A performance comparison of tree and ring topologies in distributed system

by

Min Huang

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science
Program of Study Committee:
Ricky Kendali, Co-major Professor

Ying Cai, Co-major Professor
Brett Bode

Iowa State University
Ames, Iowa

2004

Copyright © Min Huang 2004. All rights reserved.

i

Graduate College
Iowa State University

This is to certify that the master’s thesis of
Min Huang

has met the thesis requirements of lowa State University

Ay 2

Cofma_]or Professor

Uiy (s

Co—major Préfessor

L. g

For the"Major Program

1i1

TABLE OF CONTENTS

ABSTRACT

1. RESEARCH BACKGROUND

1.1 Distributed Systems

1.2 Communication Networks in Distributed Systems
1.3 The Advantages of a Distributed System

1.4 Considerations in Building Distributed Systems
1.5 Research Motivation

1.6 Summary

2. THE SYSTEM STRUCTURE AND COMPONENTS

2.1 The System Structure
2.2 Node Responsibilities in the System
2.3 Connections in the System

2.4 Summary

3. MESSAGE TYPES AND FORMATS

3.1 XML Introduction

3.2 XML Documents as Data Storage

3.3 Why Use XML in This Project

3.4 System Structure XML Documents in the Tree-Structured Network
3.5 Message Format and Types Transmitted in the System

3.6 Summary

4. SYSTEM DESIGN AND IMPLEMENTATION

4.1 System Design
4.2 System Implementation

4.3 Summary

5. TEST ENVIRONMENT AND RESULTS

5.1 The Test Environment
5.2 Test Results

OO 1 NN —m

10
10
12
13
17

18
18
19
19
20
21
24

26
26
27
41

42
42
42

v

5.3 Results Analysis
5.4 Summary

6. CONCLUSIONS AND FUTURE WORK
6.1 Conclusions
6.2 Future Work

REFERENCES

ACKNOWLEDGMENTS

45
47

49

49

50

51

53

v |1S<T 370
ABSTRACT

A distributed system is a collection of computers that are connected via a communication
network. Distributed systems have become commonplace due to the wide availability of low-
cost, high performance computers and network devices. However, the management
infrastructure often does not scale well when distributed systems get very large.

Some of the considerations in building a distributed system are the choice of the network
topology and the method used to construct the distributed system so as to optimize the
scalability and reliability of the system, lower the cost of linking nodes together and
minimize the message delay in transmission, and simplify system resource management.

We have developed a new distributed management system that is able to handle the
dynamic increase of system size, detect and recover the unexpected failure of system
services, and manage system resources. The topologies used in the system are the tree-
structured network and the ring-structured network.

This thesis presents the research background, system components, design,
implementation, experiment results and the conclusions of our work. The thesis is organized
as follows: the research background is presented in chapter 1. Chapter 2 describes the system
components, including the different node types and different connection types used in the
system. In chapter 3, we describe the message types and message formats in the system. We
discuss the system design and implementation in chapter 4. In chapter 5, we present the test
environment and results. Finally, we conclude with a summary and describe our future work
in chapter 6.

1. RESEARCH BACKGROUND

1.1 Distributed Systems

A distributed system 1s a system consisting of computers that do not share a common
memory or a synchronized clock. The computers in a distributed system are connected via a
communications network. Each computer has its own memory and runs its own operating
system. The computers can access remote resources as well as Jocal resources in the
distributed system. A computer accesses remote resources via the communication network.
Generally, it is more expensive to access the remote resources than to access the local
resources because of the communication delays and the CPU overhead to process

communication protocols {1]. Figure 1-1 shows the architecture of the distributed system.

CED Gy

iz e

Communication

Network

CPU
NIC]

Figure 1-1 Architecture of the distributed system

The motivation behind the development of distributed systems is the availability of the
low-cost, high performance computers and network devices. When a few powerful
computers are connected and communicate with each other, the total computing power

available can be enormous. Such a system generally costs tens of thousands of dollars. On

the other hand, the cost of a single supercomputer with the same computing power can be as
high as a few million dollars.

1.2 The Communication Networks in Distributed Systems

In a distributed system, all the computers exchange messages with other computers and
access resources in other computers through the communication network. In a computer
network, two nodes are neighbors if there is a link connecting them. The degree of a node is
the number of its neighbors. When a computer sends messages to another computer in the
system, messages may have to go through intermediate computers to reach their final
destinations. The diameter of a network is the longest path between any two computers. The
computers in a system can be connected physically in variety topologies. Generally, when
choosing a topology to build a distributed system, we need to limit the nodes’ maximum
degree and the diameter of the system. Since when a node has more neighbors, it needs more
file descriptors for the connections and it is more complex for it to handle the concurrent
communications with different neighbors, and the larger diameter results in the longer
message transmission delay. In this section, we describe the most commonly used network

topologies in distributed systems and compare them using the following criteria:

- Basic cost: the expense to link the computers to build the distributed system [2].

- Scalability: the ability to scale the system size without increasing the requirement of
each node’s capacity and without resulting in significantly longer message transmission
delays.

« Communication cost: the message delay of sending a message from the source to the
destination [2].

« Reliability: when one or several computers or links in the system fail, the ability for
the remaining computers to communicate with each other [2].

1.2.1 Fully Connected Networks
In a fully connected network, there are direct links between all pairs of computers. When
a new computer is to be added to the system, a link has to be added to each existing node.
Thus, the basic cost is high and grows as the square of the number of computers.
Additionally, adding new nodes to the system results in the increase of each node’s degree,

which results in opening more file descriptors and more complexity for each node to
implement the connections. Thus the scalability of such systems is limited by each node’s
capacity to open file descriptors and the ability to handle the new connections. However, in
this environment, the diameter of the system is fixed to /. The communication cost is low
because a message sent from one computer to another one only goes through one link. This
kind of systems is reliable because when a few computers or links fail, the rest of the
computers can still communicate with others. Figure 1-2 shows an example of fully
connected networks.

Figure 1-2 Fully connected networks

1.2.2 Partially Connected Networks

In a partially connected network, direct links exist between some, but not all, pairs of
computers. The basic cost is lower than that of the fully connected networks and is
determined by the topology used. The scalability is not associated so tightly with each node’s
ability to open new file descriptors and to handle new connections as in a fully connected
network, since the new node can be added to be the neighbor of nodes with smaller degrees.
However, the diameter of the system needs to be considered when adding new node to the
system. The communication cost is higher than that of the fully connected networks, because
the message sent from one computer to another computer may go through several
intermediate nodes, resulting in a longer message delay. The reliability of a partially
connected network is not as good as that of a fully connected network because the failure of
one node or link may result in the inability of the rest of the system to communicate. Figure
1-3 shows an example of partially connected networks.

Some of the examples of partially connected networks are star-structured networks, tree-

structured networks, ring-structured networks, and multi-access bus networks.

Figure 1-3 Partially connected networks

In a star-structured network, one of the nodes (the central node) in the system is
connected to all other nodes. None of the other nodes are connected to any other. In such
systems, when a new node is added to the system, one link is needed to connect the new node
and the central node. The basic cost grows linearly as the number of the nodes in the system
and the system scalability is limited by the central node’s file descriptors and resources. Even
though the diameter of the network remains fixed to 2, all communications between the non-
central nodes must go through the central node, this makes the central node becomes a
bottleneck and results in a longer message delay. If the central node fails, none of the other
nodes can communicate with each other. Some traditional distributed systems use star as the
system topology with the temporary connections. The establishment and termination of the
connections are a significant overhead of the system. Figure 1-4 shows an example of a star-
structured network.

Figure 1-4 Star-structured networks

In a tree-structured network, the nodes are connected as a tree. A tree has three different
types of node, a roof node, interior nodes, and /eaf nodes, each with different degrees. In
these systems, the basic cost grows linearly with the number of nodes in the tree. The
scalability of the tree-structured network is better than that of the fully connected network,
since new node can be added as the child node of the leaf nodes or the interior nodes with
fewer connections while limiting the height (the diameter) of the tree. However, in such
systems, only messages transmitted between a parent node and its child node go though one
link, other messages transmitted between two nodes have to go through one or more
intermediate nodes. The worst case happens when the two nodes are both on the bottom level
of the tree and the root is the only common ancestor of them. In this case, a message from the
source has to go upwards until it reaches the root and go downward to reach the destination.
If a parent node fails, its children nodes cannot communicate with other nodes in the system.
Figure 1-5 shows an example tree-structured network.

Figure 1-5 Tree-structured networks

In a ring-structured network, nodes are connected as a ring. In these systems, the basic
cost grows linearly as the number of nodes in the system. Even though the degree of each
node remains fixed to 2 as new nodes are added, the diameter of the system grows as the
number of nodes in the system, resulting in a longer message transmission delay. The ring
can be unidirectional or bidirectional. In the unidirectional architecture, a node can transmit a
message to only one of its neighbors. All nodes must send the message in the same direction.
In the bidirectional architecture, a node can transmit messages to both of its neighbors.
Obviously, the bidirectional ring is more reliable than the unidirectional ring. Figure 1-6

shows an example of ring-structured network.

Figure 1-6 Ring-structured networks

In a multi-access bus network, all the nodes in the system are connected to a single shared
bus link. The bus link becomes the bottleneck and if it fails, all the nodes in the system

cannot connect to each other. Figure 1-7 shows an example of a multi-access bus network.

Figure 1-7 Multi-access bus network

1.3 The Advantages of a Distributed System

High Performance/Price Ratio
As stated before, the performance of personal computers and network devices are
increasing rapidly while the prices are falling continuously. When a few personal computers
are interconnected and communicate with each other, the total computing ability can be as
powerful as a single supercomputer. However, the costs of these systems are much lower
than those of supercomputers. Hence the main advantage of distributed systems is that they
have a higher performance/price advantage over single supercomputers.

Resource Sharing
In the distributed systems, a computer can access a service from another computer by
sending a request to it over the communications network, so hardware and software resources
can be shared among computers in the distributed system. In general, resource sharing in a
distributed system provides mechanisms for sharing files at remote sites, processing
information in a distributed database, printing files at remote sites, using remote specialized

hardware devices, and performing other operations [1].

Improved Reliability and Availability
In a distributed system, the failure of a few components of the system may not affect the
availability of the rest of the system. This gives improved reliability and availability to the
system [1].

Modular Expandability
When the existing system cannot meet the requirement of the end user, new hardware and
software resources can be easily added to a distributed system without replacing the existing

resources [1].

Enhanced Performance
Because many computing tasks can be concurrently executed using different computers
and be balanced among the computers in distributed systems, a distributed system is capable
of providing rapid response time and higher system throughput [1].

1.4 Considerations in Building Distributed Systems

There are several considerations in building a distributed system. They are listed in this

section.

Scalability and Reliability
A system is scalable if it is easy to add new resources to it and provide services to
additional users. A system is reliable if it is easy to detect system faitures and fix the failures
without or with a minimum of human interference. When designing and building a
distributed system, the designer should choose a topology that is easy to scale to meet the

increasing requirements from the end users. The system must also scale the size of the system

and compensate for the failure of some components without losing the performance of the

existing system.

Resource Management
In order to provide reliable services, we need to expect the same reliable service from the
end nodes and the connective infrastructure in the distributed environment. It is necessary for
the manager to monitor the resource usage of each node in the system and adjust the
computing task distribution according to the workloads and resource usage of each

computational node [3].

Data Exchange Cost
Another consideration with distributed systems is the cost of data exchange. Since the
network performance has not improved as fast as the processor performance, as the number
of computers in the system increases, the data exchange cost is not negligible when
compared to calculations. When the amount of data transfer in the system becomes large, the
data transfer cost becomes very large [3].

1.5 Research Motivation

Usually, in large-scale systems, it is much more difficult to provide software that is fault-
tolerant, reliable, manageable and easy to use for systems administrators and users than in
small-scale systems. In order to solve the problem of the lack of software for the effective
management and utilization of computational resources, the U.S. Department of Energy has
established Scalable System Software Center. The goals of the center are to develop an
integrated suite of machine independent, scalable systems software components need for the
Scientific Discovery through Advanced Computing (SciDAC) [16] initiative and to provide
open source solutions that work for both small and large-scale systems. The Scalable
Systems Software Center will produce an integrated suite of systems software and tools for
the effective management and utilization of terascale computational resources particularly
those at the DOE facilities [15]. Our rescarch is part of the SciDAC project.

The first motivation of our research is to find an optimal method to build a distributed
system so that the infrastructure scales well when distributed memory systems get very large
and the distributed system is robust so that in case a node fails in the system, the system is
gasy o recovery.

The second motivation of our research is to find a way to simplify the management of the
system. In order for the manager to monitor the whole system, the master node needs to
gather the working status and resource usage from the computing nodes in the system and
send instructional messages to the computing nodes to balance the whole system workload.

The third motivation of our research is to find a strategy to exchange information
efficiently so that we can minimize the data transmission latency and lower the network
transmission load. In the case when the number of nodes in the system becomes very large,
we need to minimize the possibility that some nodes might become a bottleneck in the
system,

Our research focuses on design and implementation of a network system for building a
distributed system that can handle the dynamic increase of the system size and can detect and
recover a system failure automatically. The network topologies used in our research are tree-
structured networks and ring-structured networks. Our research aims to find an optimal
method to build and recovery the tree-structured and the ring-structured network and to
minimize the data transmission latency and network traffic.

1.6 Summary

The distributed system is composed of computers that are connected via communication
networks. Because of the availability of the low-cost, high performance computers and
network devices, distributed systems are widely used in many areas. Distributed systems
have the advantages of the high performance/price ratio, resource sharing, improved
reliability and availability, modular expandability, and enhanced performance. However,
when constructing a distributed system, we need to consider the scalability and reliability, the
resource management, and the data exchange cost of the system. The motivation of our
research is to find a network topology and an optimal method to construct a distributed
system so that the system can handle the dynamic increase of the system size and can detect
and recover the system failure.

10

2. THE SYSTEM STRUCTURE AND COMPONENTS

2.1 The System Structure

2.1.1 Preliminary

Complete n-ary tree: Informally, a complete n-ary tree is a tree in which all the nodes
have at most » children nodes and all the levels are full except for the bottom level and the
bottom level is filled from left to right [4].

If we assign each node in the complete n-ary tree an ID with the order by breadth-firsi-
search while the root of the tree has ID 1, then for a node with ID i, its parent node is the
node with ID |_(i -1}/ n—|, its child nodes are the nodes with IDs:

n (i-1)+2, n (i-1)+3, 0 (i-1)+4, ... ni+l.

We call the node with the maximum ID in the tree the lasf node. Figure 2-1 shows an

example of a complete ternary (n=3) tree.

the fast nock

Figure 2-1 An example of a complete ternary (n=3) tree

Ring: In a ring, all nodes are connected to one another in the shape of a closed loop, so

each node is connected directly to two other nodes, one on either side of it.

2.1.2 The Master Node and the Slave Nodes
Our work has examined the construction and the recovery of the tree-structured and the
ring-structured network.
In both the tree-structured and the ring-structured networks, there are two types of nodes

in the system: the master node and the slave nodes. Each system has only one master node

11

and can have up to hundreds of slave nodes. In the tree-structured network, the master node
is the root of the tree while in the ring-structured network the master node is the head of the
ring. Other nodes are the slave nodes. There are two major responsibilities for both the
master node and slave nodes. One is to maintain the given system structure. The other is to
manage the system resources.

To simplify the management of the system, each node in the system is assigned a position
ID that is determined by its position in the system. In the tree-structured network, the
position ID of a node is the browsing order of the node using breadth-first-search where the
root of the tree has position ID 1. In the ring-structured network, the position ID of the node
1s the position index of the node in the ring where the head of the ring has position ID 1.

2.1.3 The Tree-Structured and the Ring-Structured Network

In the tree-structured network, nodes are connected as a complete n-ary tree. When the
system starts, there is initially only a master node that is the root of the tree. When new nodes
request to be added to the system, they are added to the bottom level of the tree from left to
right to maintain the complete n-ary tree structure. If any node in the system fails, a node in
the system is used to replace the failure node to keep the given system structure. To minimize
the number of nodes involved in this event, we choose a node from the last node in the
system backwards until we find a node that is still active to replace the failed node. Since it is
possible that during the recovery process, the /ast node, its previous node and so on may fail,
so that the node with the maximum position ID that is active is used to replace the failed
node. All the child nodes of the failed node will connect to the node that is used to replace
the failed node. Using the complete n-ary tree as the network topology has two benefits for
the network’s scalability. The first one is to minimize the height of the tree thus minimize the
longest path to send a message to its destination. The second benefit is to fix the maximum
degree of the nodes so that when the number of nodes in the system becomes very large there
1s no need to increase nodes’ ability to handle more connections.

In the ring-structured network, nodes are connected as a ring. When the system starts,
there is initially only master node that is the head of the ring. A new node is added to be the
tail of the ring. When 2 node in the system fails, its previous node and next node are linked
together. However, as in the free-structured network, it is possible that during the recovery
process the failed node’s previous node and next node may fail, so that we need to find two
nearest neighbors of the failed node that are active and link them together. In the ring-
structured network, the degree of each node remains to 2 no matter how many nodes are in

12

the system. However the diameter of the ring increases as the number of nodes increases.
This results in a longer average message transmission delay.

2.2 Node Responsibilities in the System

2.2.1 Resource Management

To monitor and manage the system status and the resources in the system, in both the
tree-structured and the ring-structured networks, the master node gathers the working status
and resource usage information of all nodes in the system and sends instructional messages to
all the slave nodes periodically. In these systems, messages are transferred in a bidirectional
fashion along the network connections. These messages are called resource management
messages. To minimize the network traffic, each node only exchanges resource management
messages with its neighboring nodes. In the case of receiving an instructional resource
management messages from the parent (in the tree-structured network)/previous (in the ring-
structured network) node, each node extracts the message, gets the information it needs, and
forwards the messages to its child (in the tree-structured network)/next (in the ring-
structured network) node(s). In the case of receiving the resource management messages
from the child/next node(s), each node merges the resource management messages from the
child nodes and its own resource management message, and sends the merged message to its
parent/previous node. In this manner, the master node has the status and resource usage
information for all of the nodes in the system and can adjust the work distribution to use the

system resources efficiently.

2.2.2 System Structure Maintenance
The master node and slave nodes have their different responsibilities in maintaining the

given network structure in the system construction and recovery process.

Master Node’s System Structure Maintenance Duties

The master node is the core of the system. It is responsible for maintaining the system
structure without or with a minimum of human interference. To maintain the system
structure, the master node has data storage to store the system structure and it is responsible
for keeping the data storage up-to-date. In the tree-structured network, the system structure is
stored in an XML document. In the ring-structured network, the system structure is stored in
a double-linked list. The following information of each node is stored in the data storage:

13

node position ID, node name, node hostname, port number, current client number

In addition to maintaining the system structure data storage, the master node is also
responsible for computing optimal methods to construct and recover the distributed system
and give the slave nodes instructions to keep the given system structure. In case a new node
is to be added to the system, the master node is responsible for computing the optimal
method to add the new node to the system. In case an existing node fails, the master node is
responsible for computing a method to reconstruct the system to maintain the given structure.

Slave Nodes’ System Structure Maintenance Duties

The slave nodes only know the master node and their neighboring nodes i.e. besides the
master node, in the tree-structured network, a slave node knows its parent node and its
children nodes. In the ring-structured network, a slave node only knows its previous node and
its next node. When a new node is to be added to the system, it sends a registration request to
the master node, obtains the parent node information from the master node and connects to
the parent node. When one of its neighboring nodes fails, the slave node is able to report the
failure and can dynamically adjust its position in the system according to the instructions

from the master node.

2.3 Connections in the System

In this section, we will describe the transmission protocol used in this project and the

different connection types used in the system.

2.3.1 Transmission Control Protocol
The Transmission Control Protocol, TCP, is a connection-oriented protocol that provides
a reliable, end-to-end, and full-duplex byte stream over an unreliable internetwork [5].

Services Provided by TCP
Connection-oriented Connections: A TCP client establishes a connection with a given
server, exchanges data with that server across the connection, and then terminates the

connection [5].

14

Reliable Services: When TCP sends data to the other side, it requires an
acknowledgement. If an acknowledgement is not received, TCP automatically retransmits the
data and waits a longer amount of time. After some number of retransmission attempts, TCP
will give up [5].

The Ability to Handle Sequencing: The sender associates a sequence number with every
segment that it sends. The receiver can reassemble the segments according to their sequence
numbers [5].

Flow Control: The receiver always tells the sender exactly how many bytes of data it is
willing to accept from the receiver, guaranteeing that the sender cannot overflow the its
buffer [5].

Full Duplex Connections: An application can send and receive data in both directions on

a given connection at any time [5].

Establish the Connection

The TCP connection is established between two hosts by three-way handshake. Three
segments are transmitted before the two hosts are fully synchronized and ready to transmit
the data. The steps of the three-way handshake are illustrated as the follows:

client server
socket socket, bind, listen

SYNJ
connect(blocks) * accept (blocks)
(active open)
SYN K, ack J+1
ack K+1
\-b accept returns

connect returns

Figure 2-2 TCP three-way handshake

1) The server passively waits for an incoming connection from a client by calling socket, bind
and fisten. This is called passive open.

2) The client initializes an active open by sending a SYN segment to tell the server the client’s
initial sequence number for the segment that the client will send.

3) The server acknowledges the client’s SYV and sends its own SYN containing the initial
sequence number for the segment that the server will send. The server sends its SYV and the

ACK in a single segment.

15

4) The client acknowledges the server’s SYN.

The number of packets exchanged is three, which is the reason why it is called three-way
handshake. Figure 2-2 shows the TCP three-way handshake.

Data Transmission

The transfer of data is dominated by acknowledgement of data and the sequence number
in a segment to allow the receiver to reassemble the segments.

When the sender sends a segment, it expects an acknowledgement from the receiver
within a certain time period. If the acknowledgement is not received, the sender retransmits
the data.

Sequence numbers allow the receiver to reassemble any out of order packets received
from the sender. If a packet arrives that does not have the correct sequence number, the
receiver can determine whether it is an old duplicate or it is a packet that has been delayed in
the network. The receipt of a duplicate packet allows the receiver to discard it, thus making

sure that the receiving process only gets the data once.

Termination of Connection
While it takes three segments to establish a connection, it takes four to terminate a
connection. The steps of the connection termination are illustrated as the follows:

client server

\-EK*
Passive close

ack

4/,,“5‘1.1:1/"‘”
W»

Figure 2-3 TCP termination

active close

close

1) When one application finished sending data, it sends a FIN segment. This is called active
close.

2) When the other side receives the FIN, it acknowledges the FIN. This is called passive close.

16

3} Sometime later, the application that received the FIN finished sending data; it will send a FIN
and close the socket.

4) The application that did the active close receives the FIN and acknowledges the FIN.

Figure 2-3 shows the termination of the TCP connection.

2.3.2 Connection Types in the System
To manage the system resources and maintain the system structure, there are two types of
messages fransmitted along the network links in the system, the resource management
messages and the system structure maintenance messages. Since both of these messages
require reliable delivery services, TCP is used as the transport protocol. To transmit these
two kinds of messages, there are two types connections in the system: permanent connections

and femporary connections.

Permanent Connections

The permanent connections constitute the network structure. They are used to transmit
the resource management messages. All nodes in the system are connected to their
neighboring nodes by permanent connections. The reason we use the permanent connections
to transmit the resource management messages is the overhead of TCP three-way handshake
and four-way termination. The resource management messages are periodically exchanged
between the neighboring nodes. In this manner, once a connection is established between the
neighboring nodes, it is persistent. There is no need to establish a new connection for each
resource management message. Using permanent connections to transmit the resource
management messages decreases the overhead of the establishing and the closing of the

network connection. Permanent connections are the base structure of the system.

Temporary Connections

The temporary connections are used to maintain the system structure. To clearly explain
the temporary connections, we define two events that use the temporary connections, the
construction event and the recovery event. The construction event happens when a new node
registers to be added to the system. The recovery event happens when a slave node fails. For
both the construction and recovery event, there is a group of system structure maintenance
messages transmitted along the network connections. For the construction event, a slave node
Initializes a temporary connection and uses this connection to register to the system; the
master node uses the connection to send the instructional information to allow the slave node
to be added to the system. For the recovery event, a slave node initializes a temporary

17

connection and reports the failure of its neighboring node; the master node uses the
temporary connections to send instructional messages to the slave nodes. A temporary
connection is for transmitting a given group of messages. After the transmission of the given
group of messages, it is not necessary for the temporary connection to exist. Using temporary
connections to transfer the system structure maintenance messages can release the load

burden of the master node.

2.4 Summary

This chapter described the structure, components and network connections used in our
system.

The network topologies used in this system are the tree-structured network and the ring-
structured network. The system has one master node that is the manager of the system and up
to hundreds of slave nodes. In the tree-structured network, the master node is the root of the
tree. In the ring-structured network, the master node is the head of the tree. Because we need
reliable message transmissions, TCP is used as the transmission protocol. There are two
types of messages exchanged among the nodes. The resource management messages are
transmitted along the permanent connections while the system structure maintenance
messages are transmitted along the temporary connections.

18

3. MESSAGE TYPES AND FORMATS

3.1 XML Introduction

XML stands for eXtensible Markup Language. It is a relatively new markup language
and it is a subset of and is based upon a mature markup language called Standard
Generalized Markup Language (SGML) [6].

XML was designed to describe and store data. It has a set of rules for designing text
formats that let the users structure their data. XML makes it easy for an application to
generate, read and search data.

XML is a text-based markup language. Using XML, the user identifies data using tags
that are known as “markup”. XML tags describe what the data means, rather than how to
display it as in HTML. An XML tag acts like a field name in an application program’s data
structure. It puts a label on a piece of data that identifies it (for example:
<message>...<message>). XML uses the tags only to delimit pieces of data, and leaves the
interpretation of the data completely to the application that reads it. Users are free to add
their own tags to an XML document and thus include some structured data within the text.
XML provides a basic syntax but does not define the actual tags; the tag set can be extended
by the application to accomplish the purpose [7].

Like the field in data structure, in XML, a user can define the field name and is free to
use any XML tags that make sense for a given application. The following XML data is an
example of XML data used in this system.

<?xmi version="1.0" encoding="UTF-8" 7>

<Message Type="ControlMessage” Sender="master” Receiver="node9 ">
<NewParent ParentName="nodel " ParentPortNum="3304" parentHostName="x1">
</NewParent>

</Message>

This example describes a message that the master node sends to a slave node to close the
connection to its current parent node and to connect to a new parent node. From it, we can
get the following information: this message is a control message sent from the master to
node9, this message notifies the receiver to connect to a new parent. In this message, the
master also sends the network-based information of the new parent to the receiver. When the

19

receiver receives this message, it can easily extract the new parent node information and
connect to the new parent.

From the above example, we can see, in an XML document, each open tag has a matched
end tag. XML tags are case sensitive. For example, the Message tag is different from the
message tag. The data between the open tag and its matched end tag defines an element of
XML data. XML documents must have a root element. The root element of the above
example is the element Message. All XML elements must be properly nested. We can see
that the content of newparent tag is entirely contained within the scope of
<Message>...</Message> tag. It is this ability for one tag to contain others that gives XML
its ability to represent a hierarchical data structure. XML elements can have attributes in
name/value pairs just like HTML. In XML, the attribute value must always be quoted [7]. In
the above example, the attributes of the element Message are Type, Sender, and Receiver
while the attributes of the clement NewParent are ParentName, ParentPoriNum, and

ParentHostName.

3.2 XML Documents as Data Storage

XML is platform independent and can be shared between different applications. These
properties of XML make it possible to use an XML document as data storage in information
application systems [8].

The basic idea of using an XML document as data storage is that the tags used in an
XML document are for identifying data rather than specifying how the data should be
displayed (as in HTML), and the relationships between data elements are provided by simple
nesting and references. The application using XML for data storage can easily store
information in an XML document and quickly make the information in the XML document
available in a simple and usable format. The tags used in the XML document can act as the
field names as in a data structure and allow the application to process the XML document
easily [9].

3.3 Why Use XML in This Project?

This project is a network management and client-server based application. XML is used
as a data structure to store the system structure of the tree-structured network and as the

20

message format transferred between a sender and a receiver. There are number of reasons
why we chose XML in this project. This section lists some of them.

Plain Text

Since XML is in plain text format and processor architecture independent, a sender can
create an XML message and send the message to the receiver. The receiver can parse the
XML message even if it uses a different parser.

Data Identification

XML describes the data. The markup tags identify and structure the data. The element
tags and attribute names allow the application to store structured data in an XML document
and extract data from an XML document.

Easily Processed
XML is well formed; each open tag has a matched end tag and vise versa. It makes it easy
to build a program to process XML data.

Hierarchical

XML documents are hierarchical structured. Hierarchical document structures are faster
to access just like searching through a table of contents. They are also easier to rearrange. For
example, in the XML document that describes the system structure in a tree-structured
network, if a node changes its position in the tree, it is easy to move the node to a new
location and drag everything under it along with it instead of moving every piece of data
under it individually.

3.4 System Structure XML Documents in the Tree-Structured
Network

In the tree-structured network system, the system structure is stored as an XML document
in the master node. Each node in the system is an element in the XML document. The

following is the information listed in the XML document.

<nodename ID="id" Level="level " PortNum="porl_number”
HostName="hostname”’ CurrentConnection="current_children_number” >

21

<childrnode>*
</nodename>

The master node is responsible for creating and maintaining the system structure XML
document and it uses this XML document to maintain the structure of the network. When a
new node is to be added to the system, the master node queries the XML document and
computes the parent node for the new node. When the new node connects to its parent node
successfully, the master node updates the XML document to contain the new node. When a
node in the system fails, the master node queries the XML document to find a new node to
replace the failed node. After this event is handled successfully, the master node updates the
XML document.

3.5 Message Format and Types Transmitted in the System

XML documents are also used as the messages transferred between nodes. Because the
XML messages are in the plain text format and there are tags used in the XML documents, it
is easy for a node to parse the XML messages and extract the useful information.

There are two kinds of messages transmitted along the system: Resource Management
Messages and System Structure Maintenance Messages.

Resource management messages that are transmitted along permanent connections carry
the working status and resource management information to be exchanged among nodes.

System maintenance messages carry information needed to maintain the system structure.
Some of the system maintenance messages are transmitted along the temporary connections

while some are transmitted along the permanent connections.

3.5.1 Resource Management Messages
Resource management messages carry the working status and resource management
information of each node in the system. They are transmitted along the permanent
connections in the system. Resource management messages are merged level-by-level and
transmitted to the master node. The master node uses resource management messages to
gather the working status information of each node. The following is the format of the

resource management message.

<Message Type = “ResourceManageMessage ', Time="the message generated time"”

22

Wall Time="the message generated wall_time” Sender = sender_name,
Receiver = receiver_name>
<CurrentConnection>number of current connection></CurrentConnection=>
<MemoryAvialable>the current free memory</MemoryAvialable>
<PracessorAvialable>the current free processor number</ProcessorAvialable>
</Message>

3.5.2 System Structure Maintenance Messages
There are seven types of system structure maintenance messages: Registration Message,
Report Message, Response Message, Control Message, Greeting Message, Bye Message, and
Acknowledgement Message.

Registration Message

When a new node needs to be added to the system, it sends its network-based information
to the master node in a registration message. This information is added to the system
structure database after the new node connects to the system successfully. The registration
messages are transmitted along temporary connections. The following is the format of the

registration message.

<Message Type= "“RegistrationMessage”, Sender = sender_name>
<Nodelnformaiton FPortNum = portnumber of the node,
NodeHostName = hostname_of the _node,
NodeName = name_of the node >
</Nodelnformaiton>
</Message>

Report Message

When a node in the system fails, all its neighboring nodes will send a report message to
the master node. The report message includes the failed node’s name and the relationship
with the sender. The report messages are transmitted along temporary connections. The

following is the format of the report message.

<Message Type = “ReportMessage”, Sender =sender name >
<Reportlnformaiton PeerName = name_of failrenode,
ReportType = "PeerDown ", Relation = “CHILD/PARENT />
</ReportInformation>
</Message>

23

Response Message

When the master node receives a registration message or report message that reports the
parent node’s failure from a slave node, it computes the new parent information for the slave
nodes and sends the network-based information of the parent node to the requested node. The
master node does not send a response message to a slave node that reports the failure of the
child node. The response messages are transmitted along the temporary connections. The

following is the format of the response message.

<Message Type= “ResponseMessage” Sender="master”
Receiver = receiver_name>
<Parentinformaiton ParentName=name_of parent node
ParentPortNum =parent portnumber
ParentHostName = parent hostname>
</ParentInformaiton>
</Message>

Control Message

The control message is for the master node to notify a node to connect to a new parent
node. To keep the system structure, it is necessary for the master node to initialize a
connection to a node and tell it to change its position in the system. In the control message,
the master node sends the network-based information of the new parent node to the selected
node. The control messages are transmitted along the temporary connections. The following
is the format of the control message.

<Message Type= “ContriMessage”, Sender="master”,
Receiver = receiver name >
<NewParent ParentName=name_of parent, ParentPortNum = portnumber_of parnet,
ParentHostName = hostname_of parent>
</NewParent>
</Message>

Acknowledgement Message

When a node connects to its parent node, it sends an acknowledgement message to the
master. Only after the master node receives the acknowledgement message, does it change
the structure of the system. The acknowledgement messages are transmitted along the

24

temporary connections. The following is the format of the resource acknowledgement

message.

<Message Type="AckMessage ”, Sender =sender_name, Receiver = “master’">
</Message>

Greeting Message

When a node first connects to its parent node, it sends a greeting message to its parent
node. Upon receiving the greeting message, the parent node has the name of the new client.
The greeting messages are transmitted along the permanent connections, The following is the
format of the greeting message.

<Message Type = “GreetingMessage ", Sender = sender_name, Receiver = receiver name>
</Message>

Bye Message

When a node receives a control message from the master node to connect to a new parent
node, it sends a bye message to its current parent node to notify its current parent that it will
terminate the connection. Otherwise the parent will assume the failure of this node and report
it to the master node. The bye messages are transmitted along the permanent connections.
The following is the format of the bye message.

<Message Type="ByeMessage ", Sender =sender_name, Receiver = receiver_name>
</Message>

Each node in the system knows the format of different kinds of messages. Each node
extracts the information it needs from the message it receives. Because the XML messages
are in plain text formats and there are tags used in the XML messages, it is easy for a node to
process these messages and gets the useful information. All these different kinds of messages

work together to manage the system resources and maintain the given system structure.

3.6 Summary

This chapter gave a brief introduction to XML and defines the XML message formats
used in this system. XML is a markup language used to describe data. It is in plain text

25

format and can be easily processed. So XML is used in this project as the data structure to
store the system structure and as the message formats exchanged between nodes.

26

4. SYSTEM DESIGN AND IMPLEMENTATION

4.1 System Design

As discussed in chapter 2, the master node and slave nodes have different roles in the
management of the system’s resources and the maintenance of system structures. To
accomplish their functional goals, they have to communicate with other nodes and to process
the messages that they send and receive. The messages transmitted on the network are in
XML format. Thus, both the master node and slave nodes have to call network
communication methods and XML document processing methods. The network
communication methods include server methods and client methods. They are implemented
m the network communication module. The XML processing methods include building XML
documents and parsing XML documents. They are implemented in the XML document-
processing module. The network communication methods and XML document processing
methods were abstracted out and shared by both the master node and slave nodes. Figure 4-1
shows the software modules and their relationships in this distributed management system.

start ryaster node garta slavenode

[rr:tucxkccmnmcatmn‘odﬂe XV doouyert process rodule

VANEVZEN

clmtnet‘mds] huldeoamatnﬁinch |pameMdaanmtrre&nds

Figure 4-1 Software modules

27

4, 2 System Implementation
4.2.1 The Concurrence of the System
A concurrent server is a server that can handle multiple incoming requests concurrently

[10]. A server must be explicitly programmed to handle concurrent requests because multiple
clients contact a server using its single, well-known port. Figure 4-2 shows the architecture of

©

the concurrent server.

Figure 4-2 The concurrent server architecture

In our system, both the master node and slave nodes are concurrent servers. The
concurrence of the systems can be implemented using multiple processes or multiple threads.

A process is a running program that has a single address space and a single thread of
control with which to execute a program within that address space. To execute a program, a
process has to initialize and maintain state information. The state information includes page
tables, swap images, file descriptors, outstanding /O requests, saved register values, etc. The
size of this state information makes it expensive to create and maintain processes as well as
to switch between them [2].

A thread 1s only part of a running program. Once created, a thread begins to run
concurrently with the rest of the program. All threads within a process share the same global
memory. This makes the sharing of information easy between the threads [2].

When a new process starts, it gets its own "memory space” - that is, all data needed by
the process is its own, and not shared with other processes (except through special
mechanisms). In contrast, two threads that are part of the same process can share data in the
same way that two functions that are part of the same program can share data. In this way, a

28

thread is sometimes referred to as a "lightweight process”. A thread is a finer unit of
execution than a process, just as a function is a finer unit of code than an entire program.

There are system calls to create new processes and new threads. Since the child threads
share the same global memory as its parent thread, thread creation can be much faster than
process creation.

In our system, each node accomplishes its resource management task and system
structure maintenance task concurrently. New threads or processes need to be frequently
created to accomplish different tasks; information is frequently exchanged among these
threads or processes. Due to the lower cost in creating new threads and in the sharing of
information between threads, we chose the threaded model to implement the concurrency of
the system.

4.2.2 The Construction and Recovery of the Tree-Structured Network

In the tree-structured network, the network is constructed as a complete n-ary tree. Each
node in the system has the same maximum number of child connections, », which is the
maximum number of child nodes one node can have. Each node in the system has a position
ID that is determined by the browse order by breadth first search while the root of the tree
has position 1D 1.

The Self-Construction of the Tree-Structured Network

When the system starts, there is only the master node that is the root of the tree. The
master node is the manager of the system. To accomplish its management tasks, when it
starts, the master node initializes the system structure database, and opens a port to listen for
requests from slave nodes.

To construct the distributed system, new nodes are added to the system dynamically in

the order of their register requests.

The steps involved in constructing the system
1. The new node sends a registration request to the master node. In the registration
request, the new node sends its network-based information.
2. The master node queries the structure database, and computes the parent node for the
new node.
3. The master node sends a response message that contains the parent information to

the requesting node.

29

4. The new node tries to connect to the parent node specified in the response from the
master node.

3. If'the new node successfully connects to its parent node, it sends an acknowledgement
message to the master node.

6. After receiving the acknowledgement message from the new node, the master node
adds the new node to the system structure database.

7. If the new node cannot connect to the assigned parent node, the master node will not
add the new node to the system database. The new node will send another

registration request to the master node.

Since it is possible that the new node can not connect to its assigned parent node due to
the possibility of either the new node or the parent node’s failure during the construction
event (see chapter 2), only after the master node receives an acknowledgement from the new
node, will it update the system structure database. Figure 4-3 shows the process of a new
node to be added to the system.

2 mester rods queries the strudure daabese,
mester NOCE cormputes the parent rode for the new node

-
P

@
E=
b=}
OO
'cg'g
5=
358
<88
— oid pemenert conection . newpermarert connedion ... temporEry comedion. . dalabesa query ‘ dd slave rode

Figure 4-3 The process of a new node to be added to the system

30

Computing the Parent Node for the New Node

To keep the structure of the complete n-ary tree, the new node is added to the bottom
level of the tree which is filled from left to right. That is, it is connected to the first node with
less than » children by the breadth first search.

the first node with less than # children by breath first search is +1,
Proof:

In a complete n-ary tree with m nodes, each node except the voot is the child of

Theorem: In a complete n-ary tree, if the number of nodT in thj: tree is m, the order of

n

some other node. The number of child nodes in the tree Is m —1. Let node f be the
first node with less than n child nodes and its number of child nodes is c
(c<n&c=(m—1)%n). We have:
(m—1)—c m—1
m=1=(f-Dxn+tc= f=——"—+1= f= +1
End proof " "

According to the above theorem, when a new node is to be added to the tree-structured

Ietworj with m nodes, the new node with ID m+7 becomes the child of the node with ID
m _—

- +1 and is now the last node of the system.
The Self-Recovery of the Tree-Structured Network

During the execution of the system, some nodes may fail. To accomplish the system
functions in the case of a nodes’ failure, the system must recover automatically, that is, it
should have self-recovery abilities.

When a node in the tree-structured network system fails, all its neighbors will report the
failure to the master node. The reason why all the neighbors instead of only a single neighbor
will report this failure can be illustrated as follows:

node C @8

Figure 4-4 A segment of a tree when node B fails

31

1. The neighbors of the failed node do not know each other. There is no connection
between any pair of the failed node’s neighbors, when a node reports this failure, it
cannot notify other nodes. In figure 4-4, there are no connections between node A and
node C, node A and node D, and node C and node D. When node A reports the failure
of node B, it cannot notify node C and node D.

2. It is possible that two adjacent nodes fail simultaneously, so one node cannot rely
others to report the failure. In figure 4-4, if node A and node B fail at the same time,
and node C and node D rely on node A to report the failure node B, node B’s failure
will not be reported to the master node.

3. All the child nodes of the failed node need to get instructions from the master. It is
reasonable for a node to get instructions from the master node after it reports the
Jailure. In figure 4-4, node C and node D get new parent information afier they report
the failure to the master node.

To minimize the number of nodes involved in the recovery event (see chapter 2), when

the master node receives the first report message of the event, it chooses the node with the

maximum ID that is alive to replace the position of the failure node. (See chapter 2).

mester node query the
rrester rode datzhese andupdste
; the cetabese

Figure 4-5 The process to recovery the system

32

For the parent of the failed node, after it reports the failure, it closes the thread that was
communicating with the failed node. For example, in figure 4-4, after node A reporis node
B’s failure, it closes the connection with node B. For each of the child nodes of the failed
node, after they report their parent node’s failure, they will receive a response message that
contains the network-based information of the new parent from the master node. If after a
certain time period, the master node has not received a report from all of the children of the
failed node, it will compute a method to handle all of the nodes that have not reported the
current failure. To do this, the master node first detects if each of the children is still active. If
it is, the active child will be moved to be the child of the new parent; otherwise, a node will
be used to replace its position as the child of the new parent. For example, in figure 4-4, if
node C does not report node B’s failure, the master node will first detect if node C is still
active. If it is, node C will receive a message from the master node and connect to the new
parent node. Other wise, a node in the system will replace the position of node C. Figure 4-5
shows the recovery of the tree-structured network.

4.2.3 The Construction and Recovery of the Ring-Structured Network

In the ring-structured network, the ring is stored as a Double Linked List. The master
node is the head of the ring. The position ID of a node is the position index of the node in the
ring while the master node, the head of the ring, has position ID 1.

The Self-Construction of the Ring-Structured Network

As 1in the tree-structured network, when the system starts, there is only the master node
that is the head of the ring in the system. The master node is the manager of the system.
When it starts, it initializes the system structure database, and opens a port to listen for
requests from slave nodes.

To construct the network, new nodes are added to the system dynamically according to
the order of their registration requests. The steps involved in a construction event are the
same as in the tree-structured network. In the ring-structured network, the new node is
always added as the tail of the ring, that is, if the number of nodes in the ring is m, the new
node’s parent is the node with position IID m and the new node will have position ID m+/.
Figure 4-6 shows the construction of the ring-structured network

33

e

® old tail

structure database

permanent connection _______

temporary connection

. slave node

Figure 4-6 the construction of the ring-structured network

The Self-Recovery of the Ring-Structured Network

2. query and update
master node o ﬁ'j ase

\‘ \\

- - by

1. neigh bo‘rlng nodes\r\
L)

structure database
eport the failure

’

~

— permanent connection

temporary connection

’ siave node

Figure 4-7 The recovery of the ring-structured netwark

34

During the execution of the system, when a node in the system fails, both its previous
node and next node will report this failure to the master node. Basically, the failed node’s
previous node and next node will link together. However, it is possible that during the
recovery process the failed node’s previous node and next node may fail, so that the master
node will find two nearest neighbors of the failed node that are alive and link them together.
The failed node will be deleted from the system. Figure 4-7 shows the recovery of the ring-
structured network.

4.2.4 The Program Design of the Master Node
The master node is a concurrent server that can accomplish multiple tasks
simultaneously. The concurrence of the master node is implemented using POSIX Threads
111
There are four types of threads in the master node: the main thread, the resource
management thread, the system structure management thread, and the connection handling
threads. This section describes these threads.

Main thread: The main thread is the entry point of the program. It is responsible for
creating working threads to handle the different functions of the master node. Its
responsibilities are initializing the server, creating the system structure management thread,
creating the resource management thread, and creating a new connection handling thread for

each new client node. The main thread runs forever.

Initiglize the master

l . l

Create the resource Create the system Create athread to
management thread management thread communicating with
each client

Figure 4-8 The functions of the main thread

Resource management thread: The resource management thread is used to accomplish

the resource management tasks of the master node and sends the instructional messages to its

35

child nodes. At present, the role of the resource management task is to report the current

system structure periodically.

System structure management thread: The system structure management thread is the
most important part in the system. It is responsible for computing an optimal method to
construct and recover the system so that the system has good scalability and reliability. It has
a predefined port number that can be connected to by each slave node. To ensure the integrity
of the system structure, the system structure management function is implemented as an

iterative server. This thread handles the requests from clients in a sequential way.

Since each node in the system may have more than one neighbor, in case of one node
failure, all of its neighbors need to report the failure to the master node. In the process of
handling a recovery event, it is possible for new requests, including new registration requests
and new failure report requests, to be received. To clearly describe these situations, we define
the following terminologies.

NORMAL STATE: The system is running normally. The master node is expecting any
kind of request and can handle either registration or reporting requests.

INPROCESS STATE: The master node is handling a recovery event. Since each node in
the system may have more than one neighbor, each is responsible for reporting its neighbor’s
failure, so that the master node may have to handle more than one report request for a failure
event. In the INPROCESS STATE, the master node is only expecting the request that reports
the current failure and cannot handle new registration request and report requests that report
the failure of nodes other than the current one. If this kind of request comes, the master node
sends a response message to the slave node to inform it that the master node cannot handle
this request. This request will be sent again.

PROCESS TIME: The beginning time when the master node starts to handle a new
recovery event,

MAXIMUM DELAY: The longest time that the system can be in “INPROCESS STATE”.

TIMEOUT STATE: If the system stays in the INPROCESS STATE longer than the
MAXIMUM DELAY and a new request other than the request that reports the current
failure, the system changes to “TIMEOUT STATE”. Figure 4-9 shows the transformation of
the system states.

36

register request

report request, the failed
node only has one neighbor

s10qyBisu SUO Uy} BI0W sBY
spou pajie; ay; sanbal Jodas

aJin|iey Jua.no sl podes 0)
Buo 15B] /U 1senbal podoy

stay at inprocess state
longer than maximum delay

Report request, not the last one

Figure 4-9 The system state transformation

The duties of the system structure management thread: The system structure management
thread has two major duties: one is to handle the construction event; the other one is to
handle the recovery event.

Handle construction event: When a new node registers to join the system, the system
structure management thread is responsible for computing the parent node for this node and
adding this node to the system. It works in three different cases.

Casel: the system is in the NORMAL STATE: The master node computes the parent
node of the new registering node and sends the parent information to the registering node. If
the master node receives an acknowledgement from the new slave node, the new node is
added to the system and is assigned an ID. Otherwise, the manager just ignores this request.
After finishing the handling of this request, the system stays in the NORMAL STATE.

37

Case 2: The system is in the INPROCESS STATE: The master node is handling a
recovery event. The master node cannot handle the new registration request. The new node
will send another registration request again. The system stays in the INPROCESS STATE.

Case 3: The system 1s in the TIMEOUT STATE: The master node is handling a recovery
event and stays in the INPROCESS STATE longer than the MAXIMUM DELAY. Upon
receiving the new registration request, the master node terminates handling the recovery

event by computing a method to wrap up the current recovery event.

Handle recovery event: When a node in the system fails, the system structure
management thread is responsible for computing a method to recovery the system structure.
This function works in the following different cases:

Case 1: the system is in the NORMAL STATE: The master node receives the first report
request that reports the new failure. The master node sets the PROCESS TIME for this event,
and handles this report request. If the failed node only has one neighbor, after handling this
event, the system stays in the NORMAL STATE, otherwise, the system state changes to the
INPROCESS STATE.

Case 2: the system is in the INPROCESS STATE: The master node is handling a
recovery event. It only expects report requests for the current failed node. If the request that
arrives is this kind of request, the master node handles it otherwise it is ignored and will be
sent again. If this report request is the last report for the current recovery event, after
handling this request, the system state changes to NORMAL STATE, otherwise the system
stays in the INPROCESS STATE.

Case 3: the system is in the TIMEOUT STATE: the system stays in the INPROCESS
STATE longer than the MAXIMUM DELAY. Upon receiving a new request that does not
report the current failure, the master node terminates handhing the recovery event by
computing a method to wrap up the current recovery event. We call the node that should
have reported but has not reported the current failure the unreported node. The steps
involved in wrapping up the current recovery event are as follows:

1. The master node detects if the unreported node is still active.

2. If it is active, the master node will send an instructional message to tell it to connect the new

parent node.

38

3. Otherwise, a node in the system will be chosen to replace the position of the unreported node.
In the tree-structured network, the node with the maximum position ID that is still active will
be chosen while in the ring-structured network, the nearest neighbor node that is still active

will be chosen to replace the unreported node.

Connection handling thread: The main thread creates a connection handling thread for
each directly connected child node. It is responsible for handling the communication with the
child node. Its duties are exchanging the resource management messages with the child node
and reporting the failure of the child node to the system structure management thread in case
that the child node fails.

4.2.5 The Program Design of the Slave Node
Similar to the master node, the slave nodes are concurrent servers. The concurrence of the
slave node is implemented using POSIX Threads [11].
There are five kinds of threads in the slave node: the main thread, the resource
management thread, the client thread, connection handling threads, and the message merge

handling thread.

Main thread: The main thread is the entry point of the program. It is responsible for
creating working threads to handle the different tasks of the slave node. Its responsibilities
are initializing the node, creating the resource management thread to exchange the working
status and resource usage information, creating a client thread to handle the communication
with its parent node, creating a message merging thread to merge messages from all its child
nodes, and creating a connection-handling thread to handle the communication with each
child node. The main thread runs forever. Figure 4-10 shows the functions of the master
thread.

|Initialize the nodel

l l l l

Create the resource Create a connection Create a message
management thread Create the client thread handling thread for merging thread
each child node

Figure 4-10 The functions of the main thread

39

Resource management thread: It is responsible for generating and reporting its working
status and the resource usage information. The working status and resource usage

information will be merged level by level and sent to the master node.

Client thread: It is used to handle the communication with the parent node. In case its
parent node fails, this thread is responsible for reporting its parent node’s failure to the
master node, and connecting to the new parent node according the instructions from the
master node.

Connection-handling thread: When a new connection request comes, the main thread
creates a new connection handling thread to communicate with the new client. There are two
kinds of connection-handling thread . The first one is to handle the communication with the
child node, and in the case of child node fails, to report the failure of the child node to the
master node. The second kind of connection handling thread handies the instructions from
the master node. In this case, the master node initializes a connection and sends a system
structure management message to this node. When this thread receives the instruction
message from the master node, it will perform its task according to the message from the

master node. After the completion of its task, this thread terminates.

Message-merging thread: The slave node uses this thread to merge the resource
management messages from all the child nodes and its own resource management message.
In order for the ancestor node to monitor all its offspring, the messages are merged by level
and sent to the upper level parent. During the path of message transmission to the master
node, each node extracts the information it needs, merges all the messages from its child
nodes and its own message, and sends the merged message to its parent node. In the ring-
structured network, each slave node has only one child node. The slave node uses the
message-merging thread to merge the message from its child node and its resource
management message. In the tree-structured network system, each node may have more than
one child node. The slave node uses the message-merging thread to merge the message from
all its child nodes and its own message. By merging messages rather than simply forwarding
all messages from child nodes the network traffic can be decreased and the connection
burden of the upper level nodes can be reduced. For example, in an n-ary tree, if a node has
m levels of offspring, it only needs to handle » different connections using the merging
message schema instead of handling mxndifferent connections if the offspring send

40

messages individually. This decrease is significant for the master node when the number of
nodes in the system scales very large. Figure 4-11 shows the process of monitoring message

transmission and merge.

master node

|Le\.'EI3| |Levei$| |Level31 |Leve[3l ILeveISl ILeve13| ’Levelal |Leve|3| |Leve|3|

« v = . »

messages merge fo upper level

Extracis and merges

l Level p l | Levelp I I Level p |

Figure 4-11 The process of monitoring message transmission and merge

4.2.6 The XML Document Processing Module

The master node and slave nodes need to process the messages that they send and
receive. The messages are in the XML format. An XML parser is needed to build and parse
the XML documents. The Xerces-C++ parser is used in our system as the XML parser [14].

The Xerces-C++ parser is a validating XML parser written in a portable subset of C++. It
makes it easy to give the application the ability to read and write XML data. A shared library
is provided for parsing, generating, manipulating, and validating XML documents. The
parser provides high performance, modularity, and scalability.

The XML document processing module provides all the methods needed by the master
node and slave node to process the XML messages. There are 2 classes in the XML
document processing module, the BuildMsg class and the ParseMsg class. The BuildMsg
class provides methods to build a XML document, add an element to an existing XML
document, set attributes to an existing element, move an element to a new position, and
merge XML documents that are in the same format. The ParseMsg class provides methods to
get the element value, get the attribute value of an element. Using these 2 classes, the master
node and slave nodes can easily build and parse XML messages.

41

4.3 Summary

This chapter has described the system design and implementation of this distributed
management system.

There are 4 software modules in this system, the master node module, the slave node
module, the network communication module and the XML document-processing module.
The network communication module and the XML document-processing module provide the
basic methods that the master node and slave nodes need to accomplish their functional
goals. The master node and slave nodes are concurrent servers that accomplish their system
structure management functions and resource management functions. POSIX threads are
used to accomplish the concurrency of the system due to its lower overhead for generating
and sharing information between threads. The Xerces-C++ parser is used as the XML parser
due to its high performance, modularity, and scalability.

42

5. TEST ENVIROMENT AND RESULTS

5.1 The Test Environment

Our tests were conducted on the PowerPC G4 cluster in the Scalable Computing
Laboratory, Ames Laboratory of U.S. Department of Energy. The G4 Cluster is a 32 node
“Beowulf” style cluster computer consisting of 16 single processor G4s with 512 MB RAM
and 16 dual processor G4s with 1GB RAM, all running Debian Linux. They use Ethernet and
Myrinet for network access. The G4 cluster is the first cluster in the SCL and one of the first
in the world to run the new Scalable Systems Software Resource Management suite. This
software is designed for scalability and fault tolerance and removes many of the limitations
of previous batch systems

In our system, there are 2 types of nodes, the master node and slave nodes. The master
node is the manager of the system. It requires more system resources than a slave node. The
master node is running on a specified node of the cluster and has two predefined ports to
listen for the connection requests from clients. One port is for its direct child nodes to
connect to 1t and to exchange the resource management messages; the other one is for all the
slave nodes to connect it and to exchange the system structure management messages. To test
the self-construction and the self-recovery ability of the system, each slave node starts at a
different time and runs for a random time period. This is implemented in a script file that is

submitted to the batch system.

5.2 Test Results

We tested two aspects of system performance. First, we tested the system’s ability to
maintain the given system structure, that is, the time used for a new node to be added to the
system and the time used to recover to the given structure in case a node fails in the system.
Second, we tested the Round Trip Time (RTT) for messages transmitted in the system. The

time unit used in the following results is milliseconds.

5.2.1 The Test Result of Maintaining the System Structure
To test the system’s ability to maintain the given system structure, we tested the
construction and recovery performance of the binary tree-structured network, ternary tree-

43

structured network, S-ary tree structured network, and the ring-structured network with
different number of slave nodes in the system. Table 5-1 shows the average time used for a
new node to be added to the system and the average time used to recover the system structure

when a node in the system fails.

Table 5-1 The construction and recovery performance of the system (ms)

number of 10 20 50 100
lave nodes
topology Construction | recovery | construction recovery | construction recovery | comstruction | recovery
binary tree 72.2 130.4 64.4 132.3 69.2 165.5 72.6 1874
temary tree 81.6 131.0 77.1 1332 81.8 1770 74.5 [92.8
S-ary tree 77.8 [84.5 723 220.9 1.4 279.8 74.8 299.0
Ring 74.5 110.7 79.5 130.4 70.1 156.1 67.8 164.3

5.2.2 Round Trip Time for Resource Management Messages

The resource management messages are transmitted along the permanent connections in
the system. The messages from the slave nodes are merged upward level by level and sent to
the final destination, the master node. The master node sends the resource management
messages to its direct child nodes and the messages are forwarded downward level by level
to each of the slave nodes in the system. We tested the RTT with zero payload and an XML
payload (252 bytes) in the binary tree-structured network, ternary tree-structured network, 5-
ary tree-structured network, and the ring-structured networks.

Table 5-2 RTT in a binary tree-structured network (ms)

number of 10 20 50 100
slave nodes
topology 0_payload xml_payload 0 payload | xml_paylead 0 payload | xml_payload 0_payload | xmi_payload
1 0.5 32.6 0.6 33.8 0.4 342 0.5 357
3 22 45.8 35 50.3 2.1 | 518 1.8 49.0
4 NA NA 4.8 155.1 6.5 142.7 8.2 170.8
MAX RTT 22 45.8 4.8 155.1 7.1 185.0 11.7 210.7

Table 5-2 through table 5-5 show the RTTs with different types of payload in different
systems. The MAX _RTT in these tables means the MAXimum Round Trip Time in each
system.

Table 5-3 RTT in a ternary tree-structured network (ms)

number of 10 20 50 100
slave nodes
topology 0_paylord xml_payload O_paylond | xml_payload C_payload | xml_payioad 0_paylead | xml_payload
i 0.7 372 04 345 0.5 356 0.6 36.4
3 NA NA 49 50.8 13 52.2 22 473
4 NA NA NA NA 7.3 157.3 6.3 152.1
MAX_RTT 1.1 40.2 4.9 50.8 73 157.3 9.5 170.1
Table 5-4 RTT in a 5-ary tree-structured network (ms)
number of
dlave nodes 10 20 50 100
distance
0_payload | xmi_payload 0_payload | xml_payload 0_paylsad | xml_paylead G_payload | xml_payload
1 0.5 347 0.6 38.7 0.4 38.6 0.5 335
2 1.0 387 1.1 39.5 12 52.1 1.2 41.6
3 NA NA NA NA 4.7 98.5 4.8 97.7
MAX _RTT 1.0 38.7 1.1 395 4.7 985 4.8 917

Table 5-5 RTT in a ring-structured network (ms)

number of 10 20 50 100
slave nodes
distance 0_payload | xml_payload 0 _payload { xml_payload 0_payload | xm!_payload 0_payload | xml_paylosd
1 0.5 399 0.4 32.3 0.5 379 0.4 40.3
5 133 52.2 49 51.7 54 50.9 47 46.6
20 NA NA 15.7 2238 4.8 213.8 18.2 189.0
MAX _RTT 1.9 161.6 15.7 2238 473 517.5 | 1012 | 9573

45

5.3 Results Analysis

Figure 5-1 shows that in the distributed systems with different network topologies, there
is no significant difference in the time used to add a node to system. The reason is that the
steps involved in adding a new node to the system are fixed. The system structure
management thread of the master node is an iterative server; it handles the construction and
recovery event in a sequential way. Only after it finishes handling a registration request, will

it handle a new registration or report request.

85
80
75
70

—&— binary tree

g 65 —&—lernary tree
:i:; 60 —8—5-ary tree
E 55 —#—-ring

50

45

40

10 20 30 40 50 60 70 80 a0 100
System Size

Figure 5-1 The construction performance

Figure 5-2 shows that the time used for a recovery event is related to the network
topologies. The time used grows with the degree of the node. The reason is that when a node
fails, all its neighbors have to report this failure to the master node. The more neighbors one
node has, the more report requests the master node has to process. For example, in the ring-
structured network, when a node fails, the master node only has to process the report requests
from the failed node’s previous node and next node while in the S-ary tree-structured
network, when a node fails, the master node may have to process up to 6 report requests. The
time used to process a recovery event in a S-ary tree-structured network is much longer than
that used in a ring-structured network. In the tree-structured network, the time used also
grows with the number of slave nodes in the system. When a node fails in a tree-structured
network, the master node has to find an active node with the maximum position ID to replace
the failed node. The more nodes one system has, the more complex to find a node to replace

46

the failed node, and the more time needed to recover the system. In the ring-structured
network, this increase is not as significant as in the tree-structured network. This is because
in such systems what the master node does is to find two nearest neighbors of the failure

node and let them connect together.

330

300
250 "

b / —e—5-ary tree
§ 200 L~ —&— ternary tree
é 150 - —e—binary tree
= ——ring
100
50
0 1 T T T T T T i T

10 20 30 40 &0 60 70 80 90 100
System Size

Figure5-2 The recovery performance

Figure 5-3 and figure 5-4 shows the maximum RTT for zero payload and XML payload
messages transmitted in the binary tree-structured, ternary tree-structured, S-ary tree-
structured, and the ring-structured network with different system sizes. From these figures we
can see, the RTT for XML payload (252 bytes) messages is much higher than that of zero
payload messages. This is because when receiving an XML message, each node has to
process the XML message and processing an XML message is a time consuming task.
Another point we can see from these figures is that the maximum RTT in a ring-structured
network grows significantly with the system size. The reason is that the diameter of the
system grows linearly with the system size. The diameter of an n-ary tree with m nodes

is]_ log,m(n—1)+ 1_|— 1. Thus in an #-ary tree-structured network, the maximum RTT grows

much more slowly than in a ring-structured network. The growth rate decreases as the degree
of the tree, » increases. Figure 5-3 and figure 5-4 show that the maximum RTT in a 5-ary
tree-structured network grows slower than that in the binary tree-structured network and the

ternary tree-structured network.

47

120

100 /I

g 80 / —— 5-ary tree

E 60 e tetrnary tree

% // —— binary tree
.......— Y

< ring

N B
o (]

Oél I:l‘_ T T T iﬂi‘

10 20 30 40 50 60 70 80 90 100
System Size

Figure 5-3 The maximum RTT with zero payload in the distributed systems

1200

1000 -
/ —#—ring
—e— binary tree

800
—&— ternay tree
600 ~o— H-ary tree

MAX RTT (ms)

400

200 - =

Y
-

OI T T T T T ¥ I I
10 20 30 40 50 60 70 80 90 100

System Size

T

Figure 5-4 The maximum RTT with XML payload in the distributed systems

5.4 Summary

This chapter presents the test environment and results of this system. We tested two

aspects of the system performance, the system’s ability to maintain the given system

48

structure, and the Round Trip Time (RTT) for messages transmitted in the system. There is
no significant difference in the time used to construct different systems. The ring-structured
network system is easier to recover than the tree-structured network in the case of any node
fails. However the maximum RTT in the ring-structured network grows significantly with the

size of the system due to the linear growth in system diameter with the system size.

49

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis compared the network topologies used to construct distributed systems, and
presented test results for systems using tree-structured networks and ring-structured networks
as the network topologies. From the discussions in the previous chapters and the test results
in chapter 5, we draw the following conclusions:

1. Itis easier to maintain the system structure in a ring-structured network. When a node
in the system fails, the time used to recover the system structure in a ring-structured network
is less than that used in a tree-structured network. The average time used to recover a ring-
structured network is half of that used to recover a 5-ary tree-structured network when the
system has 100 nodes. When a node fails, in the ring-structured network, the master node
only needs to find the two nearest neighbors that are active and connect them together while
in the tree-structured network, all the child nodes of the failure node have to connect to the
new parent node which brings more complexity to recover the system. In the ring-structured
network, new nodes can be added to the system without considering the capacities of the
nodes. However, the longest RTT grows linearly with the system size. When the messages
transmitted in the system have large payloads, the longest RTT can become very large. In our
tests, when there are 100 nodes in the system, the longest RTT for XML payload (252 bytes)
message in the ring-structured network is 957 3ms, while in the 5-ary structured network it is
97.7 ms. For large systems this can be a significant limitation and thus limits the overall
scalability of the system. Ring-structured networks are suitable for small to medium sized
systems with small messages.

2. In a tree-structured network system, the complexity of maintaining the given system
structure grows as the degree of the tree. The scalability of such system is related to the
node’s capacity and the height of the tree. We can choose a complete n-ary tree as the system
topology to limit the height of the tree. Since for a given system size (the number of nodes in
the tree) and a given node’s capacity (the ability to handle connection numbers, Le., the
largest degree of the nodes), among all the different types of trees the complete n-ary tree has
the minimum height. We can carefully choose an appropriate degree » to construct a
complete n-ary tree-structured network such that the height of the tree balances the growth in

50

the tree size versus the resource requirements for a node to communicate with additional
child nodes. In our tests, when the system has 100 nodes, the longest RTT for XML payload
(252 bytes) messages in the 5-ary complete tree is 10% of that in the ring-structured network,
while the time used to recover the S-ary complete tree network is less than twice of that used
for the ring-structured network. The point we can see here is that the tree-structured network
is superior to the ring-structured network when the system size and the messages transmitted

in the system have large payloads.

6.2 Future Work

In our system, there is only one master node. It is responsible for managing the system
structure. If the master node fails, all the information about the system structure will be lost
and there will be no node left to manage the system. One of our future tasks is to construct a
backup master node that will backup the system structure information continuously. In case
that the master node fails, the backup master node can be used to assume control and manage
the system structure.

51

REFERENCES

[1] Mukesh Singhal and Niranjan G. Shivaratri, “Advanced Concepts in Operating
Systems”, McGraw-Hill, 1994,

[2] Abraham Silberschatz and Peter Baer Galvin, “Operating System Concepts”, Fifth
Edition, John Wiley & Sons, 1999.

[3] Andrew Warfield, Yvonne Coady, and Norm Hutchinson, “Identifying Open
Problems in Distributed System”, Proceedings of European Research Seminar on
Advances in Distributed Systems (ERSADS), 2001.

[4] Bruno R. Preiss, “Data Structures and Algorithms with Object-Oriented Design
Patterns in C++7, Wiley, 1998.

URL:http://www .brpreiss.com/books/opusd/html/page356.html (date accessed:
November 15, 2004).

[5] W. Richard Stevens, “UNIX Network Programming”, Volume 1, Second Edition,
Prentice Hall, 1998.

[6] Mark Birbeck, Jon Duckett, Oli Gauti Gudmundsson, Pete Kobak, Evan Lenz, Steve
Livingstone, Daniel Marcus, Stephen Mohr, Jonathan Pinnock, Keith Visco,
Andrew Watt, Kevin Williams, Zoran Zaev, and Nikola Ozu, “Professional XML”,
2" Edition, Wrox Press, 2001.

[71 XML Tutorial, URL:http://www.w3schools.com/xml/default.asp (date accessed:
November 15, 2004).

[8] Jerry Emerick, “Managing XML Data Storage”, ACM Crossroads archive, Volume
8, Issue 4, Pages: 6 ~ 11, 2002.

[9] Ronald Bourret, “XML and Databases”,

URL: http://www.rpbourret.com/xml/XMLAndDatabases.htm (date accessed:
November 15, 2004).

[10] Douglas E. Comer and David L. Stevens, “Internetworking with TCP/IP”, volume
Iil, Prentice Hall, 1996.

[11] David R. Butenhof, “Programming with POSIX Threads”, Addison Wesley, 1997.

[12] Mark G. Sobell, “A Practical Guide to Red Hat Linux 8”, Addison Wesley, 2003.

[13] Herbert Schildt, “C: The Complete Reference”, Fourth Edition, McGraw-Hill,
2000.

[14] The Apache XML Project, “Xerces C++ Parser”,

URL: http://xml.apache.org/xerces-c (date accessed: November 15, 2004).

[15] Scalable Systems Software for Terascale Computer Centers,

52

URL: http://www.scidac.org/ScalableSystems (date accessed: November 15,
2004).

[16] The Project of Scientific Discovery through Advanced Computing,
URL: http://www.scidac.org (date accessed: November 15, 2004).

53

ACKNOWLEDGEMENTS

I would like to give special thanks to Dr. Brett Bode who gave me much useful advice
and help during my doing this project and writing this thesis. Special thanks to Dr. Ricky
Kendall and Dr. Ying Cai who helped me to finish this project and gave me advices in
writing this thesis. I gained useful knowledge and programming skills for distributed systems
from their classes. Also, thanks to the members of the Scalable Computing Laboratory with
whom I discussed the ideas for this project. Finally, thanks to my husband, Jun Zhang, for
everything he has done for me through years. His encouragement and support have helped
me achieve many of my goals.

This research project is supported by United State Department of Energy. The G4 cluster
used to develop and test the system is supported by the MICS office of the U.S. Department
of Energy.

This work was performed at Ames Laboratory under contact No. W-7405-Eng-82 with
the U.S. Department of Energy. The United States government has assigned the DOE Report
number IS-T2370 to this thesis.

