skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

Technical Report ·
DOI:https://doi.org/10.2172/836199· OSTI ID:836199

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small- and large-diameter cast iron repair robots to assure their commercial success. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module in the last quarter 5. In this quarter, work has been concentrated on increasing the nitrogen bladder reservoir volume to allow at least two complete patch inflation/patch setting cycles in the event the sleeve does not set all ratchets in the same row on the first attempt. This problem was observed on a few of the repair sleeves that were recently installed during field tests with the small-diameter robotic system. For Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) it was observed that it will be necessary to add a stiff brush to push debris away from the immediate vicinity of the bell and spigot joints in mains having low gas velocities. Otherwise, material removed by the cleaning flails (which were found to be very effective in cleaning bell and spigot joints) simply falls to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak free repair. Similarly, it is also necessary to design a small magnet to capture existing service tap coupons and allow their removal from the inside of the pipe. These coupons were found to cause difficulty in launching and retrieving the small pipe repair robot; one coupon lodged beneath the end of the guide shoe. These new features require redesign of the pipe wall cleaning train and modification to the patch setting train. Task 6 (Design & Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabView. However, this must now be re-visited to add control routines for the coupon catcher to be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe in the previous quarter. Field tests with the 4-inch size fitting were completely successful and did not reveal any significant design issues. The primary suggestion from the PSE&G field crew was to produce a version which completely bolts together and does not require a long seam weld. This could be used in low-pressure cast iron mains to reduce installation time. A bolt-on version is now being designed based on this recommendation. Task 8 (System Integration and Laboratory Validation) continued with the development of the robot module inter-connects and of a master LabView-based system display and control software.

Research Organization:
Gas Technology Institute (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FC26-02NT41316
OSTI ID:
836199
Resource Relation:
Other Information: PBD: 1 Nov 2004
Country of Publication:
United States
Language:
English