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ABSTRACT

This paper discusses the creep behavior of example Sn-rich solders that have become
candidates for use in Pb-free solder joints.  The specific solders discussed are Sn-3.5Ag,
Sn-3Ag-0.5Cu, Sn-0.7Cu and Sn-10In-3.1Ag, used in thin joints between Cu and Ni/Au
metallized pads.  The creep behavior of these joints was measured over the range 60-
130°C.  The four solders show the same general behavior.  At all temperatures their
steady-state creep rates are separated into two regimes with different stress exponents (n).
The low-stress exponents range from ~3-6, while the high-stress exponents are
anomalously high (7-12).  Strikingly, the high-stress exponent has a strong temperature
dependence near room temperature, increasing significantly as the temperature drops
from 95 to 60°C.  The anomalous behavior of the solders appears to be due to the
dominant Sn constituent. Joints of pure Sn have stress exponents, n, that change with
stress and temperature almost exactly like those of the Sn-rich solder joints.  Surprisingly,
however, very similar behavior is found in Sn-10In-3.1Ag, whose primary constituent is
γ-InSn. Research on creep in bulk samples of pure Sn suggests that the anomalous
temperature dependence of the stress exponent is due to a change in the dominant
mechanism of creep.  Whatever its source, it has the consequence that conventional
constitutive relations for steady-state creep must be used with caution in treating Sn-rich
solder joints, and qualification tests that are intended to verify performance should be
carefully designed.

Keywords: creep behavior, tin-rich solder alloy, lead-free solder joints



2

I. Introduction

Legislative and marketing pressures from many sources are forcing the gradual
adoption of Pb-free solders in microelectronics.  The design of reliable joints with these
Pb-free solders is a formidable problem, given the lack of prior service experience and
the shortage of probative mechanical property data.

A primary cause of service failures in solder joints is thermal fatigue.  When an
electronic device is turned on or off, or its internal circuits are activated, the soldered
joints are heated or cooled.  The joints are mechanically stressed in each thermal cycle
because of inhomogeneous heating and differences in the thermal expansion coefficients
of the various components.  The dominant stresses tend to be in shear.  Since the typical
operating temperatures of microelectronic devices are a significant fraction of the melting
temperatures of the solders used, the mechanical response to thermal stress is ordinarily
high-temperature creep.  Cyclic creep causes mechanical damage, and joints eventually
fail by creep fatigue 1,2).  It follows that the understanding of creep behavior and creep
mechanisms is fundamental to the design of reliable joints.

Many of the solder compositions that are attracting the greatest current interest are
Sn-rich compositions from the Sn-Ag and Sn-Cu systems 3).  There is very little creep
data for these compounds, and a good part of that which is available was measured with
bulk samples whose relevance to the behavior of solder joints is not at all clear.  Our own
recent work, including that reported here, was intended to address this problem by
conducting high-temperature creep tests on well-characterized solder joints.  In this paper
we shall discuss recent results with Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu and Sn-10In-
3.1Ag (wt. %), made as thin joints connecting Cu and Ni/Au metallized substrates.  As
we shall see, the behavior of the Sn-Ag-Cu systems is strongly influenced by the
dominant Sn phase.  The Sn-10In-3.1Ag solder is very different in its microstructure,
being a mixture of intermetallic phases, but, nonetheless, has a creep behavior that is
similar to that of the Sn-Ag-Cu solders over the temperature range tested.  Elsewhere, we
have reported recent research on the Au-Sn 4), Sn-Bi and In-Sn 5) Pb-free solders.

II. Experimental Procedure

The solder compositions discussed here were made by melting 20g ingots from
pure (99.999) elemental starting materials.  The Sn-0.7Cu, Sn-3Ag-0.5Cu and Sn-10In-
3.1Ag (wt.%) alloys were made by vacuum arc melting.  The Sn-3.5Ag alloy was melted
in a vacuum-sealed quartz tube.  The mass loss during melting was below 0.05g for the
initial weight of 20g.  After melting, the alloys were homogenized for 55hrs at 180°C,
then cold rolled into foils of about 155 µm thickness.

The samples used in the creep tests were nine-pad single shear creep specimens
with the geometry shown in Fig. 1.  The substrate pad size is about 1.22mm x 2.24mm.
The joints were made between dissimilar substrates (as is common in industrial practice);
the pad metallization on one side was Cu while that on the other side was about 4 µm
electroless Ni coated with about 0.13 µm immersion Au.  The solder joint thickness was
fixed at 160 µm.  The shear specimens were reflowed in nitrogen with a peak temperature
of 235°C for Sn-3.5Ag, Sn-3Ag-0.5Cu, and Sn-10In-3.1Ag and 245°C for Sn-0.7Cu.



3

Samples were cooled at the rate of 2.7°C/sec. (air cooling).  In addition, some samples
were cooled at the rate of 3.5°C/min. (furnace cooling) and tested at 130°C.  After reflow
the samples were aged at 160°C for 4 hours.

Creep tests were done in a dead-load creep machine (Fig. 2).  The sample is
loaded with a fixed weight while its temperature is controlled by an oil bath.  The creep
specimen is held by frictional grips.  The displacement of the grips was monitored with a
Linear Voltage Displacement Transmitter (LVDT) that has a detection limit below 1 µm
displacement.  The shear stress is measured as load divided by the solder-substrate
contact area (total area of the wetted pads).  The shear strain (simple shear) is the relative
displacement of the sample plates divided by solder joint thickness.  Creep tests were
conducted until steady state was reached and passed, and the reported creep rates were
the steady-state creep rates.  Samples were tested at 3 different temperatures: 60°C, 95°C
and 130°C, and at 5 different load levels at each temperature.

III. Creep behavior

The microstructures of the four solders are illustrated in Fig. 3(a-d).  The Sn-
3.5Ag, Sn-3Ag-0.5Cu and Sn-0.7Cu solders have microstructures that consist of large
islands of nearly pure Sn divided by regions that are decorated with Ag3Sn or Cu6Sn5.
Both precipitate phases were found in Sn-3Ag-0.5Cu.  The Sn-10In-3.1Ag solder is a
mixture of intermetallic phases.  Metallographic estimates are in at least rough agreement
with the published ternary phase diagram 6), whose 100°C isothermal section suggests a
mixture of 74% InSn (γ), 22% Sn (β), and 4% Ag2In.  Increasing the cooling rate from
3.5°C/min. to 2.7°C/sec. produced somewhat finer microstructures in all alloys, without
much apparent change in the geometric features.

Figure 4(a-c) shows creep curves for the Sn-3Ag-0.5Cu solder joints, and Fig.
5(a-c) shows the corresponding curves for the Sn-10In-3.1Ag alloy.  The smooth load-
displacement curves shown in Fig. 4 are typical for the Sn-Ag and Sn-Cu solders.  There
is a fairly rapid evolution into a well-defined steady behaves in a similar manner, but the
load-displacement curves tend to be more noisy, particularly at 95°C.

Steady state strain rates were measured as functions of stress and temperature
from the linear portions of the creep curves for the four solder compositions and for
identical joints of pure Sn.  Log-log plots of the steady-state strain rates as functions of
stress for the solder joints are given in Fig. 6(a-d).  The data are ordinarily fit to
constitutive equations of the Dorn form 7):

                                             
nAGb Q
exp

kT G kT
τ −   γ =       

&                                                     (1)

where γ&  is the shear strain rate, τ the shear stress, G the shear modulus, b the Burgers
vector, Q the activation energy and kT the Boltzmann temperature.  If this is done, the
data divide naturally into high- and low-stress regions with different stress exponents (n),
as is often found for solder joints 1).

The major anomaly in the data is in the temperature dependence of the stress
exponent in the high-stress regime.  The stress exponent in the high-stress regime is
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greater than about 7 in all cases, but increases dramatically as the temperature is
decreased from 95°C to 60°C, a range of significant technological interest.  The fact that
this behavior is common to all of the Sn-rich solders suggests that it is due to the Sn-rich
constituent itself.  This is illustrated in Fig. 7(a,b) which compares the steady state creep
rates of the solder joints to that of pure Sn joints at 60°C and 95°C.  The steady-state
creep behavior of Sn-0.7Cu is almost identical to that of pure Sn over this stress range.
The more highly alloyed SnAg and SnAgCu solders are more creep-resistant than Sn, but
have almost identical stress exponents at the two temperatures.  It certainly appears that
the anomalous temperature dependence of the Sn-rich solders is primarily due to the
behavior of Sn itself.

Surprisingly, the SnInAg solder has a creep behavior very like that of the SnAg
and SnAgCu solders, despite the fact that its predominant phase is hexagonal γ-InSn
rather than tetragonal Sn.  It is not clear whether the similar creep behavior of this alloy is
due to similarities in the behavior of γ-InSn and β-Sn, or to the possibility that β-Sn
dominates despite its smaller volume fraction.  We know of no creep data on γ-InSn.

Given the anomalous temperature dependence of the stress exponent it is
deceptive to use the conventional Dorn equation to represent the creep data.  There is no
well-defined activation energy at lower temperatures; the activation energy depends on
the stress at which it is measured.

Nonetheless, a force-fit to the Dorn equation may be useful as a first-order fit to
the creep behavior over this temperature regime.  For this reason the best-fit stress-
exponents and activation energies are tabulated in Table 1, and compared with those for
pure Sn.  The best-fit activation energies cluster about 85 kJ/mole, the measured value for
pure Sn.  The SnInAg alloy is exceptional, having apparent activation energies above
about 100 kJ/mole (this may reflect the dominant volume fraction of γ-InSn in this alloy).
The best-fit stress exponents in the low-stress regime vary from near 3 (SnCu) to 6.6
(SnAgCu).  However, note the anomaly in the low-stress behavior of the SnInAg alloy
(Fig. 6d); for reasons that are unclear, the low-stress behavior was not detected in tests at
130°C.  The best-fit stress exponents in the high-stress regime are much higher, ranging
from 7.7 (Sn) to 10.7 (SnAgCu).

The quality of the fit to the Dorn equation is illustrated by Fig. 8, which is typical
for the data taken here.  A superficial study of this plot suggests that the Dorn equation is
quite reasonable.  It is only when the data for the several alloys is separated by
temperature that the systematic deviation from this equation becomes apparent.

Finally, Fig. 9 illustrates the influence of the cooling rate after reflow.  Increasing
the cooling rate softens the solder (raises the strain rate at given stress) without
significantly changing the stress exponent.  This softening in creep is a common
consequence of grain refinement which, among other effects, increases the contribution
of grain boundary sliding to the creep rate.

VI. Discussion

The data presented here suggest that the creep behavior of Sn-rich solders is
dominated by the behavior of Sn, and has an anomalous temperature dependence at
temperatures slightly above room temperature.  While the literature on the creep of pure
Sn is not entirely consistent, there are indications of thermal anomalies in several
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published reports.  In particular, Breen and Weertman 9), Suh, et al. 10), and Poirier 11) all
noted significant changes in the creep behavior of bulk Sn at about 100°C, evidenced by
a change in the activation energy for steady-state creep from above 100 to below 50
kJ/mole.  Frenkel, et al. 12) and Mohamed, et al. 13) confirm the high-temperature value of
the activation energy, while Adeva, et al. 14), Mathew, et al. 15) and others 16,17) have
measured much lower activation energies at lower temperature.  The measured activation
energies are close to those for lattice diffusion (~100 kJ/mole 18,19)) and dislocation pipe
diffusion (40-60 kJ/mole 14,20,21)) suggesting that the dominant activation step changes
from lattice to pipe diffusion as the temperature drops.

While the change in creep behavior with temperature complicates the
understanding and prediction of creep in Sn-rich solders, the relative insensitivity of the
creep behavior to composition simplifies it.  Eutectic Sn-0.7Cu is very close to Sn in its
creep behavior, while the addition of Ag hardens the solder without dramatically
changing the stress exponents or activation energies, that is, the predominant effect is on
the pre-exponential factor, A, in eq. (1).  The addition of 0.5Cu to Sn-3Ag does not
significantly change the creep behavior.

Surprisingly, the addition of 10In to Sn-3Ag does not change the creep behavior
dramatically, either, even though it does change the dominant phase.  This behavior is not
understood, and needs further investigation.

The stress exponents reported in the literature for Sn and Sn-rich solders scatter
widely, from near 5 (Breen and Weertman 9), Darveaux and Banerji 22)) to 10-11 (Yang,
et al. 23), Mavoori, et al. 24)).  In the present work, this whole range of stress exponents
appears in the same data set, depending on the stress range and the temperature.  In
particular, the data reported here show a systematic change in stress exponent with stress
and temperature for all of the solders studied.  It is not yet clear to what extent this
systematic variation explains the wide variations in reported results.

The data presented in Fig. 8 and Table 1 show that while thermal anomalies in the
creep behavior were found at temperatures near 100°C, these anomalies were not
obviously associated with a change in activation energy of the sort reported from prior
work.  They were rather associated with changes in the stress exponent.  We do not yet
know why this is the case, but it may be significant that changes in the stress exponent
alter the measured activation energy by an amount that depends on the precise value of
stress that is used to measure the activation energy.  The error is particularly large if the
reference stress is chosen so that the high-temperature data fall in the high-stress regime
while the low-temperature data fall in the low-stress regime.

Finally, we should note the tetragonal crystal structure of Sn, which causes
anisotropy in its mechanical properties.  The creep behavior of Sn and Sn-rich joints may,
therefore, be affected by crystallographic texture, particularly in as-solidified solder
joints.  The crystallographic texture of the joints studied here is not yet known.

V. Conclusion

The creep behavior of Sn and Sn-rich solder joints in shear is a complex function
of stress and temperature.  In particular, the stress exponent that governs steady-state
creep has different values in the low- and high-stress regimes.  The stress exponent at
high stress changes significantly with temperature as temperature drops below about
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100°C, and reaches anomalously high values (n = 10-11) at lower temperatures.  These
anomalous features suggest that qualification and design verification tests for Sn-rich
solder joints should use geometries and conditions as near as possible to those anticipated
in service, until further research clarifies how this complex creep behavior can be
understood metallurgically and treated analytically.
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Table 1. The best-fit stress exponents (n) and activation energies (Q) for creep of solder
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3.1Ag.
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0.5Cu solder joints.



Table 1. The best-fit stress exponents (n) and activation energies (Q) for creep of solder
joints. The temperature dependence of the shear modulus of pure Sn in ref. 8 was used
for the data analysis of all solder joints.

n Q (KJ/mole)
Solders

Low τ/G High τ/G Low τ/G High τ/G

Sn 5.8 7.7 85 65

Sn-Ag 4.5 10.6 80 75

Sn-Ag-Cu 6.6 10.7 95 75

Sn-Cu 3.5 8.9 90 85

Sn-In-Ag 5.4 9.5 100 115



Figure 1. Schematic diagram of the specimen geometry.
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Figure 2. Schematic diagram of creep test machine.



Figure 3. Cross-sectional optical micrographs of solder joints with composition (a) Sn-
3.5Ag, (b) Sn-3Ag-0.5Cu, (c) Sn-0.7Cu and (d) Sn-10In-3.1Ag.
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Figure 3. Cross-sectional optical micrographs of solder joints with composition (a) Sn-
3.5Ag, (b) Sn-3Ag-0.5Cu, (c) Sn-0.7Cu and (d) Sn-10In-3.1Ag.
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Figure 4. Creep Curves of Sn-3Ag-0.5Cu at (a) 60°C, (b) 95°C and (c) 130°C.
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Figure 4. Creep Curves of Sn-3Ag-0.5Cu at (a) 60°C, (b) 95°C and (c) 130°C.
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Figure 5. Creep Curves of Sn-10In-3.1Ag at (a) 60°C, (b) 95°C and (c) 130°C.



0.0 2.0x10 4 4.0x10 4 6.0x10 4 8.0x10 4

0

2 0

4 0

6 0

8 0

100

Creep  cu rves  a t  12 .70 ,  10 .88 ,
9 .07 ,  7 .25  and  5 .44MPa 
f rom lef t  to  r ight ,  respect ive ly .

 

 

S
he

ar
 S

tr
ai

n(
%

)

Time(sec)

0 5 1 0 1 5 2 0
 Time(hrs)

(b)

Figure 5. Creep Curves of Sn-10In-3.1Ag at (a) 60°C, (b) 95°C and (c) 130°C.

0.0 2.0x10 4 4.0x10 4 6.0x10 4 8.0x10 4

0

2 0

4 0

6 0

8 0

100

Creep  curves  a t  7 .25 ,  6 .35 ,
5 .44 ,  4 .53  and  3 .63MPa 
f rom lef t  to  r ight ,  respect ive ly .

 

 

S
he

ar
 S

tr
ai

n(
%

)

Time(sec)

0 5 1 0 1 5 2 0
 Time(hrs)

(c)



Figure 6. Log-log plots of the steady-state strain rate as a function of stress for the solder
joints with composition (a) Sn-3.5Ag, (b) Sn-3Ag-0.5Cu, (c) Sn-0.7Cu and (d) Sn-10In-
3.1Ag.
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Figure 6. Log-log plots of the steady-state strain rate as a function of stress for the solder
joints with composition (a) Sn-3.5Ag, (b) Sn-3Ag-0.5Cu, (c) Sn-0.7Cu and (d) Sn-10In-
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1 2 3 4 5 6 7 8 9 1 0 2 0 3 0 4 0
1 0

-10

1 0
-9

1 0
-8

1 0
-7

1 0
-6

1 0
-5

1 0
-4

1 0
-3

1 0
-2

 60 οC

 95 οC

 1 3 0οC

 

 

S
tr

ai
n 

R
at

e(
1/

s)

Shear Stress(MPa)

n=3.5

n=4.0

n=4.1

n=7.7

n=9.4

n=7.0(c)

1 2 3 4 5 6 7 8 9 1 0 2 0 3 0 4 0
1 0-10

1 0
-9

1 0-8

1 0-7

1 0
-6

1 0
-5

1 0-4

1 0-3

1 0
-2

 60
ο
C

 95
ο
C

 1 3 0
ο
C

 

 

S
tr

ai
n 

R
at

e(
1/

s)

Shear Stress(MPa)

n=8.9

n=10.1

n=7.6

n=6.4

n=3.4

n=2.7

(d)



Figure 7. The steady-state strain rates of all alloy solder joints and pure Sn joints  at
(a) 60°C and  (b) 95°C.
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Figure 8. Typical log-log plots of (dγ/dt)(T/G)exp(Q/kT) versus τ/G. G(T)
(MPa) = 16302 – 40.5 T (°C) for pure Sn 8) was used for the analysis.
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Figure 9. The influence of the cooling rate on creep at 130°C in Sn-0.7Cu and Sn-3Ag-
0.5Cu solder joints.


