

Report Date: Sept 28, 2005

Semi-Annual Technical Progress Report

INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO₂ INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

DOE Contract No.: DE-FC26-01BC15361

Harold Vance Department of Petroleum Engineering
Texas A& M University
3116 TAMU
College Station, TX 77843-3116
(979) 845-2241

Contract Date: September 28, 2001
Anticipated Completion Date: September 27, 2005

Principal Investigator: David S. Schechter
Harold Vance Department of Petroleum
Engineering

Contracting Officer's Representative: Dan Ferguson
National Petroleum Technology Office

Report Period: March 28, 2005 - September 28, 2005

US/DOE Patent Clearance is not required prior to the publication of this document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ABSTRACT

This report describes the final work of the project, “Investigating of Efficiency Improvements during CO₂ Injection in Hydraulically and Naturally Fractured Reservoirs.” The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO₂ flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, we divided the report into two chapters. The first chapter was to image and perform experimental investigation of transfer mechanisms during CO₂ flooding in NFR and HFR using X-ray CT scanner. In this chapter, we emphasized our work on understanding the connection between fracture properties and fundamentals of transfer mechanism from matrix to fractures and fluid flow through fracture systems. We started our work by investigating the effect of different overburden pressures and stress-state conditions on rock properties and fluid flow. Since the fracture aperture is one of important parameter that governs the fluid flow through the fracture systems, the average fracture aperture from the fluid flow experiments and fracture aperture distribution derived from X-ray CT scan were estimated for our modeling purposes. The fracture properties and fluid flow have significant changes in response to different overburden pressures and stress-state conditions. The fracture aperture distribution follows lognormal distribution even at elevated stress conditions. Later, we also investigated the fluid transfers between matrix and fracture that control imbibition process. We evaluated dimensionless time for validating the scheme of upscaling laboratory experiments to field dimensions.

In CO₂ injection experiments, the use of X-ray CT has allowed us to understand the mechanisms of CO₂ flooding process in fractured system and to take important steps in reducing oil bypassed. When CO₂ flooding experiments were performed on a short core with a fracture at the center of the core, the gravity plays an important role in the recovery of oil even in a short matrix block. This results are contrary with the previous believes that gravity drainage has always been associated with tall matrix blocks.

In order to reduce oil bypassed, we injected water that has been viscosified with a polymer into the fracture to divert CO₂ flow into matrix and delay CO₂ breakthrough. Although the breakthrough time reduced considerably, water “leak off” into the matrix was very high. A cross-linked gel was used in the fracture to avoid this problem. The gel was found to overcome “leak off” problems and effectively divert CO₂ flow into the matrix.

As part of our technology transfer activity, we investigated the natural fracture aperture distribution of Tensleep formation cores. We found that the measured apertures distributions follow log normal distribution as expected.

The second chapter deals with analysis and modeling the laboratory experiments and fluid flow through fractured networks. We derived a new equation to determine the average fracture aperture and the amount of each flow through fracture and matrix system. The results of this study were used as the observed data and for validating the simulation model. The idea behind this study is to validate the use of a set of smooth parallel plates that is common in modeling fracture system. The results suggest that fracture apertures need to be distributed to accurately model the experimental results.

In order to study the imbibition process in details, we developed imbibition simulator. We validated our model with X-ray CT experimental data from different imbibition experiments. We found that the proper simulation model requires matching both weight gain and CT water saturation simultaneously as oppose to common practices in matching imbibition process with weight gain only because of lack information from CT scan. The work was continued by developing dual porosity simulation using empirical transfer function (ETF) derived from imbibition experiments. This allows reduction of uncertainty parameter in modeling transfer of fluids from matrix to the fracture. The application of ETF approach not only reduces the computation times but also shows similar results when compared to the results from existing dual porosity simulator.

During the development of our numerical modeling, we found that the grid orientation effect (GOE) is major problem plaguing reservoir simulators that employ finite difference schemes. The GOE is clearly seen when using conventional Cartesian grid blocks during CO₂ flooding or unfavorable mobility ratio presence in the simulation model. We developed hybrid grid block (HGB) to reduce this effect. Using this grid block, the simulation is able to reduce the GOE even for unfavorable mobility ratio.

The last chapter discusses a modeling approach to reduce oil bypassed in CO₂ flood pattern. A fully compositional simulation model was developed to optimize the flood pattern. The simulation model was validated and CO₂ injection rate, slug size, WAG ratio, flood pattern were optimized. In addition, the use of viscous water during the WAG process and placing the polymer in high permeability streak were investigated. The results show applying viscous water and polymer could significantly increase oil recovery. More details of the abstracts can be found in the following sections that appear in this report.

Chapter I-1 Effect of Overburden Pressure on Unfractured and Fractured Permeability Cores

The fracture aperture and fracture permeability are usually considered to remain the same during the producing life of the reservoir regardless of degree of depletion. Our experimental results show that the fracture aperture and fracture permeability have significant pressure-dependent changes in response to applying variable injection rates and overburden pressures. This paper addresses the laboratory experiments on the effect of fracture aperture and fracture permeability on the fluid flow under different overburden pressure. The equations to quantify the flow through the matrix and the fracture at different overburden pressures are provided. In addition the reservoir simulation was performed to model the laboratory experiments.

Chapter I-2 Investigating the Changes in Matrix and Fracture Properties and Fluid Flow under Different Stress-state Conditions

Laboratory experiments were performed on a Berea core to investigate the changes in rock properties and fluid flow under different stress-state conditions. A comparative study was done to analyze the effect of the various loading systems. The experimental results show that fracture permeability reduces significantly compared to matrix permeability as the stress increases. The hydrostatic and triaxial stresses have greater impacts on permeability reduction compared to the uniaxial stress condition. Flow in the fracture dominates when the applied stress is relatively low. However, the flow in the matrix increases as applied stress increases and dominates at high stress even though the fracture is not completely healed.

Chapter I-3 Investigating Fracture Aperture Distributions under Various Stress Conditions Using X-Ray CT Scanner

Fracture aperture is usually estimated by cubic law, which assumes flow between two smooth parallel plates. However, many researchers have proved that the fracture aperture is not a smooth surface but rather has tortuous paths and roughness and hence the flow behavior is different. Previous research showed that fracture aperture follows lognormal distribution. Nevertheless, there has not been any research conducted to validate the fracture aperture distribution with the change in stress conditions, which is common in fractured reservoirs. With the advent of X-ray CT scanner in the field of petroleum engineering, fracture apertures can be visualized and measured. Since there is no direct calculation for fracture aperture measurement from CT scanner data a calibration curve needs to be established. We developed a calibration curve based on existing calibration techniques, which involves area integration of the fracture region to obtain a correlation between integrated CT numbers and the calibrated fracture aperture. Using this calibration curve, we obtained distribution patterns for fracture apertures along the length of the core for various stress conditions, from about six thousand fracture aperture measurements for each stress condition. The results show that aperture distributions still follow lognormal distribution under various stress conditions.

Chapter I-4 Imbibition Assisted Oil Recovery

Imbibition describes the rate of mass transfer between the rock and the fractures. Therefore, understanding the imbibition process and the key parameters that control the imbibition process is crucial. Capillary imbibition experiments usually take a long time, especially when we need to vary some parameters to investigate their effects. Therefore, this research presented the numerical studies with the matrix block surrounded by the wetting phase for better understanding the characteristic of spontaneous imbibition, and also evaluated dimensionless time for validating the scheme of upscaling laboratory imbibition experiments to field dimensions.

Numerous parametric studies have been performed within the scope of this research. The results were analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length used in the modified scaling group has been evaluated. The new scaling group used to correlate simulation results has been compared to the early upscaling technique.

The research revealed the individual effects of various parameters on imbibition oil recovery. Also, the study showed that the characteristic length and the new scaling technique significantly improved upscaling correlations.

Chapter I-5 Application of X-Ray CT for Investigation of CO₂ and WAG Injection in Fractured Reservoirs

Fractured reservoirs have always been considered poor candidates for enhanced oil recovery. This is mainly due to the complexities involved in predicting performance in such reservoirs. A good understanding of multiphase flow in fractures is important to reduce oil bypass and increase recovery in these reservoirs. This paper presents CO₂ flooding experiments in homogeneous and fractured rocks with in-situ saturation and porosity measurements using an X-Ray CT scanner. We found that injection rates played

an important role in the recovery process, more so in the presence of fractures. At high injection rates we observed faster CO₂ breakthrough and higher oil bypass than at low injection rates. But very low injection rates are not attractive from an economic point of view. Hence we injected viscosified water to reduce the mobility of CO₂, similar to the WAG process. Breakthrough time reduced significantly and a much higher recovery was obtained. Saturation measurements were made from the CT scans and were found to be in good agreement with those obtained from effluent data.

Chapter I-6 Analysis of Gravity Drainage Mechanism in a Short Vertically Fractured Core

Gravity drainage is an important oil recovery mechanism in naturally fractured reservoirs. In some cases it is the only mechanism that allows oil recovery and production of oil from the matrix blocks. Oil recovery by gravity drainage strongly depends on the height of the capillary continuity. Hence gravity drainage has always been associated with tall matrix blocks. Our experimental results show that gravity drainage can be an important recovery mechanism even in short matrix blocks. CO₂ flooding experiments were performed on cores with a diameter of 1 inch with a fracture at the center of the core, aligned vertically. A fourth generation CT scanner was used to obtain cross-sectional scans and determine saturations at different points of time. Saturation images indicate that gravity plays an important role in the recovery of oil by CO₂ even in a 1 inch fracture.

Chapter I-7 Investigation of Natural Fracture Aperture Distribution of Tensleep Formation Cores using X-Ray CT Scanner

The Tensleep Formation in Teapot Dome is an intensely fractured rock and considered as a CO₂ sequestration candidate. Fractured reservoirs are ideal candidates for sequestration due to the large volume of CO₂ that can be injected in a short period of time however this is an unproven and risky technology as a result of the high conductivity channels that fractures provide. The ultimate oil recovery in most NFR is very low compared to conventional oil reservoirs thus a significant fraction of the resources are left behind after abandonment. The low recovery inherent in NFR makes such reservoirs ideal candidates for sequestration/EOR carbon cycle projects since the improved cash flow will nurture the desire to apply expensive sequestration technology. However, it has not been clear how the CO₂ would flow through highly conductive fracture network. Therefore, it is critical to know the characteristics of fracture media for the success of the project.

Two cores from the RMOTC 48X28 well, Teapot Dome, were analyzed. One is retrieved from 5565 ft depth (Core-A) and the other one is from 5566 ft depth (Core-B). Both cores contain mineralized fractures and open fractures. The mineralized fractures are filled with high dense mineral such as crystalline dolomite. Some fractures exit the cores and terminations of such fractures cannot be observed.

We applied 4th generation CT scanner to get information on fracture properties such as aperture, mineralization, aperture distribution and permeability distribution without damaging cores. The CT scanner provides CT images, which show the difference between material densities. These images are not the actual physical property of fracture. Thus, it is required to provide a unique calibration curve for the Tensleep rock from these images to obtain aperture size. We found that the measured aperture distributions follow log-normal distribution by comparing measured data with generated data using log-normal probability density function. Aperture of the open fracture of Core-B is wider and

distributes more widely than that of Core-A. Aperture data were converted into permeability values with the assumption of parallel plate model.

Chapter II-1 Experimental and Simulation Analysis of Fractured Reservoir Experiencing Different Stress Conditions

Flow through the fracture is usually estimated by cubic law, which assumes flow to occur between two parallel plates. The cubic law is valid to represent the flow through the fracture system if the matrix permeability is very low to provide any significant flow contribution. However, in high permeability rocks, the flow occurs through both fracture and matrix systems. Flow through matrix may sometimes exceed that through the fractures under increased stress acting on the reservoirs. Under these circumstances, the cubic law should be modified by combining the weighted average of the permeabilities in order to account for flow through matrix. In this paper we present the amount of flow through fracture and matrix system based on modified cubic law equations by conducting a series of laboratory experiments on fractured cores under different stress conditions. The flow rate through fracture and matrix system and the pressure drop were matched using simulation. X-ray CT was used to determine the fracture aperture and saturation distributions. In addition, the saturation distributions from simulation results were compared to X-ray CT Scan results.

Chapter II-2 Modeling Fluid Flow through a Single Fracture using Experimental, Stochastic and Simulation Approaches

In this chapter, sensitivity of fracture modeling, error involved in the experiments and saturation match of fracture imbibition experiments using X-ray CT Scanner are established.

A fracture is usually assumed as a set of smooth parallel plates separated by a constant width. However, the flow characteristics of an actual fracture surface are quite different, affected by tortuosity and the impact of surface roughness. Though several researchers have discussed the effect of friction on flow reduction, their efforts lack corroboration from experimental data and have not converged to form a unified methodology for studying flow on a rough fracture surface. The goal of this research is to examine the effect of surface roughness for flow through fractures and to effectively incorporate them into simulations with the aid of geostatistics.

In this study, we have shown an integrated methodology, involving experiments, stochastics and numerical simulations that incorporate the fracture roughness and the friction factor, to describe flow on a rough fracture surface. Laboratory experiments were performed to support the study in quantifying the flow contributions from the matrix and the fracture under varying confining pressures. The results were used to modify the cubic law through reservoir simulations. Observations suggest that the fracture apertures need to be distributed to accurately model the experimental results.

The methodology successfully modeled fractured core experiments, which were earlier not possible through parallel plate approach. A gravity drainage experiment using an X-ray CT scan of a fractured core has also validated the methodology.

Chapter II-3 Simulation of Fluid Flow through Rough Fractures

Flow through a fracture is usually assumed to take place between two smooth parallel plates. However, it is widely accepted that the fracture has tortuous paths as a result of

surface roughness and hence the flow behavior in these paths compared to that in parallel plates is different. Although previous studies have shown that the fracture aperture follows lognormal distribution, studies have not been conducted to determine the distribution of fracture aperture with changes in stress conditions. In this paper, we present fracture aperture measurements under different stress conditions using an X-Ray CT scanner. We developed a calibration curve to obtain a correlation between CT numbers and fracture aperture since there is no direct calculation of aperture from CT scanner data. Aperture distribution patterns from about six thousand aperture measurements were obtained for each stress condition evaluated. The results of this study show that the apertures follow lognormal distribution even at elevated stress conditions. We then performed waterflood experiments as a precursor to CO₂ injection to validate the use of distributed apertures in simulators. A sensitivity analysis was also performed to analyze the effect of injection rates and fracture roughness on oil recovery.

Chapter II-4 X-Ray Tomography Results Validate Numerical Modeling of Flow in Fractures

Spontaneous imbibition plays a very important role in the displacement mechanism of non-wetting fluid in naturally fractured reservoirs. To quantify this spontaneous imbibition process, we developed a 2D two-phase numerical model. This numerical model was developed because an available commercial simulator cannot be used to model small-scale experiments with different boundary conditions. In building the numerical model, we started with the basic equation of fluid flow and developed a numerical approach of solving the non-linear diffusion saturation equation. We compared our numerical model with the analytical solution of this equation to ascertain the limitations of the assumptions used to arrive at that solution. The unique aspect of this paper is that we validated our model with X-ray computerized tomography (CT) experimental data from a different spontaneous imbibition experiment, where two simultaneously varying parameters of weight gain and CT water saturation were used. This requires us to undertake extensive sensitivity studies on key parameters before a successful match could be obtained. We also successfully captured our own X-ray computerized tomography (CT) laboratory experiment on a fractured core.

Chapter II-5 Simulation of Naturally Fractured Reservoirs Using Empirically Derived Transfer Function

This research utilizes the imbibition experiments and X-Ray Tomography results for modeling fluid flow in naturally fractured reservoirs. Conventional dual porosity simulation requires large number of runs to quantify transfer function parameters for history matching purposes. In this study empirical transfer functions (ETF) are derived from imbibition experiments and this allows reduction in the uncertainty in modeling of transfer of fluids from the matrix to the fracture.

The application of ETF approach is applied in two phases. In the first phase, imbibition experiments are numerically solved using the diffusivity equation with different boundary conditions. Usually only the oil recovery in imbibition experiments is matched, however, with the advent of X-Ray CT the spatial variation of the saturation can also be computed. The matching of this variation can lead to accurate reservoir characterization. In the second phase, the imbibition derived empirical transfer functions are used in developing a dual porosity reservoir simulator. The results from this study are compared with

published results. The study reveals the impact of uncertainty in the transfer function parameters on the flow performance and reduces the computations to obtain transfer function required for dual porosity simulation.

Chapter II-6 A Unique Grid-Block System for Improved Grid Orientation

The grid orientation effect is a long-standing problem plaguing reservoir simulators that employ finite difference schemes. This study develops a unique grid-block assignment where rectangular grid blocks are interspersed with octagonal grid blocks. This grid block system is called the Hybrid Grid Block (HGB) system. The objective of this study is to evaluate the grid orientation effect of the HGB grid to see whether it is an improvement over the conventional Cartesian grid system. In HGB, flow can progress in four directions in the octagonal grid blocks and two in the square grid blocks. The increase in the number of flow directions in the octagonal grid blocks is expected to reduce the grid orientation effect in the model. This study also evaluates the grid orientation effect of the HGB and compares it with the Cartesian grid system.

HGB grid is able to reduce the grid orientation effect even for unfavorable mobility ratio displacement problems (up to $M = 50.0$), with maximum relative difference in pore volume recovered of 6% between parallel and diagonal HGB grid models for all the cases run in this study. Comparisons between the conventional Cartesian and HGB grid show that the HGB grid is more effective in reducing the grid orientation effect than the Cartesian grid. The HGB grid performs better by consistently giving a smaller relative difference between HGB parallel grid and HGB diagonal grid in pore volume recovered compared to the relative difference between Cartesian parallel grid and Cartesian diagonal grid in pore volume recovered at similar averaged area per grid block for all the four comparison cases studied.

Chapter II-7 Reduced CO₂ Bypassing and Optimized CO₂ Flood Design

This research utilized a modeling approach to reduce oil bypassed in CO₂ flood pattern. A fully compositional simulation model with detailed geological characterization was developed to optimize the flood pattern. The simulation model is a quarter of an inverted nine-spot and covers 20 acres area. The Peng-Robinson equation of state (EOS) was used to describe the phase behavior during CO₂ flooding. Simulation layers represent actual flow units and resemble large variation of reservoir properties. A-34 year production and injection history was matched to validate the model. Then, several sensitivities run including CO₂ injection rate, slug size, WAG ratio, pattern reconfiguration and conformance control were conducted to improve CO₂ sweep efficiency and increase oil recovery.

We found that the optimum CO₂ injection rate is approximately 300 rb (762 MSCF/D). The optimum water-alternating-gas (WAG) ratio is 1:1. This ratio allows an incremental oil recovery up to 18% with an ultimate CO₂ slug of 100% hydrocarbon pore volume (HCPV). If a polymer is placed in high permeability streak during the course of 1:1 WAG ratio, an additional recovery could increase up to 34%. The simulation results also reveal that a pattern reconfiguration change from inverted nine spot to staggered line drive could significantly increase oil recovery.

TABLE OF CONTENTS

DISCLAIMER	ii
ABSTRACT	iii
TABLE OF CONTENTS	x
LIST OF TABLES	xvii
LIST OF FIGURES	xix
ACKNOWLEDGMENT	xxxi
EXECUTIVE SUMMARY	xxxii
I. Experimental Investigation of Transfer Mechanisms during CO₂ flooding in NFR and HFR using X-ray CT scanner	
1.1. Effect of Overburden Pressure on Unfractured and Fractured Permeability Cores	1
1.1.1 Introduction	1
1.1.2 Experimental Work	2
1.1.3 Data Analysis	3
1.1.4 Artificially Fractured Core Simulation	5
1.1.5 Results and Discussion	6
1.1.6 Conclusions	8
1.2. Investigating the Changes in Matrix and Fracture Properties and Fluid Flow under Different Stress-state Conditions	20
1.2.1 Introduction	20
1.2.2 Hydrostatic Stress Experiments	22
1.2.2.1 Experimental Description	22
1.2.2.2 Experimental Procedures	23
1.2.2.3 Effect of Hydrostatic Stress on Permeability	23
1.2.2.4 Effect of Hydrostatic Stress on Fracture Aperture	24
1.2.2.5 Effect of Hydrostatic Stress on Fracture Permeability	25
1.2.2.6 Effect of Hydrostatic Stress on Fracture and Matrix Flow Rates	25
1.2.3 Triaxial Stress Experiments	25
1.2.3.1 Experimental Description	25
1.2.3.2 Effect of Triaxial Stress on Permeability	26
1.2.3.3 Effect of Triaxial Stress on Fracture Aperture	26

1.2.3.4 Effect of Applied Stress on Fracture Permeability	26
1.2.3.5 Effect of Applied Stress on Fracture Flow Rate	26
1.2.3.6 Effect of Applied Stress on Matrix Flow Rate	26
1.2.4 Comparison of Uniaxial, Triaxial and Hydrostatic Results	28
1.2.4.1 Effect of Applied Stress on Permeability of Unfractured Core	28
1.2.4.2 Effect of Applied Stress on Permeability of Fractured Core	28
1.2.4.3 Effect of Applied Stress on Fracture Aperture	28
1.2.4.4 Effect of Overburden Pressure on Fracture Permeability	29
1.2.5 Conclusions	29
1.3 Investigating Fracture Aperture Distributions under Various Stress Conditions Using X-Ray CT Scanner.....	42
1.3.1 Introduction.....	42
1.3.2 Calibration Technique	44
1.3.2 Calibration Curve.....	46
1.3.3 Fracture Aperture Distribution	47
1.3.4 Discussion	48
1.3.5 Conclusions.....	49
1.4 Imbibition Assisted Oil Recovery.....	60
1.4.1 Background	60
1.4.2 Motivation and Objectives	61
1.4.3 Methodology	62
1.4.3.1 Available Data	62
1.4.4 Numerical Modeling	63
1.4.4.1 Discretization and Grid Sensitivity Analysis	63
1.4.4.2 Matching Experimental Results	64
1.4.4.2.1 Relative Permeability and Capillary Pressure	64
1.4.4.2.2 Boundary Conditions	65
1.4.4.2.3 Effect of Gravity	66
1.4.4.3 Rates of Imbibition	66
1.4.4.3.1 Effect of Heterogeneity on the Imbibition Oil Recovery	67
1.4.5 Parametric Study	68

1.4.5.1 Effect of Water-Oil Viscosity Ratio	69
1.4.5.2 Effect of Capillary Pressure and Relative Permeability	69
1.4.5.3 Effect of Fracture Spacing	70
1.4.6 Scaling of Static Imbibition Data.....	70
1.4.6.1 Scaling for Different Types of Boundary Conditions	72
1.4.6.2 Scaling for Variable Mobility Ratios	72
1.4.7 Conclusions.....	74
1.5 Application of X-Ray CT for Investigation of CO ₂ and WAG Injection in Fractured Reservoirs	91
1.5.1 Introduction.....	91
1.5.2 Experimental Setup.....	92
1.5.3 Experimental Procedure.....	93
1.5.4 Results and Discussions.....	94
1.5.4.1 Homogeneous Core Experiments	94
1.5.4.1.1 High Injection Rate	95
1.5.4.1.2 Low Injection Rate.....	95
1.5.4.2 Fractured core experiments	96
1.5.4.2.1 Continuous CO ₂ Injection	96
1.5.4.2.2 WAG Experiment	94
1.5.4.2.3 Experiment with Gel	98
1.5.5 Conclusions.....	99
1.6 Analysis of Gravity Drainage Mechanism in a Short Vertically Fractured Core	111
1.6.1 Introduction.....	111
1.6.2 Experimental Setup.....	112
1.6.2.1 Injection System.....	112
1.6.2.2 Coreflood Cell.....	113
1.6.2.3 X-Ray CT Scanner.....	113
1.6.2.4 Production System	114
1.6.2.5 Data Acquisition System (DAQ)	114
1.6.3 Experimental Parameters	114
1.6.4 Experimental Procedures	115

1.6.5 Result and Discussions	116
1.7 Investigation of Natural Fracture Aperture Distribution of Tensleep Formation Cores	
using X-Ray CT Scanner	130
1.7.1 Introduction.....	130
1.7.2 Experimental Procedures	131
1.7.2.1 Calibration Curve.....	131
1.7.2.2 CT Scanning.....	133
1.7.2.3 Log-normal distribution	133
1.7.3 Results and Discussions.....	134
1.7.4 Conclusions.....	135

II. Analysis and Modeling the Laboratory Experiments and Fluid Flow through Fractured Networks

2.1 Experimental and Simulation Analysis of Fractured Reservoir Experiencing Different Stress Conditions	152
2.1.1 Introduction.....	152
2.1.2 Experimental Procedure.....	153
2.1.3 Analytical Equations	154
2.1.4 Parallel plate simulation model.....	157
2.1.5 Distributed simulation model.....	157
2.1.6 Gravity Drainage Experiment	158
2.1.7 Conclusions.....	159
2.2 Modeling Fluid Flow through a Single Fracture using Experimental, Stochastic and Simulation Approaches.....	171
2.2.1 Introduction.....	171
2.2.2 Error analysis	172
2.2.3 X-ray CT scanner results	173
2.2.4 Simulation of X-ray CT scanner experiments	174
2.2.5 Sensitivity studies	174
2.2.5.1 Effect of variance of aperture distribution on fracture flow rate	174
2.2.5.2 Determination of critical aperture size.....	175

2.2.5.3 Effect of matrix permeability	175
2.2.5.4 Effect of matrix heterogeneity	176
2.2.5.5 Simulator testing	177
2.2.6 Conclusions.....	178
2.3 Simulation of Fluid Flow through Rough Fractures	195
2.3.1 Introduction.....	195
2.3.2 Calibration Technique.....	197
2.3.3 Calibration Curve.....	199
2.3.4 Fracture Aperture Distribution.....	200
2.3.5 Waterflooding Experiment.....	201
2.3.5.1 Parallel Plate Simulation Model	201
2.3.5.2 Distributed Aperture Simulation Model	202
2.3.5.3 Sensitivity Analysis	203
2.3.6 Conclusions.....	203
2.4 X-Ray Tomography Results Validate Numerical Modeling of Flow in Fractures	214
2.4.1 Introduction.....	214
2.4.2 Principle of X-Ray Tomography	220
2.4.3 Mathematical Model	221
2.4.4 Finite Difference Numerical Model.....	223
2.4.5 Theoretical Background and Verification Tasks	224
2.4.5.1 Handy's ² Experiment of Spontaneous Imbibition	224
2.4.5.2 Spontaneous Imbibition Experiment of Unfractured Core	225
2.4.5.3 Spontaneous Imbibition Experiments with Fractured Core.....	227
2.4.6 Conclusions.....	227
2.5 Simulation of Naturally Fractured Reservoirs Using Empirically Derived Transfer Function	237
2.5.21 Introduction.....	237
2.5.2 Literature Review and Present Status	238
2.5.3 Transfer Function.....	240
2.5.3.1 Empirical Transfer Functions	241
2.5.3.2 Scaling Transfer Functions	243

2.5.3.3 Transfer Function Using Darcy Law	244
2.5.3.4 Diffusivity Transfer Functions.....	245
2.5.3.5 Comparison of the Transfer Functions	246
2.5.3.6 Flow Visualization Using X-Ray Tomography	246
2.5.4 Methodology – Procedure of Study	247
2.5.4.1 Simulator to model the imbibition experiments.....	247
2.5.4.2 Dual porosity simulator.....	247
2.5.4.2.1 Fracture Flow Equations	248
2.5.4.2.2 Matrix Flow Equations	250
2.5.4.2.3 Empirical Transfer Function	251
2.5.4.2.4 Discretization of the Equations	252
2.5.5 Discussion	260
2.5.6 Conclusions.....	262
2.6 Hybrid Grid Block Reduces Grid Orientation Effect	280
2.6.1 Introduction.....	280
2.6.1.1 Literature Review on Grid Orientation Effect	281
2.6.1.2 Motivation.....	283
2.6.2 Methodology	284
2.6.3 Development of Sim2D	284
2.6.3.1 Averaging of Flow Equation Terms	285
2.6.3.2 Boundary Conditions	285
2.6.3.3 Well Models.....	286
2.6.4 Implementation of Hybrid Grid-Block (HGB) System	288
2.6.4.1 Grid Block Generation.....	288
2.6.4.2 Transmissibility Calculations.....	288
2.6.4.3 Grid Numbering and Structure of Matrix Forms	289
2.6.5 Grid Orientation Effect in Rectangular Grid	289
2.6.6 Performance of HGB Model.....	291
2.6.6.1 Program Validation.....	291
2.6.6.2 Use of HGB Grid to Reduce the Grid Orientation Effect.....	291
2.6.6.3 HGB Sensitivity	292

2.6.7 Discussion	294
2.6.8 Conclusions.....	294
2.7 Reduced CO ₂ Bypassing and Optimized CO ₂ Flood Design.....	316
2.7.1 Introduction.....	316
2.7.2 Simulation Model Construction.....	316
2.7.2.1 PVT Equation of State Characterization.....	317
2.7.2.2 Relative Permeability.....	318
2.7.3 History Matching	319
2.7.4 Parametric study.....	320
2.7.4.1 CO ₂ Injection Rate Optimization	320
2.7.4.2 Optimum Water-Alternating-Gas (WAG) Ratio	320
2.7.4.3 Conformance Control.....	321
2.7.4.4 Optimum Well Pattern	322
2.7.5 Conclusions.....	323
APPENDIX: PROJECT FACT SHEET	339

LIST OF TABLES

Table 1.1.1	Overburden experiments for unfractured core	12
Table 1.1.2	Overburden experiments for fractured core.....	12
Table 1.2.1	Synthetic Brine Composition.....	31
Table 1.3.1	Data showing range and frequency for various overburden pressure conditions.....	52
Table 1.3.2	Statistical Parameters for different overburden conditions.....	52
Table 1.4.1	Physical Properties of the Core and Brine	77
Table 1.4.2	Table of Grid Sizes Investigated in the Grid Sensitivity Analyses.....	77
Table 1.4.3	Properties of the Core for Numerical Simulation	77
Table 1.4.4	Table of Relative Permeabilities and Capillary Pressure.....	78
Table 1.6.1	Berea core properties	120
Table 1.7.1	Values of statistical parameters	137
Table 2.2.1	Berea core properties	162
Table 2.1.2	Experimental observations for unfractured core	162
Table 2.1.3	Experimental observations for fractured core.....	162
Table 2.2.1	Experimental error analysis	181
Table 2.2.2	Fracture properties obtained from pressure drop match	181
Table 2.2.3	Comparison of fracture properties from simulation and experimental results	181
Table 2.3.1	Properties of Berea core	207
Table 2.3.2	Oil Recovery Obtained at Different Injection Rates Using Distributed Fracture Aperture Model.....	207
Table 2.3.3	Oil Recovery Obtained at Different Injection Rates Using Smooth Fracture Aperture (Parallel Plate) Model.....	207
Table 2.4.1	Summary of key parameter used to match CT water saturation.....	230
Table 2.5.1	Shape Factors as reported by Penula-Pineda	268
Table 2.5.2	Modeled Garg et al core properties.....	268
Table 2.5.3	Parameters for match of imbibition response (Garg <i>et al</i>).....	268
Table 2.5.4	Properties of the core for numerical simulation (Vivek <i>et al</i>)	269
Table 2.5.5	Capillary Pressure obtained from the match.....	269

Table 2.5.6	Relative Permeability obtained for the match.....	270
Table 2.6.1	Reservoir parameters for rectangular grid	300
Table 2.6.2	Grid sizes used in rectangular grid models.....	300
Table 2.6.3	Reservoir data for HGB grid.....	301
Table 2.6.4	Data used for HGB pattern simulations.....	301
Table 2.6.5	Relative difference between parallel and diagonal grid for both HGB and Cartesian grids at $M = 0.5$	302
Table 2.6.6	Relative difference between parallel and diagonal grid for both HGB and Cartesian grids at $M = 0.5$	302
Table 2.7.1	Basic Reservoir Properties.....	324
Table 2.7.2	EOS Characterization.....	325

LIST OF FIGURES

Fig. 1.1.1	Schematic diagram of the two-phase core flooding experiment.....	13
Fig. 1.1.2	Comparison permeability reduction between unfractured and fractured cores due to increasing overburden pressure	14
Fig. 1.1.3	Relationship between pressure drop and permeability	14
Fig. 1.1.4	Water saturation change at matrix and fracture at transient flow condition	15
Fig. 1.1.5	Simulation results of flow rates and pressure drop injected at 5 cc/min and overburden pressure of 500 psi	15
Fig. 1.1.6	Flow rates comparison between laboratory and simulation results at 5 cc/min and each different overburden pressures.....	16
Fig. 1.1.7	Pressure drop comparison between laboratory and simulation results at 5 cc/min and each different overburden pressures.....	16
Fig. 1.1.8	Effect of injection rates on matrix permeability during applying variable overburden pressures	17
Fig. 1.1.9	Effect of injection rates on fracture aperture during applying variable overburden pressures	17
Fig. 1.1.10	Effect of injection rates on fracture permeability during applying variable overburden pressure	18
Fig. 1.1.11	Reduction in fracture flow rate during variable overburden pressures.....	18
Fig. 1.1.12	Reduction in matrix flow rate during variable overburden pressures.....	19
Fig. 1.2.1	Hydrostatic loading apparatus.....	31
Fig. 1.2.2	Permeability reduction due to hydrostatic stress	32
Fig. 1.2.3	Normalization permeability reduction due to hydrostatic stress at injection 5 cm ³ /min	32
Fig. 1.2.4	Fracture aperture reduction due to hydrostatic stress	33
Fig. 1.2.5	Fracture permeability reduction due to hydrostatic stress at different injection rate.....	33
Fig. 1.2.6	Effect of hydrostatic stress on fracture flow rate at different injection rate	34
Fig. 1.2.7	Effect of hydrostatic stress on matrix flow rate at different injection rate	34
Fig. 1.2.8	Triaxial stress experiment apparatus.....	35
Fig. 1.2.9	Permeability reduction due to triaxial stress	36

Fig. 1.2.10	Normalization permeability reduction due to triaxial stress	36
Fig. 1.2.11	Fracture aperture reduction due to triaxial stress.....	37
Fig. 1.2.12	Normalized fracture permeability reduction due to triaxial stress.....	37
Fig. 1.2.13	Effect of triaxial stress on fracture flow rate	38
Fig. 1.2.14	Effect of triaxial stress on matrix flow rate at different injection rates	38
Fig. 1.2.15	Illustration of uniaxial, triaxial and hydrostatic stresses.....	39
Fig. 1.2.16	Comparison of matrix permeability reduction due to different applied stresses	39
Fig. 1.2.17	Comparison of effective permeability reduction due to different applied stresses	40
Fig. 1.2.18	Comparison of fracture aperture reduction due to different applied stresses at injection rate of 5 cm ³ /min.....	40
Fig. 1.2.19	Comparison of fracture permeability reduction due to different applied stresses at injection rate of 5 cm ³ /min.....	41
Fig. 1.3.1	Experimental procedure showing feeler gauges and scan locations	52
Fig. 1.3.2	Scans taken along the length of the core for various feeler gauges	53
Fig. 1.3.3	Average CT number plot for 38 μ m feeler gauge.....	54
Fig. 1.3.4	Comparison of CT number plots for different fracture sizes	54
Fig. 1.3.5	Integrated area in the fracture region showing the index of integrated CT	55
Fig. 1.3.6	Calibration curve between integrated CT signal and fracture aperture	55
Fig. 1.3.7	Sample scans taken along the length of the core with different overburden pressures.....	56
Fig. 1.3.8	Probability distribution of fracture apertures without overburden pressure	57
Fig. 1.3.9	Probability distribution of fracture apertures at 500 psi overburden pressure	57
Fig. 1.3.10	Probability distribution of fracture apertures at 1000 psi overburden pressure	58
Fig. 1.3.11	Probability distribution of fracture apertures at 1500 psi overburden pressure	58
Fig. 1.3.12	Comparative study of fracture aperture distribution under various overburden pressures	59

Fig. 1.3.13	Comparison of aperture distribution curves for various overburden pressures.....	59
Fig. 1.4.2	Oil recovery curve from static imbibition experiment.....	78
Fig. 1.4.3	Grid size effect on oil recovery from static imbibition experiment.....	79
Fig. 1.4.4	Simulation times for different grid sizes.....	79
Fig. 1.4.5	Observed oil recovery vs. simulated before adjustment of reservoir data.....	80
Fig. 1.4.6	Match of the simulated oil recovery with the observed oil recovery.....	80
Fig. 1.4.7	Water distribution at different imbibition times from x-plane view.....	81
Fig. 1.4.8	Schematic representation of imbibition in cores with different boundary conditions: A) One End Open, B) Two Ends Open, and C) Two Ends Closed types	81
Fig. 1.4.9	Effect of gravity on imbibition response	82
Fig. 1.4.10	Oil recoveries for All Faces Open, Two Ends Closed, Two Ends Open, and One End Open types of boundary conditions	82
Fig. 1.4.11	Absolute time for imbibition to reach S_{or} as a function of the faces available for imbibition.....	83
Fig. 1.4.12	OEO imbibition model: first case $k_1 > k_2 > k_3 > k_4$ and second case $k_1 < k_2 < k_3 < k_4$	83
Fig. 1.4.13	Permeability profiles along the core: A) $k_1 > k_2 > k_3 > k_4$, B) $k_1 < k_2 < k_3 < k_4$	84
Fig. 1.4.14	Oil recovery curves for different permeability profiles along the core	84
Fig. 1.5.15	Oil recovery curves with different oil viscosities	85
Fig. 1.4.16	Effect of different capillary pressure on oil recovery	85
Fig. 1.4.17	Effect of different oil relative permeabilities on oil recovery.....	86
Fig. 1.4.18	Effect of different water relative permeabilities on oil recovery.....	86
Fig. 1.4.19	Effect of different fracture spacing on oil recovery.....	87
Fig. 1.4.20	Correlation of the results for the systems with different boundary conditions, using the length of the core in the equation of dimensionless time	87
Fig. 1.4.21	Correlation of the results for the systems with different boundary conditions, using the characteristic length in the equation of dimensionless time	88

Fig. 1.4.22	Comparing correlation of the results for the systems with different mobility ratios using Eq. 10 and Eq. 11 – Two Ends Open.....	89
Fig. 1.4.23	Comparing correlation of the results for the systems with different mobility ratios using Eq. 10 and Eq. 11 – One End Open	90
Fig. 1.5.1	Schematic of the experimental setup	102
Fig. 1.5.2	Cross-Sectional scans taken at various stages during the experiment	103
Fig. 1.5.3	CT number decreases with increase in CO_2 saturation.....	104
Fig. 1.5.4	Reconstructions of cross-sectional scans for high injection rate case	104
Fig. 1.5.5	Reconstructions of cross-sectional scans for low injection rate case shows good sweep.....	105
Fig. 1.5.6	CO_2 saturations along the length of the core at different stages of injection.....	106
Fig. 1.5.7	Oil recovery is higher obtained for lesser pore volumes injected in the low injection rate case.....	106
Fig. 1.5.8	Cross-sectional scans taken during the continuous CO_2 injection experiment.....	107
Fig. 1.5.9	Scan taken at water breakthrough where red color indicates water.....	108
Fig. 1.5.10	Scan taken at various stages of the experiment in the presence of gel	109
Fig. 1.5.11	Recovery curves for the various cases showing highest recovery in the presence of gel	110
Fig. 1.6.1	Schematic of the experimental setup	121
Fig. 1.6.2	Density of CO_2 at experimental conditions	122
Fig. 1.6.3	Regions with porosity value in the range of 21%	123
Fig. 1.6.4	Regions with porosity value of at least 18%.....	123
Fig. 1.6.5	Oil saturated core scans during continuous CO_2 injection.....	124
Fig. 1.6.6	Scans taken at about 0.7 PV of injection indicate irregular saturation of CO_2 and breakthrough from fracture	124
Fig. 1.6.7	Scan taken at about 1.3 PV of injection.....	124
Fig. 1.6.8	Scan taken at the end of the experiment	125
Fig. 1.6.9	Scale showing colors and their corresponding CT numbers.....	125
Fig. 1.6.10	CO_2 saturations at 0.7 PV of injection	125
Fig. 1.6.11	CO_2 saturations at 1.3 PV of injection	126

Fig. 1.6.12	CO ₂ saturations at the end of the experiment.....	126
Fig. 1.6.13	Color scale indicating red color with high values of saturation.....	126
Fig. 1.6.14	Regions with minimum saturation of 60% at 0.7 PV of injection	127
Fig. 1.6.15	Regions with minimum saturation of 60% at 1.3 PV of injection	127
Fig. 1.6.16	Regions with minimum saturation of 60% at 1.7 PV of injection	128
Fig. 1.6.17	Regions with minimum saturation of 60% at the end of the experiment.....	128
Fig. 1.6.18	Spatial variation of saturation at various PV of injection	129
Fig. 1.6.19	Oil recovery vs. pore volumes injected for continuous CO ₂ injection	129
Fig. 1.7.1	Teapot Dome, NE Natrona Co., central Wyo., 30 mi/48 km NNE of Casper, WY. The teapot-shaped rock formation is also shown.....	137
Fig. 1.7.2	Cores from Tensleep formation.	138
Fig. 1.7.3	Universal Systems HD-350E	139
Fig. 1.7.4	Schematic view of feeler gauge locations and scanning locations.	139
Fig. 1.7.5	Scanning images with various feeler gauge sizes.	141
Fig. 1.7.6	Average CT number plot of 203 μm feeler gauge	141
Fig. 1.7.7	Comparison of CT number plots for various fracture size	142
Fig. 1.7.8	Integrated area of fracture region.....	142
Fig. 1.7.9	Calibration between Integrated CT Signal and Fracture Aperture	143
Fig. 1.7.10	Measured cores from Tensleep Formation	144
Fig. 1.7.11	CT images of Core-A	144
Fig. 1.7.12	CT images of Core-B	145
Fig. 1.7.13	Single CT image of Core-A	145
Fig. 1.7.14	3-D image of fracture of Core-A	146
Fig. 1.7.15	Single CT image of Core-B	146
Fig. 1.7.16	3-D image of fracture of Core-B.....	147
Fig. 1.7.17	Minimum CT number according to locations.....	147
Fig. 1.7.18	Distribution of Measured Data & Generated Data (Core-A).....	148
Fig. 1.7.19	Comparison of Aperture Distributions between Core-A and Core-B.....	148
Fig. 1.7.20	Aperture contour map of Core-A in μm	149
Fig. 1.7.21	Aperture contour map of Core-B in μm	149
Fig. 1.7.22	Permeability contour map of Core-A in md	150

Fig. 1.7.23	Permeability contour map of Core-B in md.....	151
Fig. 2.1.1	Schematic diagram of the core flooding experiment	163
Fig. 2.1.2	Comparison permeability reduction between unfractured and fractured cores due to increasing overburden pressures.....	163
Fig. 2.1.3	Effect of injection rates on fracture aperture at variable overburden pressures.....	164
Fig. 2.1.4	Effect of injection rates on fracture permeability at variable overburden pressures.....	164
Fig. 2.1.5	Effect of overburden pressures on fracture flowrates	165
Fig. 2.1.6	Effect of overburden pressures on matrix flowrates	165
Fig. 2.1.7	Water saturation change in matrix and fracture at transient flow condition	166
Fig. 2.1.8	Simulation model showing injector and producers.....	166
Fig. 2.1.9	Flow through fracture surface in parallel plate model	166
Fig. 2.1.10	Simulation results of matrix and fracture flowrate at 5 cc/min injection rate under various overburden pressures.....	167
Fig. 2.1.11	Simulation results of matrix and fracture flowrate at 5 cc/min injection rate under various overburden pressures.....	167
Fig. 2.1.12	Simulation results of matrix and fracture flowrate at 5 cc/min injection rate under various overburden pressures using distributed simulation model.....	168
Fig. 2.1.13	Simulation results of observed and simulated pressure drop using distributed model at 5 cc/min injection rate under various overburden pressures.....	168
Fig. 2.1.14	Modeling water saturation profile using parallel plate simulation model	169
Fig. 2.1.15	Match of average water saturation using parallel plate simulation model.....	169
Fig. 2.1.16	Modeling water saturation profile using distributed simulation model	170
Fig. 2.1.17	Match of average water saturation using distributed simulation model	170
Fig. 2.2.1	Water saturation change in matrix and fracture at transient flow condition	182
Fig. 2.2.2	Simulation results of flow rates and pressure drop injected at 5cc/min and overburden pressure of 500 psi	182
Fig. 2.2.3	Average flow rate comparison between laboratory and simulation results	

at 5cc/min and each different overburden pressure	183
Fig. 2.2.4 Average pressure drop comparison between laboratory and simulation results at 5cc/min and each different overburden pressure	183
Fig. 2.2.5 Average pressure drop match between observed and simulation results for the fractured core experiment for 5 cc/min injection rate	184
Fig. 2.2.6 Average flow rates observed for the corresponding average pressure drop match across the core at 5 cc/min injection rate	184
Fig. 2.2.7 X-ray CT scans (perpendicular to the fracture) of single-phase gravity drainage experiment through a fractured core	185
Fig. 2.2.8 Fluid movement through a core with smooth fracture.....	186
Fig. 2.2.9 Fluid front movement through a core with a distributed fracture surface	187
Fig. 2.2.10 Average water saturation match between simulation and X-ray CT scan	188
Fig. 2.2.11 Log-normal distribution for constant aperture width, different variances.....	188
Fig. 2.2.12 The comparative plots of hydraulic aperture reduction as a result of increased roughness (variance)	189
Fig. 2.2.13 Log-normal distribution for constant variance, different aperture widths.....	189
Fig. 2.2.14 Comparison between parallel plate (smooth) and distributed aperture flow (rough) for different apertures	190
Fig. 2.2.15 Effect of matrix permeability on pressure drop across the core	190
Fig. 2.2.16 Effect of matrix permeability on fracture flow rate	191
Fig. 2.2.17 Comparison of fracture flow rates between smooth and rough fractures for different matrix permeabilities.....	191
Fig. 2.2.18 Difference in pressure drop across the core between smooth and rough fractures at different matrix permeabilities.....	192
Fig. 2.2.19 Distribution of matrix permeability layer (case 2).....	192
Fig. 2.2.20 Distribution of fracture permeability layer (cases 1 and 2)	193
Fig. 2.2.21 One-dimensional model employed in simulation testing.....	193
Fig. 2.2.22 Comparative plot of pressure drops observed from simulation and through Darcy's law	194

Fig. 2.3.1	Experimental procedure showing feeler gauges and scan locations	208
Fig. 2.3.2	Scan taken along the length of the core for various feeler gauges.....	208
Fig. 2.3.3	Average CT number plot for 38 μm feeler gauge.....	209
Fig. 2.3.4	Comparison of CT number plots for different fracture sizes	209
Fig. 2.3.5	Integrated area in the fracture region showing the index of integrated CT	210
Fig. 2.3.6	Calibration curve between integrated CT signal and fracture aperture	210
Fig. 2.3.7	Sample scans taken along the length of the core with different overburden pressures.....	211
Fig. 2.3.8	Comparative study of fracture aperture distribution under various overburden pressures	212
Fig. 2.3.9	Comparison of aperture distribution curves for various overburden pressures.....	212
Fig. 2.3.10	CT scan images during waterflooding at various timesteps	213
Fig. 2.3.11	3D images of water saturation during waterflooding at various timesteps.....	214
Fig. 2.3.12	Comparison between CT and simulated water progression using parallel plate model.....	214
Fig. 2.3.13	Comparison between observed and simulated oil recovery using parallel plate model.....	215
Fig. 2.3.14	Comparison between observed and simulated water cut using parallel plate model.....	215
Fig. 2.3.15	3D map of aperture distribution.....	216
Fig. 2.3.16	Comparison between CT and simulated water progression using distributed aperture model	216
Fig. 2.3.17	Comparison between observed and simulated oil recovery using distributed aperture model	217
Fig. 2.3.18	Comparison between observed and simulated water cut using distributed aperture model	217
Fig. 2.3.19	Comparison between observed and simulated cumulative water production using distributed aperture model.....	218
Fig. 2.3.20	Sensitivity of oil recovery to fracture aperture size, distribution, and injection rates	218

Fig. 2.4.1	Conceptual representation X-Ray Tomography	230
Fig. 2.4.2	Comparison of Handy's data with numerical simulation	231
Fig. 2.4.3	Capillary pressure shows a non-liner relationship at different times.....	231
Fig. 2.4.4	Weight gain match between laboratory and simulation results	232
Fig. 2.4.5	Effect of different saturation exponents on amount of water imbibing into the core.....	232
Fig. 2.4.6	Effect of different saturation exponents on water saturation distribution.....	233
Fig. 2.4.7	Effect of different initial water relative permeability on amount of water imbibing into the core	233
Fig. 2.4.8	Effect of different initial water relative permeability on water saturation distribution	234
Fig. 2.4.9	Final capillary pressure and relative permeability data used in simulation model.....	234
Fig. 2.4.10	Water saturation distribution versus distance (front is moving from left to right).....	235
Fig. 2.4.11	2-D comparison of water saturation front movement between CT scan and simulation results	235
Fig. 2.4.12	Water saturation front movement in fractured core from CT scan	236
Fig. 2.4.13	Water saturation front movement in fractured core from 2-D simulation result.....	236
Fig. 2.5.1	(a) Actual Reservoir (b) Idealized Reservoir.....	270
Fig. 2.5.2	Conservation of mass in a control volume.....	271
Fig. 2.5.3	Flow Chart for Newton-Raphson's method of solution.....	271
Fig. 2.5.4	Effect of Gravity on Imbibition Response	272
Fig. 2.5.5	Gravity and capillary forces as a function of time during imbibition.....	272
Fig. 2.5.6	Effect of Relative Permeability exponent on Imbibition Recovery.....	273
Fig. 2.5.7	Effect of end point capillary pressure on imbibition response	273
Fig. 2.5.8	Match of experimental recovery with simulated recovery	274
Fig. 2.5.9	Match of experimental and simulated saturations	274
Fig. 2.5.10	Match of experimental and simulated recovery	275
Fig. 2.5.11	One dimensional low production rate pressure and water saturation	

profiles	275
Fig. 2.5.12 One-dimensional, high production, pressure and water saturation profiles.....	276
Fig. 2.5.13 Pressure Profile along a line parallel to Y axis	276
Fig. 2.5.14 Pressure profile along a line parallel to X axis	277
Fig. 2.5.15 Material Balance error for the empirical model, two dimensional cases.....	277
Fig. 2.5.16 Empirical transfer function as a function of time	278
Fig. 2.5.17 Imbibition simulator response.....	278
Fig. 2.5.18 Representation of the matrix block surrounded by water	279
Fig. 2.5.19 Comparison of Empirical transfer function with sub-domain method and dual porosity methods	279
Fig. 2.6.1 Flow paths for parallel and diagonal flow in a Cartesian grid (after Mattax and Dalton) ¹¹	302
Fig. 2.6.2 Well model for a polygon	303
Fig. 2.6.3 HGB grid model.....	303
Fig. 2.6.4 Example of transmissibility calculations in HGB.....	304
Fig. 2.6.5 Diagonal ordering of grid blocks to reduce band width	304
Fig. 2.6.6 Locations of matrix elements for diagonal ordering.....	305
Fig. 2.6.7 Parallel and diagonal orientation for simulations of waterflooding in five-spot symmetry elements.....	305
Fig. 2.6.8 M = 0.5 coarse grid	306
Fig. 2.6.9 M = 0.5 fine grid	306
Fig. 2.6.10 M = 10 diagonal	307
Fig. 2.6.11 M = 10 parallel.....	307
Fig. 2.6.12 Saturation distribution map for (a) diagonal model, and (b) parallel model at $PV_{inj} = 1.0$ for M = 10	308
Fig. 2.6.13 Relative permeability curve	308
Fig. 2.6.14 Comparison of Sim2D oil and water rates and watercut with ECL™ 100 showing good agreement the two simulators.....	309
Fig. 2.6.15 Comparison of Sim2D well bottomhole pressure at producer with ECL™ 100	309
Fig. 2.6.16 Comparison of Sim2D well block pressure at producer with ECL™ 100	310

Fig. 2.6.17	Comparison of Sim2D well block oil saturation at producer with ECL™ 100.....	310
Fig. 2.6.18	Comparison of Sim2D well bottomhole pressure at injector with ECL™ 100.....	311
Fig. 2.6.19	Comparison of Sim2D well block pressure at injector with ECL™ 100	311
Fig. 2.6.20	Comparison of Sim2D well block oil saturation at injector with ECL™ 100.....	312
Fig. 2.6.21	(a) Parallel and (b) diagonal grid orientation in HGB grid.....	312
Fig. 2.6.22	Influence of mobility ratios on the predicted performance of HGB grid	313
Fig. 2.6.23	Saturation distribution map for diagonal HGB grid as shown in Fig. 2.6.21(b) at various mobility ratios.....	313
Fig. 2.6.24	Saturation distribution map for parallel HGB grid as shown in Fig. 2.6.21(a) at various mobility ratios	314
Fig. 2.6.25	Comparison between HGB grid (98 and 200 grid blocks) and Cartesian grid (100 and 186 grid blocks) at $M = 0.5$	314
Fig. 2.6.26	Effect of grid spacing on parallel HGB grid for $M=0.5$	315
Fig. 2.6.27	Effect of grid spacing on diagonal HGB grid for $M=0.5$	315
Fig. 2.7.1	Location of Wasson field in the Permian Basin.....	325
Fig. 2.7.2	Well pattern geometry.....	326
Fig. 2.7.3	Type log Denver unit	326
Fig. 2.7.4	Variation of permeability values at each layer	327
Fig. 2.7.5	Variation of porosity values at each layer.....	327
Fig. 2.7.6	GOR comparison between PVT EOS results and observed data.....	328
Fig. 2.7.7	FVF comparison between PVT EOS results and observed data	328
Fig. 2.7.8	Oil density (μ_0) comparison between PVT EOS results and observed data	329
Fig. 2.7.9	Gas deviation factor (Z) comparison between PVT EOS results and observed data	329
Fig.2.7.10	Gas FVF comparison between PVT EOS results and observed data.....	330
Fig. 2.7.11	CO_2 swelling factor comparison between PVT EOS results and observed data.....	330
Fig. 2.7.12	Imbibition and secondary drainage water relative permeability curves	

(hysteresis)	331
Fig. 2.7.13 Gas and oil relative permeability curves as a function of gas saturation.....	331
Fig. 2.7.14 Gas production rate comparison between simulation result and observed data.....	332
Fig. 2.7.15 Water production rate comparison between simulation result and observed data.....	332
Fig. 2.7.16 Water cut comparison between simulation result and observed data	333
Fig. 2.7.17 Areal view of oil saturation distribution showing oil bypassed after CO ₂ injection.....	333
Fig. 2.7.18 E-W cross section view of the oil saturation distribution showing oil bypassed after CO ₂ injection.....	334
Fig. 2.7.19 Oil recovery comparison at different injection rates with similar 1:1 WAG ratio	334
Fig. 2.7.20 Comparison of incremental oil recovery at different WAG ratios	335
Fig. 2.7.21 Comparison of residual oil saturation for different WAG ratios at 100% HCPV injection.....	335
Fig. 2.7.22 East–West cross section view of the model showing the location of zero permeability treated by polymer	336
Fig. 2.7.23 Estimated future oil production rate comparison with and without conformance control treatments.....	336
Fig. 2.7.24 (a) Staggered line drive, (b) line drive and (c) nine-spot well pattern.....	337
Fig. 2.7.25 Estimated future oil production rate comparison between staggered line drive, line drive and nine-spot well patterns.....	337
Fig. 2.7.26 Estimated incremental oil recovery comparison between different well pattern configurations	338

ACKNOWLEDGMENTS

Financial support for this work is graciously provided by the United States Department of Energy (NETL/National Petroleum Technology Office).

This support is gratefully acknowledged, as well as that of Eclipse™ and CMG™ which donated software used in this study. I greatly appreciate diligent efforts from the following individuals who contributed to this project: Erwinskyah Putra and Dewi T. Hidayati helped with the technical part of this research along with other students who contributed in this project; Dicman Alfred, Vivek Muralidharan, Deepak Chakravarty, Prassana Tellapaneni, Sandeep Kaul, Emeline Chong, Zuher Syihab, Taehyung Kim, Bulenz Izgec, Pashayev Orkan, and Marilena Garcia.

EXECUTIVE SUMMARY

This report describes the work performed during the second year of the project, “Investigating of Efficiency Improvements during CO₂ Injection in Hydraulically and Naturally Fractured Reservoirs.” The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO₂ flooding in heterogeneous or fracture-dominated reservoirs.

We are on the verge of an important step in the global understanding of the connection between fracture characterization and fundamentals of fluid flow in fractured systems. The combination of X-Ray CT scanning and basic fluid flow experiments in tandem with numerical simulation has allowed us to take the first steps in making the connection between field observations, simulation and small-scale experiments commonly performed in laboratories. The applications of this research are wide ranging and include the use of X-Ray CT scanning, open hole logs, well test analysis and simulation in order to input realistic fracture networks into reservoir simulators. The profound impact this research has on future engineering applications in naturally and hydraulically fractured reservoirs is immense. Until now, there has been a large disconnect between field performance, interpretation of data collected to characterize fracture networks and the techniques used to simulate and predict fluid flow in fractured systems. We believe this research will eventually provide basic tools that will allow the long-missing connection between laboratory work and theory and actual field performance.

This report provides results of the final report that consists of experiment, numerical modeling, reservoir simulation and field application. We are researching basic fluid flow in single, rough fractures and investigating different levels of stress on fluid flow behavior in the fracture. We have become adept at performing numerical simulations on this type of experiment and closely matching the observed results. An important point is we are no longer relying simply on pressure matches but also saturation distributions in the rock as determined by X-Ray CT scanning and matched with reservoir simulators. This important advancement has provided a plethora of methodologies that will eventually provide the connection between the abundant theoretical work and the numerous observations of fluid flow in naturally and hydraulically fractured reservoirs. The following headings and subsequent findings outline the work that appears in this report.

Chapter I-1 Effect of Overburden Pressure on Unfractured and Fractured Permeability Cores

We performed laboratory experiments to investigate the changes in fracture aperture and fracture permeability in response to applying variable injection rates and overburden pressures. We provided the equation to quantify the flow through matrix and fracture at different overburden pressures. The laboratory results show that the fracture aperture and fracture permeability have significant pressure-dependent changes in response to applying variable injection rates and overburden pressures as expected.

The change in matrix permeability with different injection rates under variable overburden pressures is not significant in contrast with that effect on fracture aperture and fracture permeability. At high overburden pressure the influence of existing fracture permeability on fluid flow contributor in permeable rocks (> 200 md) is not too significant.

Chapter I-2 Investigating the Changes in Matrix and Fracture Properties and Fluid Flow under Different Stress-state Conditions

In this chapter, the laboratory experiments were extended to investigate the changes in rock properties and fluid flow under different stress-state conditions. A comparative study of different stress conditions was conducted to analyze the effect of various loading systems. The experimental results show that as the stress increases, fracture permeability reduces significantly compared to matrix permeability. The hydrostatic and triaxial stresses have greater impacts on permeability reduction compared to applying stress in the uniaxial stress condition. Fluid flow through fracture dominates when applied stress is less. However, the flow through matrix increases as applied stress increases and dominates at high stress even though the fracture still does not heal completely.

Chapter I-3 Investigating Fracture Aperture Distributions under Various Stress Conditions Using X-Ray CT Scanner

This research uses X-ray CT scanner to image the fracture aperture under various overburden pressures. CT scan provides only the density differences between matrix and fracture systems but not a direct fracture aperture description. In order to determine fracture aperture, a calibration curve was developed from known fracture aperture. After the curve was established, the fracture apertures were measured at various points along the length of the core to generate sufficient data for characterizing the distributions of fracture apertures.

Our experimental results show that parallel plate approach of the fractures is no longer valid when the fracture aperture is small due to significant applied overburden pressure. The result of this study confirms the previous studies that fracture aperture distribution is lognormal distribution without overburden pressure. Upon applied overburden pressure, the distribution still follows the common lognormal distribution. The result of this study confirms the previous studies that fracture aperture distribution is lognormal distribution at no overburden pressure. Upon applied overburden pressure, the distribution still follows the common lognormal distribution.

Chapter I-4 Imbibition Assisted Oil Recovery

Different critical aspects of the capillary imbibition process have received a limited treatment in the petroleum literature. None of the recent papers devoted to capillary imbibition studies investigated the numerical scale-up of the process. The objectives of our study were to conduct numerical studies with the matrix block surrounded by the wetting phase for better understanding the characteristic of spontaneous imbibition, and also to evaluate dimensionless time for validating the scheme of upscaling laboratory imbibition experiments to field dimensions. To achieve these objectives, we performed

numerous parametric studies to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. These studies included the effect of varying mobility ratio, different fracture spacing, different capillary pressure, different relative permeabilities, and varying permeability profiles along the core. The results of these studies were upscaled to the field dimensions. The validity of the new definition of characteristic length used in the modified scaling group was evaluated based on our model. The new scaling group used to correlate simulation results was compared to early upscaling technique. We found that (1) the comparative study for different types of boundary conditions revealed the fact that the time required for capillary imbibition until residual oil saturation increases exponentially, as the number of open faces available for imbibition decreases. (2) The comparison of all four types of boundary conditions showed that oil recovery for the All Faces Open type of a model is most efficient and fast, as compared to other cases. (3) The effect of varying permeability profiles along the core on oil recovery showed that when water imbibes in the direction of decreasing permeability, oil recovery is higher than when water imbibes in the direction of increasing permeability. (4) The study of the effect of different water-oil viscosity ratios, at which water imbibed into the core, shows that the lower oil viscosity, the greater the volumes of oil produced from the core as a function of time. (5) As capillary pressure increases the imbibition recovery increases. Oil recovery by imbibition was sensitive to oil relative permeability curves, while no significant effect was observed in changing the water relative permeability curves. (6) The characteristic length described by Ma *et al.* in the equation of dimensionless time improved a correlation between data points for the models with different boundary conditions. (7) The spontaneous imbibition results of this study have been upscaled to the field dimensions. The validity of a new definition of characteristic length used in the modified scaling group has been evaluated. The new scaling group used to correlate simulation results has been compared to the early upscaling techniques. (8) The new technique used for upscaling, significantly improves correlations by taking end-point fluid phase mobilities and the mobility ratios into account. (9) The comparison between the new and the previous dimensionless times proves that even if non-wetting fluid viscosity varies by 3 orders of magnitude, the data could be reduced to a single curve, if we use new dimensionless time definition.

Chapter I-5 Application of X-Ray CT for Investigation of CO₂ and WAG Injection in Fractured Reservoirs

In this chapter, we investigated the displacement of oil by CO₂ using X-ray CT scanner in homogeneous and fractured cores. We conducted the experiments at various injection rates. We quantified the amount of oil bypass due to the effect of different injection rates. We also investigated the fluid transfer between matrix and fracture media. We investigated CO₂ flow in fractures, in the present of water as a mobility control agent. We also performed the experiment with adding a cross-linker to the solution to form a gel. We scanned the entire length of the core in order to obtain saturation distributions at various stages during the course of the experiments, which are important to study fluid transport in the matrix and the fracture. Important conclusions can be drawn from the work include:

1. Injection rate plays an important role in affecting oil recovery and breakthrough.
2. Early breakthrough and higher oil bypass are observed at high injection rates.

3. Low injection rate gives better sweep and higher recovery, but this is not attractive as the recovery is too slow
4. In a fractured system, fluid flow occurs mainly through the fractures and a considerable amount of time is required for the injection fluid to penetrate the matrix.
5. An alternative method like WAG is necessary to reduce the mobility of CO₂ in the fractured system.
6. Coreflood experiments using viscosified water confirmed that WAG can delay CO₂ breakthrough and improve recovery. However, leakoff into the porous rock is very high. This leakoff might be much lower in an oil-wet rock but more work is required to establish this.
7. Formation of gel can eliminate the problem of liquid leakoff into the matrix.
8. Using gel for conformance control results in better sweep and higher recoveries. The type and composition of gel to be used in the presence of CO₂ needs more investigation.

Chapter I-6 Analysis of Gravity Drainage Mechanism in a Short Vertically Fractured Core

We continued our CO₂ experiments to investigate the important mechanisms on oil recovery in a short core. We performed CO₂ experiments on cores with a diameter of 1 inch with a continuous horizontal fracture at the center of the core. CO₂ was injected into the oil saturated core at a low injection rate of about 0.1cc/min to eliminate the effect of viscous forces. A fourth generation CT scanner was used to obtain cross-sectional scans and determine saturations at different points of time. We found that gravity drainage is the main recovery mechanism in this short matrix blocks contrary with previous widely believed that the gravity drainage had always been associated with tall matrix blocks.

Chapter I-7 Investigation of Natural Fracture Aperture Distribution of Tensleep Formation Cores using X-Ray CT Scanner

As part of our technology transfer activity, we collaborated with DOE-RMOTC to implement CO₂ sequestration in Tensleep formation of Teapot Dome. With our expertise in X-Ray CT scanning, we investigated the fracture properties of Tensleep fractured cores. We conducted similar experiments as we did for Berea cores. We found that the Tensleep cores have the following properties:

(1) The cores have open and mineralized fractures, (2) the open and mineralized fractures have totally different fracture aperture sizes, (3) and the open fracture has wider aperture size and more widely distributed apertures than the mineralized fracture. The results of this study will be included in our current effort in modeling and simulating the sequestration process in Teapot Dome.

Chapter II-1 Experimental and Simulation Analysis of Fractured Reservoir Experiencing Different Stress Conditions

In the last topic, the modeling of fluid flow through a single fracture incorporating the effect of surface roughness is conducted. Fracture permeability is usually estimated by a cubic law that is based on the theory of hydrodynamics for the laminar flow between flat plates. However, the cubic law is too simple to estimate the fracture permeability correctly, because the surface of real fracture is much more complicated and rougher than

the surface of flat plate. Several researchers have shown that the flow characteristics of an actual fracture surface would be quite different due to the effect of tortuosity, impact of surface roughness and contact areas. Nonetheless, to date, these efforts have not converged to form a unified definition on the fracture aperture needed in the cubic law. In this study, therefore, we show that the cubic law could still be used to model small-scale and field-scale data as long as it is modeled effectively, accounting for the effect of surface roughness associated with the fracture surface. The goal of this research is to examine the effect of surface roughness for flow through fractures and to effectively incorporate them into simulations with the aid of geostatistics. Since the research has been supported with experimental results, the consistency of the results enabled us to define a methodology for single fracture simulation. This methodology successfully modeled the flow rate and pressure drop from fractured core experiments, which were earlier not possible through parallel plate approach. Observations suggest that the fracture aperture needs to be distributed to accurately model the experimental results. The effect of friction and tortuosity due to surface roughness needs to be taken into account while modeling.

Chapter II-2 Modeling Fluid Flow through a Single Fracture using Experimental, Stochastic and Simulation Approaches

X-ray CT scan reveal that the parallel plate assumption in modeling fluid flow in fracture media seldom reflects the nature of flow through fractures. In this chapter, sensitivity of fracture modeling, error involved in the experiments and saturation match of fracture imbibition experiment using X-ray CT Scanner are established. Important conclusions can be drawn from the work include:

1. The fracture aperture needs to be distributed to accurately model the experimental results.
2. The effect of friction factor due to surface roughness should be considered in modeling fluid flow through rough fracture surface.
3. Fluid flow increases as the variance of the aperture distribution increases. This reiterates the fact that tortuosity in fluid flow is a significant factor.
4. The effective hydraulic aperture is reduced with increased variance of the aperture distribution.
5. Beyond an aperture size of approximately 60 microns, the effect of roughness or tortuosity is found to be insignificant.

Chapter II-3 Simulation of Fluid Flow through Rough Fractures

In this chapter, we investigated waterflooding displacement mechanisms in fractured cores using X-ray CT scanner. We conducted the experiments at various injection rates and scanned the core being flooded at certain times. We recorded oil and water rates at the outlet point. We developed two simulation models where one model describes fracture as parallel plate model and the other model describes it as distributed fracture aperture model. Both results were compared to the experimental data. Once we achieve satisfactory matches, we performed sensitivity studies to analyze the effect of injection rates on oil recovery and breakthrough time. Important conclusions can be drawn from the work include:

1. Simulation results indicate that the parallel plate model fails to duplicate laboratory experiment performance hence this model does not adequately represent a fractured model.
2. On the other hand, satisfactory matches between simulation and experimental data using distributed aperture model shows this model provides an accurate description of a fractured model.
3. The water breakthrough time increases as fracture aperture and injection rate increase.
4. As the injection rate increases the difference in the oil recoveries predicted by the two models increases.
5. At large aperture sizes, the performance of the parallel plate model becomes closer to that of the distributed aperture model. This indicates that there is a certain critical fracture aperture where both models would give similar results.

Chapter II-4 X-Ray Tomography Results Validate Numerical Modeling of Flow in Fractures

This chapter emphasis on modeling spontaneous imbibition experiments in order to understand the spontaneous imbibition process. As a tool to verify this numerical model, the results from X-Ray CT were utilized. We started our modeling development from basic equation and came up with a robust two-dimensional two-phase numerical model that could faithfully reproduce laboratory experiments. This model was rigorously verified with experimental data.

Chapter II-5 Simulation of Naturally Fractured Reservoirs Using Empirically Derived Transfer Function

In previous chapter, we have shown that we are able to model the spontaneous imbibition experiment utilizing the X-Ray CT scan results. We continued our effort by including the imbibition modeling into dual porosity simulation by changing the fluid transfer term. A detail explanation about different transfer functions, derivation of mathematical modeling and dual porosity simulator development using empirical derived transfer function (EDTF) are presented in this report. The results show that dual porosity simulation with EDTF is inherently faster because the number of unknowns per grid block is reduced to two from four. However, “Material Balance” is not conserved to the extent of conventional dual porosity formulations.

Chapter II-6 A Unique Grid-Block System for Improved Grid Orientation

The second chapter is part of our paper that will appear at the SPE Asia Pacific Oil and Gas Conference and Exhibition held in Perth, Australia, 18–20 October 2004. In this chapter, we developed a finite difference IMPES-formulated two dimensional black oil simulator using both Cartesian grid block system and a unique grid block system called Hybrid Grid Model (HGB). We compared the viability of this simulator using Cartesian grid block system with a commercial simulator EclipseTM. We examined the grid orientation in conventional grid block system and then we ran simulation cases using the HGB grid system. Important conclusions can be drawn from the work include: (1) The grid orientation effect was observed in rectangular Cartesian grid models even with isotropic and homogeneous reservoirs with favorable mobility ratio. (2) Grid refinement can help to minimize the grid orientation effect in rectangular Cartesian grid models

when there are favorable mobility ratios, ie. $M=1.0$ or less. However, at an unfavorable mobility ratio, neither the parallel, diagonal grid orientation, nor grid refinement is effective in reducing the grid orientation effect. (3) HGB grid is able to minimize the grid orientation effect even for unfavorable mobility ratio displacement problems, with relative difference of about 6% for all the cases run.

Chapter II-7 Reduced CO₂ Bypassing and Optimized CO₂ Flood Design

All the previous CO₂ flooding studies were conducted in the laboratory scale. As part of our technology transfer activity, in this chapter we focused on investigating CO₂ performance in the field scale dimensions. The effect of heterogeneity in the prominent Wasson Field CO₂ flood in West Texas on the overall sweep efficiency was investigated. A compositional simulation model was developed and then used to optimize CO₂ injection rate, flood patterns, slug sizes, and WAG ratio. The use of a viscous agent in WAG application and polymer injection in conformance control were explored to improve oil recovery. The results show that (1) recovery from a WAG process is a function of the injection rate as well as WAG ratio and the percentage of CO₂ slug size. (2) WAG injection is effective in increasing the sweep efficiency of the CO₂ injection. (3) Increasing viscosity of water injection and placing polymer in high permeability streak result in a positive production response and (4) a pattern reconfiguration change from inverted nine spot to staggered line drive could significantly increase oil recovery.

Project Fact Sheet

Progress work efforts at Project Fact Sheet are listed in the Appendix.