m,). As pointed out in Haber et al. (2000) and Rodi and
Mackie (2001), the full quadratic Taylor series approximation of J at m, includes
an additional term involving second derivatives of the data with respect to model
parameters. This calculation is actually feasible (e.g., Haber et al., 2000), but the
value of this complication is debatable (e.g., Press et al., 1986). Differentiating 7,
with respect to dm and setting the result to zero leads to the usual M x M system of
equations for a stationary point

(J"TJ" +vCp Hom = J"Td' — vCp, ' m,,, (3)

which can be solved for dm to yield a new trial solution m,,.; = m,, +dm. As discussed
in Parker (1994) this basic linearized scheme generally requires some form of step length
damping for stability (e.g., a Levenberg-Marquardt approach; Marquardt, 1963).

The Occam approach (Constable et al., 1987) is based on a slight modification of
(3), which, with d = d — f(m,,) + J"m,,, can be re-written

(I"TI" + vCp Hm = J*7 4. (4)

Although my,,; is obtained directly as the solution to (4) the result is exactly equivalent
to solving (3) for the change in the model at step n + 1 and adding the result to
m,. However, in the Occam scheme step length control is achieved by varying v,
computing a series of trial solutions m, to (4), and solving the forward problem for
each m, to evaluate the actual data misfit. In phase I of the Occam process v is chosen
to minimize data misfit; as the scheme converges v is chosen to minimize the model
norm while keeping the misfit constant (phase II). See Constable et al. (1987) and
Parker (1994) for further details. A significant advantage of the Occam approach is
that the regularization parameter v is determined as part of the search process, and
at convergence one is assured that the solution attains at least a local minimum of the
model norm ||m|| = (m?”C,,'m)'/2, subject to the data fit attained (Parker, 1994). In
other approaches the regularization parameter v must be varied independently to choose
an optimal value (e.g., Newman and Alumbaugh 2000; Newman and Boggs, 2004).
There is a slightly different way to implement the Occam scheme in the data space
(Siripunvaraporn and Egbert, 2000). The solution to (4) can be written as

m,; = CJ"'x (5)
where the coefficients x satisfy
(I"CpI"T + 1 )x = d. (6)

The equivalence of the data space approach is readily verified by substituting (5) and (6)
into (4) and simplifying. The N, columns of C,,J*7, which are just the data sensitivities
smoothed by the model covariance, are referred to as the representers of the linearized
data functionals (e.g., Parker, 1994). Eq. (5) means that at step n the Occam solution
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is a linear combination of the representers of the data functionals, linearized about the
solution for the previous iteration. The coefficients in the representer expansion are
calculated by solving the N; x N, system of equations in the data space (6) so we refer
to this as the “data space Occam” or DASOCC method (Siripunvaraporn and Egbert,
2000; Siripunvaraporn et al., 2005). Direct solution of (3) or (4) involves an M x M
system of equations in the model space. If the model is heavily over-parameterized (as
will generally be the case for 3D inversion) Ny may be much smaller than M, making the
DASOCC scheme significantly more efficient than equivalent model space approaches.
Perhaps more importantly, the data space perspective can provide key insights into
possible efficiencies in methods for optimizing the penalty functional, as we shall show.

For all of the methods described above we have assumed implicitly that the full
Jacobian J has already been computed—a task which requires substantial computational
effort for multi-dimensional EM problems, since the equivalent of one forward solution
is required for each row (or column) of J. Methods for solving (3) with CG avoid
explicitly calculating and storing J, or the cross-product matrices which occur in (3),
(4) or (6). This approach, which has been implemented for EM problems by Mackie
and Madden (1993), Zhang et al. (1995), Newman and Alumbaugh (1996), Rodi
and Mackie (2001), and others, requires computation of the matrix vector product
Am = [J*"TJ" 4 vC,,”'Jm for an arbitrary model space vector m. As we show in the
appendix, the full sensitivity matrix for general EM problems can be formally written
in the form

J"=LS.' P+Q, (7)

where L represents the measurement process (i.e., the linearized data functionals); Si;}
denotes the EM solution operator for conductivity distribution m,; and P and Q are,
respectively, N, x M and Ny x M matrices related to the model parameterization (of
dimension M), numerical EM solution representation (of dimension N.), and the data
functionals (of dimension Ny). The matrix vector product J"m can thus be written

J"m = LS, Pm+ Qm. (8)

The matrices P and Q are in general sparse, and formation of the products Pm and
Qm does not entail significant computation. The only computationally demanding task
required to form the product of an arbitrary model space vector m with the Jacobian
J™ is thus solution of one EM forward problem. Similarly, the transpose of the Jacobian
can be written

T =PSh T+ QT )
so multiplication of an arbitrary data space vector by J*T requires one solution of the
transposed EM system, which is in fact essentially equivalent to solution of the forward
problem (see the Appendix). Thus, as Mackie and Madden (1993) show, multiplication

of an arbitrary model space vector by J*TJ" 4+ vC,,~" can be accomplished without
forming or storing J”, at the cost of two solutions of the EM problem.
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Expressions (7) and (9) clearly show that multiplication of a data or model
vector by J*T or J", respectively, can be accomplished with essentially the same
calculations required to compute a single data sensitivity; indeed, as will be critical
to our development below, the product J*Tc, is just the sensitivity for the linear data
contrast (i.e., the linear combination of data vector components) ¢”'d. Formation of the
full sensitivity matrix, using either (7) or (9) requires solving the EM equations once
for each frequency for each of the M columns of P or once for each of the N, columns
of LT, respectively.

The CG scheme we have just described iteratively solves for dm or m,; based on
linearization in the vicinity of m,. This iterative solver is then embedded in a further
outer loop (over n) to solve the non-linear inverse problem. A variant on this CG
approach, is to apply CG directly as a non-linear quadratic optimization scheme (e.g.,
Press et al., 1986) to minimize (2) (e.g., Rodi and Mackie, 2001; Newman and Boggs,
2004; Avdeev, 2005). With this NLCG approach one must evaluate the gradient of (1)
with respect to variations in model parameters m :

oT

a—m mpy
NLCG utilizes essentially the same basic computational steps as required for solving
the linearized equations (3) (i.e., the forward problem must be solved to evaluate f(m),
and the adjoint problem must be solved to multiply the residual d — f(m) by J"T),
and additional forward modeling steps are required for line minimization along each
CG search direction (e.g., Newman and Alumbaugh, 2000). Quasi-Newton schemes
(QN; e.g., Nocedal and Wright, 1999; Newman and Boggs, 2004; Haber, 2005; Avdeev,
2005) provide an alternative approach to NLCG for direct minimization of (1), with

=-J3"7(d — f(m")) + vCy '1m,,. (10)

similar advantages with regard to storage and computation of the Jacobian, and similar
computational requirements. NLCG essentially eliminates the “inner loop” required by
CG, and has thus become (along with QN) more commonly used for practical 3D EM
inversion. However, GN exhibits quadratic convergence, and typically only a very small
number of outer loop steps (3-8) are required for convergence. Many more steps are
required for convergence of NLCG, so the relative efficiency of these two approaches
is hard to assess a priori. In the only study directly comparing these two approaches
on an EM problem that we are aware of, Rodi and Mackie (2001) found that for 2D
MT inversion CG and NLCG performed similarly, in terms of total run time required
for convergence. The new approach proposed here builds on the CG and DASOCC
schemes; however the basic ideas discussed below could most probably also be adapted
to improve efficiency of NLCG or QN.

So far in our review of inversion algorithms we have not explicitly addressed the
issue that is central to the methods developed in this paper: in most cases EM data
are obtained for a wide range of frequencies, or for a number of different transmitter
configurations. Here we focus on the case of multiple frequencies, as for example in
the case of MT data. Allowing for multiple transmitters presents similar issues and
opportunities, though there are also enough differences to warrant a separate discussion.
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Assuming that there are data for Ny frequencies wy, ..., wy;, each application of a matrix-
vector operation such as (8) (or its transpose) actually requires solving Ny forward
problems,; one for each frequency.

To be more explicit, partition the data vector and sensitivity matrix into separate
blocks for each frequency

d=(df..dy,) J=(J7..J%,) (11)
and partition L and Q accordingly. Then the full sensitivity matrix can be written
explicitly as

J; L1S;11,mnP1 +Q
J=|  |= 3 : (12)
Jn Ly, S;;f,mnPNf + Qu;

Note that the matrices P; and Q; generally depend on the solution for frequency wj,

f

and thus are also different for each frequency. A key observation is that to multiply a
full data space vector (e.g., the residual r = d — f(m) in the gradient equation (10))
one forms the sum

Ny
Jr=>"Jr, (13)
=1

where 1; is the part of the data space vector r corresponding to frequency /. As noted
above, JTr is the derivative (sensitivity) of the linear combination of data r’d with
respect to the model parameters m. Moreover, J7r; is the sensitivity of the linear
combination rf d; of data restricted to frequency [. Thus, each step in a CG or NLCG
scheme actually requires solution of the forward and adjoint problems N times, and
results in computation of Ny linear combinations of data sensitivities, one for each
frequency. Our objective here is to develop more efficient ways to use the component
sensitivities for each frequency (J¥r;) in the inversion processes.

Before proceeding, some brief comments on the regularization term in (1) are
appropriate. We have formulated the penalty using C,,, a smoothing operator which
is usually interpreted as the covariance of the model parameters, providing a prior:
constraints on the magnitude and spatial smoothness of conductivity variations. In
most model space formulations the regularization term is formulated instead in terms of
a roughening operator, e.g., writing Cpy ' = DTD, where D is a discrete representation
of a gradient or higher order derivative operator. This approach seems, at first
blush, to be simpler and more natural for the model space formulation, since, as
D is sparse, multiplication by Cp, ™" in (3) or (4) is then trivial to implement and
very efficient. In contrast, with the data space approach C,, ' never appears in any
equations (except for the definition of the penalty functional) or in any computations;
rather only multiplication by Cy, is required (see (5), (6)). Hence, for the data space
approach it is more natural to formulate the regularization in terms of C,,. Although
this matrix is generally not sparse and may not be practical to invert, it is easy to
construct computationally efficient positive definite symmetric smoothing operators that
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reasonably characterize prior information about model smoothness (e.g., Egbert et al.,
1994; Siripunvaraporn and Egbert, 2000; Chua and Bennett, 2001).

In fact, it is possible, and in some important respects advantageous, to use the
same approach in the model space. In terms of the transformed model parameter
m = C,, /’m, (4) can be written

(C 23" TI"Coy? + 1) = C, /2774 (14)

After solving (14) for m we can easily recover m = Cum!/?m. All of these computations
require only multiplication by the smoothing operator Cm'/? (i.e, half of the smoothing
of Cp). Thus one can arrange the calculations so that Cy, ' is also never required
with the model space formulation, and the fact that C,, may not be readily invertible
does not pose any difficulty. There is good reason to believe that this modified
formulation actually leads to a much better conditioned system, as now the term vI
is truly stabilizing in the inversion. As pointed out in Haber and Ascher (2001),
Cm~ ! generally has an unbounded spectrum, making J*TJ" + vC,~" very poorly
conditioned. Indeed, standard practice with a model space formulation is to precondition
(3) using an approximation to the operator C,, = [D”D]|™! (e.g., approximate solution
of Poisson’s equation; Rodi and Mackie, 2001; Haber and Ascher, 2001). Formulation
of the regularization in terms of a model covariance Cy,, and then transforming to (14)
achieves the same improvement in conditioning at essentially no computational cost.
Note that in terms of the transformed model parameters the Jacobian is

of 12 _ 3
= m = s ]_
o JC J (15)
and the model and data space Gauss-Newton equations are reduced to
(I 4 =Jn"d (FnJn" 4+ D)x = d. (16)

To simplify notation in the following development we use these transformed canonical
forms, omitting the tildes, as well as the superscript outer loop iteration index n.

3. Conjugate Gradients

We now review the conjugate gradients (CG) algorithm used for iterative solution of
the positive definite symmetric GN equations in the data space. Everything presented
here is quite standard (e.g., Press et al., 1986; Golub and Van Loan, 1989), but perhaps
not completely familiar to many who use CG as a tool either for minimization, or for
iterative solution of linear equations. These internal details of the CG method will be
essential to our subsequent development.

3.1. Solving Symmetric Systems with CG

To solve the symmetric positive definite system of equations Ax = b, CG generates
a sequence of approximate solutions to the linear system of equations by iterative
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minimization of the quadratic form
1
Q(x) = §XTAX —b'x (17)

along a sequence of conjugate search directions hy. The search starts from an arbitrary
first guess xp, and with hg = 0. The gradient of Q at xy is

8k+1 = Axy — b, (18)

and the next (conjugate) search direction is formed as the linear combination of this
direction of steepest descent and the previous search direction

T
8r+1Ahy
k+1 = 8k+1 — Ve, Yk thhk ( )
The minimum of Q(x) along hy,; (starting from xy) is
h} 8k+1
Xpt1 = Xg — Mgy, Aot1 = AAIOT (20)

It is readily shown that the search directions hy generated by this process are conjugate
in the sense that

hiAhy =0 k#K, (21)
and that the gradient vectors are all mutually orthogonal

gigw =0 k#K. (22)
By combining (18) and (20) we obtain

8k+1 = 8k — ApAhy, (23)

so taking one step in the CG solver scheme only requires multiplication of the previous
search direction h; by the matrix A, plus forming some inner products and linear
combinations of vectors.

Some basic properties of the sequence of CG solutions x; will be essential to
subsequent developments. First, each x; is a linear combination of the search directions
and the initial trial solution xg, so in the common implementation with xq =0

xi € Hy, = Splhy, ..., hy} =
Sp{b, Ab, A%, ... A* b}, (24)

Furthermore, it is easily seen that the gradient vectors also span the space Hj. Finally,
from the two conjugacy conditions and the fact that Q is minimized over each of the
search directions it is readily verified that x; minimizes Q(x) over the subspace Hj.
The CG scheme thus can be viewed as an efficient sequential scheme for generating a
sequence of (Krylov) subspaces Hy C Hyi1, and at each stage minimizing Q over the
subspace.
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3.2. CG Solution of the Data Space Equations

We now consider more explicitly using CG to solve the data space GN equations (with
Cm=1

(JIT + v )x = 4, (25)

for the coefficients in the representer expansion m = 3, xzjx. Application of the data
space conjugate gradient (DCG) scheme to EM inversion is described in Siripunvaraporn
and Egbert (2006); applications to ocean data assimilation are given in Egbert et al.
(1994), and Chua and Bennett (2001). With C,, = I the representer j; is just the data
sensitivity for observation i (i.e., the i"* column of J7). In the notation of the general
CG development above A = JJ7+v~'T and d= b, and we have for the Krylov subspace
after a total of K steps

Hi = Sp{d,JI7d, ..., (II")E1d} (26)

Let (uy,...,ux) be an orthonormal basis for Hg and let Ug be the orthogonal
Ny x K matrix with these columns. The step K CG solution can be written xx = Ugc
for some K—dimensional vector ¢, and since Xy minimizes Q over H g, ¢ must minimize

~ 1 ~
Qk(c) = §<UKc)T(JJT + v M Uge — d"Ugce =

1 ~ = -

écT(JKJ}; + v )e — dke, (27)
where

Je=U%J dx=ULad (28)
Now dy is just a set of K linear combinations of the components of the vector a, and the
corresponding columns of J%. = JTUy are the sensitivities for these K data contrasts.
Furthermore, the step K CG model parameter obtained in the data space CG scheme
is just

m = JTXK = JTUKC = jTI;-C = j]{(j](j};- + V_lI)_laII;-. <29)

Thus, the step K data space CG solution can be viewed as a reduced data space
solution where the K linear combinations of the original data dx, and the corresponding
reduced set of data sensitivities are used in place of the full set of data and sensitivities
in (5) and (6). The CG scheme works with relatively modest values of K due to
the significant redundancy in the data, with low signal-to-noise ratios in most linear
data contrasts. Data redundancy also forms the basis for the truncated singular value
decomposition (SVD) approach commonly used in geophysical inverse problems (e.g.,
Parker, 1994). With this approach the SVD of the linear model parameter data mapping
is approximated using K leading modes of the SVD of the Jacobian as

d=Jm+e=UAVm+ e~ UgAgVE + e (30)

As is readily verified, the truncated SVD approach is equivalent to projecting the data
into a K—dimensional subspace dx = U%d, and then minimizing the standard penalty
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functional using this reduced data vector in place of d. In fact, the search directions
generated by data space CG will form a good approximation to the leading eigenvectors
of JTJ, which are identical to the left singular vectors U of J. See the Appendix for
further discussion of the reduced data space approach, and its relationship to the reduced
basis approach of Siripunvaraporn and Egbert (2000; see also Parker and Shure 1982;
Parker et al., 1987; Oldenburg et al.; 1993, Egbert and Erofeeva, 2002; Kurapov et al.,
2003).

The data space CG scheme can of course be easily modified to actually generate dx
and Jx. At each outer loop step the product JI7r; must be formed, where ry = d and
ri.1 = JJTr,. As noted above, J7r,, is just the sensitivity for the linear data contrast
rld. Saving these vectors for K steps, the N; x K matrix Rx = (r;...rx) can be
formed and orthonormalized, e.g.,

Ux = Re(RLR) 2. (31)
Then we can also form
(3711 .. 37rk) (RERk) * = TR(R'R) ™2 = JTUy = JT, (32)

and dy = U%Ld. Of course, the data space CG scheme already computes m satisfying
(29) with a sequential scheme that does not require saving ry and JXry, or doing any of
the computations of (31) and (32). However, with these additional steps (29) could be
solved for a range of damping parameters v-i.e., an Occam scheme, where v is used for
step length control, could be used without redoing all of the computations required for
K data sensitivity calculations per frequency for each v.

For a multi-frequency problem the sensitivities J'ry, k = 1, ..., K are each the
sum of Ny data sensitivities JlTrkl for linear combinations of data at frequencies
wi,l = 1, ...,N; (i.e., ri,d;), each obtained by solving the adjoint equation for the
appropriate frequency. Thus, instead of saving the sums J7r, we could save the
individual terms sy; = J] vy, along with the corresponding single transmitter data space
vectors ry;. Then we would have sensitivities s, for a much larger data subspace, of
dimension K Ny instead of K. The reduced data space approximate solutions analogous
to (29) might then be expected to provide an improved approximation to the full data
space GN system (25) with the same or fewer forward and adjoint solutions and a small
amount of additional computation. Indeed, if we define

Hi = Sp{rp,l=1,.., Npk=1,.., K}, (33)

then clearly Hx C Hx so this modified approach would be guaranteed to yield a lower
value of the quadratic form Q. It does not necessarily follow that the approximate
solution to (6) will be improved (e.g., in terms of reducing relative solution error),
but this argument certainly does suggest that there are substantial opportunities for
improved efficiency in the CG approach, allowing use of a much larger data space and an
improved approximation to the Jacobian with relatively minor additional computation,
together with a more significant increase in memory usage.
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4. An Hybrid CG-Occam Inversion Scheme

In the previous section we showed how the data space CG scheme could be used to
generate a sequence of data contrasts ry;, and corresponding sensitivities J] ry;, which
could be used in an Occam-style regularized inversion. There are other, plausibly better,
ways to generate a similar sequence. We consider one such approach in the following; a
number of variants and refinements are readily imagined.

Our algorithm is based on the DASOCC scheme which is summarized in Figure
la. However, instead of using the full dataset and computing the full Jacobian, we
apply K steps in a minimization scheme analogous to model space CG to generate data
sensitivities for a total of K Ny linear data contrasts. These are then used in a reduced
data space Occam scheme, solving a system analogous to (29).

More explicitly, in the first stage we consider solution of the model space GN system
for a single frequency with v =0

J/3m =Jq, (34)

This is equivalent to minimizing the frequency [ data misfit, based on the linearized
data mapping J,,

Q(m) = (Jm — d;))" (J;m — d,). (35)

Of course there is no unique solution to (34) (assuming the number of data for a single

frequency is less than the number of model parameters), but we can still apply CG,

which will converge to the model parameter m satisfying (34) with smallest L, norm.

The idea here is that by taking the first K steps to minimizing (35) CG will generate

linear combinations of data with the (approximately) greatest sensitivity to variations in

the model parameters (in the neighborhood of the solution from the previous iteration).
At the first step in the CG scheme for frequency [ we have

hy, = -J7d,, (36)
and at step £ we must compute

Ahg_ ;=T Jhy 4, (37)
Setting ryp1; = Jihyy, ry = —&l, we see that CG minimization of (35) generates a

sequence of data space vectors {rg,k = 1, K}, and corresponding data sensitivities
st = Jl 1,k = 1, K for the linear data contrasts r;,d;, k = 1, K. Orthogonalizing as
above (but now separately for each frequency)

Ui = Ria(RRi) 72

JL, = (JlTrU...JlTrKl) (R};lRKl)’% = (S1;..-.Sk1) s (38)
and setting

I = (T Tiw,) Ug = (Ufy - Ugew,)s (39)

we proceed with the reduced data space Occam scheme. That is, using the linear
combinations of data dy = Ugd, and the corresponding sensitivities (columns of Jy),
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a reduced data space equation (29) is solved for trial values of v, and m, is chosen to
minimize (over v) the RMS misfit to the full dataset. Then m,;m, is used as the
background solution for the next GN iteration. As with the standard Occam scheme,
once the desired normalized RMS is achieved, phase II of the Occam process is begun,
with the regularization parameter v now chosen to minimize the model norm subject to
achieving the desired misfit (Parker, 1994). Pseudo-code for this hybrid scheme is given
in Figure 1b.

5. Synthetic Data Examples

To test the scheme described in the previous section we consider the transverse electric
(TE) mode 2D MT inversion. The 2D MT TE problem is formulated in Cartesian
coordinates, with electrical conductivity of the Earth varying in the y and z directions,
and with electric fields oriented in the z direction. In this case the quasi-static
—iwt

approximation to Maxwell’s equations with a time dependence of e can be reduced

to a 2-D scalar diffusion equation for the along strike electric field
V2E, —iwpgoE, = 0, (40)

subject to the usual MT boundary conditions (uniform sources far above the Earth’s
surface, E, going to zero at depth). Given E, the orthogonal component of the magnetic
field can be computed from Faraday’s law as H, = (iwp) '0,E,. The fundamental data
for the TE mode inverse problem are impedances Z,, = E,/H,, measured at N; sites
and Ny frequencies wi, ...wy;.

We generated synthetic TE mode impedances, for the two conductivity models
of Figure 2 using a finite difference modeling code, with grids of dimension 100 x 40,
including 10 air layers above the Earth’s surface. For the inversion each Earth cell in the
finite difference grid was treated as an independent parameter (so M = 3000). Complex
impedances were generated for N, = 30 sites at Ny = 10 frequencies, evenly spaced
logarithmically between 0.001 - 1.0 hz. There are thus 60 real data for each frequency,
and the full data vector d is of length N; = 600. Random noise with a magnitude of
5% was added before inversion using both the DASOCC scheme of Siripunvaraporn and
Egbert (2000), and the hybrid scheme of the previous section. For the hybrid scheme
we set ' = 5, so each outer loop step required solving each of the forward and adjoint
problems a total of KNy = 50 times, the equivalent of 100 sensitivity calculations.
Because sensitivities for real and imaginary parts of the impedance can be calculated
together (with a single adjoint solution; see the Appendix), computation of the full
Jacobian needed for DASOCC required three times as many calls to the EM solver (300
total). Storage of the sensitivities is reduced by a factor of 6 with the hybrid approach.

Final inverse model results using the two approaches for the simpler test case are
compared in Figure 3. Essentially the same final model is obtained in both cases,
and the same number of outer loop iterations is required. The convergence of the two
algorithms is illustrated in Figure 4, where we plot misfit as a function of v for each outer
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loop iteration in the Occam process. Convergence properties of the two approaches are
essentially identical.

Figures 5 and 6 give comparisons of inverse models, and Occam misfit curves for
the more complex model of Figure 2b. For this particular data set neither DASOCC
nor the hybrid scheme quite fits the data adequately. The full sensitivity calculation
DASOCC scheme does achieve a slightly smaller misfit, and the hybrid scheme required
two additional iterations to get close to the misfit achieved by DASSOC. However, it
would be difficult to argue that the final inverse solution is superior, even if the outer
loop iterations for the hybrid approach were stopped sooner. To compare to a CG type
approach, for the two cases we take 4 and 6 outer loop iterations, requiring computations
the equivalent of 5 search steps per iteration. In a direct comparison of DCG and
DASOCC, Siripunvaraporn and Egbert (2006) showed that for a problem of comparable
size and complexity, convergence of CG to even an approximate solution to the data
space equations required for each outer loop iteration required 15-20 steps. They further
show that DCG generally requires at least as many forward solutions as DASOCC, so
the hybrid scheme should also be significantly faster than DCG. NLCG may be more
efficient than CG (but see Rodi and Mackie, 2001), but unless a very effective pre-
conditioner can be found, it seems unlikely that NLCG would achieve convergence on
this problem in the 4 — 6 x 5 = 20 — 30 steps required by the hybrid CG-DASOCC
scheme.

6. Discussion

We have shown that CG schemes for solving EM inverse problems generate data
sensitivities for a sequence of linear data contrasts. For multi-frequency problems
such as MT, sensitivities can be saved for each frequency separately, and the saved
sensitivities provide a good approximation to the leading singular vectors of the
Jacobian. Conventional CG approaches ignore multi-frequency aspects of the problem,
discarding useful information by collapsing multi-frequency sensitivities to a single model
space search direction. We have considered one possible use of this multi-frequency
information, applying a GN approach (Occam) to minimize the penalty functional in a
reduced data space defined by the CG search directions. The proposed scheme converges
in a small number of outer loop iterations, because it is in essence a Newton type
method, and thus makes use of substantial second derivative information in minimizing
the penalty functional. A further advantage of the new algorithm is that as with Occam
(Constable et al., 1987), the regularization parameter v is computed as part of the
inversion process, so that smoothness (in the sense of the model norm C,,) is minimized
for the achieved data misfit. For CG or NLCG adjusting the regularization parameter,
or finding a true norm minimizing solution, would require multiple inversions.

One issue that deserves some discussion is that we explicitly fit only a reduced
data vector. To what extent does this make our approach sub-optimal? And what is
the advantage of this, compared to a simpler approach such as fitting only a subset of



Efficient Inversion of Multi-frequency EM Data 16

the available data? It is instructive to compare this reduced data space scheme to the
reduced basis approach for large linear inverse problems described by Parker and Shure
(1982), Parker et al. (1987), Oldenburg et al., (1993), and Parker (1994), and applied to
non-linear MT inversion by Siripunvaraporn and Egbert (2000). For this discussion we
consider the simplest canonical minimum norm linear inverse problem, with data and
model parameters related by d = Jm, and the inverse solution obtained by minimizing
the penalty functional

(d-=Jm)"(d —Jm)+ m"m. (41)

Both reduced basis and reduced data space approaches can be described in terms of
an Ny X K orthogonal matrix U. In the reduced data space approach used here we
consider the K-dimensional reduced data vector UTd, simply replacing J by J = U”J.
The optimal solution has the usual form

i,y = 37337 + 1)1, (42)
and is a linear combination of the columns of J.

For the reduced basis approach we instead apply the orthogonal matrix to J to
obtain a reduced model space basis, the columns of J7 = JTU. The original penalty

functional (41) is then minimized over the model subspace spanned by this reduced set
of basis vectors. The reduced basis solution is readily derived as

m,, = J7[JITIIT + 3371357 a. (43)
Thus the reduced basis solution also only fits data in a K-dimensional subspace of
the data space, i.e. the data projected onto the column span of the N; x K matrix

JJT =JJTU.

In the usual application of the reduced basis approach representers (i.e., columns
of J) for a simple subset of the data are used, so (after possibly reordering data)
UT = (I]0). It is clear that in this case a reduced basis approach would be very
different from the reduced data space approach using the same U. In the former case
all data vector components would be fit, while the latter would amount to discarding
all but K of the data before inversion. Obviously, the reduced basis approach would
be much preferable in this case. In the Appendix we show that the reduced basis and
reduced data space inverse solutions are identical if and only if the columns of the
orthogonal matrix U are linear combinations of a set of K eigenvectors of the Gram
matrix I' = JJ?. The matrix U consisting of the largest K eigenvectors of I' provides the
optimal reduction of the data space (UTd), and also the optimal reduction of the model
space basis vectors (JTU). We use CG to generate a reduced data space, defined by the
span of the first K search directions. This space will include very good approximations
to the leading eigenvectors of I'; this is the basis of Lanczos methods for approximate
solution of eigenvalue problems (e.g., Golub and Van Loan, 1989). The reduced data
spaces generated through CG should thus approach the optimal reductions to a K
dimensional subspace that can be achieved through a truncated eigenvector approach,
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and also mean that we approximate a reduced basis approach, using an optimal reduction
in the model space basis.

A number of extensions and modifications of the basic method presented here could
lead to further improvements in efficiency. For example, for 2D MT inversion of both
TE and TM modes, linear combinations of data sensitivities could be generated and
saved separately for the two modes. This idea could obviously be generalized to other
problems with multiple source geometries. Also, in our initial illustrative test we used
a constant value of K. By allowing this to vary with frequency (e.g., computing fewer
sensitivities for lower frequencies) further efficiency might be realized. In addition, as we
show in the Appendix, for complex data such as impedances each step in the CG scheme
used to generate the data contrasts, and corresponding sensitivities, actually generates
two sensitivities corresponding roughly to J”r., and J*¥;, where T, corresponds to the
real vector representation of iry. In contrast to the data vectors ry generated by the
CG process, the complementary T vectors are not likely to be particularly important
directions in the data space, so it is not clear that these additional sensitivities are
actually worth storing. However, this issue deserves more careful analysis and testing.

Finally, we note that the scheme presented here is almost entirely implemented
in the data space, so there is essentially no dependency on special features of the
2D MT problem. The scheme generalizes to 3D EM problems with multi-frequency
data (in particular 3D MT) with essentially no changes. For 3D MT the factor of
5-10 reduction in run times and memory that can be achieved, relative to a full GN
inversion scheme, are much more significant. At present 3D EM inversion is at the
edge of practicality. Without access to very substantial computing resources significant
compromises in model size and resolution, dataset size, or both are required. An order
of magnitude improvement in computational efficiency for these sorts of EM inverse
problems would obviously go a long way toward making routine 3D inversion practical
for a much larger group of users. The computational efficiency that likely can be realized
by making better use of all of the data sensitivity information that is generated in a CG
search in a multi-frequency EM inversion appears to have the potential to realize such
an improvement in efficiency.
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Appendix A.

Appendix A.1. Computation of Data Sensitivities for EM Problems

Here we consider the sensitivity calculation for general EM problems, omitting reference
to the iteration index n. The numerical discretization of the frequency domain EM
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differential equation is written generically as
Some=Db (A1)

where b gives appropriate boundary and forcing terms for the particular EM problem,
and e is the N, component vector representing the discretized electric and/or magnetic
fields (or perhaps potential functions). S, m is an Ne X Ne matrix which depends on the
frequency w and an M dimensional model parameter m. Given a solution e to (A.1)
data can always be written in the general form

dj = f;(m) + € = ¢;(e(m), m) + ¢ (A2)

where 1); is some generally non-linear, but usually simple, function of the components
of e (and possibly m), and ¢; represents data error.

With this general setup we have, by the chain rule

_ af] _ 8% _ (9’(% 8€l 4 8¢]

8mk 8mk ] 6el Bmk 8mk

Let F = 0e/0Om be the N, x M matrix with elements F;, = de;/0Omy, and L, Q be the

partial derivative matrices

jk (A.3)

oY, oY,
4l ael . Q]k amk . ( )
Then the Jacobian can be written in matrix notation as
J=LF+Q . (A.5)

Note that F, L and Q in general depend on the model parameters m. The rows of
L and Q (one for each observation) are generally very sparse, supported only on a
few nodes surrounding the corresponding data site. When the observation functionals
are independent of the model parameters (as they often are) Q = 0. The jth row
of L represents the linearized data functional, which is applied to the perturbation in
the EM solution to compute the perturbation in d;. Although coding L and Q can
be quite involved for realistic EM data functionals, calculation of F presents the only
computational challenge.

To derive a formal general expression for F take the derivative of (A.1) with
respect to the model parameters m. Assuming b remains fixed (if this is not true
minor modifications are necessary; Newman and Boggs (2004) treat this additional
complication), and allowing that as m is varied the solution e also varies, we obtain

ae aSw m€o
I — _~rwm™ A.
Je m:mj | (A.6)

om

o

or
Se.m F = P. (A.7)

In (A.6) e is the solution to (A.1) for model parameter my. The N, x M matrix P
depends on details of both the numerical model implementation and the conductivity
parameterization, but is in general inexpensive to calculate.
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As an explicit example, consider the quasi-static frequency domain 3D electric field
induction equation

VxVxE—-iwuwE=s (+ BOC), (A.8)

approximated with finite differences on a staggered grid (e.g., Yee, 1966; Smith, 1996;
Siripunvaraporn et al., 2002). Model conductivity is parameterized in the simplest way,
with an independent parameter for each computational grid cell. With the staggered
grid approach electric field components are defined on grid cell edges, and conductivity
appears only in the second (diagonal) term in (A.8), where it multiplies the electric field
components. This requires defining conductivity on cell edges; a physically consistent
(current conserving) way to do this is to use the volume weighted average of the
conductivity of the four adjacent cells to define the edge conductivities needed for
the staggered grid discretization of (A.8). With this choice of mapping from model
parameters to discrete operator coefficients, it is readily verified that

P = diag(iwuey)W (A.9)

where W is the N, x M linear map which averages cell conductivities onto grid edges.
Note that if instead of choosing cell conductivities as the model parameter we chose
instead log conductivity, this non-linear parameter mapping has to be linearized, and we
find P = diag(iwueo) Wdiag(my). It is straightforward to work out P for other cases,
such as for the EM equations formulated in terms of magnetic fields, or for modified
parameterizations of the conductivity. In all cases the computational burden involved
in multiplying by P is negligible.

Putting together (A.5) and (A.7) we have a formal expression for the N; x M
Jacobian

J=LS, P +Q. (A.10)

,m

To compute all of J would thus appear to require solving the induction equation once
for each of the M columns of P. However, simply taking the transpose of (A.10) we
obtain

3" = P"IS], L+ QT (A11)

so the sensitivity matrix can in fact be obtained by solving the transposed discrete EM
system N, times, the usual "reciprocity” trick for efficient calculation of sensitivities
(e.g., Rodi, 1976, de Lugao et al., 1997). Note that the EM equations are self-adjoint
(except for time reversal) with respect to the usual L? inner product (i.e., reciprocity
holds), so on a uniform grid S, m is symmetric (though there are some technical issues
regarding boundary conditions). For more general grids the fact that the EM operator
is self-adjoint implies Sg’m = VS, mV ™!, where V is a diagonal matrix of integration
volume elements for the natural discrete representation of the Lo integral inner product.
(Note that other, equivalent, ways to symmetrize the discretized system are often used
in practice.) Thus, solution of the transposed (or adjoint) system requires only minor
modifications to the forward solver.
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Appendiz A.2. Reduced Data Space and Reduced Basis Inversion

Here we show that reduced data space and reduced basis inversions defined by the
Ny x K orthonormal matrix U are identical if and only if the columns of U span the
same subspace as a set of K eigenvectors of I' = JJ? (or equivalently, the left singular
vectors of J; another equivalent condition is that the columns of U span an invariant
subspace of I'). Indeed, if the columns of U and W have the same span, where
columns of Wk are eigenvectors of I' then U = W Q where Q is K x K orthonormal.
Substituting this expression for U and the SVD of J = WAVT into (42) and (43)
and simplifying, it is readily verified that m,; = m,,. The converse is also readily
demonstrated. From (42) and (43) we see for the two inverse solutions to be identical
for all data vectors d, U and ['U must span the same data subspace. Then there is a
K x K matrix A for which UA = I'U, implying A = UTT'U is symmetric and positive
definite, and can thus be decomposed as A = QOQT where O is diagonal and Q is
K x K orthonormal. But then we have [UQ] © = ['[UQ)], i.e., the columns of [UQ)] are
eigenvectors of I'.

Appendiz A.3. Complex Data, Real Model Parameters

The frequency domain EM differential equations are formulated in the complex domain,
and the EM solutions are complex fields. For simplicity data are also generally complex,
e.g., impedance components. On the other hand the unknown model parameter,
electrical conductivity, is generally taken to be real. As a result care is required in
interpreting the sensitivity matrix J. Literally S, ., represents a matrix with complex
entries, so the formal expression for the Jacobian in (A.10) also represents a complex
matrix which we here call J. The real (imaginary) part of the product Jdm gives the
sensitivity of the real (imaginary) part of the data, so one can separate the real and
imaginary parts of J and the data vector to obtain a real matrix J (with twice as many
rows) which maps real model parameters to real data. This is the approach we have
implicitly taken in our discussion of inversion methods, in which we have assumed that
all matrices were real.

Using reciprocity to calculate J with (A.11) requires solution of the adjoint
equations once for each data vector element. The result of the formal calculation is an
M-dimensional complex vector, one row of J. Thus sensitivities for real and imaginary
parts of the data are calculated with a single solution of the transposed complex system
Sz;m. Hence, if we take N, to be the total number of real data, which actually consist
of real and imaginary parts of complex data, the number of model solutions required for
complete calculation of the Jacobian is N;/2. Note that apparent resistivity and phase
data can also be treated essentially as real and imaginary parts of the natural log of the
complex impedance, so sensitivities for both of these responses can also be computed
with a single call to the solver.

Next consider computation of something like J’r The actual code based on
(A.11) implements multiplication of complex vectors ¥ by J resulting in a complex
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M-dimensional vector. To compute the desired real matrix vector product R[J7]r, +
3[JT]r;, where r,,r; correspond to real and imaginary data components, we must set
¥ = r,—ir;, and take the real part of the complex product R[Jt]. Key to our development
of the new inversion algorithm is our observation that J”r is the sensitivity for a
particular linear data contrast, r’d. In the process of computing this we obtain also
3[Jr]. In fact, this is the sensitivity for the data contrast ¥7d, where ¥ is the real data
vector corresponding to it. Thus we actually generate sensitivities for a two dimensional
subspace of the real data space when we compute JTT. The additional sensitivity could

in principal be used to improve the approximation of the Jacobian, at the cost of saving
S[JIx).
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Figure 1. Pseudo-code for (a) DASOCC, and (b) the hybrid scheme, for the simplified
case C, = I. For both schemes phase I of the Occam process is depicted; in phase II
minimization of misfit is replaced by minimization of the model norm, subject to the
constraint that the data are fit to the prescribed tolerance.

m, = prior model parameter; d= (dF{dQT...dE f) = data

(a) DASOCC algorithm
For n=0,1,...
{ Compute Jacobian: J" = 0f /0m|,,,
d=d - f(m,)+J"(m, — m)
Minimize over v :

m,; = min! ||d — f(m,)|[? where m, = J(J"J"T + »~11)~1d + my

(b) Hybrid CG-DASOCC algorithm

Outer loop: for n=0,1,...
{d=d-f(m,)+J"(m, —mj)
Frequency loop : for [ =1, Ny
{ Solve: J77J*m = J?"d, using CG:
ry =gy = —d, sy=hy =731y
CG Loop: fork=1,K -1
{rit1 = J7hy
Ski1 = Ahy = JPT Iy = J7Trpyq

A = hijgg /hi Ahy = hiigy /hspiq,

8r+11 = 8kt — MiAhy = 8ri — MuSkt14

Vo = 8hy1 Ay /D Ay = gl Sk /Dy Sk

hyi1) = 8kt10 — Yeihe

Save: Tii17, Sk+1y

}

Orthonormalize:
UKl - RKI(Rj];lRKl)_% where RKl = (rll rKl)
Ty = (su--skr) (RERy)) 2

}

Set: Jx=(J%, .. I%y,) Ux= (UL, .. ULy)
minimize over v :
m,; = min! ||d — f(m,)||* where

m, = jK<jqu]; + Vﬁll)ilU};a —+ my
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Figure 2. Models used in synthetic data inversion tests
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Figure 3. Inversion results for synthetic data from the simpler model of Figure 1a,
obtained using (a) the hybrid CG-DASOCC scheme of section 3 and (b) A standard
data space Occam scheme, based on calculation of the full Jacobian.
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Figure 4. Total squared misfit as a function of y for synthetic data set one. Squared
misfit curves are plotted for a series of X outer loop iterations for (a) the hybrid CG-
DASOCC scheme of section 3 and (b) A standard data space Occam scheme, based on
calculation of the full Jacobian.
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Figure 5. Inversion results for synthetic data from the model of Figure 1b, obtained
using (a) the hybrid CG-DASOCC scheme of section 3 and (b) A standard data space
Occam scheme, based on calculation of the full Jacobian.
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Figure 6. Total squared misfit as a function of u for synthetic data set two. Squared
misfit curves are plotted for a series of X outer loop iterations for (a) the hybrid CG-
DASOCC scheme of section 3 and (b) A standard data space Occam scheme, based on
calculation of the full Jacobian.



