skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

Technical Report ·
DOI:https://doi.org/10.2172/881525· OSTI ID:881525

A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar{reg_sign} L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar{reg_sign} L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar{reg_sign} L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar{reg_sign} L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar{reg_sign} L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar{reg_sign} L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution from pH 3 to 1 and from pH 3 to 11 were not effective in clarifying the aqueous dispersions of organic droplets. Use of a 0.7-micron rated glass fiber filter of 3/4 mm thickness under gravity flow provided significant reduction in organic content and increased clarity. A 2 inch element stack of ''Teflon{reg_sign} Fiber Interceptor-Pak{trademark}'' media from ACS Separations, Inc. was not effective in clarifying DSS simulant.

Research Organization:
Savannah River Site (SRS), Aiken, SC
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-96SR18500
OSTI ID:
881525
Report Number(s):
WSRC-TR-2005-00182; TRN: US0603121
Country of Publication:
United States
Language:
English