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1. Introduction

In order to develop and maintain large scale, complex systems,!it is essential that im-
plementors and maintainers possess an adequaté understanding of a system’s design and
organization. This understanding is necessary as it provides a framework for evaluating
design decisions, guiding implementation alternatives, and isolating maintenance con-
cems. Achieving this understanding, however, has proven to be very difficult. Systems
containing hundreds of interconnected modules, each with many thousands of compo-
nents, are widespread. ’fhe complexity of these systems can often overwhelm even the
most experienced engineers.

Of particular interest are software systems which now occupy a significant segment
of the system engineering community and exhibit similar complexity characteristics.
Software systems have grown considerably over the past decade. Systems with many
thousands of modules and millions of lines of code (delivered executable machine in-
structions or programming language statements) are commonplace. The ability to com-
prehend these large systems remains one of the major challenges facing industry.

One of the most common factors contributing to the complexity of modern systems
arises from the intricate connectivity structure associated with a system’é many interde-
pendent components. As the size of systems continue to grow, these structures are in-
creasingly difficult to visualize. Without a suitable visualization mechanism, these -
stractures become nearly incomprehensible, hindering the development and retention of
any concise conceptual framework for the system’s continuing design, implementation,
and maintenance.

A method for exploring and untangling the complex dependency structures that ap-
pear in these systems is therefore needed. This method would be applicable to many
modem systems engineering problems. While a general dependency visualization

model is sought in this work, software dependency analysis will be used throughout this




paper to illustrate the underlying concepts. Application to general systems analysis is a

natural extension.

1.1 Software Dependency Visualization Background

Software visualization has a long h‘istory. Several graphical techniques for repre-
senting program flow control were developed early on [Tr'88]. As programs continued
to increase in size, the importance of block structure became apparent; techniques for
visualizing this structure quickly followed [Na'73, Be’80]. The concept of program visu-
alization became well established by the mid 1980’s [Kr’83, My’86, Re’85).

As the issues associated with flow control and block structure subsided, emphasis
shifted to visualization of conceptual design, algorithm execution, and program behavior
[Br'88, Re’87, Li’89]. With the advent of large software development projects, techniques
and tools which focused on the architectural aspects' of complex programs and the infor-
mation they process emerged [Re’89, Ro’91].

With the volume of software in production use dramatically increasing, the impor-
tance of software maintenance has become strikingly apparent [0s’90]. Techniques are
now sought and developed for reverse engineering [CC'90] and design extraction and re-
covery [Bi’89, Ru’89, Ri’90, CS’90]. At present, numerous commercial products and re-
search tools exist which are capable of visualizing a variety of programming languages
and software constructs [Om’90]. The list of new tools and services continues to grow
rapidly.

Although the scope of the existing commercial and academic product set is quite
broad, these tools still share a common underlying problem. The ability of each tool to
visually organize object representations is increasingly impaired as the number of com-
ponents and component dependencies within systems increases. Regardless of how ob-

jects are defined, complex “spaghetti” networks result in nearly all large system cases.



The needs for “untangling software” were presented in [SV’92, Sm’92] and popularized in
Pe’93]. |

While this problem is immediately apparent in modem systems arialysis involving
large software implementations, it is not new. As will be discussed in Chapter 2, related
problems involving the theory of graphs were identified long ago [Tu’63]. This impor-
tant theoretical foundation provides a useful vehicle for representing and analyzing
complex system structures [Wa’74, Ve’78]. While the utility of directed graph based con-
cepts in software tool design has been demonstrated in [Bi'91, BS’92, Ga'92}, these tools
still lack the capabilities necessary for large system comprehension. This foundation
must therefore be expanded with new organizational and Maﬁon constructs neces-
sary to meet this challenge. This dissertation addresses thislneed by constructing a con-
ceptual model and a set of methods for interactively exploring, organizing, and under-

standing the structure of complex software systerims.

1.2 The Dependency Visualization Problem

Before adopting a specific solution strategy, it is first instructive to review the im-
portance of dependency visualization and reveal the difficulties associated with this
process. A series of simple examples will help illustrate these issues.

One of the most common visualization techniques used throughout software engi-
neering involves the analysis of a program’s dependencies. This analysis is a vital com-
ponent in modem system understanding [Sc’93]. Dependencies are typically represented
in graphical form using as a dependency diagram, a popular output format generated by
many of today’s software tools. Dependency diagrams are essentially directed graphs

. where each node in a graph represents some element or aspect of a system and an edge

from one node to another signifies a dependency of the first element on the second. De-




pendency diagrams appear in many different forms including module structure charts,
call sequence diagrams, entity-relationship diagrams, flow charts, finite state machines,
menu trees, petri nets, etc. However, dependency diagrams carry semantic information
that can not be captured in a purely graph theoretic model. The information associated
with each node and the meaning implied by each edge can only be assigned and inter-
preted within the context of the system at hand. The goal of this work then is to con-
struct a model for capturing and manipulating this dependency information in a manner

conducive to visualization.

Example 1.1 Consider a program with the following eight modules: MAIN, INPUT,
COMPUTE, OUTPUT, SCALAR, VECTOR, MATRIX, and 10. In this simple program, sup-
pose the module MAIN calls the input routine INPUT to read in the problem parameters,
formats these parameters, and then passes the appropriate data to the routine COMPUTE
where the desired computation is performed. Upon completion, MAIN then calls the
module OUTPUT to display the result. Suppose that the module COMPUTE makes use of
matrix, vector, and scalar operations via the modules MATRIX, VECTOR, and SCALAR,
respectively. Suppose the modules INPUT and OUTPUT also require the use of a low-
level input/output system module named 10.

If we are unfamiliar with the structure of this program and were tasked to reverse
engineer a module call diagram, our first step would be to examine each module and
tabulate its dependencies. A convenient data structure for capturing dependency infor-
mation is the adjacency list, a list of all dependents for each element. That is, for each
element v, we associate a list, Adj(v) of all its successors.

Making no assumptions based on the name of a particular module, we would begin

our examination, say, in alphabetical order as the modules appear in a directory or pro-
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gram library listing. A module is considered to be dependent upon another module if it
references any of the other module’s resources (e.g. via a with or use clause). The re-

sults of this examination are shown in Table 1.1.;D

Table 1.1 Module Dependencies in Example 1.1

Module Dependents
COMPUTE |MATRIX, SCALAR, VECTOR
INPUT 10
10
MAIN COMPUTE, INPUT, OUTPUT
MATRIX SCALAR, VECTOR
OuUTPUT 10
SCALAR _

VECTOR SCALAR

Using the information in Table 1.1, a directeél graph representation of thls example
program can be easily constructed. A layout for this graph can be generated by simply
positioning each module alphabetically in row-column format vyith each module repre-
sented as a circle and each module dependency represented as a line or arc from one
node to the other. The resulting layout is shown in Figure 1.1.

Despite the fact that the program in Table 1.1 contains only eight modules, its or-
ganization is not readily apparent from Figure 1.1. The method used to position mod-
ules in a diagram obviously impacts design comprehension. Although easy to generate,
the row-column graph layout approach is certainly not very effective in conveying use-
ful organizational information about the program. Nevertheless, this simplistic ap-
proach often does reflect a software developer’s/maintainer’s initial view of an unfamil-

iar system.




Figure 1.1 Default module layout of Example 1.1

Example 1.2 Given the same program in Example 1.1, we will now proceed to'generate
a more suitable layout. First, certain modules such as operating system interface pack-
ages and low-level input/output routines can appear frequently throughout implementa-
tions. In many instances, the viewer will already be familiar with the purpose of these
modules and their intended use. Components of this type will often be of little interest
to the viewer when examining a new system since knowledge of the system’s overall
structure will generally receive higher priority. Under these assumptions, we may pru-
dently choose to eliminate the module 10 from view since its use is of little organiza-
tional consequence. The motivation and consequences of this and other similar types of
decisions is described throughout Chapter 3.

Suppose we are also not interested in viewing transitive dependencies (i.e. a depend-
ency of the form A—C is transitive if there exists a sequence of dependencies A—B|,
B,—B,, .., B, — B,, and B,—»C for n 2 1). This form of dependency appears fre-
quently in systems and may often be considered redundant information. We can then

choose to ignore the following dependencies: COMPUTE—SCALAR, COM-



PUTE—VECTOR, and MATRIX—VECTOR: This process known as filtering will be de-
scribed with other similar functions in Chapter 4. Next, we can apply more appropriate
layout criteria such as top-to-bottom 1a§eﬁng of dependencies, left-to-right temporal or-
dering (i.e. a module which is executed before other modules appears to their left),
graph symmetry, edge crossing minimization, etc. The definition of these criteria, for
the time being, will be left unspecified, but will be thoroughly reviewed in Chapter 5.

The resulting layout is given in Figure 1.2. [

@

Figure 1.2 Improved module layout of dependencies in Table 1.1

Examining Figure 1.2, the structure of the program in Table 1.1 is now much more
readily apparent. The three phases of the program’s execution (input, computation, out-
put) and the abstraction hierarchy of the computation (compute, métrix, vector, scalar)
are easily identified. With only eight modules, the diagran'; in Figure 1.2 could have
admittedly been generated by hand. It is fairly simple to deduce much of the architec-

tural information we gained via Figure 1.2 from careful inspection of Figure 1.1.




Consider, however, a module dependency diagram for an actual program with over
250 modules [Sm’87] as shown in Figure 1.3. This figure was generated as before by
placing each module, as it alphabetically appears in the program library, using the de-
fault row-column layout technique from Example 1.1. The dependency diagram in Fig-
ure 1.3 obviously conveys very little useful information as it neither captures the de-
signer’s original organizational intentions nor does it effectively reveal any of the
system’s important structural properties. Yet, it does accurately reflects a software
maintainer’s initial examination of the program’s dependencies. After considering all
the criteria that a viewer .may wish to apply in visualizing an arbitrary dependency struc-
ture, the simple manual inspecﬁon techniques used to analyze Figure 1.1 are clearly no
longer adequate. The need for an automated tool is readily apparent. Such a tool is de-
veloped in this dissertation and will be used in Chapter 8 to untangle Figure 1.3 and pre-

sent a greatly simplified version.
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Figure 1.3 Unordered module dependency diagram



When generating layouts for exceptionally large (yet increasingly common) systems,
determining whlch cntena to apply and in what order becomes exceedmgly difficult as
there are many alternative strategms on how to orgamze and view the same mformatlon
What information must our tools extract or deduce? How should relationships between
elements be represented? How can we characterize the many different types of depend-
encies? And how once all this information has been assembled do we best present it to
a user? The A-Vu model presented in this dissertation has been developed with these
issues in mind.

While the example program above was tailored for this discussion, it does illustrate
an additional important point. Given access to a visualizétion tool during the initial de-
sign phase of a new system, the de\;eloper of the system w-oula have the ability to select
an architecture which yields a simpler visual representation than otherwise possible.
Hence, the system design process and the system visﬁalization process would be closely
coupled. The close relationship between design comprehension and visual complexity
has, in fact, long been recognized [We’52]. Adaptation of this fact during system devel-

opment may well be an important means of controlling system complexity in the future.

1.3 Research Objectives

The goal of this research is to develop a method for generating meaningful visual
representations of complex system dependency structures (e.g. Figure 1.3). A transfor-
mation process which accepts input for-an arbitrary dependency structure and outputs a
meaningful visual representation in a suitable display format is envisioned. A block dia-
gram of this process is shown in Figure 1.4. To adequately define the issues, seven fun-

damental questions listed below have been identified.

KD
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Arbitrary Dependency Meaningful
Dependency —{ Visualization [—— Visual
Structure Method Representation

Figure 1.4 Dependency Visualization Process

In addressing these issues, several contributions are made by‘this research. A model
which effectively captures complex dependency structure information is defined. A
catalog of useful operations for manipulating and viewing dependency structures caste
in this model is developed. A suite of functions for evaluating the complexity of de-
pendency structure arrangements is assembled. An optimization technique and an auto-
mated sequencing mechanism which integrates these items is developed. Finally, a pro-
totype software tool for interactively exploring complex dependency structures using

these techniques is described.

1). How may complex dependency structures be specified and represented in a

manner which facilitates visualization? Traditional dependency display tools

have few mechanisms for capturing domain specific information and hence,
lack the expressive power to describe many system dependency characteristics.
The development of a model which addresses these issues is necessary. This
research presents a model which unifies dependency analysis and the interac-
tive visualization process. This type of integrated approach to the problem has

not previously been demonstrated. (See Chapter 2)

2). Given an adequate dependency description model, what techniques for manipu-

lating this model are required to achieve a desired visualization result? Al-




3).

4).

5).

11

though a wealth of algorithmic knowledge can be applied in this area, the crite-
ria and circumstances under which each of these algorithms should be applied
has not previously been adequately established. This dissertation presents a
comprehensive assessment and a catalog of effective algorithmic measures to

fill this void. (See Chapter 3)

What specific visualization techniques can be applied within this framework to

better promote system understanding? Traditional display tools portray de-

pendency structures uéing simple directed graph depictions. Advancements in
visualization technology, however, can be applied to further improve compre-
hension. This dissertation advances the graph layout field by incorporating
several of these visual techniques including altemative rendering for nodes and
edges, the application of three-dimensional perspective, the aggregation of sub-
graphs, and the use of visual filtering. This approach is unique in its ability to

integrate all of these issues. (See Chapter 4)

How can the notion of a meaningful visual representation be defined? A quan-

titative measure of visual effectiveness has been lacking in the field. Most
methods have relied on fixed criteria, subjective evaluations, and/or intuition.
In order to automate this process, an objective evaluation method must be es-
tablished. This dissertation addresses this problem by identifying a configur-
able collection of criteria that provides a precise definition of visual complex-

ity. (See Chapter 5)

Given an effective evaluation measure, how can this entire process be opti-

mized and subsequently automated for increased ease of use? Seeking a near
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optimal visual representation using only manual manipulation techniques is
clearly inadequate for large systems. This dissertation addresses this issue by
incorporating a powerful optimization technique in a manner that lets the user
control the level of computational investment. The interactive optimization

method employed is unique in the field. (See Chapter 6)

6). How can this entire process be applied in a manner that is both natural and flex-

ible for the user? Current dependency visualization methods are relatively in-
flexible, enforcing a single focused paradigm with limited customization abili-
ties. The majority of these tools are batch-oriented providing only limited user
interaction. This work develops a powerful set of integrated techniques which
allow a user to freely explore complex dependency structures from many dif-
ferent perspectives. The resulting software tool is unique in its ability to simul-
taneously address these many concemns in an interactive environment. (See

Chapter 7)

7. Can the method adopted achieve all of these objectives, yet maintain an ade-

quate level of performance? A performance assessment of this process is
needed to validate its design and overall effectiveness. The results tabulated in
this dissertation demonstrate how these original research objectives have been
met. Greater insight into alternative node placement methods was also ob-

tained. (See Chapter 8)

This dissertation works towards addressing each of the above questions as indicated.

The results presented here provided an extensive formal framework for complex system
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understanding and dependency visualization discussion. This framework provides an

important base for related dependency analysis research in the future.

1.4 Design Requirements

To focus this research effort, the development of a prototype software tool was con-
ducted in unison with the development of the dependency visualization method.
Throughout this dissertation, the tool design and the method development are treated
synonymously. The specific requirements for the tool’s design are identified in this sec-
tion. A conceptual block diagram of the resulting lﬁethod and its corresponding tool im-
plementation is shown in Figure 1.5. This block diagram illustrates the integration of
five basic components. The requirements pertaiping to each of these components and
their integration are itemized below. While not specifically appearing in the block dia-
gram, performance requirements are -also itemized below in response to Question 7 in

Section 1.3.

System 1

Dependency —i»] Representation
Description

1

: System
Visualization j——t=p- Visual

: Representation

Integration

| |
1
1
1
1
[
Figure 1.5 Conceptual Block Diagram

The design requirements itemized here are organized in the same manner as the re-

search issues listed in Section 1.3 and are presented in the same order. The block dia-
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gram components shown in Figure 1.5 reflect this organization. The analysis and imple-

mentation of each of these items will be provided in respective chapters throughout this

dissertation as outlined in Section 1.5.

1).

Representation Requirements - The following requirements reflect the needs

concerning specification and representation of dependency structure informa-

tion for complex systems:

The tool developed must be capable -of representing large systems which
may contain hundreds of tightly interdependent elements.

A general purpose representation framework must be established that allows
complex dependency structures from numerous system sources to be input.
If necessary, a standardized input language and a series of translators may be
introduced to achieve this requirement.

Specifically, the prototype tool should be capable of extracting dependency
information directly from existing software program libraries to verify the
effectiveness of the method.

The representation framework selected should be conducive to visualization.
That is, a simple transformation should exist between the representation
framework and a suitable display environment.

In recognition of the fact that structural information alone is generally not
sufficient for thorough system understanding, an abstraction mechanism for
capturing domain specific knowledge associated with system elements and

element dependencies should be included in the design.
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e The issues associated with extraction and representation of system depend-
ency information should be identiﬁeci, cataloged; and addressed in the tool

design.

2). Manipulation Requirements - The design of this tool should address the fol-

lowing dependency structure manil")ulation requirements:

e The tool should provide a set of operations for rﬁanually editing dependency
stractures including the ability to copy, cut, and paste elerﬁents.

e The tool should automatically manage and update element dependencies as
these operations are executed. |

o The t(;ol should allow users to automatically generate layout forms of fre-
quent interest. In achieving this requirement, a‘caxalog of useful layout op-
érations and a survey of the criteria leading to their formulation should be
compiled.

e The tool should enable a user to examine subsets of a dependency structure
and ignore those portions the user deems to be of little interest.

e The tool should allow users to create composite elements by collapsing se-
lected portions of dependency structures as a means of reducing and control-
ling visual complexity.

3). Visualization Requirements - The following requirements describe how de-

pendency information should be portrayed:
e The tool should provide a method for displaying dependency structures on a
suitable graphical display screen. This display should be maintained and im-

mediately updated upon completion of each user operation.
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The tool design should enable a user to examine complex dependency struc-
tures from many perspectives. A survey of the types of perspectives that are
considered most useful should be completed in conjunction with this require-
ment.

A method for exploring nested dependency structures should be provided.

A method for filtering undesirable or unnecessary dependency information
from view should be provided.

A survey of parameters that allow users to view complex dependency infor-
mation in this manner should be be identified and characterized in conjunc-

tion with this effort.

Evaluation Requirements - The requirements listed here describe the needs con-

cerning quantitative assessment of dependency structure visual representations:

The user should have access to a suite of functions or metrics for evaluating
the complexity of the visual representations that are generated. A compila-
tion of these functions and a characterizatlion of their utility and performance
should be included in this effort.

The evaluation techniques available to the user should consider both struc-
tural complexity (i.e. directed graph measurements) and semantic complexity
(i.e. domain specific measurements).

A technique for corﬁbining evaluation techniques to synthesis new metrics
should be provided.

A method for adjusting the relative importance of individual evaluation com-

ponents should also be included.

Optimization Requirements - The following requirements pertain to the auto-

mation of the visual representation generation process:
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e An automated means of finding an “optimal” visual representation of a com-
plex dependency structure should be provided.

e The method should allow the seamless integration of the evaluation tech-
niques previously described.

e The user should have the ability to place various constraints on the optimiza-
tion to limit the search space and improve performance. . A compilation of
effective constrain-ts and their relative merits should be generated as part of
this effort.

e The user should have the ability to stop, interrupt, modify, and continue opti-
mization operations as desired to control the desired level of computational
investment. The best interim result obtained during optimization operations
should be returned as the final value.

e A method of combining sequences of manipulation, visualization, and opti-
mization operations sucil that they can be archived for later use should be
provided.

65. Integration Requirements - These following requirements pertain to the integra-
tion and implementation of all the above techniques:

e This tool should allow a user to freely browse and explore dependency struc-
tures in order to gain a thorough understanding of a system’s organization.
Consequently, this tool should be interactive rather than batch-oriented in
nature.

e This tool should be implemented in conformance with an established repre-
sentation model to help guide its users in exploring complex dependency

structures.
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e The user should be capable of executing operations at their own discretion or
via an automated sequence of their own creation. All of the opc:erations iden- .
tified in this work should be accessible in either manner.

e The tool should be implemented using standardized windowing and user in-
terface techniques (i.e. X-Windows/Motif).

e Typical housekeeping functions associated with user tools of this type
should be included such as window manipulation, scrolling functions, file
access and results archival, performance profiling, etc.

7). Performance Requirements - To meet interactive performance standards, the
following requiréments are established:

e The algorithmic complexity of all operations should be less than or equal to
@(nz) or @(kz) where 7 is the number of system elements and k is the num-
ber system element dependencies being represented.

e An analysis of each of operation and evaluation measure defined in this tool
should be performed to verify the above performance constraints.

e The tradeoff between run-time performance and solution optimality should

be under the control of the user.

A thorough description of each of the components shown in Figure 1.5 along with a
survey of the many issues associated with their implementation, integration, and execu-
tion have been compiled in this dissertation. The requirements identified above served
as a guide for the development of these components. The aggregation of information
associated with each of these components provides an important template for future

complex dependency analysis research and product development.
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1.5 The A-Vu Strategy

In order to meet the growing demands of complex system visualization in accor-
dance with the above requirements, a solution strategy must first be adopted. Within
this dissertation, this strategy is referred to as A-Vu, a term originally selected as an ac-
ronym for “Abstract Visualization utility” and derived from the compound past form of
the French verb voir, meaning “one has seen.” Altematively stated, this strategy pro-
vides a means for generating “A View” of large, complex dependency structures, but a
view that is both comprehensible and meaningful.

The A-Vu strategy is comprised of seven distinct research and development tasks or
phases. Each of these tasks correspond to one of the research questions that were posed
in Section 1.3 and their respective requirements outlined in Section 1.4. A summary of
each task is provided below and is presented in the same order. This summary serves as
an outline for the remainder of the dissertation.

1). Model Definition: A unified model is developed for representing complex de-

pendency structures and supporting the operations that must be performed on
these structures. The primary concepts presented in this mociel include the notion
of a dependency graph, a visualization space, a layout, a binding, and a configu-
ration. Configurations are composites of the previous concepts and are the pri-
mary focus of the dissertation. (Chapter 2)

2). Configuration Manipulation: With the establishment of the configuration con-
cept, techniques for manipulating these structures are developed next. The abil-
ity to perform editing operations, search operations, and selection functions are
established as a foundation for all subsequent configuration processing algo-
rithms. With these configuration manipulation mechanisms in place, algorithms

for generating configurations with specific properties are then developed. These
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algorithms make use of the wealth of graph theoretic knowledge applicable to the
structure undeslying the configuration concept. (Chapter 3)

Configuration Visualization: The ability to organize and manipulate complex de-

pendency structures then leads to the development of operations for viewing re-
sulting configurations. Methods for displaying, reducing, and/or consolidating
the quantity of visual information that must be conveyed to a user are developed.
This process involves the establishment of numerous display primitives, several
basic view transformations, a composite space navigation technique, and a series
of dependency information filtering operations. (Chapter 4)

Configuration Evaluation: In order to automatically generate configurations that
are useful (i.e. readily convey meaningful information in an efficient manner), a
quantitative measure for this process is established. Evaluation of complex de-
pendency structures, however, involves numerous criteria. This criteria is often
subjective and may frequently conflict. An objective measure that reflects these
concerns is constructed. (Chapter 5)

Configuration Optimization: With a quantitative evaluation technique defined, it
is then possible to use this measure as a guide for automatic configuration gen-
eration. A strategy for generating optimal or near-optimal configurations is pre-
sented. A variety of analysis techniques are then available. A mechanism for
automatically applying these techniques in the desired order is developed next.
The concept of an automated configuration sequence is defined which allows a
set of operations to be generated, saved and re-applied to any arbitrary configura-
tion. (Chapter 6)

Configuration Integration: The last development task involves the integration of

all of these techniques into a single tool which can be used for interactive system
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dependency analysis. The design and implementation of the A-Vu prototype sys-
tem is presented. A comparison is made between the A-Vu system and the de-
pendency analysis methods presented earlier in the dissertation. (Chapter 7)

7) Configuration Performance: With all these tools in place, a performance analysis

of the various aspects of the A-Vu model and its associated manipulation opera-
tions, evaluation functions, and optimization techniques is then be performed.
Several test samples taken from actual software development efforts are used to

validate the process and illustrate its effectiveness. (Chapter 8)

At the completion of these seven task descriptions, theldissertation concludes with a
summary of the implications of this work, a review of how this work evolved to meet its
research objectives, and a discussion of the many potential areas for further exploration

and tool implementation. (Chapter 9)
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2. The A-Vu Model

"Any program is a model of a model within a theory of a model of an abstrac-

tion of some portion of the world or of some universe of discourse. ? [Le’80]

The initial step in the A-Vu strategy is to construct a unified model for effectively
capturing complex system dependency information. This model is developed in this
chapter in several stages. An overview of the model is presented in Section 2.1. Start-
ing in Section 2.2, a formal foundation is established using the theory of directed
graphs. A visualization mechanism is built upon this foundation in Section 2.3 and Sec-
tion 2.4 by incorporating the necessary constructs to give visual meaning to the notion
of a system dependency graph. Next, the ability to capture application domain specific
semantic information is added to the model as described in Section 2.6 through Section
2.9. A method for describing the properties of systems within this framework is then
discussed in Section 2.10. An important enhancement is made in Section 2.11 to cap-
ture nested organizational constructs. A discussion conceming the recursive nature of
resulting dependency structures is presented in Section 2.12. Finally, several additional
enhancements are made to the model in Section 2.13 in anticipation and support of the

tools to be developed in later chapters.

2.1 A-Vu Model Overview

The central idea of the A-Vu model is to determine an optimal placement of system
elements in a multi-level set of two-dimensional diagrams which best promotes design
comprehension and system understanding. This model is developed below beginning
with a directed graph representation of system dependencies. Each system element is

represented as a node in a graph and each dependency as an edge. A layout is associ-
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ated with the graph by defining positions of each of its nodes. The layout concept is
refined by introducing the notion of a visualization space, a set of vectors from which
each node is assigned a value. A graph together with its corresponding layout constitute
a system configuration.

The next step is to incorporate semantic information into the configuration defini-
tion. This is performed by associating a set of attributes with each node and each edge
in the graph. Finally, the concept of a composite configuration is introduced to address
the need for nested layouts. The resulting definition forms the basis of a new complex
graph layout strategy. Near-optimal layouts are obtained via the integration of a unified,
multiple-step optimizatic.m process described below in Chapter 6.

Conventional graph layout approaches typically incorporate fixed layout criteria
[Ba'90, Ga’93] such as:

1) edges in same direction

2) even distribution of nodes

3) edge crossings minimized

4) arcs straight as possible
The A-Vu approach, however, incorporates the use of multiple, user-selectable criteria
based not only on graph node-edge structure, but also on semantic information extracted
from the system. Conventional graph layout also typically consists of four basic steps
[Ba’90]:

1) Make directed graph acyclic

2) Layer acyclic diagram

3) Order nodes in each layer

4) Position nodes




In contrast, the A-Vu method employs an interactive approach to complex system
visualization. This method allows users to examine and explore dependency structures
from many different perspectives. This interaction is similar to the graph browsing and
editing concepts described in [He’87, Pa’90, Ro’87], but incorporates numerous enhance-
ments for dealing with large systems. With access to many layout algorithms, inte-
grated evaluation techniques, and automated sequencing options, the user has direct
control over the layout process. Several of the visual aspects of this approach have been

motivated by [Bu’84, Ha’88].

2.2 Directed Graph Representations

The theory of directed graphs is a useful vehicle for representing the structure of
complex systems. A finite graph G = (V, E) is defined as a finite set of vertices V = {v,,
Vo, V3, ey vn} and a finite set of edges E = {ey, e,, €3, «oos ek}, withECVXV. Heren=
IVl denotes .the number of vertices and k& = IEl the number of edges. If the vertex pair (v,
w) associated with an edge e is an ordered pair, then G is a directed graph.

Using this notation and terminology, software systems, from a variety of perspec-
tives, can be defined in terms of vertices (or nodes) representing software elements and
directed edges representing element dependencies. The problem of understanding the
complex dependency structure of a software system with a set of modules M = {m,, m,,
ms, ... , m,} with dependencies D ¢ M X M, can therefore be equated to the layout and
visualization of a dependency graph or its equivalent directed graph.

One may wish to ﬁ;'st perform a variety of graph theoretic operations [Ta’89], such
as, (a) subdivide the graph to reveal the layered structure of software products, (b) sub-
divide the graph into its strongly connected components to reveal closely interdependent

elements for possible aggregation, (c) subdivide the graph by separating it at its articu-
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lation points, (d) check the planarity of a graph and subdivide it into planar subgraphs,
(e) check the isomorphism .of two graphs, and so on. Qne may also wish to perform
more pragmatic operations such as (.a) identify common inierconnection pattemns like
source-to-sink paths, (b) feedback loops, (c) closed paths or cligues, (d) hub-like con-
nections, and so on.

Our task then is to perform certain operations on G and display the result. One of
the first difficulties we encounter is in determining which type of graph operations aid
comprehension. While there exists a wealth of graph theoretic knowledge, the time
complexity of many graph theoretic algorithms is also notoriously sensitive to the man-
ner in which the problem is stated; even a minor modification in the statement of the
problem can lead to a signiﬁcant difference in the éomplexity metric. For example, one
way of facilitating the display of a complex graph is to partition the graph into planar
subgraphs. This simplistic approach is likely to be counterproductive for two reasons.
First, given a graph G = (V, E), the problem of partitioning E into E,, E,, ..., E, fork 2
1 such that G;=(V,E); 1 <i<kis planar is an NP-hard problem if we are interested in
finding the smallest value of k. Second, while a planar decomposition is of theoretical
interest, it is of little practical use in understanding a software system’s organization.
This type of decomposition would reflect only the graph theoretic properties of the sys-
tem and not the designer’s original intent.

In order to exploit the expressive power of a graph in its visual representation, it is
necessary to go beyond strictly graph theoretic considerations. Node type, shape, size,
and placement in a diagram are frequently used to convey design information. For ex-
ample, a software system generally possesses some degree of inherent hierarchy; that is,
certain modules are expected to appear at certain positions relative to other modules.

Sometimes these relationships are best understood if they are laid out in the shape of a
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tree structure. At other times, the purpose is better served if the intermodule dependen-
cies are shown with a parent module at a central hub and all children laid out evenly
around the perimeter of the hub. Sometimes, the relationships between modules are best
understood if any inherent functional or structural symmetry in the problem is revealed.
It may also be instructive to associate the physical size of the icon on the screen with
some measure of the complexity of the module, or perhaps to associate a meaning to the
position occupied by a module (or its icon) in the screen coordinates. Many of these

issues will be addressed in the following sections.

2.3 Layouts

While directed graphs are a useful vehicle for representing system dependencies,
there is no visualization mechanism inherent in tﬂeir definition. The graph is simply an
abstraction for modeling the system’s dependencies. Graph layout, however, is a com-
mon process. In its simple form, the layout for a graph can be described as a set of loca-
tions for each node in the graph and a set of line segments or curves connecting the
nodes. In a planar layout, node positions would be restricted to a simple (x, y) coordi-
nate system; edges would be restricted to a sequence of (x, y) coordinates.

Under the simple planar scenario, a layout L can be initially defined as the two-tuple
L= (P, Q) with P = {p,, P;, D3, ---» P,,} Where p; is the (x, y) coordinate for node v,, and Q0
= {4y 93> 93» > i} Where g; is the set of (x, y) coordinates defining the edge e The
exact form of the set g; is not defined here, but could be a pair of end points that define a
line segment connecting the two nodes, a sequence of line segment end points, the con-
trol points of a spline function, etc. If we desire to perform multi-planar layout (eg.
[Ch*79]), we could modify the definition of L slightly, allowing coordinates of the form

(x, y, z) with z indicating the plane of a particular node or edge. This definition seems to
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suffice for simple planar-type layouts, but is too restrictive as there is no mechanism for
capturing nested graphs, edges which span planes, semantic information, etc. We will

therefore continue to refine this definition.

2.4 Visualization spaces

When we generate a graph layout for a system, we may wish to require that the ele-
ments lie (a) within the boundaries of some abstract design space, (b) at discrete points
within the design space, predefined by row and column positions, (c) anywhere in the
design space such that their iconic representations on the screen do not overlap, etc. To
meet these needs, we continue by generalizing the layout concept.

We associate with each gra;ph G, a space S and call it the visualization space of G.
For each element v; € V we assign a unique vector p; € S which denotes the position of
node v, in § and for each each edge ¢; € E we assign sets of vectors q,, 45, ¢, ---» §; With
g, < S, which denote the positions describing edge ¢ in S. The set P = {p,, P, D3 -2 )
and the set Q = {q;, 93 G3» - ) contains the position vectors for every node v; and
edge e 7 in V and E, respectively, as before. However, let a layout L now be defined as
the three-tuple L = (S, P, Q). The tuple L describes how G is embedded in S. The intro-
duction of a visualization space enables us to examine dependency structures in a vari-
ety of new ways, breaking away from strictly planar organizations.

The space S can be continuous, discrete or hybrid. The continuous case is the most
general as it allows nodes to be positioned at any point within the design space bounda-
ries. Continuous spaces are required when the geometric properties of the system dia-

gram precludes discrete point assignment such as with star network topologies requiring

rotational symmetry enforcement.
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While a continuous space is most flexible, it can often be approximated with a dis-
crete space where position is identified by a grid location. With discrete spaces, system
elements, depending upon their complexity, occupy one more of the cells created by the
grid. Each cell is identified by its row/column location. Position selection with discrete
spaces is simpler as there are no longer an infinite set of positions that can be assigned
to system element vertices. While the use of a discrete layout can considerably limit the
choice of vertex positions, it offers improved computational efficiency. Discrete layout
visualization is appropriate for applications which exhibit a great deal of regularity such
as switching circuitry, printed circuit board layout, and city street networks.

Using the so-called ﬁybrid scheme, each node must be located within a specific
(discrete numbered) plane in the visualization space. Within a particular plane, however,
a node can be assigned any real value position. This scheme is particularly suitable if
geometrical symmetry of system element location is a consideration, but the elements
themselves can be grouped into a discrete number of subsystems. All three schemes ap-
pear suitable for software system visualization. Figure 2.1 captures the essence of the

three schemes.

Figure 2.1(a) Continuous space
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Figure 2.1(b) Discrete space

Figure 2.1(c) Hybrid space
Figure 2.1 Three possible types of visualization spaces

2.5 Configurations

Given a software dependency structure with a graph G and a layout L, we caﬁ define
a configuration C = (G, L) for the structure. In this simple form, a configuration dictates
how a particular diagram for the structure is to be drawn by specifying the position of
each node.. For simplicity, we again assume all edges are represented by a sequence of
linear segments or control points and that they can be readily determined knowing only
the positions of the nodes at each end. This is a reasonable assumption based on [Ta’88,
Ea’90]. Generalized arc and spline presentations have been addressed in [Ga’93].

Note that the above definition of a configuration is based solely on a system’s graph
description (i.e. its node/edge relationships). This definition would suffice if we were
only interested in performing traditional graph layout. In order to more thoroughly un-
derstand the organization of a complex system, we must go beyond basic graph structure

and examine the meaning associated with each node and edge. Our model must be ca-
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pable of capturing traditional software engineering practices such as modularity, layer-
ing, information hiding, and so on. Other constraints addressing perceptual groupings
and additional aesthetic concems must also be considered.

We address these issues by extending our basic configuration definition. By assign-
ing various attributes to the nodes and edges of our software dependency diagrams, we
can capture much of the semantic information that is not accessible in a purely graph
theoretic framework. Recall our previous definition of a configuration, C = (G, L). We
proceed by modifying this definition as C = (G, L, A)whereA=(A,, A) A, contains
the attribute information for all of the nodes associated with the system and A, contains
the attribute information for all of the edges associated with the system. The definitions

forA, and A  are expanded below.

2.6 Node Attributes

Let ¢ be a set containing all possible node attribute values. Let Av = {O,;, B, B3, ...
, mn} where B, c ¢ and n = Vl. The element o; of Av 1s a set containing those attrib-
utes which are associated with node i. This set is used to capture the semantic informa-
tion associated with the directed graph nodes. The A-Vu model predefines several node
attribute values. A node can possess zero or more of these attributes. The following isa
list of those attributes (i.e. members of the set ¢), their meanings, and a graphical repre-

sentation:

Universal
Universal nodes are the most fundamental node form, representing system elements
which possess no explicit semantic information. A node is assumed to possess the uni-

versal attribute if no other attributes have been specified. This attribute is provided for
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representation and manipulation of general-purpose directed graphs. Universal nodes

are graphically depicted using a circle.

Figure 2.2(a) Universal

Procedural

Procedural nodes represent system elements which specify a sequence of actions or
steps to be performed. Information is passed to procedural nodes using set of parame-
ters. Likewise, information can be returned from procedural nodes via these parameters.
Examples in software systems are procedures and subroutines. Procedural nodes are
graphically depicted as a box with a single notched corner.
I

Figure 2.2(b) Procedural

Functional

Functional nodes represent system elements which also specify a sequence of ac-
tions to be performed, but which return only a single value (or set of values) as a result
of their execution. Functional elements typically refer to the function construct in com-
mon programming languages such as C, Ada, and Pascal. They are depicted as a double

notched box.

()

Figure 2.2(c) Functional
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Parallel
Parallel nodes represent system elements which operate concurrently with other por-

tions of the system. Tasks and processes are typical examples. Parallel nodes are por-

A\

Figure 2.2(d) Parallel

trayed using a paralielogram.

Aggregate

Aggregate nodes represent elements which are collections of logically related enti-
ties such as groups of type definitions, objects of these types, and procedures and func-
tions with parameters of these types. The Ada and Modula-II package construct is an

example. Aggregate nodes are depicted as a simple box.

Figure 2.2(c) Aggregate
Standard
Standard nodes represent system elements which are predefined or are included by
default in the system environment. Examples include operating system interfaces speci-
fications, JO packages, general math routines, etc. The standard attribute can be applied
to nodes which possess any other attribute. This attribute is depicted using double thick

lines. A standard, procedural node, for example, is shown as follows:

[

Figure 2.2(f) Standard
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Generic

Generic nodes represent parameterized elements which are software templates for
elements such as structural; procedural, or functional elements. The generic compilation
unit construct in the Ada programming language is an example. The generic attribute is
depicted using dashed lines. For example, a node which possesses.both the procedural
and generic attributes node is shown below:

rmma
: 1
1

Llecme-

Figure 2.2(g) Generic
Instantiation
Instantiation nodes represent elements which are instances of a particular generic
element (i.e. a generic instantiation). The instantiation is distinguished as a dashed lined
figure within another figure. An instantiation of a generic procedural node, for example,
is shown as follows:

- -

! 3

|

Figure 2.2(h) Instantiation

Specification

Specification nodes represent elements which describe the interface to an implemen-
tation element, but do not provide details on how the element is internally organized. If
unspecified, all nodes are treated as specification nodes unless they contain the imple-
mentation attribute. The specification attribute is depicted as a clear figure. Each of the
figures (a) - (h) drawn above represent nodes with the specification attribute. The fol-
lowing figure represents a node with both the procedural and specification attribute.
)

Figure 2.2(i) Specification
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Implementation

Implementation nodes represent elements which contain items which perform actual
operations within the system. The implementation attribute is identified using as a fig-

ure with a gray background. The following is a functional, implementation node:

3

Figure 2.(i) Impleentalion

Foreign

Foreign nodes represent elements which are components of external systems. For-
eign nodes are typically limited to implementation nodes as the details of the foreign
system are generally completely hidden. For this reason they are represented as an

opaque figure. The following is a foreign, aggregate node:

Figure 2.2(k) Foreign

Composite

Composite nodes represent system elements which contain other system elements.
Composite nodes are used to group related nodes into a single node in order to reduce
the complexity of a particular configuration. The organization of composite nodes will
be described below in Section 2.11. The composite attribute is depicted by a three-

dimensional figure. The following is a representation of a composite, aggregate node:

Figure 2.2(1) Composite

Figure 2.2 Node attribute representations
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Visible
The visible attribute is a dynamic attribute that can be assigned to any node. This
attribute is used by the visualization system for node filtering. In order for a node to be -
visible, it must be properly contained within a visualization space. Visible nodes are
depicted as described above depending upon the node’s other attributes. Nodes without
the visible attribute are not displayed. For instance, all nodes except IO in Example 1.2,
possess the visible attribute.

In summary, the discrete set ¢ at this time is defined to be ¢ = { universal, proce-
dural, functional, parallel, aggregate, generic, instantiation, specification, implementa-
tion, composite, visible}. For notational convenience, we define a series of boolean
functions fg(v) which will allow us to test whether or not a particular node possesses a
specific attribute from ¢. For each element o in ¢, we define a function foc( v) which
when passed a node v € V, returns true ifv possesé the attribute @ and false otherwise.
If we let v be the element represented in Figure 2.2(1), the following boolean expressions
apply:

UNIVERSAL(V) = FALSE;
PROCEDURAL(v) = FALSE;
FUNCTIONAL(v) = FALSE;
AGGREGATE(v) = TRUE;
GENERIC(v) = FALSE;
INSTANTIATION(v) = FALSE;
SPECIFICATION(V) = TRUE;
IMPLEMENTATION(V) = FALSE;

COMPOSITE(v) = TRUE;
VISIBLE(v) = TRUE;
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Example 2.1 Returning to our program previously defined in Example 1.1 and Exam-
ple 1.2, suppose we are able to extract the following information:

- COMPUTE is subroutine
- INPUT is a system library subroutine
- 10 is a low-level interface package
- MAIN is a main subroutine
- MATRIX is a user library package
- OUTPUT is a system subprogram
- SCALAR is a user library package
- VECTOR is a user library package
The attributes for this system are shown in Table 2.1. Applying the same layout tech-

nique used in Example 1.2, the resulting diagram is shown in Figure 2.3. O

Table 2.1 Example Program Node Attributes
Module Attributes

COMPUTE | procedural, visible

INPUT procedural, standard, visible
10 aggregate, foreign
MAIN procedural, visible

MATRIX aggregate,instantiation, visible
OUTPUT procedural, standard, visible
SCALAR aggregate, instantiation, visible

VECTOR aggregate, instantiation, visible
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' SCALAR!

Figure 2.3 Improved layout with node attributes

2.7 Auxiliary Node Information
In addition to items listed in the previous section, there are numerous other charac-
teristics of a software system element that may need to be captured as node attribute in-

formation. A brief compilation and summary of these items are listed here.

Name

Perhaps one of the most fundamental areas of system design, the naming process
provides a mechanism for designating and referencing system elements. A name usu-
ally consists of a symbol such as an alphanumeric string which may be used to uniquely
identify an element within an appropriate context. The issues associated with naming
are numerous [Sa78]. In addition to their identification purpose, names can also convey

useful semantic information. In each of the three previous examples, the name of each
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module was used to help derive a comprehensive layout. ‘While naming was quite use-
ful in these exercises, a number of difficulties are introduced.

Most programming environments pose few restrictions on name selection. Hence it
is up to the designers and implementors of the system to select names wisely. Systems
also evolve considerably as they move through their life cycle. Consequently, names
can be misleading. In some environments, names may be computer generated, carrying
little if any useful semantic information.

With an appropriate design standard or programming discipline in place, however, a
consistent naming convention can be invaluable in structural analysis and system under-
standing. In response to this concern, a name pattern matching operation will be inte-

grated into the A-Vu strategy, described in Section 3.3.

Location

Often related to the name of the system element associated with each node is the lo-
cation of the system element itself. In software systems this typically relates to a source
code file name specification such as a pathname or directory designation, but could al-
tematively be a reference to a particular page in a document, a set of paragraphs, a range
of program line numbers, a catalog index, etc. The A-Vu implementation described in
Chapter 7 treats this attribute simply as a character string which can be displayed and

passed to other tools as necessary.

Characteristics

Associated with every system element are a number of implementation characteris-
tics that may be of some utility within a visualization environment. These characteris-
tics may include attributes such as the author, owner, creation date, version, program-

ming language type, compilation date, source code size, binary image size, exchange
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format, library index, etc. These items currently remain undefined in the A-Vu model,
but could be easily added as necessary. Visual techniques such as color, shading, size,

and even animation and sound [BI’8x] could be used to convey these characteristics.

Contents

Associated with every node in our model is the actual contents of the system ele-
ment it lrepresents'. In software systems, this typically will be thé module sourc;a code or
the programming language statements that implement the module. In emerging soft-
ware environments, however, the contents of a module may actually be much b£oader in
scope and could include additional items such as functional requirements, functional
specifications, formal descriptions, source code annotation, revision history, bibliogra-
phsr, test plans, and associated user documentation.

Each of the above items could in tum be broken down into numerous other attributes
that could be accessed, manipulated, and graphically portrayed by the visualization sys-
tem. Both the academic area and commercial marketplace, however, are flooded with
tools for creating, viewing, and modifying these items. Our discussion, therefore, as-
sumes that the contents of a node are not directly visible but are represented by a de-
scriptor that is sufficiently general to allow the A-Vu system to activate an appropriate
tool for viewing and modifying these items. For example, using the name attribute, the
location attribute, and a content descriptor indicating that the associated system element
is a source code module, the A-Vu system could pass the name and location attribute
values to a typical text edifing tool. Similarly, if the contents of a node represented a
particular database relation, the name of the relation and the_ location of the database that
contains it could be passed to an appropriate forms display or spread sheet manipulation

program.
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Since it is not unlikely that a system element may have a variety of content types in
addition to multiple names, locations, and implementation parameters that describe
these contents, each of the attributes outlined in this section should be considered as an
attribute set or category. Advanced implementations would incorporate an appropriate
data structure for represénting these various categories. For example, the contents at-
tribute would most likely be represented as a list of content descriptors. The precise de-
tails of this implementation, however, are beyond the scope of this discussion.

Numerous dynamic attributes for nodes could also be considered such as an indica-
tion of the node’s current execution state, its resource utilization history, a measure of

its run-time performance, and a summary of its computational or source code complex-

ity.

2.8 Edge Attributes

Just as attrubutes were assigned to graph nodes, attributes can also be assigned to
graph edges. Let Ae = {g;, &5, &;, ..., §} where g; C 8 and k = |El. The set d contains
all possible edge attribute values; the set €; contains those attributes which are associ-
ated with a specific edge. The A-Vu model predefines several edge attributes values. A
edge can possess zero or more attributes. The following is a list of those attributes (i.e.

members of the set 3), their meanings, and graphical representation:

Universal

Universal edges are the most fundamental edge form, representing system element
dependencies which possess no explicit semantic information. The universal attribute is
provided for representation and manipulation of general-purpose directed graphs. A

universal edge is the most common form of edge attributes and signifies a direct refer-
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ence between two system elements such as a use or with statement in common program-
ming languages. An edge is assumed to possess the universal attribute if no other attrib-
utes have been specified.

Universal edges are graphically depicted using the traditional directed arc or arrow.

The following diagram represents two universal nodes with a single universal edge:

O
Figure 2.4(a) Universal
Implied
An implied edge represents an assumed, tightly coupled dependency between two
elements in a system. This attribute is used to represent a dependency between two ele-
ments where the existence of one element immediately implies the existence of the
other. This attribute is typically used to capture the dependency that exists between a

software element’s specification and its implementation. Implied edges are depicted us-

ing a dashed line arrow as follows:

-~ -
-
-
-~
-
-~ -
kN

Figure 2.4(b) Implied

Restricted
The restricted attribute is used to represent thé decompositional dependency that ex-
ists between a system element and its subelements. This form of dependency is com-

mon in systems which employ a hierarchical, top-down decomposition strategy. The
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subunit or separate construct in Ada is a typical example. The restricted edge attribute

is depicted using a double width arrow as follows:

O\O

Figure 2.4(c) Restricted
Inherited
Whenever a composite system element A contains another element B which is de-
pendent upon a third element C, the composite element A is said to inherit the depend-
ency A—C. The inherited edge attribute is used to capture this relationship. The fol-
lowing diagram represents an inherited edge between a composite aggregate node A

(containing node B) and a procedural node C:

Y

<)

Figure 2.4(d) Inherited

Induced
Whenever a system element A is dependent upon a node B which is contained within
a composite system element C, the dependency A—C is said to be induced on C. The

&

induced edge attribute is used to capture this relationship. The following diagram repre-
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sents an induced edge between a procedural node A and a composite aggregate node C

which contains node B:
A I

‘ A 4

C

Figure 2.4(e) Induced

Visible

The visible attribute is a dynamic attribute that can be assigned to any edge. This
attributc; is used by the visuaﬁzaﬁon system for edge filtering. In order for an edge to be
visible, both nodes must be properly contained within the same visualization space.
Visible edges are depicted as described above depending upon the edge’s other attrib-
utes. Edges without the visible attribute are not displayed. For instance, all edges in
Example 1.2 except INPUT—IO, 6UTPUT—)|O, COMPUTE—SCALAR, COM-
PUTE—VECTOR, and, MATRIX—VECTOR possess the visible attribute.

Note than an edge can contain any one or more of the above attributes. When more
than one attribute is applied to an edge, the graphical features of each attribute are com-

bined for the resulting depiction. For example, the diagram in Figure 2.4(f) contains an

implied, restricted, induced, inherited, visible edge.




Figure 2.4(f) Combined attributes

Figure 2.4 Edge attribute representations

In summary, the set & = { universal, implied, restricted, inherited, induced, visible}.
For notational convenience, we also define a series of boolean function fa(e) which will
allow us to test whether or not a particular edge possesses a specific attribute from o.
For each element B in 8, we define a function fB(e) which when passed an edge ¢ € E,
returns true if e possess the attribute B and false otherwise. If we let e be the edge repre-

sented in Figure 2.4(f), the following boolean expressions apply:

UNIVERSAL(e) = FALSE;
IMPLIED(e) = TRUE;
RESTRICTED(e) = TRUE;
INHERITED(e) = TRUE;
INDUCED(e) = TRUE;
VISIBLE(e) = TRUE;

Example 2.2 Continuing with the same program from the previous examples, suppose
the following module dependency information is extracted from its source:

. COMPUTE calls subroutines in MATRIX, SCALAR, and VECTOR
. INPUT and OUTPUT call subroutines in IO

. MAIN defines COMPUTE, INPUT, and OUTPUT as submodules

. MATRIX calls subroutines in VECTOR and SCALAR
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- VECTOR calls subroutines in SCALAR
The attribute set A, reflecting these module dependencies is shown in Table 2.2. Apply-

ing the same layout technique used in the previous examples, the resulting diagram is
shown in Figure 2.5. In contrast to Figure 2.3, new information is gained about the
tighter binding between MAIN, COMPUTE, INPUT, a;nd OUTPUT. The utility of edge at-
tributes, however, becomes more dramatic as the number of edges in the system in-
creases. The application of the implied, induced, and inherited attributes will provide a
convenient mechanism for reducing visual complexity. Edge attributes will be used as
the basis for several of the configuration manipulation operations in Chapter 3 and con-

figuration evaluation functions in Chapter 5. O

Table 2.2 Example Program Edge Attributes

Dependency Attributes
COMPUTE - MATRIX |visible
COMPUTE - SCALAR | universal
COMPUTE - VECTOR | universal
INPUT - 10 universal
MAIN - COMPUTE restricted, visible
MAIN - INPUT restricted, visible
MAIN - OUTPUT restricted, visible
MATRIX - SCALAR universal
MATRIX - VECTOR visible
OUTPUT - 10 universal
VECTOR - SCALAR visible
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Figure 2.5 Improved layout with edge attributes

2.9 Auxiliary Edge Attributes

While the attributes described in the previous section provided a useful structural
characterization of dependencies, by no means do they form an exhaustive attribute set.
Just as a wealth of information can be associated with the nodes representing system
elements, so to can numerous attributes be defined for their edges. Recalling that an
edge represents a dependency between two system elements, an alternative method of
characterizing these dependencies is to regard a dependency as an interface between two
system elements. An interface consists of a set of conventions for exchanging informa-
tion between two system elements. An interface consists of three components [Wa’81]:

. A set of visible abstract objects and for each a set of allowed operations and associ-

ated parameters.
. A set of rules governing the legal sequences of these operations.

. The encoding and formatting conventions required for operations and parameters.
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The process of defining a system’s abstract objects and their operations is perhaps
one of the most widely accepted practices in modem software engineering. Based on
this organization, we will assume that each abstract object is represented as a node
within a configuration. We will also assume that each distinct operation that can be in-
itiated by an object and performed on another abstract object is represented as an edge
within this configuration. The attributes which may be associated with an edge consist
of the operations, the parameters associated with these operations, the rules for exchang-
ing these parameters, and the encodings and formatting conventions used in this ex-
change. A wealth of attributes can therefore be associated with an edge, if desired. A

summary of these attribute types is given here using this characterization.

Operations

Within a typical programming language, a common operation that is performed is a
subprogram invocation such as a procedure or function call. Other operations include
message exchange, data references such as variable or constant access, context clauses
(such as the Ada with statement), visibility directives (such as the Pascal with or Ada
use statement), task rendevous, remote procedure calls, and exception passing. The
types of attributes characterizing an edge operation might therefore include the name of
the operation (e.g. PRINT) and the specific operation mechanism (e.g. procedure call).
Dynamic properties such as frequency or probability of use, occurance history, average
response time, and communications path could also be defined to aid in testing, debug-

ging, and performance measurement.

Parameters

Associated with each abstract operation is a series of zero or more parameters that

comprise the information that is to be exchanged during the course of an operation’s




48

execution. These parameters specify the quantity and type of information that a particu-
lar operation must process or must produce upon completion. In a typical programming
language, a distinction is generally made between formal parameters which denote the
named entities within the operation’s specification, and actual parameters which denote
the particular entities that are associated with these corresponding formal parameters
and that are actually processed during the execution of the operation. The class attribute
is used to carry this distinction. The number of parameters, the type of data structure
associated with each parameter, the static name of each formal and actual parameter,
and the dynamic name and value of each actual parameter are examples of several other

useful edge attributes.

Rules

Associated with each operation is a set of explicit or implicit rules that describe the
information transmission including the exchange mechanism, the parameter exchange
mode, the proper operation sequence, the operation synchronization techniques, the nec-
essary methods of protection, the parameter associations, and the error control mecha-
nism.

The mechanism attribute is concemed with the specific method of exchanging pa-
rameters between objects. In conventional programming languages, parameters are
typically exchanged using one of the following popular techniques described in [Pr76]:

- Exchange by value

- Exchange by value result

- Exchange by reference

- Exchange by location

- Exchange by name

- Exchange by simple name

The mode attribute associated with an edge specifies whether the actual parameter

associated with operation is supplied by the originator of the operation or the recipient
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of the operation or both. The in, out, and in out parameter mode -designation used in
Ada and Modula-II is an example.

The sequence attribute is useful in determining the proper order of parameter ex-
change throughout the execution of an operation. Parameters may be passed collec-
tively as a set and immediately accessible or they may be exchanged inc-lividua]ly and
accessible only serially via a queue or stack. Alternatively, return parameters such as a
function value or a message acknowledgment, may be accessible only at the completion
of the operation.

Associated with every edge is also an attribute that describes the synchronization
mechanism implied by the dependency. This dependency might imply a specific elabo-
ration sequence; it may indicate sequential or parallel execution of the two correspond-
ing nodes; it may describe a particular execution interaction such as a task rendevous or
message communication; or perhaps dictate an explicit method of state information con-
trol such as single context subprogram execution versus multiple context coroutine op-
eration.

Related to both the sequence and synchronization attributes, is the need for an asso-
ciation attribute that binds each actual parameter of an operation to an identifier de-
clared in the formal parameter specification, providing a method for referencing each
actual parameter. Three popular methods for performing this function are to use either
name association where a parameter is bound by linking it via an identifier contained in
the formal parameter specification, positional association where a parameter is bound by
virtue of the order it occurred in the actual parameter description, or type association
where an actual parameter is bound to its formal parameter by virtue of its type charac-

terization.
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The exchange of parameters often involves the use of a security mechanism for lim-
iting access to information via methods such as encryption, passwdrd access, an authen-
tication sequence, a protected address space, a rights or capability identifier, and an ac-
cess list. The protection attribute is used to describe the particular scheme(s) associated
with the edge.

The error control attribute is used to indicate the particular method used in handling
abnormal conditions. Notification of an error condition can be performed explicitly via
a predetermined parameter associated with the operation such as a status variable or
condition code, via an exception or interrupt mechanism where the current operation is
abandoned and an alternative operation sequence is initiated, or via a separate interface

where an alternative operation is initiated as a result of the error condition.

Encodings

With each parameter in an operation specification, we can associate a representation
attribute. This attribute describes the mapping or mapping criteria of a parameter’s data
type onto the detailed features of an underlying machine architecture or system imple-
mentation. Example uses of this attribute include the amount of memory allocated per
parameter and individual parameter fields, memory architecture delimiters such as bit,
byte, word, or block boundaries, and physical location references such as specific mem-

ory or file data block addresses or offsets.

Obviously, the diversity of potential edge attributes that could be defined and associ-
ated with a particular edge within a configuration is enormous. The cataloging just pre-
sented primarily provides a summary of the issues that are associated with every system
dependency or system interface. There are a variety of other system aspects, however,

that are not necessarily associated with any particular system element/dependency nor
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with any particular node/edge representation. These aspects are examined in the follow-

ing section.

2.10 Configuration Properties

The discussion up to this point has been primarily concerned with the organizational
aspects of a system as it pertains to the structure of its elements, the dependencies be-
tween these elements, and the information assc;ciated with each element and with each
dependency. Understanding of a complex system design, however, involves a great deal
more than an enumeration of these items. Several fundamental properties of a system
must be abstracted from this information in order to provide a thorough characterization.
These properties may be organized into the following four basic groups [Ch’90]:

- Structural
- Functional
- Dynamic

. Behavioral

Before proceeding with our discussion, it is important to show how these properties
may be captured using the configuration structure developed so far. Some minor en-
hancements to our configuration definition which enable time dependency will be re-
quired for this purpose.

The structural properties of a system pertain to the decomposition of a system into
subsystems, elements, moc}ules, etc., and the description of how resources or informa-
tion are exchanged among these components through their interfaces. The graph struc-
ture G = (V, E) of the configuration definition captures this property.

In contrast to structural properties, the functional properties of a system describe not
just the information exchanges within the system, but the meaning of those information

exchanges. The edge attribute mechanism provided in the A-Vu model is intended for
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this purpose. Additional attributes can be added to A, and A, as necessary to suffi-
ciently characterize each element dependency.

As presented throughout Section 2.7 and Section 2.9, the dynamic properties of a
system can also be captured via attribute characterization, A = (4,, A However, the
values of these attributes mﬁst not be considered as static, but rather allowed to change
if necessary over time. Thatis, A=f(¢)= (A1), A0 ).

The behavioral properties of a system are described in terms of the relationships
among system elements, their attributes, and their dependencies. As such, the A-Vu
model provides no explicit mechanism for capturing this behavior, However, by treat-
ing a configuration as a function of time, C = f{t) = (G, L(t), A(¥)), and recording the
node and edge attribute information, a profile characterizing the system’s behavior can
be obtained.

In contrast to conventional graph layout, our configuration definition provides a
mechanism for associating considerable semantic information with each node and edge.
This mechanism allows layout of the configuration to be performed using this informa-
tion in addition to the conventional node/edge relationships. From a visualization stand-
point, this mechanism provides a convenient method of presenting many of the other
characteristics of a system. Each node and edge in the configuration now possesses
state information which can be visually expressed using graphical techniques such as
color, shading, and motion, providing a modeling basis for animating a system’s struc-
ture and its execution. For example, the color of a node could be used to represent the
current execution state of its corresponding system element and the activity of any asso-
ciated dependency.

While the A-Vu prototype tool described in Chapter 7 focuses on the structural

properties and functional properties of a system, the A-Vu model is now sufficiently
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general to accommodate many of a system’s dynamic and behavior aspects as well. The
natural enhancements proposed for the A-Vu system which would incorporate these fea-

tures are presented at the conclusion in Chapter 9.

Throughout our discussion thus far, attribute information has been associated either
with a specific node or a specific edge within a configuration. In modern systems de-
sign, techniques are widely used which provide a step-wise refinement process for de-
composing a system system into various subsystems and modules. The criteria for this
. decomposition process are well established [Pa'72]. Further enhancements must still be
made to our configuration definition to reflect this need. A method for allowing attrib-

utes to be collectively assigned to groups of nodes and edges will now be presented.

2.11 Composite Configurations

In Section 2.6, the notion of a composite node was briefly introduced, but a formal
definition has not yet been given. This situation will be rectified in this section by intro-
ducing the concept of composite a node, layout, or configurations and showing how this
mechanism can be used to further aid complex system understanding.

In a typical software system,v it is not unusual for the number of element dependen-
cies to be orders of magnitude greater than the number of elements (e.g. module depend-
encies). As a result, the structure of a system becomes exasperatingly difficult to under-
stand as the number of elements increases. Recalling Figure 1.3, the graph structure of
even a modest size system quickly becomes obscured due to the large number of edges
that are drawn in its diagram.

To address this issue, a mechanism for reducing the number of nodes in the graph

without jeopardizing (and hopefully improving) our ability to understand the system




must be introduced. A commonly accepted software engineering solution to this prob-
lem is to cluster or group highly cohesive system elements into a single subsystem. The
A-Vu model incorporates this ability by allowing collections of graph nodes to be col-
lapsed into a single composite node. On the “inside” of this new node, a separate visu-
alization space is created, allowing the dependency structure of its members nodes to
also be visualized. This process can be recursively applied, providing multiple levels of
nesting.

Returning to our basic definition of a configuration, C = (G, L, A), we can now al-
low L to be a set of layouts rather just a single layout. That is, L = {L;, L,, L, ..., L;}
where [ is the total number of layouts in the configuration and each layout is of the form
L;=(P; Sp. In order to construct composite layout structures, a mechanism is needed
for associating a node to a particular layout. This can be accomplished by introducing
the notion of a binding between a node and its composite layout. This relationship is
defined as an ordered pair b = (v, Lj) where v;e V and Lj e L. Alternatively stated, b
€ Bwhere BCVxL.

Our configuration definition can now be updated as follows: C = (G, L, A, B). That
is, a configuration is a directed graph, a set of layouts for subsets of the directed graph, a
set of attributes characterizing each node and edge of the directed graph, and a set of
bindings which link a node in the directed graph to a layout.

In order to create a composite node, an additional element v, must be added to the
set V defined for G, a new layout L must be created and added to the layout set L, and
an additional binding b = (v - L c) must be added to the binding set B. As nodes are
inserted into a composite layout, additional edges may be introduced as a result and

must be added to the edge set E. The rules for assigning the inherited and induced at-



55

tributes must be applied to all intervening nodes as described in Section 2.8. The details
of the insertion operations are described in Section 3.2.

To aid in identifying the contents of a composite node, an attribute inheritance
precedence is established, inspired by [BG’92]. When a single node is contained within a
composite node, the composite node inherits all of the attributes of that node in addition
to the composite attribute. 'When two or more nodes are consolidated in a composite
node, the new node may inherit some or all the combined attributes of the member
nodes. The following attributes are inheritable by the composite node only if qll of the
composite node’s member nodes possess the same attribute: universal, procedural, func-
tional, parallel, standard, generic, instantiation, implementation, and foreign. The
specification and aggregate attributes are inherited by a composite node when any of
the composite node’s member nodes possess these attributes. A composite node is also
assigned the aggregate attribute when its member nodes contain two or more of the fol-
lowing attributes: universal, procedural, functional, or parallel. These simple inheri-
tance rules enable a user to determine the general contents of a composite node from an
outer configuration without having to actually select the composite node’s visualization

space.

Example 2.3 Returning to our example program, suppose the system modules MATRIX
and VECTOR are typically used in conjunction as a linear algebra package. It would be
desirable, therefore, to consolidate these two nodes into a single composite node labeled
LINEAR_ALGEBRA. Next, recall that in Example 1.2 the module 10 was removed since
its use was assumed to be of little consequence. Rather than eliminate 10 from the con-
figuration, an alternative approach would be to combine 10 with both the modules INPUT

and OUTPUT, forming two additional composite nodes. If the internals of composite
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nodes INPUT and OUTPUT were then to be examined, the reference to 10 would be ap-
parent. In this manner, all of the structural information for the system can be preserved
while still retaining a simplified top-level system view. The resulting configuration is
* shown in Figure 2.6.

The formal conﬁguratibn description for Figure 2.6, assuming static attribute asso-
ciations, is given by C = (G, L, 4, B) where G=(V, E), A = (A, 4,) with V and 4,
shown in Table 2.3 and E and A, shown in Table 2.4. The layout set L = {L,, L,, L5,
L} defines the node positions with their corresponding visualization spaces. The origi-
nal layout is L; and the layouts for the the three new composite layouts are L,, Ly, L.

The binding set B = {(INPUT_IO, L,), (LINEAR_ALGREBRA, L3), (OUTPUT_IO, L,)}.

Table 2.3 Example Program Node Attributes

Module Attributes
COMPUTE procedural, visible
INPUT procedural, standard
INPUT_IO composite, procedural, standard, visible
10 aggregate, foreign
LINEAR_ALGEBRA |composite, aggregate, visible
MAIN procedural, visible
MATRIX aggregate,instantiation
OuUTPUT procedural, standard
OUTPUT_IO composite, procedural, standard, visible
SCALAR aggregate, instantiation, visible
VECTOR aggregate, instantiation
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Table 2.4 Example Program Edge Attributes

Dep;endency ) o Attributes
COMPUTE—LINEAR_ALGEBRA |induced, visible
COMPUTE—-MATRIX universal
COMPUTE—SCALAR . universal
COMPUTE—VECTOR universal
INPUT-IO . universal
LINEAR_ALGEBRA—SCALAR inherited, visible
MAIN->COMPUTE restricted, visible
MAIN-INPUT restricted
MAIN-INPUT_IO restricted, induced, visible
MAIN—-OUTPUT restricted
MAIN-QUTPUT_IO restricted, induced, visible
MATRIX—SCALAR universal
MATRIX—VECTOR universal
OUTPUT-IO universal
VECTOR—SCALAR universal

A )
\ ~ | INPUT_IO i l COMPUTE OUTPUT_IO

LINEAR_ALGEBRA

Figure 2.6 Composite layout of Table 1.1

Note that Figure 2.6 actually contains four configurations; the top level configura-
tion and the configuration within each of the three composite nodes. Each of these con-

figurations contains its own visualization space. A “zoom” or expand operation on the
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LINEAR_ALGEBRA node, for example, would reveal the composite layout shown in Fig-

ure 2.7. O
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Figure 2.7 Composite configuration, Ly
To differentiate between composite and non-composite layouts, a layout which con-
tai.ns no composite structures will be referred to as a simple layout. The diagrams in .
Figure 2.3 and Figure 2.5 represent simple layouts while Figure 2.6 and Figure 2.7 rep-

resent composite layouts.

With the introduction of composite spaces, an additional enhancement to our con-
figuration definition is in order. Note that the nodes INPUT, OUTPUT, and 10, MATRIX,
and VECTOR were not marked with the visible attribute nor were the edges MA-
TRIX—VECTOR, INPUT—IO, and OUTPUT—IO. Yet, if any of the composite spaces L,
L3, or L4 are examined as was done in Figure 2.7 (ie. L3), certain nodes and edges may
then become visible while others will become invisible. Consequently, the visible node
and edge attributes are dependent upon the visualization space.

To capture this eﬁhancement in the configuration framework, a minor modification
to the layout definition is needed. Recall that a single layout L; e L was defined as L, =
(S; Py, Qp) where P, = {p,, p,, p3, -, P,} and O, = {q,, ¢, 43, -.., g, }. If the restriction is
relaxed that P and Q be in one-to-one correspondence with V and E, respectively, we
will be able to readily add and remove nodes and their corresponding edges from a visu-

alization spaces without concern for the visible attribute. Node visibility is then depend-
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ent upon which layout and visualization space is selected. Visibility of a node v within

a particular space can then be tested as follows:

Given a layout L, = Sy Py Q,), does there exist ap € P; for node v?

To establish the correspondence between a node and its position in §;, we could re-
define P; as a set of two-tuples, P, S VX S; To simplify the presentation below, we will
assume that this correspondence is implied with each position vector p € P,

Visibility of an edge e in a layout L, can be tested in a similar manner:

Given alayout L; = S Py ), does there existag € Q; for edge e?

While this definition is adequate, it reciuires that we maintain both P; and Q; for
every visualization space. We can simplify this process by noting that edge visibility is
directly linked to node visibility. An edge will be visible within a particular space if and
only if its two nodes are visible. Consequently, our visualization system can determine
edge visibility and positioning by simply tracking node positions. While the definition
of a layout still holds, we will assume that 0, can be derived given P, V, and E. Simi-
larly, we will assume that the correspondence between an element g € Q; and E where q
c E x S is implied.

Note that this discussion assumes that nodes are the primary objects that are moved
throughout visualization spaces and that their corresponding edges follow their move-
ments. An alternative approach might be to perform edge positioning and let nodes be
positioned based on their movement. This presentation focuses on the prior assumption
since each node represents a fundamental system building block. While an edge is asso-

ciated with exactly two nodes, a node may be associated with numerous edges. Exami-
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nation of a single dependency will only yield limited information about its associated
two system elements, while examination of a single element and its many dependencies
is potentially much more revealing. Furthermore, edge manipulation can be simulated
with node manipulation via the ability to simultaneously manipulate both nodes associ-
ated with a particular edge at once. The techniques presented in Chapter 3 enable these

type of operations.

2.12 Meta-Configurations

While the introduction of nested configurations provides a convenient method of re-
ducing the number of nodes present in a particular configuration, it also potentially in-
troduces another system understanding problem. The most recent configuration defini-
tion from the previous section placed no restrictions on the number of configurations
nor the depth of configuration nesting that may be applied. Furthermore, the definition
placed no limit on the number of configurations a particular node may belong to and
even allowed a node to be placed within its own visualizati_on space. As additional com-
posite layouts are defined and nodes inserted throughout these spaces, another complex
dependency structure will result. Consequently, it would appear that an entirely new
visualization problem has been created.

Fortunately, this new problem is no-different than the original dependency problem
faced at the onset. A new configuration is defined where each node represents a com-
posite layout in the original configuration and each edge represents a visualization space
dependency in the original configuration. The problem of visualizing this new structure
can then be equated to our original visualization task, allowing identical modeling tech-
niques to be applied. A configuration derived in this manner is termed a meta-

configuration of the original configuration. The process by which a meta-configuration
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is created is referred to as an export operation that is applied to the original configura-
tion (See Section 3.7).

As we shall see, the export process defines a mapping from a configuration onto its
meta-configuration. There are numerous ways that these mappings can be defined,
however. This discussion will focus on two immediately useful mappings; one for ex-
amining layout containment structure, the other for examining layout dependency struc-
ture.

In order to proceed with these definitions, it is first necessary to formalize the notion
of node and layout. A node is said to be directly contained within a particular layout if
the node itself has been directly positioned within the visualization space associated
with the layout. That is, v; is contained in a layout L = (S, P, Q) if v; >P;)P; € P. For
example, the layout L; in Example 2.3 contains the following six nodes: MAIN, OUT-
PUT_IO, COMPUTE, INPUT_IO, LINEAR_ALGEBRA, and SCALAR. For notational conven-
jence, node containment within a layout will be indicated using the traditional set inclu-
sion symbol . For example, v € L where v is a node and L is a layout signifies that v is
positioned in the visualization space S associated with L as indicated by the set P.

This containment concept can be further refined by applying it recursively, examin-
ing any composite layouts that are be bound to any of the nodes in the original layout.
A node is said to be indirectly contained within a layout if the node is not directly con-
tained in the layout, but instead is either directly or indirectly contained in one or more
of the composite layouts bound to any of the nodes in the original layout. For example,
the nodes INPUT, OUTPUT, 10, MATRIX, and VECTOR are indirectly contained in layout
L, in Example 2.3. To complete the containment definition, a node is said to be simply

contained within a layout if it is either directly or indirectly contained in that layout.
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Since composite layouts involve binding between nodes and layouts, it is often con-
venient to refer to both node and layout containment.. A node v, is said to be contained
with another node v; it the node v; is contained within a layout that has been bound to
node vy Similarly, a layout L, is said to be contained with another layout Lj if the layout
L;is bound to a node that is contained within the layout Lj. Finally, a layout L is said to
be contained within a node v if the layout L is either bound directly to v or bound to a
node contained within v. Hence, the notion of node containment and layout contain-
ment will often be used interchangeably with the appropriate node/layout binding struc-
ture implied.

Note that under these definitions, there is nothing to preclude either nodes or layouts
from being contained within themselves. This can occur by placing a node in a layout
and then binding that layout either directly to the node itself or indirectly via intervening
node/layout bindings. The meta-configuration process is useful for exploring and re-
vealing these different types of relationships. With a suitable containment definition
now in place, its possible to proceed with the meta-configuration generation discussion

that makes use of this concept.

Layout Containment Structure

The first meta-configuration mechanism to be discussed is concemned with the struc-
ture that can be extracted from a configuration by examining its node/layout contain-
ment relationships. Of particular interest is the understanding of how the different lay-
outs within a configuration are contained within each other as a result of node placement
and node bindings. This is addressed by mapping the layouts of the original configura-
tion onto new nodes in the meta-configuration. Similarly, instances of layout contain-

ment in the original configuration will be mapped onto edges in the meta-configuration.
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To formalize this notion, a function or mapping ¢_ is defined that maps a configura-
tion C onto a new configuration, its meta-configuration, C’. This rellationship is ex-
pressed by:

o C—Cor
62 (G, L, A,B)—>(G,L' A" B).

For every layout Ll: e L in C, the mapping ¢ assigns anode v' € V' in C’. That is,

| oL v/
Similarly, for every pair of layouts L ,, L, € L, where L, contains a node v and (v, L) €
B, the mapping ¢_ assigns an edge e, € E'inC or

o (L Ly, —>e ab"

Note that not all layout pairs in C are mapped onto an edge in C’. Only those layouts
with connected visualization spaces in C are represented in C’. As a result, an isolated
layout in C with no node bindings will map to a node in C’ which no other node will be
dependent on. Similarly, any layout in C which contains no composite nodes will map
onto a node in C’ with node dependencies.

To retain visual consistency, the mapping of attributes from C — C’ will follow
similar inheritance rules to those outlined above for nodes and edges. A new node v;’ in
C’ will inherit its attributes from all nodes that were contained in its layout L, from C.
This method enables the same inheritance rules to be applied to all layouts, regardless of
whether or not they were bound to a node in C. Since all new nodes in C’ are initially
not bound to any new layouts in C, the composite attribute will automatically be
dropped from any new node in C’ to retain visual consistency. Similaily, the inherited
and induced edge attributes must also be dropped. Since all initial edges in C’ represent
a hierarchical, top-down decomposition as a result of direct layout containment of lay-

outs in C, the new edges in C’ will acquire the restricted attribute.




In practice there will frequently be at least one (and usually only one) layout which
is not bound to any node. Such a layout provides a convenient "top-level" view of the
system being visualized. When generating a ‘meta-configuration, we can allow new
nodes in C’ to acquire their name attribute from the node which was bound to the layout
in C. Using this approach, new nodes in C’ mapped from any of these unbounded lay-
outs in C will have an undefined name attribute. For our purposes, an arbitrary, but

unique name will be assigned to these types of nodes for this purpose.

Example 2.4 Continuing with from the previous example, we will now proceed to de-
fine the meta-configuration for the composite system shown above in Figure 2.6. Recall
from Example 2.3 that this system involves four layouts L,, L,, L, and I.4. The top
level layout, L, contains three nodes that are each bound to one other layout, resulting
in three edges corresponding to L,—L,, L{—Ls, and L,—L,. The names INPUT_IO,
LINEAR_ALGEBRA, and OUTPUT_IO are acquired from the nodes in L1 that were bound
to the original layouts, L,, L, ana L,, respectively. Since the original layout L, was not
bound to a node, the name attribute for its corresponding node in the meta-configuration
is also set to “L;”. The layout containment node and edge information for Figure 2.6 is
shown in Table 2.5 and Table 2.6 respectively. The resulting meta-configuration dia-
gram is shown in Figure 2.8. Note that the procedural and aggregate attributes were

retained in the export process for their corresponding nodes.
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Table 2.5 Layout Containment Nodes

Element Attributes
L1 aggregate; visible
INPUT_IO procedural, standard, visible
LINEAR_ALGEBRA |aggregate, visible
OUTPUT_IO procedural, standard, visible

Table 2.6 Layout Containment Edges

Dependency Attributes
L1—>lNPUT_l0 restricted, visible
L,-LINEAR_ALGEBRA restricted, visible
L,—OUTPUT_IO restricted, visible

INPUT_IO | LINEAR_ALGEBRA OUTPUT_IO

Figure 2.8 Layout containment meta-configuration for Figure 2.6

Layout Dependency Structure

In addition to examining a configuration’s layout containment structure, it may also
be instructive to examine its layout dependency structure. In contrast, layout depend-
ency structure is concemned with the relationships that exist between layouts as a results
of the nodes that were placed in their visualization spaces and not simply with how the
layouts have been bound together. Whenever a node is placed within a composite node,
the composite node (and its accompanying composite layout) will inherit all of that

node’s dependencies including those nested at great depth in the layout containment

St
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structure. The visualization of this layout dependency structure provides an effective
method of summarizing a complex dependency arrangement.

To formalize this notion, we again define a function or mapping ¢_, that maps a
configuration C onto a new configuration, its meta-configuration, C’. This relationship
is expressed by:

¢_:C—>Cor

¢_,:(G,L,A B)—> (G, LA, B').

For every layout L; € L in C, the mapping ¢_, assigns anode v € V' in C’. Thatis,

o_: L;—> v
Similarly, for every pair of nodes v,V where v 2 € Li’ Vv, € Lf, (v o vb) eE, Vg, # Vs and
Li;eLj, the mapping ¢_, assigns anedgee,,'€ E'inC’ or

b (v V) >e,)

Note that not all edges in C are mapped onto an edge in C’. Only those edges which
span visualization spaces in C are represented in C’. Similarly, an isolated layout in C
with no dependencies on other layouts will map to an isolated node in C’ with no other
dependencies on other nodes.

To retain visual consistency as before, the mapping of attributes from C — C’ will
follow again similar inheritance rules as those described above. A new node v, in C’
will inherit its attributes from all nodes that were contained in its layout L; from C as
previously described. The composite, inherited and induced edge attributes will again
be dropped. Unlike our attribute strategy for layout containment, however, the new
edges in C’ will inherit their from the union of all other edges attributes that spanned the
two original layouts in C. The implied attribute is applied to any edge which results
from a layout being dependent upon any in which it is properly contained. Such a de-

pendency is generally the case and usually implied, thereby justifying the use of this at-



67

tribute. The name attribute strategy used above for layout containment will again be

used.

Example 2.5 Retumning once more to the composite system shown in Figure 2.6, a lay-
out dependent meta-configuration will now be generated. Recall again from Example
2.3 that' this system involves four layouts L;, L,, L,, and L,. The top level layout, L,
contains one or mores nodes that are dependent upon at least one other node contained
in each of the other three layouts, resulting in three dependencies, L;—L,, L—>L,,
Ll—-)L4 (e.g. MAIN—INPUT, COMPUTE—MATRIX, MAIN—OUTPUT. Since both layouts
L, and L, contain the node [0 and they both also contain a node dependent upon 10 (.e.
OUTPUT, and INPUT, respectively), the dependencies L,—Ly and L,—L, result. Lastly,
since the layout L, contains the one or more nodes that are dependent upon at least one
node in L; (e.g. VECTOR—>SCALAR), the dependency L;—L, 1s also present. The
names INPUT_IO, LINEAR_ALGEBRA, and OUTPUT_{O are acquired from the nodes in L;
that were bound to the original layouts, L,, L3, and L, respectively. Since the original
layout L; was not bound to a node, the name attribute for its corresponding node in the
meta-configuration is once again set to “L;.” The resulting layout dependency meta-
configuration node, edge, and diagram for Figure 2.6 is shown Table 2.7, Table 2.8, and
Figure 2.9, respectively. Note the retention of the procedural, aggregate, restricted at-

tributes for their corresponding nodes and edges. [J

Table 2.7 Layout Dependency Nodes

Element Attributes
MAIN aggregate, visible
INPUT_IO procedural, standard, visible

LINEAR_ALGEBRA |aggregate, visible
QUTPUT_IO procedural, standard, visible




Table 2.8 Layout Dependency Edges

Dependency Attributes
INPUT_IO-OUTPUT_IO universal
INPUT_IO-L 1 universal
LINEAR_ALGEBRA—)L1 inherited, visible
L1_>|NPUT_(0 restricted, induced, visible

L;—LINEAR_ALGEBRA

universal

L,—OUTPUT_IO

restricted, induced, visible

OUTPUT_IO—INPUT_IO

universal

OUTPUT_IO—L,

universal

68

Figure 2.9 Layout dependency meta-configuration for Figure 2.6

In the process of exploring a complex dependency structure, a typical sequence
would be involve the creation of a configuration followed by its manipulation and, if
necessary, the generation of a meta-configuration. The use of a meta-configuration pro-
vides another tool to aid in the understanding of a system’s dependencies at another con-
ceptual level. Note that the configuration editing/meta-configuration export cycle can
actually be repeated indefinitely. Once a configuration export has been performed using
either of the above techniques, the new meta-configuration could then be manipulated,

consolidating nodes, creating additional composite spaces, etc.. An additional meta-
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configuration could then be exported from this resulting configuration and the process
repeated. ‘

In actual use, it is unlikely that this process would be useful to repeat beyond a few
iterations. With each export operation of a configuration C;, a new configuration Cj is
defined which initially contains only one layout and a set of nodes VJ where IVJJ is equal
to the number of layouts in WC,, (i.e.. IVJJ = lLiI). Consequently, the complexity of each
subsequent meta-configuration will reduce accordingly. If no modifications are made to
a configuration’s meta-configuration, a second export will yield a configuration with a
single node, representing the single layout/visualization space resulting from the initial
export. Repeated expoﬁs without further modification would continue to yield a single
node configuration. Hence, the configuration shown in Figure 2.10 will be referred to
as the identity configuration and will always be produced after two iterations of either

process if no intervening modifications are made to the configuration.

Ly

Figure 2.10 The Identity configuration.

2.13 Configuration State

An interactive environmental that implements the A-Vu configuration model pre-
sented in this chapter is envisioned. To ﬁrovide such an environment, it will be neces-
sary to examine and manipulate; the contents of individual layouts, select items within
these layouts, remove them, and position them in other layouts. The dependency and
attribute information associated with these nodes must be updated automatically during
these operations. To perform these functions, some additional state variables will be re-
quired. One approach would be to incorporate these variables into our configuration

definition. This approach has the advantage of allowing the state information to be
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stored and transmitted with the configuration, thereby being accessible in subsequent in-
teractive sessions. However, the utility of retaining this information across multiple ses-
sions is rather limited. Rather than complicate our configuration model, these state vari-
ables will be defined separately and considered valid only during the course of a single
session. |

To begin with, the state variable A is introduced to indicate which layout A=L; € L
has been selected for current viewing and processing. This variable is useful in many of
the cut and paste type operations that will be described in Section 3.2. In order to direct
these editing operations, we will also need a mechanism for indicating which nodes cer-
tain operations will be applied to. To accomplish this, we will define a set Z = {0, O,
O3, .., O;} Where [ = ILl and 5; = V. The set o; contains a node v € V if and only if the
v is both contained in the layout L; and v has been selected. The notion of a selected
node can be viewed simply as a layout-dependent node attribute that is either true or
false. An accompanying visualization system implementation may use this ;.ttribute to
indicate the selected condition via color, highlighting, shadowing, etc. Finally, the no-
tion of a cut buffer X is defined as X c Vx (S; U S, U S; ... US)) wherel=ILIwith L;
€ LandL;=(S;, P;, Q- The set X is used to save nodes and their positions as they are
copied, inserted, and removed toffrom various layouts. Initially, A is undefined, X = &,
and X = . Whenever a layout L is created (deleted), a node selection set G; is similarly
created (deleted).

In summary, we can define the state of a configuration as W = (A, Z, X). The inter-
active visualization representation for a system is then (C, Y¥). Many of the operations

described in the next chapter will make use of this information.
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At this stage, the conceptual framework of the A-Vu model has been completed.
Some minor enhancements to the model will be made in later chapters to accommodate
special implementation considerations, but largely it will rgmain uncﬁanged. This
framework will provide the basis for all future dependency analysis and visualization
discussion. The n_otion of a configuration has emerged as the fundamental construct for
Tepresenting arbitrary complex system dependency structure. The above discussion,
however, did not address how dependency information is caste into a configuration and
how the resulting configuration may be manipulated. This is the topic for the next chap-

ter.

o
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3. Configuration Manipulation

With the configuration concept defined, the focus of the discussion now shifts to the
development of techniques for creating, modifying, and managing the configuration
structures that conform to the A-Vu model. This chapter presents these techniques by
progressively developing a series of primitive configuration manipulation operations.
Collectively, these operations provide the fundamental building blocks necessary for
complex system exploration. To aid discussion, this collection is organized by placing
each operation into one of the following seven functional groups:

- Initialization
- Editing

- Selection

- Arrangement

- Reduction

- Compaction
- Archival

The initialization operations in Section 3.1 are concemed with the creation, deletion,
and modification of a configuration structure and its associated visualization space.
Once a suitable visualization space has been initialized, operations which manibulate the
visualization space’s contents can then be performed. The editing operations described
in Section 3.2 provide a mechanism for creating node/edge structures in the visualiza-
tion space and for moving nodes throughout this space. The selection operations de-
scribed in Section 3.3 provide a series of search algorithms for locating and isolating
particular subsets of nodes in the configuration. The arrangement operations in Section
3.4 are a series of graph-based algorithms used to generate particular visualization space
layouts with the desired properties. The reduction operations in Section 3.5 are used to

eliminate certain collections of nodes and their associated edges from the visualization
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space as a means of reducing the structural and visual complexity of the resulting repre-
sentation. The compaction operations presented in Section 3.6 are helpful in maintain-
ing visualization space dimensions. Finally, a set of archival operations are presented in
Section 3.7 that are used for loading, saving, and restoring configurations once they are
defined.

Included with the discussion of each group below is an expository description of
what motivates each operation’s use. The computational complexity of each operation
will also be analyzed to insure suitable performance as specified in the requirements in
Section 1.4. Toward the development of an interactive A-Vu tool, fast and responsive
algorithms are essential. Consequently, the discussion below focuses on algorithms
whose computational complexity is at least as good as ®(n2) and @(kz) where n is the
number of nodes in the graph, and k is the number of edges. Algorithms with poorer
performance (such as @(n3) or @(k3 ) or worse) would undoubtedly lead to poor interac-
tive performance as the number of elements in the system approaches quantities not un-

usual in modern system designs (e.g. 21000).

3.1 Initialization

Under the A-Vu model, the task of visualizing a complex system’s dependencies
must begin with the preparation of a suitable data structure capable of capturing the sys-
tem’s dependency information, storing its visualization representation, and binding
nodes with their composite spaces. Once this initial data structure is created, we may
proceed to populate it with dependency information including node/edge definitions and
associated attribute information. We must then be prepared to create and delete layouts

and bind and unbind layouts to nodes as we proceed to explore and manipulate a sys-
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tems’ dependency structure. The set of operations for performing these initial house-

keeping type functions are presented here.

Configuration Initialization

Recalling our configuration definition C = (G, L, A, B), we assume that our initial
configuration consists of a null graph with no attributes, no layouts, and no bindings.

Hence, our first operation which defines our initial configuration structure is described

here.
Operation:  INITIALIZE;
Description: The INITIALIZE operation creates a null configuration C = (G, L, A,
B) where G=(9,9),L=0,A=(3,D),and B=0.
Analysis: The operation INITIALIZE is ©(c) where c is a constant since it is
equivalent to a constant time data structure memory allocation.
Node Creation

Once a null configuration has been created, we can start to populate this configura-
tion beginning with node information. The following operation adds a node to a con-
figuration.

Operation: CREATE_NODE (v );

Description: The operation creates a new node, adds the node to the configura-
tion, and returns a unique identifier for the node. An attribute set
for the node must also be defined. Let v be the new node, then
CREATE_NODE performs the following sequence:

V 1= new;
Vi=VuU{v};

®, =0,
A=4,0 (@)
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Analysis: CREATE_NODE is ©(c) since it is equivalent to a single memory
allocation and two single element set union operations. A single
element set union operations, equivalent to a set insertion opera-

tion, can be implemented in constant time [Ah’83].

Node Deletion

Just as nodes must be created, so too is a mechanism for node deleti'on required.
Node deletion, however, is more complex due to potential edges with other nodes, pos-
sible attribute associations, placement in a visualization space, and participation in a
composite binding (to be discussed shortly).

Operation: DELETE_NODE (v );

Description: The DELETE_NODE operation removes a node from a configura-
tion by deleting all of its node attributes, deleting all bindings that
it is associated with, removing its node and edge positions from all
layouts, deleting all edges that may contain it and any correspond-
ing edge attributes, and deleting the node from the node list. Let v

be the node to be deleted, then DELETE_NODE performs the fol-
lowing sequence:

A, =A -{0O_};
va e;vdo v
B:=B-(vxL)
end;
VLelLL=(S, P,Q,) do
Py:=P;-(p,);
ifdec E, P1EP, pyeP; e=(vy, v,) |
V{—PD1» VoD, then
Q,‘ = Q,' - {qe};
end;
Vwe Vdo
E=E-@wxw)-wxv),
end;
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Vee (WxV)UV XV))NEdo
V=V-{v};

Analysis: The worst-case time complexity of DELETE_NODE is max{ O(IV1),
- O(Bl), O(ILI x max(iV1, IED)), O(EI) }. The O(IVl) term is intro-
duced as a result of iteration through the sets V and A, to delete
element v and any of its attributes. The term ©(IBl) results from
the deletion of its bindings. The term X max(IV1, IEl)) results from
deletion of the node and its edges from every layout. The term
O(IET) results from an iteration through the set E in search all
edges containing v and the deletion of any associated edge attrib-
utes. Since IBI < 1L is usually << V1 and O(V1) < O(ILI x V1) and
O(E < O(ILI x IEl), we can simplify the above equation, yielding
an expected worst-case complexity of ©(ILI x max(IV1, IEl) ) Note
that this assumes a linear list implementation set implementation.
Alternative implementations of set deletion operations can be per-
formed in constant time [Ah’83], enabling the entire operation to be

performed in O(IL!).

Edge Creation

Once one or more nodes have been defined within the configuration, edges between
the nodes can then be defined. Addition of a new edge could, however, affect one or
more of the configuration’s layouts. If the new edge involves any nodes that were pre-
viously added to one or more layouts defined in the configuration, the edge must also be

defined in these layouts. In an actual implementation, this situation may result simply
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in a notification to the visualization system where a new edge set within the affected
layouts are updated based on the new graph description. For completeness, the entire
edge creation operation is described here:
Operation: CREATE_EDGE ( e, Vis Vo )
Description: The operation defines a new edge between two nodes v; and vy,
adds the edge to the edge set, and then adds the edge to any lay-
outs within the configuration that contains both v; and v,. Lete

be the new edge, then CREATE_EDGE performs the following se-

quence:
e:=(,vy);
E =Eu{e};
g, =0
A —A u{s}

VI,el,L,=(S,P,Q) do
i 3p, e Pl p2 € P;| v;—p;, v,—p, then
Q;,=0;,V {qe};

end;
end;
Analysis: In order to determine if the pair of nodes v; and v, exists within
any layout, an O(ILl) x ©(IV1) search through each layout’s node
position list would be required. Assuming that layout node lists

are instead organized for constant time lookup [Ah’83], the time

complexity of the entire operation could be reduced to O(L).

Edge Deletion

The sequence of operations required to delete an edge from a configuration is a sub-
set of those described for DELETE_NODE. Only the attributes associated with an edge

and the edge itself must be removed from the configuration and all internal layouts.




Operation:

78

Operation: DELETE_EDGE (e );

Description: The DELETE_EDGE operation removes an edge from a configura-
tion by first deleting all of its attributes and then removing the
edges as described in the following sequence:

Ae =A,- {ee};
E=FE-e¢;
VLeLL=(S,P,Q;) do
it3p, e Pp,e P;le= (vl, v2),
V=P A Vy—p, then
Q;=0;-{q,};
end;
end;

Analysis: Assuming again a constant time set lookup and set deletion opera-
tions, the DELETE_EDGE operation can be performed in time pro-
portional to the number of layouts, @(L).

Attribute Association

As nodes and edges defined in the configuration, attributes can be associated with
them. Recalling the discussion in Section 2.7 and Section 2.9, the range of attributes
that can be assigned to both nodes and edges is quite diverse. To simplify our discus-
sion, we will assume that every node and edge attribute can be described via an attribute
identifier (such as those given in Section 2.6 and Section 2.8) along with an optional
attribute value. The operations for associating attributes to nodes and edges in a con-

figuration are then, respectively:

SET_NODE_ATTRIBUTE ( v, attribute, [value] );

SET_EDGE_ATTRIBUTE ( e, attribute, [value] );

Description: These operations add a particular node or edge attribute with an

~ optional value to the sets @, A, and € e € A, respectively, as

described by the following sequences:
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attribute := value;
6,=0,U {attribute)};

and
attribute := value,
€, =E,U {attribute};
Analysis: Involving only set union operations, these operations can also be

done in order ©(c) [Ah’83].

Attribute Disassociation

It is sometimes necessary to delete a particular attribute from a node or an edge.
This may be required, for example, when a node is deleting from inside a composite
node, resulting in an attribute change to the composite node, or to a attribute change to
any of the edges linking the composite node.

Operation: CLEAR_NODE_ATTRIBUTE ( v, attribute ),
CLEAR_EDGE_ATTRIBUTE ( e, attribute );
Description: Removes a node (edge) from the node (edge) attribute list, respec-
tively, via the following sequences.
Av '=A, - {mv};
and
A,:=A,-{e,});
Analysis: The time complexity for both operations are ®(c) again assuming

a constant time set deletion operation.

Layout Creation

With the ability to capture a system’s dependency information in place, we are now

ready to construct the visualization space that will be used to display this information.
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Recalling that L = {L,, L,, ... L,} where L; =(S;, P;, Q,), an initial layout will consists of
a visualization space of specified dimensions and a null node position set. The editing
operations described in the next section will be used to populate this set.

Operation: CREATE_LAYOUT (L x,y,2));

Description: The operation CREATE_LAYOUT adds an additional layout L;to
the configuration layout set L. The dimensions of the new layout’s
visualization space are determined by the parameters x, y, z. That
is, §; = { {0.x} x {Ol.y} x {0.z} }. Ifx,y, and z are all integer
parameters, then Si is a discrete space. If x, y, and z are all reals,
then S, is a continuous space. Ifx, y, and z are a mix of integer and
real parameters, then S; is a hybrid space. The node position set P;
for L, is initialized to the empty set. The following sequence de-

fines a a layout creation:

Analysis: CREATE_LAYOUT is also ®(c) since each item in the sequence can

be performed in constant time.

Note that as defined, S; is simply a set of (possibly mixed) reals and/or integer vec-
tors and that an actual implementation would actually only require the boundaries of this
space to be registered. A variety of options in managing this space are available. Based
on a measure of spatial node density such as 8 = [VI + (xyz), the dimensions of Sl. could
either manually or automatically be adjusted to insure adequate room for additional

node placement. For discrete spaces, a similar computation could be performed along
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each row and/or column of each visualization space plane. Since there are generally at
most [Vl nodes placed in a given space at one time, this computation could -readily be
performed on demand or, if desired, upon completion of each a node editing operation
(Section 3.2). Throughout this chapter, it will be assumed that visualization spaces will
automatically expand as necessary to properly contain all nodes within the layout.
Compaction, however, must be explicity initiated as described in Section 3.6. A simple
heuristic measure for determining suitable space dimensions is given in Section 3.6. A

hybrid technique used by the A-Vu system is described in Chapter 7.

Layout Deletion

Deletion of a layout is generally only required in conjunction with the deletion of a
composite node. To preserve configuration validity, deletion of a layout can not be per-
formed unless all bindings associated with the layout are also deleted (see DE-
LETE_BINDING below). A layout will frequently only be associated with at most one
binding.

Operation: DELETE_LAYOUT (L; );
Description: This operation first removes all bindings involving L, then deletes

L, from the layout set. The following sequence performs this op-

eration:
Vve Vdo
B:=B-(vx Li); end;
L:=L- {Ll.};

Analysis: The iteration through the node set V results in a ©(IV1) time com-
plexity. Maintaining the bindings in a list would reduces this
complexity to O(IBl) via a sequential examination of each bind-

ing.
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Binding Creation
The final operation in the initialization group is used to create composite visualiza-
tion spaces within a configuration. Recalling that a binding b € B where BV X L.,
the CREATE_BINDING operation can only be performed only after the desired sequence
of CREATE_NODE and CR_EATE_LAYOUT operations.
Operation: CREATE_BINDING ( b, Vi Lj );
Description: The CREATE_BINDING operation accepts a node and a layout iden-

tifier to create a composite space or binding. The following se-

quence applies:
b:=(, Lj);
B :=BuU {b};

Analysis: This operation is again ©(c) for same reasons stated above.

Binding Deletion
The deletion of a binding is performed with association of a particular configuration
with a node is no longer desired. This is required when the associated layout is to be
deleted or associated with a different node, or the node itself is to be deleted.
Operation: DELETE_BINDING ( b );
Description: The simple operation removes the binding b from the binding set
B using the sequence:
B:=B - {b});
Analysis: ©(c).
3.2 Editing

With the foundation for creating (and deleting) configuration structures now estab-

lished, we can proceed to define the operations that are necessary for manipulating con-
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figuration items. The most basic of these operations involves the positioning and move-
ment of nodes within a visualization space. The primitive operations defined in this sec-
tion are modeled after a contempofary interactive text editor, providing collective place-
ment, removal, relocation, and duplication functions.

In a configuration with a single layout, the process of adding and removing nodes is
straight forward. The coordinates of the node must simply be added to the layout’s node
position set and a check for any new visible edges must be performed.. With the intro-
duction of composite layouts, however, the addition or deletion of a single node can dra-
matically affect both the dependencies and attributes of any node bound to the current
layout or any of its parentai composite layouts. The use of meta-configurations is useful
to help visualize this process. Recalling the meta-configuration in Figure 2.9 from Ex-
ample 2.5, the addition of a single node in, for example, either OUTPUT_IO or INPUT_!O,
can dramatically effect both their edges and their node and edges attributes. Adding a
copy of the VECTOR node to the OLT‘I"PUT_JO layout would result in the additional edges
OUTPUT_IO — LINEAR_ALGEBRA, OUTPUT_IO — SCALAR, LINEAR_ALGEBRA — OuUT-
PUT_IO and COMPUTE — OUTPUT_IO. Hence, whenever a node v is inserted into a com-
posite node’s layout, all nodes that were dependent upon v will now be dependent upon
the composite node also. Similarly, the composite node and all nodes that contain the
composite node will now inherit all of the the nodes that v is dependent upon.

Before defining the actual configuration editing operations, it is useful to first de-
velop an operation that will take care of all the important edge and attribute inheritance

operations that are required for layout modification. The RECONNECT operation is

therefore defined first.
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Layout reconnection

This deceptively simple operation involves some of the most fundamental and im-
portant aspects of the A-Vu model. Much of the composite layout, edge, and attribute
inheritance structure hinges upon its successful execution. This operation must be per-
formed at the completion of any node insertion or deletion sequences to insure the valid-
ity of the layout dependency and attribute information. This same operation will also
prove invaluable to both the CUT and PASTE operations described below.

Operation: RECONNECT Lp;

Description: The RECONNECT operation must examine every layout that con-
tains a node bound to the specified layout L;. In tumn, every layout
that contains a node bound to a recently updated layout, must also
be updated. A standard queue mechanism is used to record the
layouts in the order that they are encountered. The set LAYOUTS
is used to keep track of which layouts have been update. The fol-
lowing sequence performs this operation, making use of the UP-
DATE operation described next:

QUEUE ¢ L;
LAYOUTS :=L - Li;
while QUEUE # & do
! < QUEUE;
Vv| (v, ) e Bdo
Vm|(v,m) e B do
if m € LAYOUTS then

QUEUE « m;
LAYOUTS := LAYOUTS - m;
end;
end;
end;
UPDATE (0);

end;
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The UPDATE (l) operation is used to actually perform the node, edge and corre-
sponding attribute updates for all composite niodes bound to the specified layout /. This
operation is comprised of two parts: update of the composite node’s attributes and up-
date of the composite nodes incoming and output edges. The first part of the algorithm
examines all nodes in the layout and forms the union @ of all attributes including the
composite attribute. Each of the attributes in @ _are then applied to all nodes bound to
the specified layout.

The second part of the operation is responsible for creating and/or deleting any in-
coming and output edges and adding and/or removing any edge attributes that may have
changed as a result of the previous layout modification operations. This is performed by
examining each node v in the configuration and forming the the union g, of all attrib-
utes associated with the edges (v, ) where u is a node contained in the specified layout.
The union €, is similarly generated by examining all outgoing edges (x, v). Next, each
edge in the system between the node v and every node w bound to the specified layout is
examined. If the edge attribute set g is not empty, then the edge (v, w) is created if
necessary and its attributes are set and cleared based on the contents of g, . Similarly, if
the edge attribute set €out is not empty, then the edge (w, v) is created if necessary and

its attributes are set accordingly based on the contents of €

out’ If either & OF €, are

empty, then respective edges (v, w) or (w, v) must be deleted.

Part I - Update composite node’s attributes:

O := {composite};
Vve Pdo
=0V GSV;
end;
VYv|(v,l)e Bdo
VYoe ©do
SET_NODE_ATTRIBUTE (v, ));
end;
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Part IT - Update composite node’s edges & edge attributes:

Vve Vdo
& = {induced};
€out = {inherited};
\79u|u—>p,pe P,ue Vdo
it (v, u) € E then

8in = 8in |9 G(V’ u);
end;
it (u, v) € E then
eout = 8out e 8(u, v);
end;
end,

Vw|(w, 1) e Bdo
if € # D then
if (v, w) &€ E then
CREATE_EDGE (v, w);
end;
8in = 8i[l (¥ { implied };
VBe ddo
ifB e g then
SET_EDGE_ATTRIBUTE ( (v, w), B);
else
CLEAR_EDGE_ATTRIBUTE ( (v, w), B );
end;
end;
else
if (v, w) € E then
DELETE_EDGE ( (v, w) );
end;
end;

If £, # O then
if (w, v) ¢ E then
CREATE_EDGE (w, v);
end;
€ U { inherited };

out -~ Eout

Be ddo
it & g, then
SET_EDGE_ATTRIBUTE ( (w, v), B );
else
CLEAR_EDGE_ATTRIBUTE ((w, v), B );
end;
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end;

else
If (w,v) € E then

DELETE_EDGE ( (W, v) );

end;

end;

end;
end;

Analysis: Since a layout will generally be bound to at most one node, the
computational complexity of the RECONNECT operation is equal
to O(IL!) x ®(UPDATE). Examining the UPDATE operation, Part I
must iterate once through the entire node set V. Since
SET_NODE_ATTRIBUTE can be performed in constant time, Part I
is @(IV1). Part II, however, involves two nested iterations through
both the node set V and through all of the nodes in a particular lay-
out. In the worst case, a layout set may contain all of the nodes in
V. Since CREATE_EDGE, DELETE_EDGE, SET_NO)DE_A'ITRIBUTE,
CLEAR_NODE_ATTRIBUTE can all be performed worst case in
O(IL), the worst case complexity for UPDATE is ©(ILI X IVI2). The
worst case complexity for RECONNECT is then @(ILI2 X IVI2). Ina
typical configuration, however, Ll is usually << [Vl. When and if
IL! >> 1, then IP} for any layout L; will generally be << IVl. In ef-
fect, RECONNECT is generally @(IVIZ) unless an unusually large
number of layouts are created with numerous copies of the entire

node set V placed in each of these layouts.

Node Insertion

In order for a node to be visible, it must first be inserted into a layout so that it may
subsequently be positioned in the layout’s visualization space. When the node is first
inserted, a null or undefined position vector @ is initially assigned as its value. The as-
signment of null position vectors reflects a slight enhancement to the configuration defi-

nition. This modification allows a layout to appropriately inherit a node’s dependencies
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without the node actually appearing in the layout’s visualization space. Looking back to
Example 1.2, this ability is of practical importance as seen with the elimination of the 10
node from view.
Note that a RECONNECT operation must always follow a series of node insertions to
insure configuration consistency. The INSERT_NODE operation is now defined:
Operation: INSERT_NODE (v, L;);
Description:  Assigns the position vector p, = ® ¢ S, for the node v within the

layout L, = (S;, P;, Q;) as defined by the following sequence:

p, =D;
Pi :=PiU {Pv};
Analysis: Constant time set insertion operation, ©(c).

Node removal

As witnessed early on in Example 1.2, there is a need to remove nodes from a layout
as well as to add them. From the'previous discussion on node addition, removal of a
node is also a complex process due to the introduction of composite layout structures. A
RECONNECT operation must always follow a series of node removals to insure configu-
ration consistency.
Operation:  REMOVE_NODE (v, L,);
Description: Removes posifion vector for node v from the layout L, = (S, P;,
Q,) as defined by the following sequence:

P;:==P;—{p,};
p, =,
Analysis: Constant time set deletion operation, ©&(c).
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Node Positioning

Once a node has been placed in a layout, it can then be made visible by assigning a
position in the layout’s visualization space. The position of the node may subsequently
need to be changed as necessary depending upon the configuration operations that are
ultimately performed. This simple operation is defined as follows:

Operation: SET_NODE_POSITION (v, L, D);
Description: Assigns the position vector p = (x,, z) € S; for the node v within
the layout L, = (S;, P)as defined by the following sequence:
P;=P;V {r};

Analysis: Constant time set insertion operation, ©(c).

Selection

In typical interactive editing operations, it is common practice to be able to select a
subset of items and manipulate or operate on them collectively. The set X described
above is used for this i)urpose. The SELECT operation is used to add nodes to the indi-
vidual layout node selection sets Gy, Gy, O3, .-+, G; S nodes are selected and deselected.
These sets will be used to direct numerous operations described in the sections below.
The SELECT operations is described as follows:

Operation: SELECT (v, L,);
Description: Indicates that the node v contained in layout L; is to be selected.
The following sequence defines this operation:

0;:=0;V {v};

Analysis: Constant time set insertion operation, ©(c).
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Deselection
Just as nodes can be selected, so too must they be deselected. The DESELECT opera-
tion is used to remove nodes from the layout node selection sets Gy» Og; O3y o0y O The
DESELECT operation is described as follows:
Operation: DESELECT (v, L,);
Description: Indicates that the node v contained in layout L, is to be deselected.
The following sequence defines this operation:
C; :=0;— {v};

Analysis: Constant time set deletion operation, ©(c).

Cut
It is frequently desirable in interactive editing sequences to a remove a selected list
of items because they are no longer needed or so they can be repositioned. The CUT
operation is used for this purpose and makes use of the results of the SELECT operation
to determine which items are involved. The set X of node, position pairs described
above is used to maintain which nodes were removed.

Operation: CUT;

Description: Removes selected nodes from the current layout A and any possi-
ble edges that may be defined in the layout and save the nodes and
their positions in the set X. The following sequence defines the
CUT operation:

Vve o;do
Xx=0p,)
REMOVE_NODE (v, A);
X=XuU{xh

end;

o; = 0;
RECONNECT (A);
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Analysis: Since REMOVE_NODE is @(c), the worst case complexity of the
loop portion of the operation is @(IV1). If the number of layouts in
the system is kept small with respect to the number of nodes, the
worst case time complexity of the overall operation is @(IVIZ) due
to the RECONNECT operation.

Copy
In a typical interactive edit sequence, it is frequently desirable to make a copy of a

collection of items so that they may be inserted elsewhere. The COPY operation also
makes us;e of the results of the SELECT operation for this purpose.

Operation: COPY;

Description: Records all selected nodes and their positions in the current layout

A via the following sequence:

Vve o;do
xX:=0,p);
X=XuU{xh

end;

Analysis: If n is the number of nodes selected in the current layout, the op-

eration is completed in linear time, ®(n).

Paste

The PASTE operation is essentially the inverse of the CUT operation. A CUT opera-
tion followed by an immediate PASTE operation should leave the state of the configura-

tion unchanged.

Operation: PASTE;
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Description: Insert nodes from the cut buffer X into the current layout A and
adds any new possible edges to the layout. The following se-
quence defines the PASTE operation:

VxeX,x=(,p,)do
INSERT_NODE (v, A);

SET_NODE_POSITION(, A, p,);

. c; :=0; U {v}
end

X:=0;
RECONNECT (A);

Analysis: Since INSERT_NODE and SET_NODE_POSITION are both constant
time operations, PASTE is @(IVIZ) worst case due to the complex-
ity of RECONNECT operation.

3.3 Selection

The operations described in this section are used to select from within the current
layout A, a particular node or a set of nodes that possess desired properties. These prop-
erties may concermn either node attributes or node relationships as characterized by edges
and/or edge attributes. All of the operations in this section have been selected based on
the useful role they serve in the exploration of a complex dependency structures. Many
of these operations mimic common editing type operations while others capture useful
graph theoretic operations.

Note that limiting these operations to the current layout A is mainly to simplify the
discussion. Recursive versions of each of these operations could be easily adopted by
re-applying the operation to the layout bound to every composite node in A. The com-
putational complexity of each of these operations would then be increased by at most a
factor of ILI. The exact increase for a specific configuration is determined by the num-

ber of layouts that are contained in the current layout A.
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Global Selection
At times it may be necessary to select every node in the current layout A. This may
be required, for example, when all nodes are to be collectively repositioned, modified,
copied, or removed.
Operation: SELECT_ALL ;
Description: This operation is performed by simply adding every node directly
contained in the A to the select set G, as follows:
Yv|v—-p,pe P,ve Vdo

SELECT (v, A);
end;

Analysis: Since 1P| <= IVl and SELECT can be performed in constant time,

SELECT_ALL is @(IV1).

Global Deselection
Just as it may be necessary to select every node in the current layout A, it may also
be required to deselect every node in A described as follows:
Operation: SELECT_NONE ;
Description: This operation is performed by simply removing every node di-
rectly contained in the A from the select set G, as follows:
Vv|v—p,pe P,ve Vdo

DESELECT (v, A);
end;

Analysis: For the same reasons give with SELECT_ALL, SELECT_NONE is
also O(IVi).
Note that both SELECT_ALL and SELECT_NONE can actually be performed in constant

time via the alternative sequences, respectively:
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Inverse

While it is often desired to select nodes with desired properties, it is similarly often
desired to select only those nodes that do not possess those properties. This could be
accomplished by defining complementary operations for every select operation in this
section. Instead, a single inverse selection operation is provided for this purpose.

Operation: SELECT_INVERSE ;
Description: This operation constructs the complement of the set ¢ 5 as follows:
Vv |v—p,pe P,ve Vdo
itve g, then
DESELECT (v, A);
else
SELECT (v, A);
end;
end;
Altematively state,
Oy = V-o A5

Analysis: As above, SELECT_INVERSE is O(V1).

Root Selection

In many systems, particularly software systems, there exists at least one element that
may be characterized as the main or root element(s) of the system. In order to under-
stand the structure of these systems, it is often advantageous to identify these elements
first. With very large systems, however, the ability to discern these elements is very

cumbersome, again requiring automated means. The SELECT_ROOT operation serves
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this purpose by selecting only those nodes that are not a dependent of another node con-
tained within the current layout A.
Operation: SELECT_ROOT;
Description: The SELECT_ROOT operation examines all node pairs within the
current layout A and looks for every node v that is not associated
with any edge of the form (w, v) within A.
VviveV,v-p,p, € Pdo
ROOT := TRUE;
Vw|we V,w-p, ,p, € Pdo
If (w,v) € E then
ROOT := FALSE;
exit;
end;
end;
if ROOT then
SELECT (v, A);

end;
end;

Analysis: Since SELECT_ROOT examines every node pair (v, w) within A, it
is @(IVIZ). With access to an inverse node adjacency list (i.e. inv-
adj(v) = w if (w, v) € E), the inner loop can be simplified to a test
for incoming edges on v. The existence of such an edge (i.e. inv-

adj(v) is non-empty) would immediately indicate v is not a root.

Hence, the entire operation could be reduced to G(IV1).

Leaf Selection

Just as it is important to identify a system’s root elements, so to may it be useful to
identify its leaf element. In contrast to a root element, a leaf element is one which has
no dependents. Knowledge of leaf elements is helpful in the construction of bottom-up

composite structures as they can be collapsed with their parent elements without intro-
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ducing any additional dependencies. In top-down analysis, leaf elements also represent
the finest level of granularity for the system. From an abstraction perspective, leaf ele-
ments are at the lowest level with all other elements in the system based upon them.
Hence, the ability to locate these fundamental building blocks can be quite useful. With
no other dependencies, they are perhaps the simplest conceptual elements of the system

even though their implementation could the most complex.

Operation: SELECT_LEAVES ;

Description: The SELECT_LEAVES operation examines all node pairs within the
current layout A and looks for every node v that is not involved in

any edge of the form (v, w) within A.

Vv|ve V,v—p,p, € Pdo

LEAF :=TRUE;

Vwiwe V,w-p,,p, € P do
it (v, w)e E then

LEAF := FALSE;
exit;
end;
end;
if LEAF then
SELECT (v, A);
end;
end;

Analysis: For the same reason given above for SELECT_ROOT, SE-
LECT_LEAVES is also ©(IVl) given access to a node adjacency list
where a non-empty adj(v) would immediately indicate that v is not

aleaf. The operation is @(lVlz) otherwise.

In practice, it might also helpful to identify those leaf elements which are associated
with one and only one dependency. As an aid to structural understanding, these singular

elements can often be removed from the layout or “filtered” from view to help simplify
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the understanding without loss of essential dependency information. Note also from this

discussion that a node that is not associated with any edge in the layout is both a root

and a leaf element.

Body Selection

Stripped of its leaf and root elements, the remaining interdependent elements repre-

sent the most difficult portion of a system to unravel. An operation to extract the body

of system is therefore provided.

Operation:

Description:

SELECT_BODY ;

The SELECT_BODY operation examines all node pairs within the

' current layout A and looks for every node v that is not involved in

any edge of the form (w, v) or (w, v) within A. Any node that is
both a parent and a child of another node is included in the body
selection.

Vvlve V,vop,p, € Pdo
PARENT := FALSE;
CHILD :=FALSE;
Vwlwe V,w-p,,p, € Pdo
if (v, w) € E then
PARENT := TRUE;
end;
if (w,v) € E then
CHILD = TRUE;
end;
if PARENT and CHILD then
SELECT (v, A);
exit;
end;
end;
end;
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Analysis: With access to both an adjacency list adj(v) and an inverse adja-
cency list inv-adj(v), SELECT_BODY is also ©(V1), @(Vi%) other-

wise.

Note that a SELECT_ROOT, SELECT_BODY, and SELECT_LEAVES operation se-
quence is identical to a single SELECT_ALL operation. Similarly, a SELECT_ROOT and
SELECT_LEAVES sequence is identical to a SELECT_BODY operation followed by a SE-

LECT_INVERSE operation.

Component Selection

A common technique used in the initial stages of many graph layout approaches is to
identify the various connected components of a graph. To define this operation, the no-
tion of a graph path must first be reviewed. A path from node v to node w in the graph
G = (V, E) is a sequence of edges (v{, ¥5), (v,, v3), (V45 V5); ceees W1 Vo) such thatv, =v,
V=W, and eachnode v; € Vwhereie {1,2,3,..,k} is adistinct node in V. A graph
component (i.e. a subgraph of G) is connected then if for every pair of nodes v and w in
the component, there exists a path from v to w.

In standard directed graph terminology, the distinction is usually made between
strongly connected and weakly connected depending upon whether or not the direction
of each edge is taken into consideration. A directed graph G = (V, E) is weakly con-
nected if, for each pair of nodes v and w, there exists a sequences of nodes v, v,, V3, ...,
v, such that v; =v, v, =W, andfori=1,2, ..., k-1either (v, v;, ) € Eor (v;,;,v) € E.
In contrast, the graph G is strongly connected if, for each pair v and w, there is a path
from v to w.

Within the context of the configuration model, it is desirable to identify the con-

nected components that exist within the current layout A. To relate this to our selection
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discussion, the SELECT_WEAK and SELECT_STRONG operations described below use
the selection set G, to determine which nodes are to be used to generate the desired
components. In essence, a union of connected graph components are g;merated be these
operations. If a specific weakly or strongly connected component for a particular node v
in A is sought, the selection set 6, should be equated to that node. The primary advan-
tage of this approach is that it allows the one or more components to be located simulta-
neously within a single visualization space using familiar editing type operations.
Operation: SELECT_WEAK
Description: The operation sequence described here is based on a variant of the
breadth-first search algorithm. Each node in the selection set G,
is loaded into a queue. Nodes are then removed from the queue
and examined for edges to other nodes in A. This task is readily
accomplished through the maﬁntenance of an edge adjacency list
as described early on in Example 1.1. Any new nodes discovered
are marked as selected and added to the search queue. The se-
quence terminates when the queue is empty signifying that all
reachable nodes ilave been searched.

QUEUE « ©,;
while QUEUE # I do
v < QUEUE;
VYwlweV, wop,,p, € P,(v,w)or (w,v) € E)do
fweo A then
QUEUE ¢ w;
SELECT (w, A);
end;
end;
end;




Analysis:

Operation:
Description:
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Since l6, 1 < IV, its possible that the every node in the V may need
to be searched or the entire edge list E may need to be examined.

Hence, SELECT_WEAK is @(max(lEl, IV1).

SELECT_STRONG ;
The strongly connected component selection process is consider-
ably more complex than the weakly connected case due to the re-
quirement that a directed path exist between every pair of distinct
nodes within the component. The approach taken here is a modi-
fied version of the strongly connected component algorithm pre-
sented in [Ah’74]. Unlike the Aho-Hopcroft-Ullman (or AHU) al-
gorithm, the SELECT_STRONG operation discussed here must take
into consideration the use of selection set ¢ A and the fact that A
may not contain all nodes in V. In this approach, only those nodes
which are contained in A are initially marked. Similarly, only
those nodes which are contained in & A are passed to the SEARCH
routine from the outer loop.

COUNT :=1;

STACK := J;

Vvlve V,v=p,,p, e Pdo

MARKS :=MARKS U { v };
end;

NODES := Oy

Vv |v e NODES do
if v e MARKS then
SEARCH (v );
end;
end;
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The SEARCH (v ) portion of the operation is again similar to the AHU algorithm
with the exception of the completion section. Rather than simply printing the
names of strongly connected component elements, the nodes are saved in a set
until the final node in the component has been identified. If any of the nodes in
this set are contained in ¢ 4> all of the nodes in this set will be selected in the
current layout A.

MARKS := MARKS - { v };
DFNUM[v] := COUNT;
COUNT := COUNT + 1;
LOWLINK[V] := DFNUM[V];
STACK & v;

Vwlwe V,w-p,,p,€ P, (v,w)e Edo
if w e MARKS then
SEARCHC (w);

LOWLINK[V] := min(LOWLINK[v], LOWLINK[w]);
else

if DFNUM[w] < DFNUM[v] and

w € STACK then

- LOWLINK[v] := min(DFNUM[w], LOWLINK[v]);
end;

end;
end;

if LOWLINK[v] = DFNUM[v] then

COMP := J;
loop
w ¢« STACK;

COMP :=COMP U {w };
exitwhenv=w;
end;

if COMP n NODES = & then
NODES := NODES - COMP;
Vw|w e COMP do

SELECT (w, A);

end;
end;

en100

SRy
, -
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Analysis: The modifications made to the basic AHU algorithm were worst
case O(VI). As a direct result of Theorem 5.4 in [Ah'74], SE-

LECT_STRONG is still @(max(IV1, IEl).

Note that in modem software systems built using structured languages such as Ada,
Pascal, and Modula-II, the ability to identify strongly connected components given a se-
lection 6, does not typically yield interesting results. Unless one or more of the nodes
specified in the ¢ ' are part of a cyclic graph component contained in A, the selection set
0, will remain unchanged at the completion of the operation. A more specialized op-

eration which looks specifically for cyclic components is therefore introduced.

Cyclic Selection

In certain system organizations, there may exists a sequence of element dependen-
cies of the form m; — my, my => my, My > My, ...m, — m; with n 2’1. While this
organization is relatively uncommon in software systems with strong top-down and
bottom-up development constructs, they do arise frequently in systems employing con-
current operations or parallel execution. Since cyclic organizations seldom possess an
explicit hierarchical dependency structure, layout generation that aids understanding can
be quite difficult. The resulting visualizations of non-hierarchical systems must there-
fore capture these peer-to-peer type architectures, constraining the cyclically dependent
components to a particular layer or composite node within the configuration. An opera-
tion that identifies these cyclic components, allowing them to be aggregated and sepa-
rately analyzed, is thus very useful.

The algorithm for locating cyclic components is very similar to that used for deter-
mining the strongly connected components of a graph. Unlike the SELECT STRONG op-

eration which makes use of the selection set ¢ A» the SELECT_CYCLIC operation is used
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to find the union of all nodes in A which are involved in a cycle of length one or greater.
In an acyclic directed graph, each node forms its own strongly connected component. In
such a case, the SELECT_CYCLIC operation would leave the selection set 6, unchanged.
If the graph does contain a cycle, the SELECT_STRONG operation would only add the
nodes involved in the cycle to the selection set if one or more of the nodes where con-
tained in G, at the start of the cycle. Hence, the SELECT_CYCLIC operation is suited for
finding all cycles while the SELECT_STRONG operation is suited for examining cycles
that may be associated with one or more specified nodes. |
Operation: SELECT_CYCLIC ;
Description: The SELECT_CYCLIC operation is very similar to SE-
LECT_STRONG, sharing much of the same algorithm. Unlike SE-
LECT_STRONG, however, SELECT_CYCLIC is directed at the entire
, layout contents and not just those nodes contained in 6,. The
outer portion of the operation is therefore re-formulated, more
closely resembling the AHU algorithm, as follows:
COUNT :=1;
STACK = IJ;
Yv|ve V,v—p,p, e Pdo
MARKS := MARKS U { v };
end;
while 3v | v € MARKS do

SEARCH (v );
end;

The second portion of the SEARCH algorithm must also be modified to select only
those connected components that contain two or more nodes. Without this modification,

the entire graph would be selected each time since a single node not involved in a cyclic
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component is itself a strongly connected component. The updated sequence is as fol-

lows:

if LOWLINK[v] = DFNUM[V] then
w « STACK;
if v=w then
loop
SELECT (w, A);
exitwhenv=w,
w ¢ STACK;
end;
end;
end;
Analysis: With relatively few modifications from the SELECT_STRONG op-

eration, SELECT_CYCLIC is also @(max(IVl, IEl).

Relationship Selection

In very large system dependency graphs, it is very difficult to examine more than
just a few relationships at a time. To gain an understanding of an unfamiliar system, it
is often beneficial to start with a few critical elements and explore those relationships
which directly apply to these elements. In the later stagés of the software life cycle, for
example, a system maintainer may be asked to make enhancements to a particular group
of software modules. In order to initiate these modifications, it is important that the
software maintainer understand how these modifications will affect other modules in the
system. A method for identifying these closely related system elements is therefore in
order.

Three relationship selection operations are described here. The SELECT_RELATIVE
operation is used to select all those nodes which are dependents, either directly or indi-
rectly, of the specified set of nodes, G A (i.e. all of the children of G A). Conversely, the
SELECT_ABSOLUTE operation is used to select all those nodes that dependent upon the

specified set of nodes (i.e. all of the parents of G,). Lastly, the operation SE-
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LECT_REFERENCED selects both the _dépendent nodes and the nodes dependent upon

the selection set 6, (i.e. all of the nodes that are both parents and children of G, ).

Operation:

Description:

Analysis:

Operation:

Description:

Analysis:

Operation:

Description:

SELECT_RELATIVE ;

As formulated, the SELECT_RELATIVE operation is identical to the
SELECT_WEAK operation described above. Both operations use
the selection set 0, to initially direct their searches.

SELECT_RELATIVE is ©(max(lEl, IV1) as described above.

SELECT_ABSOLUTE ;
The SELECT_ABSOLUTE operation is essentially the same opera-
tion as SELECT_RELATIVE and SELECT_WEAKLY_CONNECTION
but traverses graph edges in the reverse direction. The following
statement in the SELECT_RELATIVE operation
Vw|weV,w,v)e E,w—p,,p, € Pdo
replaces the statement
Ywlwe V,(v,w)e E,w—p,,p, € Pdo

in the SELECT_ABSOLUTE operation.
SELECT_ABSOLUTE is again ®(max(lEl, V1) as above.
SELECT_REFERENCED ;

This operation combines both the SELECT_RELATIVE and SE-

LECT_ABSOLUTE operations into one, traversing edges from the

selection set ¢ A in both directions.
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Analysis: Since a combined version of the relative and absolute selection op-
erations still requires a single traversal of the node and/or edge

sets, SELECT_REFERENCED is also ®(max(lEl, IV1)).

Note that a SELECT_RELATIVE followed by a SELECT_ABSOLUTE is not equivalent
to a single SELECT_REFERENCED operation as the selection set ¢ A most likely will
have changed after the initial SELECT_RELATIVE operation. A SELECT_BODY operation
followed by a SELECT_REFERENCED operation, however, is equivalent to a SE-
LECT_ALL operation. Similarly,'a SELECT_ROOT and SELECT_LEAVES sequence fol-
lowed by a SELECT_REFERENCED operation is also equivalent to a SELECT_ALL opera-

tion.

Attribute Selection

The next set of operations focus on the attributes associated with nodes and edges
contained in the current layout A. Of particular importance is the name attribute. As
identified in [Wa’81], naming is a crucial factor in modem system design. To aid the de-
sign process, a collection of naming standards are often adopted in order to help organ-
ize a system’s elements and identify their purpose and function. A common operation
in complex system analysis is to locate a specific set of elements given their naming
characteristics so that their relationships can be carefully examined. The name attribute
presented in Section 2.6 provides the necessary mechanism for identifying individual
nodes. In large systems implementations, the seemingly simple task of locating a single
node with the desired name attribute value can be a struggle if done manually, requiring
sifting through hundreds of nodes. Furthermore, the exact system element names may
not be known ahead of time. Consequently, a flexible node find operation is in order.

The SELECT_NAME operation presented here serves this purpose.
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Description:

Analysis:
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SELECT_NAME ( name-expression ),
The SELECT_NAME operation can be performed via a simple linear
search of the node name attributé list. A typical search-expression
implementation would provide wild card type string matching
such as the use of the "%" character for single character sﬁbstitu-
tions and the "*" character for n_mltiple character substitutions.

VvlveV,v—p,p, e Pdo

if MATCH ( NAME(v), name-expression) then

SELECT (v, A);

end;
end;

Since the SELECT operation is restricted to the single layer A, a
simple linear search through an unordered node list V can be per-
formed in at most ©(IV1). Assuming that the name-expression pa-
rameter represents a regular expression and that the lengths of
both name-expression and all name attributes are bounded by con-
stants s and ¢, respectively, a suitable @(max(s, #)) parser can be
constructed for the MATCH operation using the techniques de-
scribed in [Ho'79]. Since max(s, f) is generally << IV, SE-
LECT_NAME is ©(IV1). This complexity can be reduced to O(log
IV) via binary search techniques using an ordered node name list
instead, although an additional computation investment would
have to be made in the CREATE_NODE, INSERT_NODE, or

SET_NODE_ATTRIBUTE operations required to build and maintain

this list.
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A particularly useful enhancement to the SELECT_NAME operation is the ability to
apply muitiple find expressions that have been previously recorded in an external file.
Within a particular software developrr}ent environment, there are frequently collections
of tools that are used repeatedly by different developers across systems. The ability to
construct and retain these frequently referenced items for later can greatly ease the bur-
den associated with the initial analysis of an unfamiliar system.

Operation:  SELECT_PATTERN ( file_specification ) ;

Description: The SELECT_PATTERN operation is equivalent to a series of FIND
operations with multiple search expressions specified via an exter-
nal input source. The selection set G, is updated with the union of
each FIND operation’s results.

Analysis: If m expressions are defined in the specified input source, the re-
sult operation will be ®(mn X V1) due to the O(IV1) complexity of

the SELECT_NAME operation.

Similar to a SELECT_NAME operation, it is frequently helpful to locate all those
nodes or edges in a cenfiguration that possess a specified set of attributes. In software
systems, for example, locating all foreign standard nodes would be a common operation
performed by a operating system interface programmer while identifying all aggregate
packages would be of particular importance to a software librarian. Locating elements
linked with a particular edge attribute set would be of similar use. The SE-
LECT_NODE_ATTRIBUTES and SELECT_EDGE_ATTRIBUTES operations provide this
functionality.

Operation: SELECT_NODE_ATTRIBUTES ( attributes ) ;
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Description: The SELECT_NODE_ATTRIBUTES operation performs a simple lin-
ear search through the node list associated with the current layout
A and selects those nodes that match all of the the specified node
attributes as follows:
VviveV,v—>p,p, € Pdo
if attributes "®@,, = attributes then
SELECT_NODE (v, A );

end;
end;

Analysis: Similar to the SELECT_NAME operation, SE-

LECT_NODE_ATTRIBUTES is @(IV1).

Operation: SELECT_EDGE_ATTRIBUTES ( attributes’) ;

Description: The SELECT_EDGE_ATTRIBUTE operation performs a simple lin-
ear search through the edge list associated with the current layout
A and selects those nodes associated with edges that match all of

the the specified edges attributes as follows:

Vele=(,w)e E,v—>p,p,e P, v—>p,p,€ Pdo
if antributes N €, = attributes then
SELECT_NODE (v, A );
SELECT_NODE (w, A );
end;
end;
Analysis: The SELECT_EDGE_ATTRIBUTES is again similar to the SE-
LECT_NAME operation except that a search through the edge list is

now required yielding ®(IEI).

Note that both the node and edge attribute selection operations could be further re-
fined to search based on more elaborate node/edge attribute matching criteria such as

the regular expression parameter supplied with the FIND operation.
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Degree Selection

In many applications, the maximum number of times any element in a system is ref-
erenced (referred to as fan-in) or the maximum number of references made by any ele-
ment in a system (commonly referred to as fan-out) have often been used as measures of
the system’s complexity [He’89]. While measures such as these can frequently be mis-
leading [Sh’88], they do provide some interesting insight into the organization of a sys-
tem. Those elements which exhibit high fan-in or fan-out measures may represent an
important centralized resource critical to the understanding of the system. Alternatively,
they may represent standard elements that by virtue of the operating environment are re-
quired. Text input/output packages, common error handling routines, message logging
services, etc. are examples frequently encountered in large software system design. A
collection of operations to locate thes; elements in a complex system organization is
therefore very helpful.

The three operations described here examine what is commonly referred to as the
degree or number of dependencies associated with the node. For the purpose of this dis-
cussion, in-degree is the measure of the number of incoming edges or nodes that are de-
pendent upon a particular node. Similarly, the out-degree of a node is the number of
out-going edges or nodes that are dependents of a particular node. Finally in-out-degree
is a measure of the some of both incoming and outgoing edges. The following opera-
tions select the nodes in the current layout L that exhibit the highest values of each of
these three measures, respectively:

Operation: SELECT_MAX_IN;
Description: The SELECT_MAX_IN operation must scan the node list V and ex-
amine each dependency associated with the current layout A,

maintaining a maximum value and a list of elements which this
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value applies to. At the completion of the sequence, those ele-
ments with the highest count are selected.

MAX :=0;
DEGREE := IJ;
Vv|ve Vdo
COUNT :=0;
Vele=(v,w)e E,v—>p,p,€ P,v—>p,p, € Pdo
COUNT := COUNT + 1; ‘
end;
if COUNT > MAX then
DEGREE := { v };
else if COUNT = MAX then
DEGREE := DEGREE U { v };
end;
end;
Vv |v € DEGREE do
SELECT_NODE (v, A);
end;
Aunalysis: Since the sequence must possibly iterate through the configura-

tion’s entire node list and/or edge adjacency list, SELECT_IN is

O(max(IV1, IEl)).

Operation: SELECT_MAX OUT;
Description; SELECT_MAX_ OUT is identical to SELECT_MAX_IN with the ex-
ception of the following statements:
Vele=w,v)e E,v—>p,p,€ P,v—>p, ,p, € Pdo
COUNT := COUNT + 1;

end;

Analysis: O(max(IVi, IET)).

Operation: SELECT_MAX_IN_OUT ;
Description: SELECT_MAX_IN_OUT is identical to SELECT_MAX_IN with the ex-
ception of the following statements:

Vele=(v,w)e E,v—>p,p,€ P,v>p, ,p, € Pdo
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COUNT := COUNT + 1;

end;

Vele=w,v) e E,v->p,p,€ P,v—>p,p, € Pdo
COUNT := COUNT + 1;

end; :

Analysis: O(max(iVl, ED)).

A natural refinement to this set of operations would be the ability to locate nodes
which possess a specific value for in-degree, out-degree, or in-out-degree. Note that all
nodes selected by the SELECT_ROOT operation have an in-degree of 0 and that all nodes

selected by the SELECT_LEAVES operations have an out-degree also of 0.

' 3.4 Arrangement

This section examines numerous operations for generating configurations with spe-
cific properties. Using the editing operations from Section 3.2 and the selection opera-
tions from Section 3.3, a user could manipulate a configuration manually, moving nodes
by hand hoping to obtain a reasonable organization by trial and error. Such a process
becomes grossly inadequate, howevér, as the number of nodes to be examined climbs
much beyond a few dozen. Fortunately, there are number of arrangement operations
that have been proven to be quite useful in graph layout applications. When used in uni-
son with manual manipulation techniques, a powerful system set of configuration

browsing services emerges. These services provide a user with a great deal of flexibility

when exploring complex structures. A survey of the more popular operations and their

uses is given here.

Default Arrangement
At the beginning of an examination of an unfamiliar system, a user will typically

have little knowledge of the system’s internal organization. Yet, in order to unravel its
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structure, an initial starting point must first be defined. Often the only structural knowl-
edge initially available about a system may be just a list of its elements. By identifying
these components, some sort of configuration can be initially generated, providing at the
very least, a coarse layout which can then be substantially improved. The AR-
RANGE_DEFAULT operation is provided for this purpose.
Operation: ARRANGE_DEFAULT ; N
Description: The ARRANGE_DEFAULT generates a planar layout for all ele-
ments that have been inserted (via the INSERT_NODE operation)
into the current layout A. This operations assume a simple rectan-
gular type grid for the position of each element. The z coordinate
of the visualization space is assumed to be constant. The horizon-
tal and vertical spacing between each node, &, and 8y, respectively,
is likewise considered constant. The following sequence defines
the ARRANGE_DEFAULT operation:
x=0;
y:=0;
Vvive V,v=p,p, € P, do
SET_NODE_POSITIGN (v, A, (x,¥) );
x=x+3;
if x > width(S, ) then
x:=0;
y:=y+9;
end; Y
end;
Analysis: Since this sequence involves only a single iteration through the
node set V and SET_NODE_POSITION can be performed in con-

stant time, ARRANGE_DEFAULT is ©(IV1).

BRI
e -, 0
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Hierarchical Arrangement

Hierarchical relationships are very common in systems. Such relationships are char-
acterized by a arrangement. in order of rank, grade, level, etc. In modern software sys-
tems, an abstraction hierarchy can be derived by examining the object class or type
structure and determining how they are used to synthesize new, higher level or higher
rank classes or types. This relationship is easily captured within the directed graph
framework. A hierarchical relationship between two elements ¢ and b are represented
via the dependency a — b and its corresponding edge (g, b) in the graph G.

Because of the prevalence of hierarchical structures, an operation which takes an ar-
bitrary configuration and imposes a layout which reveals this structure is in order. This
can be accomplished by arranging all nodes such that given any pair of nodes (g, b), if a
is dependent upon b, then a will be arranged hierarchically to . A precise definition of
hierarchical arrangement will be given in Section 5.3, but for now it will suffice to say
that (a, ) is hierarchically arranged if a appears “above” b in the layout.

Note that not all systems possess a hierarchical arrangement. Any system that con-
tains a strongly connected component with more than one node (i.e. contains a cycle)
can not be readily hierarchically arranged since a; = ay, 8y —> a3, a3 > Ay, .., G =
a;. In order to generate a hierarchical layout, therefore, the layout must first be in re-
duced form. That is, the layout must not contain any strongly connected component
with more than one node. A technique for reducing cyclic structures will be presented
in Section 3.5. The ARRANGE_HIERARCHICAL operation is defined as follows:

Operation: ARRANGE_HIERARCHICAL ;
Description: The ARRANGE_HIERARCHICAL operation takes an arbitrary layout
and repositions nodes until a strict hierarchical arrangement is im-

posed between all pairs of dependent nodes. The operation first



Analysis:

115

verifies that the layout has been reduced via the function RE-
DUCED which can be easily constructed from the SE-
LECT_STRONG operation defined ai)ove in Section 3.3. The algo-
rithm then starts at the “top” of the visualization space and moves

nodes “downward” by a constant distance <y until a hierarchy is

imposed between all dependent pairs. The function max, returns a
node whose y component of its position vector is greater than or
equal to the y component all other nodes in A. The following se-
quence describes this operation:

if REDUCED(A) then
H =0,
YvlveV,v—p,p, € P, do
H=HU{(p)}
end;

while H # & do
(v, p,) := max (H);
Y(w,p,) |(W,p,) € Hdo
if (w, v) € E then
itp, ) 2p,() then
p, 0 =p,@) -c,
SET_NODE_POSITION ™A
end; "
end;
end;

end;
end;

As discussed in Section 3.3, the REDUCED function can be per-
formed in ©(max(lV], |El). In the worst case where the layout is
hierarchially arranged, but up-side-down, every pair of nodes in A
may have to be examined. Hence, ARRANGE_HIERARCHICAL is

(V).

L
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Because of the utility of hierarchical arrangements, a special purpose operation for
generating a hierarchical arrangement without regard to original layout is quite useful.
The ARRANGE_DEPENDENT operation performs this task and may be considered an al-
temnative to the ARRANGE_DEFAULT operation for non-cyclic layouts. AR-
RANGE_DEPENDENT is defined as follows

Operation: ARRANGE_DEPENDENT ;

Description: The ARRANGE_DEPENDENT operation must again verify that the
layout is in reduced form via the REDUCED function to insure that
the sequence will terminate. The operation first builds a set D of
all nodes contained in A. It then proceeds to find nodes which are
not dependents of any other node in D. These nodes are added to
a queue so that they may be subsequently positioned at the appro-
priate location in the visualization space. Once positioned, these
elements are removed from D and the x and y coordinates are reset
for the next iteration. The z coordinate of each node is unchanged.
The process repeats until no remaining nodes are in D.

y =max(S,);
if REDUCED(A) then
D =@;
VYvlve V,vop,p, e P, do
D=Du{v}
end;

while D # & do
Yv|ve D do
it Vw|we D, (w,v) ¢ E then
QUEUE « v;
end;
end;

x:=0;
while QUEUE # O do
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v« QUEUE;
SET_NODE_POSITION (v, A, (x, ¥, p,(2)) );
xX=x+C,;
D=D-{v};

end;

y=y-Cy

end;
end;

Analysis: Similar to ARRANGE_HIERARCHICAL, ARRANGE_DEPENDENT re-

quires examining each pair of nodes in A, resulting in (IVIZ).

Layered Arrangement

Another very powerful concept for organizing complex systems is the use of layer-
ing, described in detail in [15’82). ‘The layering concept involves the decomposition of a
system into a series of discrete levels of abstract where each level utilizes the resources
and services provided by a well«defined interface to the the layer beneath, to provide
access to an integrated set of resources and potentially more powerful services to the
layer directly above, again through a well-defined interface. The use of la'yering can be
used as a model to guide a system’s design as well as its implementation.

In a strictly layered system, all elements are dependent only on other elements resid-
ing at the same level in the system or on elements contained within the layer directly
below. Conversely, all elements are dependents only of other elements residing at the
same level or of elements contained within the layer directly above. While strict layer-
ing methods are not a prerequisite for good system organization, general adherence can
provide significant aid to clearer understanding of very complex structures similar to
other conventions and standards.

To capture the layering concept within the configuration framework defined here,
space within the visualization space associated with each layout need only be designated

for this purpose. This can be accomplished by defining a series of discrete position vec-
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tor ranges for each level of the layering structure. Alternatively, a simple calculation
with a position vector can be used to determine its level. While a more formal descrip-
tion will be given in Section 5.3, for ;IOW it will suffice that given a coordinate y, its
layer number can be determined by an integer divide with a constant, y div ¢. The fol-
lowing operation is used to generate a strictly layered organization given an arbitrary
layout:
Operation: ARRANGE_LAYERED ;
Description: The ARRANGE_LAYERED operation scans the visualization space,
working from the highest levels (y >> 0) down to the lowest level
(y = 0). The nodes at each level are examined. Every node de-
pendent upon any node contained at the current level being
scanned is moved to this level. Similarly, every node that is a de-
pendent of any node at the current scan level that is not contained
within this level or the level directly below, is moved to the level
directly below. The process repeats for each level until the lowest
level (y div ¢ = 0) is completed.

Ville {1..(max (S ) div €) } In reverse do
Vvlve V,v-p,p, e P, do
it (p,(y) div ¢) = I then
QUEUE ¢« v;
end;
end;

while QUEUE # & do
v ¢« QUEUE;
Vwlwe V,w-p, ,p, € P, do
if (w, v) € E then
if (p,,(y) div ¢) < Ithen
p:=@,0,p,0,p,@);
SET_NODE_POSITION (w, A, p );
QUEUE ¢ w;
end;
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else if (v, w) € E then
if (p,,(¥) div ¢) < /-1 then

p=@,®,p,0)-¢p,2));
SET_NODE_POSITION (w, A, p);
end;
end;
end;
end;
Analysis: As with the two previous operations, ARRANGE_LAYERED is again
@(IVIZ) since it must examine every combination of node pairs (v,

w) contained in the A.

Breadth-First Anangemgnt

When first examining an unfamiliar system or set of subsystem elements, it is‘fre-
quently instructive to first locate a root level set of elements (i.e. nodes with no parents),
determine their dependents, and examine those dependents, then in turn determine the
dependents of those elements, examine their dependents, etc., repeating the process until
all elements in the system have been examined. This process essentially mimics a
breadth-first search of the system’s dependency graph.

Due to the important relationships the breath-first search may reveal, it is convenient
to be able to specify any subset of system elements as a starting point. The selection set
O, can again be used for this purpose. By allowing any set of nodes in A to be used as
the starting point for the search, it is possible that not all nodes in A will be examined.
For example, the parents of any nodes that. are not children of any of the other nodes in
the search will never be examined. As a further éid to understanding, these nodes can
be temporarily eliminated from the visualization space so as not to obscure the results of
the search. This can be easily accomplished by setting the position vector of these

nodes to an undefined value, ®. Borrowing from the layering concept, the vertical posi-
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tion of each node in the resulting layout is used to reflect the depth of the node in the

search. The ARRANGE_BREADTH search is now defined.

Operation:

Description:

ARRANGE_BREADTH ;

The ARRANGE_BREADTH operation begins by building a queue of
all selected nodes, G,, and a set of all nodes in A. The operation
then removes each of the nodes in the queue, one by one examin-
ing each node v and adding any of v’s dependents that have not al-
ready been positioned to the queue. At the complc;tion of each ex-
amination, v is repositioned at its new x, y position, v is removed
from B, and the x coordinate is updated for the next node. Once the -
original set of nodes are examined, the y coordinate is set to the
next lower level and the process is repeated until no remaining
nodes are left in the queue. The final part of the sets the position

of all remaining nodes in B to undefined.

y :=max.(S,);

QUEU;xz—gA;

Vvive V,v=p,p, € P, do
BE:=Bu{v]};

end;

x:=0;
while QUEUE # & do
Vi in {1..length(QUEUE) } do

v < QUEUE;
Vw|we Bdo
if (v, w) € E then
QUEUE ¢« v;
B:=B-{v};
end;
end;
SET_NODE_POSITION (w, A, (x, ¥, p,.(2) );
x=x+c,
end;

y=y-cy



121

end;

Vv|ve Bdo
SET_NODE_POSITION(v, A, ®);
end;

Analysis: Using the adjacent list implementation for representing edges, AR-
RANGE_BREADTH requires a single pass through each element in

the node list and each of its edges, resulting in @(max(IV1, IE1).

Depth-First Arrangement

The other popular graph traversal technique useful in complex system exploration
involves the use of depth-first search. The ARRANGE_DEPTH operation is used to gen-
erate a layout based on the results of this search. In contrast to the breadth-first opera-
tion, the ARRANGE_DEPTH operation is -useful in revealing the nesting structure of a
system. The position of an element in the resulting layout can be used to gauge the
length of the dependency path of the element from the root elements that were specified.
This information is particularly useful in determining how far removed an element is
from its parent elements which can serve as an indicator of their relative ciganizational
importance to the parent elements.

Although similar in concept, the implementation of ARRANGE_DEPTH is slightly
more complex than ARRANGE_BREADTH since layout can no longer be performed by
working from the top to the bottom of the visualization space. The ARRANGE_DEPTH
operation instead must work “across” the visualization space, recording the maximum
horizontal position of each node placed at each level.

Operation: ARRANGE_DEPTH ;
Description: The main body of the ARRANGE_DEPTH operation consists of

three parts as shown below. The first part constructs a set D of all
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elements currently positioned in the A. The second part performs
the actual depth-first arrangement of the A using the recursive pro-
cedure PLACE described below. All nodes not positioned at the
completion of this part of the sequence are then set to undefined by
the third part which scans the remaining nodes in D.
Vvlve V,vop,p, e P, do
D=Du{v}
end;
VYvlveo 4 do
PLACE(v, maxy(S A));

end;

Vv|ve Ddo
SET_NODE_POSITION(v, A, ®);
end;

The PLACE operation accepts two parameters, v and y, corresponding to a node and
a y-coordinate in the visualization space S A» Tespectively. PLACE set the position of the
node v based on the current level y. All of v’s dependents are then examined. If any
dependent w has not been placed (i.e. w is a member of D), then w is passed to PLACE
to be positioned at the next lower level.
D:=D-{v};
SET_NODE_POSITION (v, A, (pv(x), y, pv(z)) );
Vw|we Ddo
(v,w)e E
PLACE (w,y -c.);
y
end;
end;
Analysis: As discussed above, the basic depth-first search algorithm is

O(max(IV, |El)). Again assuming an implementation with access

to the node adjacency list adj(v), the PLACE operation will exam-
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ine each node and edge once. Since SET_NODE_POSITION is

O(c), ARRANGE_DEPTH is also ®(max(IV1, IEl)).

Horizontal Arrangement

Most of the arrangement operations up to now have paid little attention to the x-
coordinate or horizontal position of éach node. In fact, at the completion of several of
these operations, many of the nodes may actually ovérlap. This overlap must be ad-
dressed to prevent compounding the visnal understanding problem. Described below
are some simple horizontal positioning operations that have proven useful. Because of
the relative simplicity of each operation, a detailed description of each operation will be
excluded from the presentation. Since each operation involves a number of linear
sweeps across each level of the visualization space, proportional to the number of layers
in the visualization, their time complexity will generally be ®(IV1) or ©(IEl). The analy-

sis of each operation will also be excluded.

Operation: ARRANGE_UNIFORM ([81]);

Description: The ARRANGE_UNIFORM scans each level of the visualization
space starting at the “left-hand” side (i.e. x = 0) of the visualiza-
tion space and mﬁving to the “right-hand” side (i.e. x >> 0) adding
each node to a queue. Starting again at x = 0, the nodes are then
removed from the queue in order and repositioned, insuring uni-
form spacing in between each node. The optional parameter J is
used to specify the distance to be allocated between each node. A

suitable default minimal distance would be applied by an actual

implementation.




Operation:

Description:

Operation:

Description:

Operation:

Description:
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ARRANGE_CENTERED ([61]);

The ARRANGE_CENTERED operation is similar to AR-
RANGE_UNIFORM accept that as nodes are removed from the
queue, they are instead alternatingly positioned at a uniformly in-
creasing distance from a vertical centerline x = max_ (S A) in the
visualization space. The optional parameter  is again used to

specify the distance to be allocated between each node.

ARRANGE_LATERAL ([8]);

One of the difficulties faced with uniformly spaced layouts is that
an edge between two nodes on different levels with one or more
intervening levels may exactly coincide with another edge when-
ever edges are drawn strictly as straight lines. The special purpose
operation ARRANGE_LATERAL is used to partially compensate for
this condition. ARRANGE_LATERAL examines the dependent
nodes of each node and whenever it finds a pair that are separated
by one or more intervening layers, moves the dependent node
either left or right by the amount 8. While ARRANGE_LATERAL
may not always yield an optimal result, it is particularly useful in
interactive applications where high-performance is required Since
ARRANGE_LATERAL must examine each edge it time complexity

is ©(max(IV1,IEl)).

ARRANGE_ADJUSTED ([31);

This special purpose operation performs a simple useful heuristic

arrangement operation involving leaf nodes with only one parent.
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ARRANGE_ADJUSTED insures that, if possible, such nodes are po-
sitioned directly beneath their parent. This can be accomplished
by first positioning all single parent nodes along each level and
then uniformly filling in with constant spacing & all remaining
nodes along the level. Since two or more single-parent nodes may
have the same parent, it is not always possible to accommodate all
such nodes. Since ARRANGE_ADJUSTED must examine each node
edge, it is also @(max(IVLIED)). This operation is primarily used in
at the completion of an optimization sequence (discussed in Chap-
ter 6) to make fine adjustments to the layout that are of suffi-
ciently low energy that the optimization algorithm may not have

detected them.

Note that the set of arrangement operations outlined in this section are by no means
exhaustive. While the operations presented here address many common dependency
visualization issues, there remain numerous questions concerning optimality of the re-
sulting layouts and whether or not they capture the iayout criteria of interest. Chapter 5

will lay the framework for making this determination.

3.5 Reduction

The concept of composite layouts was introduced in Section 2.11 as a powerful
mechanism for collapsing portions of complex dependency graphs while simultaneously
tracking and maintaining the dependency information associated with each composite
element. Element consolidation is a tremendous tool for organizing complex structures
and controllihg visual complexity. Of particular interest is the ability to reduce the

number of visible edges by collapsing multiple nodes with numerous interdependencies
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into a single composite layout. The utility of this operation can be easily demonstrated
by re-examining our sample system used throughout the previous examples.

Re-drawing our example system using a centered, dependent arrangement with the
node and edge attribute information as provided above, a resulting layout without the

use of composite reduction is shown in Figure 3.1.

Figure 3.1 Example system without composite reduction

If the element IO is reduced with INPUT and OUTPUT, forming the composites INPUT_IO
and OUTPUT_IO, respectively, and the elements MATRIX, VECTOR, and SCALAR are re-
duced to the single composite element, LINEAR_ALGEGRA, a new resulting layout is
shown in Figure 3.2. Note that a total of seven edges have been eliminated from view,
but without loss of important information. These dependencies can still be found by ex-

amining the contents of INPUT_IO, OUTPUT_IO, and LINEAR_ALGEBRA.

INPUT_IO COMPUTE| |OUTPUT_IO

LINEAR_ALGEBRA

Figure 3.2 Example system with composite reduction
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This section presents several useful operations for performing this reduction process.
Each operation makes use of either the selection set 6, or the node/edge attribute sets.
A typical editing session or configuration manipulation sequence might involve a series
of arrangement operations followed by a set of selection operations, followed by a re-
duction operation. As a result of the operation, one or more new nodes will be gener-
ated within the configuration. The attributes of these new nodes and their corresponding
edges are assigned via the inheritance rules outlined in Section 2.6 and Section 2.8, re-
spectively, or via manual execution of the the SET_NODE_ATTRIBUTE and

SET_EDGE_ATTRIBUTE operations.

Selection

Perhaps one of the most useful reduction operations is the ability to consolidate
those elements specified by the selection set 6,. This mechanism allows nodes to be
specified both by manual selection (i.e. SELECT_NODE) or via any of the selection op-
erations presented in Section 3.3. All specified nodes are consolidated into a single new
node. The name attribute of this new node is left undefined at the completion of this
operation and should be set with the SET_NODE_ATTRIBUTE operation. The RE-
DUCE_SELECTED operation is defined as follows: |

Operation: REDUCE_SELECTED ;

Description: The REDUCE_SELECTION operation makes extensive use of the
operations previously defined. It first creates a new node v and in-
serts v into the current layout A. It then creates a new layout / and
binds v to /. Using the editing operations from Section 3.2, all of
the nodes in ¢ A are cut from A and pasted into the new layout /.

The selection set G, is reset to v upon completion.
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CREATE_NODE( v );
SET_NODE_ATTRIBUTE( v, composite );
INSERT_NODE (v, A);
CREATE_LAYOUT( [, (¢, Cyr c));
CREATE_BINDING( b, v, I):

CUT;

temp ;= A;

A=

PASTE;

ARRANGE_DEFAULT;

A :=temp;

SELECT_NODE( v );

Analysis: Since CUT and PASTE are O(IVl x ILl), ARRANGE_DEFAULT is
O(Vl), and all other operations are constant time, RE-

DUCED_SELECTED is (V1 x ILI).

Componen-t Reduction

At the start of any complex system analysis session, it is instructive to first reduce
the system into its weakly and strongly connected components. If a system contains
more than one weakly connected component, the ability to separate multiple compo-
nents can significantly reduce the complexity of the organizational task by breaking it
down into several smaller, independent visualization problems. While this is a wise
strategy, their is frequently little gained since even very large systems such as shown in
Figure 1.3 may contain only one weakly connected component.

Using typical configuration control mechanisms, common in modem software engi-
neering environments, it is usually possible to separately maintain descriptions of iso-
lated systems. A system which contains n weakly connected components can generdlly
be regarded as n separate systems and which can be maintained independently since
there exists no interdependencies. Nevertheless, it is still possible for two or more sys-

tem descriptions to coexist either unwillingly or unkowningly. A mechanism for reduc-
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ing these systems into separate components is therefore still in order. The RE-

DUCE_WEAK operation provides this functionality.

Operation:

Description:

REDUCE_WEAK ;

The operation REDUCE_WEAK is a variant of the SELECT_WEAK
operation described above in Section 3.3. While SELECT_WEAK
used the selection set ¢ '» REDUCE_WEAK works with the entire
layout, decomposing it into individual components only if more
than one component exists within the current layout A. RE-
DUCE_WEAK begins by building a set W of all nodes in the current
layout A. The algorithm looks for an element v in W and uses it to
initialize a search queue. The algorithm then removes elements
from the queue looking for both parents and children that have not
yet been examined. Whenever an unexamined element is encoun-
tered, it is added to the search queue, removed from W, and
marked as selected. When the search queue is empty, a weakly
connected component has been found. If the connect component is
the same as the entire layout, the algorithm terminates, otherwise
the component is collapsed to a single composite node. The proc-
ess repeats until all nodes in the set W have been searched.

VYvlve V,v—p,p, e P, do

W=Wu{v};
end;
count := IWl;

while3v|ve Wdo
SELECT_NONE;

QUEUE < v;
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while QUEUE # & do
v ¢— QUEUE;
SELECT_NODE (v, A);
Vwlwe W,((v,w)e Eor(w,v) € E) do
fweg o A then
QUEUE <« w;
We=W-{w]};
SELECT_NODE (w, A);
end;
end;
end;
if count =l Al then
REDUCE_SELECTED;

else
exit;
end;
end;
Analysis: As a variant to the weakly-connected component algorithm, the

basic sequence is O(max(lEl, IVI)). However, the RE-
DUCE_SELECTED operation may have to be executed as many as

IV1 times. REDUCE_WEAK is therefore ©(IV12).

Reduction of a layout into its strongly connected components is useful as it provides
a mear for isolating cyclic portions of the layout that contain no inherent hierarchical
structure. The ability to collapses these portions of the layout into a composite layout
would allow the resulting layout to be treated hierarchically without concern over cyclic
dependencies. The cyclic components could then be examined independently within an-
other layout. Operations such as SELECT_MAX_IN and SELECT_MAX_OUT are useful in
these instances for locating pivotal elements that potentially introduce the cyclic behav-
jor. As expected the REDUCE_STRONG operation is similar in nature to the SE-
LECT_STRONG operation except that strongly connected components are searched for

over the entire layout rather than just from select set G, .
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Operation: REDUCE_STRONG ;

Description: The REDUCE_STRONG is nearly identical to SELECT_CYCLIC ex-
cept that a REDUCE_SELECTED operation is performed at the
completion of each selected component identification. For opera-
tional convenience, only those strongly connected components
that contain two or more nodes are collapsed. An updated Part II
of the SEARCH procedure is listed here:

if LOWLINK[v] = DFNUM[V] then
w « STACK;

ifv#w then
loop
SELECT (w, A);
exit when v =w;
w & STACK;
end;
REDUCE_SELECTED:;
SELECT_NONE;
end;
end;
Analysis;s  REDUCE_STRONG is also ©(IV1%) as a result of the ®(IVI x LLI)

time complexity introduced by the REDUCE_SELECTED operation.

Node Attribute Reduction

The use of node attributes was originally introduced in Section 2.6 as an aid to vis-
ual understanding. As seen with the selection operations in Section 3.3 and to be ex-
plored further with regards to configuration metrics in Section 5.4, attributes can serve
many other purposes, both in the manipulation and in the evaluation of a configurations.
A general purpose reduction operation that consolidates based on the matching of a par-
ticular set of attributes could prove quite useful. The abilit to collect, for example, all

foreign, standard system elements into a single composite node so that the system’s ex-

=m0
R LR
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ternal interfaces can be examined is often of frequent interest. To provide this function-
ality, a simple node attribute reduction operation based on SELECT_NODE_ATTRIBUTES
can be defined as follows:

Operation: REDUCE_ATTRIBUTES ( attributes ) ;

Description: The operation REDUCE_ATTRIBUTES accepts a parameter attrib-

utes < ¢ and is comprised of the following operation sequence:

SELECT_NONE;
SELECT_NODE_ATTRIBUTES ( attributes );
REDUCE_SELECTED;

Analysis: Since SELECT_NONE and SELECT_NODE_ATTRIBUTES are both
®(Vl) and REDUCE_SELECTED is OVl x ILI), RE-

DUCE_ATTRIBUTES is also O(IV1 x ILI).

While the REDUCE_ATTRIBUTES operation serves many useful purposes, it is often
desirable to consolidates nodes of similar attributes into groups of composite nodes
rather than into just one single node. Of specific interest is the use of the name attribute.

In large system design, naming conventions are frequently used to help identify
groups of closely related components. In Ada for example, compilation unit specifica-
tions and their bodies (i.e. implementations) possess the same unique name. Conse-
quently, it is advisable that these elements be consolidated into the same composite
node. If applied globally, the visual complexity of the entire system could be reduced
substantially, consolidating as many as IVl + 2 nodes. Similarly in Ada, subunits result-
ing from applications of top-down decomposition design share the same name prefix.

The elements COMPUTE, INPUT, and OUTPUT from the examples above can be used
to illustrate this point. The complete name specifications of these elements would be

MAIN.COMPUTE, MAIN.INPUT, and MAIN.OUTPUT, respectively. Hence, reducing these
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elements into the same composite node would again considerably reduce overall visual
complexity. Application of this concept to Figure 3.2 yields the very. simple system lay-

out shown Figure 3.3.

=3

LINEAR _ALGEBRA

Figure 3.3 Reduced version of example program

Obviously, this type of sequence could be performed manually using operations that
have already been introduced. This, however, assumes that the names of the system ele-
ments to be reduced are known ahead of time. The ability to automatically apply this
concept on large system configurations with numerous naming groups, all of which may
be unknown prior to the operation, could significantly reduce visual complexity. The
REDUCE_NAMES operation is introduced for this purpose.

Operation: REDUCE_NAMES ;

Description: The REDUCE_NAMES operation again makes use of many of the
previously defined operations. REDUCE_NAMES iterates through
a layout’s node list examining the name attributes of all node
pairs. All nodes with suitably matching name criteria (as defined
by the MATCH function) are selected. At the completion of each
pass through the outer loop, the selected items are reduced into a
single node if more than one item was selected. The name attrib-
ute of the new composite node is assigned based on the name at-
tribute of the internal nodes. The process repeats until all node

pairs have been examined.

Vvive V,vop,,p, e P, do
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SELECT_NONE;
Vwlwe V,w—p ,p, € P, do
If MATCH( NAME(v), NAME(w) ) then
SELECT_NODE(w);
end;
end;
if o, |> 1 then
REDUCE_SELECTED;

SET_NODE_ATTRIBUTE( v
end;
end;

/

news 1HAMe, NAME(V) );

Analysis: Since REDUCE_NAMES must examine all node pairs within the
layout A, a total of @(IV1%) examinations is required. In the worst
case, a total of IVl <+ 2 applications of the REDUCE_SELECTED op-
eration may have to be performed. As a result, a total of IVI2 x
ILI/2 operations will be required. Since IV >> IL|/2, RE-

DUCE_NAMES is @(IV1).

Edge Attribute Reduction

Just as it is useful to perform node consolidation within layouts based on node attrib-
utes, so to may it be useful to employ edge attribute reduction techniques. The utility of
a general purpose reduction operation which consolidates an entire set of nodes associ-
ated with a particular edge attribute into a single composite node is probably of limited
value since edge attribute similarity in large configurations seldom implies a direct rela-
tionship. However, the ability to reduce a node directly linked to several dependents via
an edge with a particular attribute has many more applications. Two cases concerning
the implied and restricted attributes are immediately apparent.

Recall from Section 2.8 that the implied attribute was used to indicate tight coupling
between system elements where the existence of one element immediately implied the

existence of the other. In these instances, it is convenient to consolidate both nodes into
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a single node to.reduce overall system visualization complexity. Similarly, the re-

stricted attribute was used to represent the dependency that exists between a system ele-

ment and its subelements in hierarchical and top-down decompositional system architec-

tures. Here too it would be beneficial to consolidate an element and all of its

subelements into a single composite element for the same reasons. The RE-

DUCE_IMPLIED and REDUCE_RESTRICTED operations are provided for this purpose.

Operation:

REDUCE_IMPLIED ;

Description: The REDUCE_IMPLIED operation scans all node edges contained

Analysis:

within A and con_solidates all nodes associated with edges that
possess the implied attribute. Consolidation is performed by se-
lecting a node and all of its dependents that are linked via an im-
plied edge executing the REDUCE_SELECTED operation. The
process repeats until all node/edges in A have been examined.

Vvive V,v-op,p, e P, do
SELECT_NONE;
SELECT_NODE(V);
Vwlwe V,w-p,,p,€ P,, (v,w)e Edo

if implied € E(V’ W) then
SELECT_NODE(w);,
end;
end;
if |6,| > 1 then
REDUCE_SELECTED;
end;
end;

REDUCE_IMPLIED must iterate through all IVl nodes performing a
REDUCE_SELECTED operation on as many as half of the nodes.
Since REDUGE_SELECTED is ®(V1 x ILI) and IV >> LI, RE-

DUCE_IMPLIED is O(IV12).
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Operation: REDUCE_RESTRICTED ;
Description: The REDUCE_RESTRICTED operation is identical to RE-
DUCE_IMPLIED with the exception of the statement
If implied € €, » then
which is changed to
If restricted € _e(v, w) then

Analysis:  As above, @(VP2).

3.6 Compaction

When working with large configurations, nodes can easily become widely dispersed
across the visualization making the entire configuration difficult to view in its entirety.
Consequently, it frequently is useful to be able to “compact” a configuration along one
of the axes so that nodes are located in close proximity. The ARRANGE_UNIFORM op-
eration presented in Section 3.4 accomplished this along the x-axis. This operation can
easily be reformulated to the y-axis and z-axis, giving rise to the following three opera-
tions:

Operation: COMPACT_X
COMPACT_Y
COMPACT_Z

‘ Description: Arranges nodes uniformly along the x, y, and z axes, respectively.

Analysis: Identical to ARRANGE_UNIFORM, @(IV1).

A related operation is to compact the visualization space itself, rather than its con-
tents. As defined, a visualization space is set of possible node position values. Com-
paction of a visualization space is used to reduce of the number of positions possible for

nodes.
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Operation: COMPACT_VOLUME
Description: COMPACT_VOLUME reduces the current visualization space S, to
the smallest volume capable of holding the current layout’s con-
tents. Essentially, COMPACT_VOLUME iterates through the current
layout to determine the maximum x, y, and z coordinate of every
- node and uses these values as new dimensional limits for S A
Analysis: ewuwn).

The COMPACT_VOLUME operation is particularly useful during the optimization
process presented in Chapter 6. Used prior to a depth-first and breadth-first arrange-
ment operation and applied to a layout’s root node, provides a simple-heursitic for deter-
mining suitable visualjzation space limits. The maximum height and width of the visu-
alizaiton space at the completion of these two operations is generally adequate. The
following operation sequence provides this functionality:

ARRANGE_DEFAULT;
COMPACT_VOLUME;
SELECT_ROOT;
ARRANGE_DEPTH;
ARRANGE_BREADTH;

3.7 Archival

The final set of operations to be discussed are primarily concemed with configura-
tion housekeeping type functions that provide a necessary foundation for an effective in-
teractive environment. These operations allow configuration specifications to be origi-
nally loaded from an arbitrary system, manipulated, and then stored for later access.
Included in this discussion are also the export operations for generating meta-

configurations.
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As an aid to both defining and saving configuration descriptions, a definition lan-
guage referred to here as ADL (an acronym for A-Vu Definition Language) is refer-
enced. This language corresponds closely to the configuration model presented in
Chapter 2, but incorporates a syntactical structure that makes it easier to specify, read,
maintain, and parse than the formal description. A complete description of ADL is pre-
sented in Appendix A.

The ability to maintain configurations in this manner has tremendous advantages.
First, a complex system can often be organized and viewed in many different perspec-
tives. As mentioned in Chapter 1, the type of user, their particular expertise, and their
specific interest will often mandate that they view a particular system from a different
perspective. The ability to create and save different configurations of the same system
allows these users to explore many different aspects of the system, providing a mecha-
nism for documenting their understanding and for exchanging their perspectives with
others.

Second, just as a text document can not always be prepared in one sitting, it may
also be difficult to assemble a desirable configuration for a complex system in a short
period of time. Similar to text, a configuration may require further editing and modifi-
cation as addijtional information about the system is obtained or clarified. A configura-
tion storage mechanism is useful for maintaining and updating system views that may
continue to evolve over time.

Lastly, the use of a readable/writeable definition language allows the tools devel-
oped here to process dependency structures from many different types of systems via
the use of an appropriate translator. The configuration definition is sufficiently flexible

that it can be used to easily represent virtually any directed graph type description.
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The operations presented in this section were again modeled after a typical interac-
tive text editor, allowing configurations to be created, saved, and closed in external file
storage. A typical configuration examination session begins with an'OPEN operation
where an initial ADL description of a system is read and recast in an appropriate con-
figuration data structure as determined by the implementatiox.l. Alternatively, the LOAD
operation can be used to extract the dependency information directly from a system en-
vironment. The A-Vu system described in Chapter 7 implements this operation for
large Ada program libraries. Once an initial configuration is generated, the user can
proceed to manipulate the configuration using the techniques presented throughout this
discussion. A copy of the configuration can be stored at any time via a SAVE operation.
Similarly, a previously saved copy can be recalled. At the completion of a session, the
resulting configuration can then be closed, relinquishing any data structures that may
have been allocated by the implementation. A brief summary of the basic operations
used for these purposes is presented here. As all of these operations make use of stan-
dard language parsing and generation techniques, their performance is proportional to
the number of nodes, edges, layouts, and bindings defined within the configuration.
That is, each operation is essentially ©(max(IV1, |El, LB, ILI).

Operation:  OPEN ( file_specification ) ;

Description: The OPEN operéltion reads an ADL file, parses its contents, and
constructs a corresponding configuration data structure for use by
the visualization system. In an actual implementation, the OPEN
operation would be initiated by a user to examine either a newly

defined configuration or a configuration that was saved from a

past session.




Operation:

Description:

Operation:

Description:

Operation:
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SAVE (file_specification ) ;

The SAVE operation is used to store the current contents of a con-
figuration in a file for later access via the OPEN operation. The
OPEN and SAVE operations provide a mechanism for maintaining

numerous views of the same dependency structure.

LOAD ( file_specification ) ;

The LOAD operation provides an alternate method of initially de-
fining a configuration structure. The LOAD operation is intended
to be used within the context of a particular system environment
for directly extracting element and element dependency informa-
tion from a system. The A-Vu system described in Chapter 7 for
example, uses this operation to extract the appropriate module in-
formation from large Ada software systems by parsing its program
library listing. This operation is provided for convenience in
working in this environment and eliminates the need for an inter-

mediate ADL translator.

CLOSE ;

Description: The CLOSE operation is complementary to the OPEN operation.

When access to a particular dependency structure is no longer of
interest, the CLOSE operation is used to dispose of its configura-
tion structure and prepare the visualization system for the next
system to be examined. A typical implementation would provide

verification that the current configuration being examined (if any)



141

has been saved and would prompt (if necessary) for a save opera-

tion.

The remaining two operations are provided specifically for the purpose of generat-

ing meta-configurations as described in Section 2.12. Recall that meta-configurations

are used to describe either a configuration’s layout containment structure or a configura-

tion’s layout dependency structure. The two export operations described below per-

forms these functions. These operations are particular useful when working with very

large configurations where the composite layout structure becomes increasingly com-

plex with the introduction of each new composite space.

Operation:

Description:

Operation:

Description:

EXPORT_CONTAINMENT ( file_specification ) ;

The EXPORT_CONTAINMENT operation creates a meta-
configuration description of the current configuration’s layout con-
tainment structure. This meta-configuration is written to a file in
ADL format so that it may subsequently be accessed via an OPEN

operation.

EXPORT_DEPENDENCY ( file_specification) ;

The EXPORT_DEPENDENCY operation is similar to the EX-
PORT_CONTAINMENT export operation except that the meta-
configuration it creates describes the current configuration’s layout
dependency structure rather than its containment structure. This

meta-configuration is again written to a file in ADL format.
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While this concludes a comprehensive survey of important configuration manipula-
tion operations, it is by no means exhaustive. The operations described above address
the most frequented issues in complex structure analysis and provide a solid foundation
with which to build other future operations. As configurations are explored, sequences
of repetitive operations will emerge and additional dependency analysis questions will
arise. This information can then be used to formulate new configuration operations as
part of a continuous refinement process.

-Although the utility of these operations can be easily shown in practice, the ability to
measure their effectiveness is still lacking at this point in the discussion. At the comple-
tion of each operation, an analysis of the operation’s performance was discussed. This
analysis described only the operation’s computational performance and did not capture
how well the application of the operation contributed to increased system understanding.
Hence, a quantitative measure for evaluating a system’s complexity is now needed.

This issue will now be addressed in the next chapter.
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4. Configuration-Viewing

The success of the nianipulation operations piesented in Chapter 3 is closely linked
to the effectiveness of the methods for displaying the information that these operations
produce. Dependency information display must be treated as an integral part of the con-
figuration generation process. This chapter examines various issues associated with the
generation of visual representations of A-Vu model configurations.

Several methods for displaying configuations depending upon their intemal proper-
ties are presented in Section 4.1. When viewing an arbitrary configuration, it is‘useful
to be able to examine the configuration from a variety of perspectives. Section 4.2 con-
tains a collection of viewing parameter operations that p.rovide this functionality. Sec-
tion 4.3 defines a set of operations for navigating throughout nested configuration struc-
tures. Prior to displaying a configuration, it is also useful to first eliminate or reduce

any unnecessary information. Section 4.4 describes a filtering process which serves this

purpose.

4.1 Configuration Display

Once a configuration has been constructed, a visual representation of its contents
must next be generated. While the A-Vu model mandates no specific technique, differ-
ent methods lend themselves to different types of visualization spaces associated with
each configuration layout. After a configuration has been created and an initial arrange-
ment has been made, the visual representation that is generated must be suitable for the
particular display environment. As various manipulation operations are subsequently
applied to the configuration and elements within the configuration are moved through-
out various visualization spaces, the visual representation of the configuration’s current

state must be updated accordingly. In an interactive environment, this update process

SR,
A
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must be continually applied while maintaining adequate user performance. Several op-
erations are identified in this section that support these functions.

The A-Vu model treats a complex graph as a series of nested three-dimensional
spaces. Most display environments, however, are two-dimensional in nature. Conse-
quently, a mapping must be established from conceptual visualization space onto the
physical display space. Recall from Section 2.4 that a visualization space may be dis-
crete, hybrid, or continuous. Several different mapping schemes applicable to these dif-

. ferent types of spaces are useful for display purposes.

Planar

In traditional graph layout approaches, complex graphs are decomposed into a series
of subgraphs. Each of these subgraphs are then managed separately in planar two-
dimensional form. Discrete and hybrid visualization spaces are a natural match for this
type of approach. Each discrete plane in the visualization space is used to hold one of
these subgraphs. A layout can then be displayed by examining planar cross-sections of
its visualization space. If p = @, py Dp,) is the position of node v in layout L, and z is
the discrete plane being viewed along the z-axis, then v will be mapped to the display if
P, = z. This technique is a natural extension of standard graph layout methods. With
discrete visualization spaces, planar views are perhaps the most convenient and intui-
tive. Planar views are useful in examining the layered or hierarchically arranged lay-

outs.

Composite
With hybrid and discrete visualization spaces, nodes can become widely dispersed
across multiple planes. It is convenient at times to be able to project the positions of all

these nodes onto a single two-dimensional plane to examine the density and distribution
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of nodes in the visualization space. If p = @y Pys Dp,) is the position of node v in layout
L, and the visualization space is being viewed along the z-axis, then will v will be
mapped onto a position (p,, py) in two-dimensional plane regardless of the value of p,-
This operation is particular useful with hybrid spaces where nodes in various subgraphs
can be freely placed within each plane, yet a single composite graph can be rapidly con-

structed.

Spatial

Since visualization spaces in the A-Vu are inherently three-dimensional, the third
viewing scheme is to display the entire contents of the space using three-dimensional
viewing technique that employs view perspective transformation, polygon clipping, and
hidden surface removal [Ha’83). Continuous visualization spaces are best displayed us-
ing spatial viewing since they exhibit no inherent planar structure. This scheme could
be further extended to include color rendering, shading, light source illumination, etc. as
described in [Ro’85). Tools to interactively examine, enlarge, and rotate the visualization
space representation are currently available through numerous software and hardware
packages.

While a three-dimensional display environment would appear most beneficial due to
A-Vu underlying visualization space structure, only certain dependency structure are
ideally suited to this environment. Cone trees are an excellent example [Ro’91]. Unfor-
tunately, arbitrary software system dependency structures rarely conform to natural
three-dimensional objects in this manner. Consequently, full spatial rendering could ac-
tually compound rather than reduce visual complexity due to the increased amount of
information to be presented. Nevertheless, spatial viewing provides a powerful visuali-

zation alternative to standard planar projection.
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Refresh

One a configuration is generated and a display scheme has been selected, the visual
representation of each layout within the configuration can be presented on a graphical
display for examination by the user. Whenever a new layout within the configuration is
selected as the current layout A, whenever A is modified, or whenever new viewing pa-
rameters are selected, a new visual display of this information must be generated and
presented to the user. The REFRESH operation performs this function.

Operation: REFRESH ;

Description: This operations generates the actual graphical representation of the
current layout A and presents this information to the user on a dis-
play screen. The details of this process are dependent upon the
particular software visualization packages and methods employed.
Suggested representations for nodes and edges based on their at-
tributes where presented in Chapter 2. REFRESH performs this
operation by scanning through the configuration, data structures,
examining the nodes and edges contained in the current layout
along with their attributes. Information is displayed as directed l.)y
the viewing parameters described in Section 4.2.

Analysis: Since this operation must scan every node and edge in the current

layout to generate a display, REFRESH is @(max{|V1, IEl}).

4.2 Viewing Parameters
In order to apply the viewing schemes presented in the previous section, the display
system must be properly directed as to which portion of the visualization space should

be examined, how, and from what perspective. The operations below are typical of any
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three-dimensional viewing system with added support for discrete planar viewing. To
aid in their definition, an additional variable will be added the configuration status defi-
nition.

Recall from Section 2.13 that the current state of configuration was defined by y =
(A, Z, X). This definition will be extended to include current viewing parameters. Con-
figuration state is redefined as Y = (A, Z, X, E) where A, Z, X, are defined as before
and where E defines the collection of viewing parameters. Let E = (¢, 9, p, &, G, T, 0).
The variable @ is referred to as the viewing scheme, 0 is referred to as the viewing direc-
tion, p as the viewing reference, 7 as the viewing perspective, ¢ as the scaling parame-
ters, T as the translation parameters, 0 as the viewing orientation, and p as the view re-

flection as described respectively below.

Scheme

As described in Section 4.1, three different view schemes can be used to examine
the visualization spaces contained within a configuration. Let O € {planar, composite,
spatial} represent the current viewing scheme as outlined above. The following three
operations are use to select the type of viewiig scheme to be applied during a REFRESH
operation:

Operation: SET_PLANAR ;
Description: Selects planar viewing as the current display scheme.

O := planar;

Operation: SET_COMPOSITE ;

Description: Selects composite viewing as the current display scheme.

¢ := composite,
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Operation: SET_SPATIAL ;
Description: Selects spatial viewing as the current display scheme.

¢ := spatial,

Analysis: Since no operations are performed on any nodes or edge
SET_PLANAR, SET_COMPOSITE, SET_SPATIAL are constant time,

(o).

Direction

Since visualization spaces are three-dimensional, they may be viewed from many
different angles. With discrete visualization spaces; the most natural planar views occur
along the x, y, and z axes. Hence, it is reasonable to be able to view such spaces from
three basic directions. With hybrid spaces, planes are typically oriented along, say, the
z-axis (front). Consequently, planar viewing along the x-axis (side) any y-axis (top) is
of limited value since nodes seldom fall into natural planes along these directions.
Composite viewing, therefore, is more appropriate for the side and top directions. With
continuous spaces, nodes many not naturally reside within any plane. As a result, a
viewing direction independent of the node arrangement is required.

The viewing direction parameter d is best described as a vector in S. Operations for
selecting viewing direction can then be defined in terms of d as follows:

Operation: VIEW_FRONT ;

Description: & :=(0, 0, -1);

Operation: VIEW_SIDE ;

Description: 8 :=(-1, 0, 0);
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Operation:  VIEW_TOP ;

Description: & := (0, -1, 0);

Operation: SET_DIRECTION (x,5.2);

Description: & :=(x, Y, 2);
Analysis: Constant time, ©(c).

Reference

In order to select a particular plane within the visualization space to be viewed, a
reference point p within the space (p € S) must be first selected. The reference point p
can also be used as center point for three-dimensional perspective projections in associa-
tion with spatial viewing schemes. The SET_REFERENCE operation performs this func-
tion. |

Operation: SET_REFERENCE (x, y, 2);
Description: Sets the reference point p to the position vector (%, , 2).
p:=Y,2);

Analysis: Constant time, ©(c).

For discrete and hybrid spaces, it is useful during interactive sessions to be able to
move the reference point forward or backward a single plane at a time or move to a spe-
cific plane. The direction of movement or axis of plane selection can be controlled by -
the viewing direction parameter & as follows:

Operation: VIEW_NEXT ;
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Description: VIEW_NEXT subtracts a unit_vector from the viewing reference
point p along the viewing direction 8. This operation is performed
by the statement:

p i=p - (SIS

Operation: VIEW_PREVIOUS ;

Description: VIEW_NEXT adds a unit vector to the viewing reference point p
along the viewing direction 8. This operation is performed by:
p = p + (SIS

Operation: SET_PLANE(p);

Description: VIEW_PLANE replaces the planar component of the viewing refer-
ence point p along the viewing direction 6 with p. This operation
is performed by:

p :=p - p (SIS + p (BB

Analysis: VIEW_NEXT, VIEW_PREVIOUS, and SET_PLANE are all constant

time operations, &(c).

Perspective
With planar and composite view schemes, a parallel projection of the visualization
space contents onto a planar viewing display is assumed. Under spatial viewing, a cen-
ter of projection, the perspective point T € §, can be specified. Unlike the parallel pro-
ject schemes, a perspective projection provides the viewer with an indication of depth or
distance. Items in the visualization space appear smaller the further they are away from

n. The transformations that defined this projection are again defined in [Ha’83). Each
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point in the visualization space would transformed accordingly during a REFRESH op-
eration.
Operation: SET_PERSPECTIVE (x, y, 2) ;
Description: ~ Sets the center of perspective 7 to the specified position.
7= (X, Y, 2);

Analysis: Constant time, ©(c).

Translation

When examining large configurations, it is often difficult to display the entire con-
tents of layout on a single display screen at one time. Consequently, it is useful to be
able to “pan” or “scroll” across across the visualization space, examining selected por-
tions as desired. It p is an arbitrary point within the visualization space, then a trénsfor—
mation operation applied to p can be defined. Applying the transformation to all points
within the visualization space during the execution of the REFRESH operation will pro-
duce the desired translation. This transformation can be defined in matrix form using

homogeneous coordinates (i.e. 4x4 matrix) as

1 0 0 0
0 1 0 0
0 0 1 0
T, T, T, 1

where T, Ty, and 7, define the distance to be moved in the x, y, and z directions, respec-
tively. The viewing parameter T is used by the REFRESH operation to perform this
transformation.
Operation: SET_TRANSLATION (T, Ty, T);
Description: Sets the transformation parameters, T.
T:= (Tx, Ty, Tz);

Analysis: Constant time, ©(c).
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Scaling

With large configurations, it is also useful to be able to enlarge or reduce a layout’s
visual representation in order to make more effective use of the limited display scréen
space or to better discemn configuration detail. This function can again be defined by a
matrix transformation ‘that is applied to each position p within the visualization space

during the execution of the REFRESH operation. This transformation is defined as

occg;a
O%MQ
SQhlhOo O
—_OoOoO

where S, Sy, and S, define the scaling factors along the x, y, and z axes, respectively.

The viewing parameter G is used by the REFRESH operation to perform this transforma-

tion.
Operation: SET_SCALING (Sx, Sy, Sz) 4
Description:  Sets the scaling parameters, G.
c:=(S,, Sy, S,);
Analysis: Constant time, @(c).
Orientation

With any of the three viewing schemes, its is often convenient to be able to rotate
the visualization space with respect to the viewing display. This operation allows the
visualization space contents to be better oriented along a horizontal or vertical axis for
improved visual comprehension. The viewing parameter 8 = (6, 9),, 9,) is used to de-
scribed the angles of rotation along each of the three axes passing through the viewing
reference point 7t and parallel to the visualization space origin.

Rotatiox-l about 7 is accomplished by first translating the visualization space from

to the origin using the translation transformation as described above and then perform-



153

ing the three axis rotations. The transformations for ex, Gy, and O, are defined, respec-

tively, as follows:

1 0 0 0 cosey 0 -sin, 0 cosO, sin, 0 O
0 cosO, sind, 0 0 "1 0 Yo -sind, cos, 0 0
0 -sind, cosd, 0 sin, 0 cosd 0 0 ‘0 "1 0
0 0 "0 "1 0’00 71 0 0 0 1

For discrete spaces, 0, Gy, and O, are limited to +i 90° where i =0, 1,2, ... A
similar restriction exists for hybrid spaces when viewing the visualization space from
either the top and side or whenever J is not perpendicular to each plane within the
space. The following operation sets the orientation parameters:

Operation: ~ SET_ORIENTATION (6,, 9),, 0,);
Description: Sets orientation parameters, 6.
0:=(6, ey, 6,);

Analysis: Constant time, ©(c).

Reflection

The final viewing parameter to be presented concerns symmetry. The linkage be-
tween symmetry, visual simplicity, and visual comprehension has long since been estab-
lished [We’52]. Operations to help explore the symmetrical aspects of complex struc-
tures is therefore very beneficial. While the mathematics of symmetry are commonly
equated to group theory, only one of the most basic forms is discussed here. Numerous
others are presented in [Ar’88].

The most common forms of symmetry exhibited within systems involves reflection
symmetry otherwise know as bilateral or mirror symmetry. The viewing parameter p =
(uxy, My M,,) describes mirror-type reflections across the x-y, y-z, and z-x planes, re-

spectively. These reflections are defined as a set of transformations that are applied to
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each point p in the visualization space during the REFRESH operation. The transforma-

tions for Hyys Bypo and p, are defined, respectively, as follows:

1 0 0 0 -1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 -1 0 0
0 o -1 0 0 0 1 0 0 0 1 0
0 O 0 1 0 0 0 1 0 0 0 1

These three transformations can be used as generators to create all eight bilateral sym-
metry transformations of the visualization space including the identify transformation.
The following operation sets the reflection parameters:
Operation: ~ SET_REFLECTION (., By B );
Description: Sets reflection parameters, JL.
o= Ry By )5
Analysis: Constant time, @(c).

4.3 Composites

With the creation of composite spaces, a method for navigating through a configura-
tion’s node/layout binding structure is necessary. Given a particular layout, if a node
within the layout is selected that is bound to another layout, that layout will be selected
as ine current layout. A method for remembering the order in which layouts are visited
is required in order to return along the same path. By restricting nodes to be bound to

no more than one layout, a simple first-in, last-out type navigation scheme can be used

as follows:
Operation: ZOOM_IN(v);
Description: The ZOOM_IN operation determines if the node v is bound to a lay-
out /, and if so, pushes the current layout A onto a stack I" and se-

lects [ as the new current layout. The following sequence per-

forms this operation:
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ifdle L|(v,]) € Bthen

T A;
L:=1
end;

Since it is possible that a configuration may contain a cyclic bind-
ing structure, it is helpful to only allow the new layout [ to be se-
lected if it has already not been visite_d (i.e. exists on the stack I').
The following refinement achieves this effect:

e L|(v,)eBandle I'then

Analysis: Since the binding list must be searched to determined if the node v
is bound to any layout /, ZOOM_IN is ©(IBI). With the restriction

of only one layout allow per node, 1Bl = ILl.

Operation: ZOOM_OUT ;

Description: The ZOOM_OUT operation retumns to the most recent layout vis-
ited, if any, reversing the effect of the most recent ZOOM__IN op-
eration. The following sequence defines ZOOM_OUT:

it '« D then
AT

end;

Analysis: Constant time, ©(c).

4.4 Filtering

Using any of the metrics identified in Chapter 5, the visual complexity of a system
configuration can be directly correlated to the amount of information that must be dis-
played to accurately depict the system. If the complexity of a configuration can not be
sufficiently reduced by rearranging node positions, it makes sense that the alternative is

to work towards reducing the volume of dependency information that must be por-
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trayed. Obviously, this can not be done arbitrarily as important detail may be lost in the
process.

The CUT operation presented in Section 3.2 coupled with the selection operations in
Section 3.3 provides an obvious method for reducing nodes and their associated edges.
Similarly, the use of ‘composite configurations introduced in Section 2.11 provides ef-
fective means of consolidating related nodes and likewise consolidating their edges.
Both of these techniques employ node reduction with edge reduction occurring also as a
consequence. Once these techniques have been exhausted or the composite node strué-
ture of a system is not readily apparent, several useful techniques for directly reducing
the number of edges within a layout can still be applied.

Within the A-Vu framework these edge reduction techniques are referred to as filter-
ing. In actual interactive implementation, it is useful that these operations be performed
by the visualization system at the completion of any modification to the current layout.
The redrawing of the layout on a display screen is referred to below as a refresh opera-
tion. To sustain interactive service, it is important that refresh performance be main-
tained regardless of the filtering option selected. Several filtering methods are presented

here.

Length

After executing a series of arrangement operations, it is possible that two loosely
coupled, but dependent nodes may be positioned a considerable distance apart from
each other. As an aid to examining only those nodes in close proximity, an edge length
filtering option can be provided. This filtering operation can be easily performed by the

visualization system during refresh operation by computing the distance between each
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dependent node pair and displaying only those edges whose lengths are less than the
specified threshold.

Level

In systems that exhibit a high degree of layering (e.g. as measured by J;), there is
regularly little concemn regarding the dependencies that occur within a particular level of
the layering hierarchy. This relationship frequently occurs when peer entities cooperate
on a set of tasks or share a mutual set of resources that are not accessible from outside
the layer. In these instances, the edges between such nodes can be "turned off'- or fil-
tered from view. Since the layer of each node can be deienniﬁed in constant time by
examining the node’s position, layer filtering can be performed with each display re-

fresh in time proportional to the number of edges, |EI.

Transitive

Recall from Example 1.2 that a dependency of the form A—C is transitive if there
exists a sequence of dependencies A—B,, B;—B,, ..,B, _—B,, and B —Cforn21.
The dependencies COMPUTE—SCALAR, COMPUTE—VECTOR, and MA"I'RIX—)VECTOR
from the above examples illustrate this relationship. In system which exhibits a high
degree of hierarchy (as defined by J;)), transitive edges result in low layering measures.
Strictly hierarchical systems can be modified to obtain full layering compliance by re-
placing the transitive edges with a series of intermediate nodes positioned within each
intervening layer. This practice is seldom instituted, however, as it introduces ineffi-
ciency with added volumetric complexity.

Transitive edges from a node v can be readily identified using a depth-first search.
The length of each path or the number of interconnecting edges from v to another node

w is recorded during the search. If there exists a path e from v to w of length one, and
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one or more other paths of length greater than one also from v to w, then e is transitive
and would be turned off by the filtering algorithm. This process can be repeated for
every node in the layout to identify all transitive edges.

Due to the ®(IV12) nature of the transitive reduction process, the visualization system
would suffer considerable performance loss if it were required to determine edge transi-
tivity with each display refresh. Consequently, edge transitivity and edge filtering
would typically be performed on demand. A new transitive edge attribute could be
maintained by the edge transitivity algorithm and used to instruct the visualization sys-

tem during display refresh operations to retain adequate interactive performance.

Reverse

Unless a configuration layout has been arranged according to strictly hierarchy, the
layout may often contain reverse edges. A reverse edge is the result of dependency of a
node position at a lower level in the layout upon a node positioned at a higher level in
the layout. These edges are easily removed by the visualization system during refresh

operations by simply examining the vertical position of each node and ignoring all such

edges.

Antributed

It is possible that at times, only edges with certain attributes will be of concern.
When examining the top-down decomposition of system, for example, only edges which
possess the immediate attribute may be of interested. Conversely, it may be desirable at
times to eliminate edges which possess certain edges. This can easily be accomplished
by maintaining an edge attribute mask or set. During a refresh operation, the visualiza-

tion system would simply compute the intersection of the attribute mask with the attrib-
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ute set associated with each edge. If the results of the intersection yields the empty set,

the edge would be filtered from view.

Having established methods for defining, manipulating, and viewing complex de-
pendency structures, it is now important to be able to determine the effectiveness of the
visual representations generated for these structures. An effective representation is one
in which the desired organizational properties of the system are readily conveyed to an
observer. To accomplish this, some type of quantitative measure must first be put in

place. This issue will be addressed in the next chapter.
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5. Configuration Evaluation

A quantitative mechanism for objectively evaluating dependency structure complex-
ity is developed in this chapter. This evaluation process is established below by defin-
ing a set of suitable objective or “energy” functions which operate on configurations.
Configuration evaluation is at the core of the optimization scheme that will be presented
in the next chapter.

This discussion on configuration evaluation is divided into four parts. An overview
of the energy function concept is given first in Section 5.1. Next, several popular en-
ergy function components that are based primarily on established complexity metrics
are reviewed in Section 5.2. The discussion in Section 5.3 explores evaluation functions
that are based solely on the directed graph information associated with a configuration
(i.e. a configuration’s node/edge arrangement). The remaining discussion in Section 5.4
examines objective functions that also have access to a configuration’s semantic infor-
mation (i.e. its node/edge attributes). Each of the last three sections contain a compila-

tion of respective energy function types.

5.1 Configuration Energy Functions

Let C be a configuration. An energy function for C is then defined as J(C) which
yields a scalar complexity value. A high value of J(C) is equated to a “complex” con-
figuration while a low value of J(C) is equated to a “simple” configuration. Conse-
quently, the notion of configuration complexity or configuration simplicity can be de-
fined in quantitative terms.

In practice, there are many factors that contribute to system complexity (or simplic-
ity). To address this issue, the function J(C) will be composed from a set of component

functions J, J,, J'3, . " Each of these individual functions will return a value for a



161

particular aspect of the configuration. These functions form an energy function suite
that enables the user to ciistomize thie layout ptocess. Since some of these components
may be considered more important to the user than others, a weight is associated with
each J(C) component.

Note that some function components operate as complexity metrics and are desired
to be minimized while the remaining components act as simplicity metrics and are de-
sired to be maximized. Both component types are easily accommodated by assigning
negative weights to the simplicity components so that they foo may be minimized. The
final objective function used by the A-Vu model is the weighted sum of edch function
component that is selected by the user. The resulting hybrid objective function is then

defined by:
i

The efficiency of the iterative improvement scheme presented in Chapter 6 is de-
pendent on the computational complexity of components J i In order for the algorithms
associated with these functions to perform well, configuration evaluation must be per-
formed quickly. Consequently, the search for energy function in the next three sections
will be again limited to functions whose algorithmic computational complexity is less
than or equal to @(nz) or @(kz) where n is the number of nodes and k is the number of
edges in the configuration. This restriction still offers considerable freedom in algo-

rithm selection, but without undue performance degradation except for vary large values

of nand k.
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5.2 Metric-Based Evaluation

Effective methods for determining the complexity of a system’s design and imple-
mentation are highly sought after. The ability to accurately predict a system’s complex-
ity early in its development life cycle would potentially reduce or eliminate the genera-
tion of undesirable components as well as reduce resulting implementation and
long-term maintenance costs. To this end, a variety of metrics are now in common use
with varying degrees of utility and success [He’89]. Several of these metrics are directly
applicable to the A-Vu model and are presented here within the context of the configu-

ration framework.

Counting -J ,J &

The first set of metrics involve simply a count of a particular system property. Two
obvious metrics of immediate interest when dealing with an unfamiliar system are the
total number of elements J ,, and the total number of dependencies J ¢ defined, respec-

tively, as follows:

Additional examples include the summation of sets of node and edge attributes. In
software systems, a common metric in this class includes the popular “lines-of-code”
metric. As simple as these metrics may appear, strong arguments can be made regard-
ing their effectiveness [CM’91]. While counfing metrics provide very limited informa-
tion regarding a system’s organization, they are effective in gauging the relative magni-
tude of the visualization problem. Consequently, they are typically the first metrics to

be calculated.
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Analysis: J, and J, are obviously ©(IV1) and ©(IEl), respectively, but gener-
ally can be determined in constant time ©(c) depending upon the

internal implementation of the configuration data structure.

Volumerric - Jy,

Similar to the counting metrics are an analogous set of metrics that examine a sys-
tem’s volume or displacement. Thesé metrics determine the amount of design space that
is required to properly contain the system’s description. In terms of software systems,
this can be readily equated to the number of bits of memory or bytes of file storage that
are necessary to contain the entire program. Within the context of the A-Vu model, the
volume of a system Jy, will be equated to the amount of visualization space that is nec-

essary to display the entire system. Jy, can be calculated as follows:

IL]

JV=Z“Si“

=)
where L is the set of layouts in C.

In simple terms, Jy, is simply the sum of the length X width X height of all visualiza-
tion spaces contained in a configuration. J,, differs from the counting metrics in that its
'value will change as nodes are rearranged in the visualization space. The number of
nodes occupying a specified volume of visualization space and the number of edges oc-

curring in this volume leads to the following respective definitions of node and edge

density:
—_ J"
JVn = ._I;
J,
= -k
v, =7,
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Analysis: The dimensions of each visualization space §; in C are assumed to
be finite and readily accessible in an actual implementation. This
is readily accomplished by recording the limits of the visualization
space each time a node is placed or repositioned. Jy, is therefore
assumed to be @(c). Since J,andJ ¢ are respectively, ©(IVI) and

©O(IE), both of the density measures are correspondingly the same.

While a default arrangement may yield a lower density value, a higher density lay-
out will generally be required to obtain a better understanding of the system via, (e.g. a
dependent or hierarchical arrangement). Care must be exercised when using these
metrics as they provide a relative measure of complexity between different systems.
Application of the metric on different configurations of the same system may be mis-
leading since higher density configurations may often be much more difficult to under-
stand.

Another important set of important volumetric measures appears in Halstead’s soft-

ware science [Ha’77). These metrics are based on the following definitions:

ng: Number of unique system operands.

% Number of unique system operators.
| N;: Total number of system operands.

N,: Total number of system operators.

Halstead’s metric N is then a count of the total number of elements in the system,
ie.N=N,; +N,. The volume metric V is then defined as
V=Nlog,(n)
Halstead goes on to define an effort (E) and a difficulty (D) defined as
D = (ny/2) x (N,/n,)

E=VxD
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This method is readily incorporated in the A-Vu model by treating nodes as oper-
ands and edges as operators. Similarly, node attributes can be used to distinguish
unique operands and edges attributes can be used to distinguish unique operators. While
currently not incorporated into the A-Vu prototype system described in Chapter 7, these

measures offer an alternative methodology for assessing system volumetric complexity.

Cyclomatic Complexity - I\,

Another immensely popular metric involves the use of MaCabe’s cyclomatic com-
plexity measure. Like Halstead’s measures, this metric similarly asserts that system
complexity is strongly related to certain of its measurable properties. In contrast to Hal-
stead’s method, MaCabe’s measure is directly concemed with the graph structure of a
system. This structure is identical in nature to an undirected equivalent of the graph G =
(V, E) within the A-Vu configuration definition. Within this context and assuming a
connected graph, cyclomatic complexity is defined as

Jy=IEl-IVI+2

While the utility of cyclomatic complexity has been debated [Sh’88], it offers a rea-
sonable upper limit to the (e.g. J, < 10) that should be maintained within systems. Be-
cause of its widespread use, cyclomatic complexity 1s incorporated into the A-Vu metric
suite.

Analysis: Jy 18 obviously ©(max(IV1,IEI)).

Connectivity - J,
The last set of metrics to be discussed in this section are more closely involved with
the dependencies between system components rather than strictly counts of certain sys-

tem properties. A quick re-examination of Figure 1.3 is worthy of a reminder that these

A U
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dependencies are the primary contributor to system complexity. Hence, consideration
of this information is often of greater concern.

The information flow metric developed by Henry and Kafura [He’84] captures the se-
verity or magnitude of system component interdependencies by calculating the fan-in
and fan-out characteristics of each node as previously discussed in the degree selection
portion of Section 3.3. Recall that fan-in is the total number of incoming dependencies
on an element and fan-out is the number of outgoing dependencies on a system element.
Defining fan-in as f;; and fanout as f; ,, Henry and Kafura’s information flow metric for
a single node v can be stated as

1) = (f ) X fopy®) )?
The total complexity of the configuration can then be compyted by summing all of the

complexities of each node as follows:

Jp= ) 0

veEV

As with Henry and Kafura’s information flow idea, a hybrid of this metric can be de-
fined which captures the notion of internal node complexity. This extended concept
maps naturally onto the composite layout structure already defined. While the cuter iay-
out of a complex configuration could appear simplistic, the configuration’s internal lay-
outs could be quite heavily interwoven. Internal or composite complexity can be incor-
porated by modifying the node information flow coxﬁplexity definition as follows:

) =I0) X (fn0) X Foue) )2

The intemal complexity of a node I(v) is recursively defined as

Iv= > Iw
(w,.L)EB,wEL

where w represents a node properly contained in L.
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Analysis: Since the calculation of J, involves the examination of edge edge

on edge node, J ;- is also O(max(IVL,IED)).

Note that the above discussion computed the metrics J - Jps Jyp etc. over the entire
configuration. An alternative approach could easily be formulated that limits the scope
of each metric to the node/edge structure of a particular layout (e.g. A). In practice, ap-
plication of the metric in this manner has proven to be more versatile than a single com-
putation over the entire configuration. Hence, it is assumed that each of the above
metrics can be used either as J q,(C)_or J ¢(L), where ¢ is the particular metric of interest,
C is an entire configuration and L is a single layout. Since a single layout could poten-
tially contain all of the nodes in the configuration, the analysis of these layout-based
metrics remain unchanged. This dual formulation will be assumed throughout the re-
mainder of the chapter.

It is also important to note that each of the above metrics were based strictly on a
system’s graph representation. Although these metrics provide some invaluable infor-
mation in assessing overall complexity, their use in generating understandable layouts is
limited. None of the above metrics take into consideration the positions of nodes rela-

tive to each other. As nodes are repositioned in the visualization space, few changes, if

“any, will be recorded. With the exception of the density measure, the only way to affect

a change is by either adding or deleting nodes to or from an existing layout or configura-
tion. This static nature severely limits their use in visual layout evaluation. This will be
rectified in the next section by introducing evaluation functions that the relationships be-

tween graph elements and the visualization space in which they reside.

-
o
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5.3 Graph-Based Evaluation

The notion of quantifying visual complexity using graph-based objective function
measurements was inspired by [He’89]. The objective functions presented in this section
are useful as they collectively incorporate the layout criteria commonly used in conven-
tional graph layout. Examplés of traditional graph layout considerations are minimiza-
tion of line crossings, hierarchical arrangement, total space (area or volume) occupied
by the diagram, symmetry of the diagram, etc. Each of these consi&erations will be
recast in objective function form.

The following is an initial compilation of graph-based objective functions:

Distance - J
Between every two vertices v; and Vis where v i € Adj(v,), we can define a line
segment lij in the visualization space, denoting the graph edge from v; to v; as shown in

J
Figure 5.1.

& ®

pj

-
Figure 5.1 Distance between two points, p; and p di
The Euclidean distance Dij between any two vertices v; and Vi (assuming a 3-D

space) is defined as

where p; and p ; are the positions vectors of v; and Vj respectively.
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{ 1,  whenv;e Adj(v);

0, otherwise.

then the distance metric J, can be defined as

Jp = ZEIJ | p;— pj I = ZE; ij
y Y

Jp, is a measure of the total distance between all dependent node pairs in the graph or
the total length of all edges of the graph. This function is effective in contracting a
graph and captures, in some sense, the compéctness of a program’s representation in the

visualization space.

Analysis: To determine the total distance of all edges, the function J;, must
iterrate through the entire edge set E to obtain the positions of

each dependent node pair. As a result, J, is ©(IEl).

Proximity - Jp
The use of J, alone does not always assure that connected nodes will tend to lie
within close proximity of each other. This can be observed in the following case involv-

ing three nodes v, v, and v 3 shown Figure 5.2.

P

[

Figure 5.2 Design trade off between distance and proximity

Suppose a graph configuration has been sufficiently transformed to the point where

it is unlikely that the positions of v; and v k will change due to their minimum objective
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function relationship with other nodes in the graph. Minimizing J p would allow vj to be

positioned at any point between v; and v, since Ilvi -V JJI + Ilvj - vkll is a constant. This
situation can be resolved by incorporating the notion of proximity into the objective

function. This new term is used to clﬁster as many dependent nodes as possible. Let

Dy,  Dy<d;
Pij =

0, otherwise.

where d is a constant designating the maximum allowable distance between two depend-

ent nodes. The proximity measure between all dependent nodes in the graph is then
= Sy
U]

As a simplicity metric, J,, is intended to be maximized and hence assigned a nega-

tive weight.

Analysis: Jp must again iterrate through the entire edge set and is therefore
also O(ED).

Edge Crossings -J E

As was evident in Figure 1.3, edge crossings are a major contributor to a graph’s
visual complexity. Efficient algorithms now exist to determine if an arbitrary graph is
planar [Ho'74] (i.e. can be drawn in a plane without any edges overlapping) and, if so,
generate a planar embedding [Ch’79, Ja’88]. Unfortunately, large graphs, such as those
underlying software systems, are seldom planar. Furthermore, seeking a planar organi-
zation of a graph is not necessarily useful due to the loss of spatial relatibnships between
elements that results from the planarization process. Minimization of edge crossings,

however, is still a very desirable feature, particularly when used in conjunction with
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other objective function components. Although the edge crossing problem is NP-hard
[Ea’86], a near-optimal configuration can generally be found using either simulated an-
nealing or genetic algorithms as proposed here or other heuristic methods [Wa'77). The
number of edge crossings J; in a graph configuration can be computed as follows:
Letv,, v, v,, and v, be four nodes in a graph where v € Adj(v,) and v, € Adj(vt).
We can assign to each node position vectors p,., p;, p,, and p,, respectively, as before.
The edge between v, and v, can then be defined by the equation
lrs=proc+ps(1 -o)where0<a<l1
and the edge between v, andv, by the equation
ltu=ptB+Pu(1 -B)where 0<B < 1.
The two edges (vr, vs) and (vt, vu) cross if l‘rs and ltu intersect as shown in Figure
5.3. In order for /.. and [, to intersect, there must exist a point p . which lies on both

lrs and [, . The point p , must satisfy the following equation:

p,o+p,(1-0)y=p,p+p,(1-P)

where0<a<land0<P<1.

Y

Figure 5.3 Crossing of two graph edges

To prevent the case where two edges such as (vr, vs) and (vr, vt) which share a com-
mon endpoint (node), from being counted as a crossing, we further restrict o and 3 to 0

<o<land0<PB<1(ie. o, B#0andc,p+1). Rearranging for o and B yields
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(p,-p o+ @, -p)B=p,-p

Further discussion can be simplified if we assume a two-dimensional visualization
space (i.e. IS = 2). (Note: the notion of a three-dimensional edge crossing is not particu-
larly meaningful in this application.) Since the position vectors contain both x and y

components, the above equation can be rewritten in matrix form. Let

A= @, ps), Ou— P,
@~ Ps)y @y Pt)y ’

u™ Ds), Qa
= ,and X = .
i ((p,— ps)y ) (ﬂ )
We then have the equivalent equation

Ax= B.
If det(A) = 0 then the two line segments lrs and ltu can not possibly intersect. If

det(A) # 0, then the parameters o and  can be computed from
x=4A1l3B
Upon solving this equation, if 0 < ot < 1 and 0 < B < 1, then the two line segments lrs
and Itu must intersect and likewise the two edges (vr, v s) and (vt, vu) must Cross.
For every four vertices Vpr Vo Vo V0 the parameters o and § can be computed using
the above procedure.

Let

T

rs

{1, if0<a<land0<P <1;
=

0, otherwise.
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and

. - {Tm;‘, if det(A) # 0;
rstu

0, otherwise.

then the total number of edge crossings in a configuration can then be computed as fol-

lows:

Tg = DD Frufes
s tu

The terms Ers and E 4y, 2T€ NION-ZET0 when there exist edges (vr, v s) and (vt, vu), respec-
tively. Similarly, the term Rrstu is non-zero whenever the edges (vr, vs) and (vt, vu)
CIoss.

Note that as stated, this procedure will not consider two overlapping collinear line
segments an edge crossings. The definition of R, could, however, be suitably modi-
fied to check for this condition when det(4) = 0. Altematively, an additional objective

function component could be defined which specifically checks for this condition.

Analysis: Since minimization of edge crossings is known to be NP-complete
[EA’86], it is not suprising that the computation of edges crossings
J is an expensive operation. As formulated, J,, requires examin-
ing of eacﬁ pair of edges in the layout. This involves a double
nested iteration through the edge set E, resulting in G)(IEIZ). Sev-
eral edge presorting heuristics have been developed, however, to
help address the complexity of the underlying minimization prob-

lem [Ga’92].
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Segmentation - J g

It is often desired to divide a graph into two subgraphs such that the number of con-
nections between the two subgraphs is minimal. This is analogous to placing the mod-
ules in two levels of a software hierarchy, partitioning modules into two separate sub-
systems, or assigning tasks to two processors trying to minimize interprocessor
communication cost. In order to formulate the objective function for our minimization
algorithms, let us first define a binary variable B; associated with the nodes of the graph.
When B; = 1, the corresponding node belongs to one subgroup or level, while nodes
with Bi = -1 belong to the other level. Now, an expression for the total number of con-

nections between the two levels can be written as

2
N, =% EyB;— B))
ij
The factor 1/4 can be explained by noting that the term on the right side makes a
contribution of 4 to the total sum whenever there is an edge between i and j (i.e., Eij =

1) and the two nodes belong to different planes (i.e., Bi =-B j). The above can be re-

written as

=1y _ N"E.B.B:
N, = No— D _EiBB;
&
where
Ny =2 Ey
i
is the total number of connections in the graph. Note if the graph is to be equally parti-

tioned into two planes (assuming an even number of nodes), we can introduce a quantity
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which represents the difference in the number of nodes in the two groups. For equiparti-
tioning of the nodes, this quantity must vanish for a valid solution. Thus, for an opti-
mum bisection of the nodes into two groups, the quantity

_ 2
for A 20, is minimized. JB-NC+mc

Analysis:  As above J is ©(E).

Hierarchy - Jy
The existence of hierarchical relationships within systems is very common. The
ability to visnalize these important dependencies therefore requires special consideration
[Ca’80, Su’81]. With the exception of 'cyclic depengiencies, a hierarchical relationship can
be established whenever a dependency exists between two system elements. This rela-
tionship has been depicted in line graph form as an arrow from one node to the other.
Implicit in this ordering is the notion that one element (or node) belongs at a higher
“level” in a hierarchy. A visual representation of a hierarchical configuration is gener-
ated by locating higher level elements at higher elevations in the visualization space. To
establish which portion of the visualization space corresponds to higher and lower ele-
vations, we define a hierarchical basis vector . The scalar value representing the level
Y of a node’s position p; can then be computed by:
Yp)=@; h) div hlayer
where hlay ¢r 1S @ constant defining the height of the layer. Typically & = (0, 1, 0), re-

flecting our desire for higher level elements to appear towards the top of the screen

while lower level elements appear towards the bottom. If

0, otherwise.

{ L Y@)>Ypp;
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then the total number of hiearchical relationships that a particular configuration contains

is defined as:

Iy = ZEUHIJ
ij
Analysis: As above, O(EI).

Layering - J 1
Systems are frequently organized using layering concepts. A strictly layered soft-
ware system is one in which all elements are dependent only on other elements at the

same level or on other elements at the level directly below. A layering quantity Lij can

be computed for every pair of nodes v; and Vi in a graph as follows:

1, #OSY(p)-Y(@)<1;
Lij=

0, otherwise,

The number of layered relationships that exist in the graph configuration is then
i
Analysis: As above, O(IEl).

Reflectivity Component - J R

Aesthetic concerns are an important factor in graph layout. One of the most obvious
characteristics of “nice” graph layout involves the use of symmetry. Symmetry appears
in graphs in three rudimentary forms: reflection, translation, and rotation. The most
common of these forms is reflection symmetry which exists whenever a graph possesses

one or more “mirror” reflection planes. The reflectivity of a graph can be determined by
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counting the number of edges that reflect onto another graph edge along a specified re-
flection plane.

Let Pp = (P, N) designate the reflection plane in § where P is an arbitrary point in
the plane and N is a normal vector to that plane. Two edges (vi, vj) and (vk, v I) reflect
onto each other if there exists a transformation I, about Pp such that position vector p;
= pp I'p and PjEp) I'g- The transformation I'p can be generated by translating the
point P to the origin, rotating about the x-axis until N lies in the xz plane, rotating the
space about the y-axis until N lies along the x-axis, performing the mirror reflection, and
then performing the inverse rotations and inverse translation. These steps are described

below and illustrated in Figure 5.4.

AY
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N,

z’/dz
Figure 5.4 Mirror reflection about Pp.
Using homogeneous coordinates and standard matrix transformation notation fe.g.

Ha'83], the initial translation to move the point P to the origin is

.LOOO»—
,goo’—tc

—-oo
—-_OoOOo
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The inverse translation which will move P back to it original location after the rota-

tions and reflection have been completed is

1 0 0 0
J_ o 1 0o o
T"= 10 0 1 0
P, P, P, 1

The next step in the process is a rotation 6 along the x axis. Let Lyz = (Py2 + Pz?‘)%,

then 0 = sin”! P)/Lyz = cos ! Pz/Lyz. This resulting x-axis rotation transformation is

defined as
10 o 0 10 0 0
0 cos@ sin® 0 0 PJL, PJL O
R= 1o sind cos0 0| =|0 fi/l; L 0
00 0 1 00 0 1
The inverse rotation transformation is then
1 0 0 0
a_ |0 Py -PJL. O
R, "= o Pét%’,zz P}éy): 0
0 0 0 1

The normal N now lies in the xz plane. A rotation ¢ about the y axis must now be

performed to align N with the x axis. LetL=(P,2+P % + P2, then ¢ = sin”L VL

= cos'1 Lyz/L. This rotation and its inverse are defined as:

cosp O -sind O Iayz!L 0 -PJLO
rR= |0 10 O0f _ (1)0 g
— sin 0 cosd O - jpPJL L_JL
4 o¢oo¢1 o"j oo”ll

LJ/L 0 PJL O

R - o”/ (1) o‘/ 0

= |pP/ LJL 0

Y S ot
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With Pp now aligned with the yz plane, we are finally in a position to perform the
mirror reflection. The reflection transformation is

- §i1Y

The final transformation I'p, is then given by the product of the above transformations.

[-X= 2= JUN
QOO
OO
_OOO

~ -1p5-1p7-1
rR'TRnyMyzRy R, T

The reflectivity of a graph configuration can now be defined. Let
1, ifllpi-pkl"Rll<8
0, otherwise.

where 8 is an arbitrarily small distance. The total reflectivity of a configuration is then
=1 1
Tg = 202 EiEuRuRi
ij K
The above computation can often be simplified as we are frequently interested only
in the reflectivity about a plane parallel to the yz plane. If the dimensions of Sare w_x

X

hy X dz, a suitable choice for P R= (P, N) would be ( (wx/2, 0, 0), (1,0, 0)) as was used

in Figure 5.4. Since N already lies along the x axis, 8=¢ =0, J; canhe reduced to Fyz

WX ]
.

The transformation I"yz thus maps a point (x, y, z) onto (wx-x, Y, 2).

_ -1
= TMyz T “or

|
b
It
Vourprmra
oo,
QOMmO
O=OQ

~oQo

Analysis: As formulated, J, would appear to be @(IEIZ) as it involves an ex-
amination of each edge pair similar to J. The complexity of J,

can be readily reduced, however, when using discrete and hybrid
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visualization spaces. By maintaining an associative memory data
structure indexed by visualization space coordinates, a simple al-
gorithm requiring only a single iteration through the edge set can
be used. The existance of a reflective edge can be determined by
looking up the edge’s two reflected endpoints in the associative
-memory. A reflected edge exists whenever two dependent nodes
exist at the reflected coordinates in the visualization space. Using

this method, the complexity of J can be reduced to O(IE)).

Example 5.1 Suppose we wish to generate a visual representation for a system with
elements M = { my, my, ms, my } and dependencies D = { (ml, m,), (ml, m3), (m,, m4),
(mg, my), (my, m,) }. Based on this information, we can construct a graph G, = (V, E)
with V= {v;, v5,v3,vs},and E= {ey, €y, €3, €4, €5} Where v; &> m; and e; & (m;, m,),
ey (m,, m3), ey &> (m,, my), ey > (3, my), and es > (my, my). Correspondingly,
e = (vl, v:,_),, ey = (vl, v3), e = (vz, Vy), €4 = (.v3, v4), and eg = (v4, vl). Let the
visualization space for this system be §; = 12, the set of two-dimensional integer vec-
tors. That is, system elements can only occupy positions in a 2-D space whose coordi-
nates are integers. We next a associate a position vector p; with each node v, yielding
the position vector set P; = {p,, p,, P3, P4}. The layout of this system can now be
defined as L, = (S;, P)). 'Assuming that the attribute set for this system is A =(9,9)
(i.e. all nodes and edges possess only the universal attribute by default), the resulting
configuration is C; =(Gy, L, 4)). Ifweletp, =(1,2), p,=(2,2),p3= (1,. 2),and p,
= (2, 1), the initial visual representation for the system is shown in Figure 5.5.

Suppose we are interested only in the distance, hierarchy, and reflectivity aspects of

this configuration. By examining Figure 5.5, we can see that J, =4 + 2%. Letting h =
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(O, 1, 0), we have Jyy = 2. If the dimensjons of S; are w, = 3x hy 2 2, then the
reflectivity Jp about Py = ( (3/2,0),(1,0) ) is 1 (ie. e, reflects onto e3). By setting Wp
=1and wy=wp = -1, the weights for Jp,, Jg, and J, respectively, and all other weights

equal to zero, the resulting value for J(C,)is 1 + 2%. O

A
2=t v Adj(v)
Vi Vv
V2 V4
T V3. 4
V4 Vl
i —>
1 2

Figure 5.5 Configuration C;

Example 5.2 Suppose the visualization space is instead selected as S, = 912, the set of
two-dimensional real vectors. That .is, the elements can now be placed anywhere in the
2-D space. With this freedom, we can define a new configuration C, = (Gy, L,, A,)
where G, = G, Ly= Sy, Py), and A, =A,;. P, is once again a set of four vectors, as in
Example 5.1, except the p; vectors are now defined by

pi= &1+

P2 = (19 1)’

314 1
p4 = ('i’ 1 + zvg),.

Configuration C, is shown in Figure 5.6. If we are now only interested in, for exam-
ple, the proximity, layering, and reflectivity aspects of the configuration, we set wp = wp
= wg = -1 and all other weights equal to zero. By examining Figure 5.6 we see that Jp =

5,Jp=2,and Jp =2 (assuming Py from Example 5.1 and the proximity distance con-
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stant d = 1). The resulting value for J is then -9. Note that if we use these same weights
and re-evaluate the configuration C ; in Figure 5.5 we again obtain a J value of -9 (J p=
4,J; =4 and J, = 1). Although configuration C | exhibits a higher degree of layering
than configuration C,, it is not as aesthetically appeaiing as configuration C, due to C,’s
higher degree of reflectivity. A user may therefore wish to reconsider the weight set
that was selected and :ij\elhaps weight J5, more heavily than J,. Conversely, if revealing
layer structure is of greater concern, J. r could be assigned a lesser weight than J 7, insur-

ing a higher probability of finding configurations more closely resembling C 1+ O

1 1
i 1
1 2

Figure 5.6 Configuration C,.

5.4 Attributed-Based Evaluation

In the previous section we examined objective function components that were re-
stricted to node/edge graph information. In this section we will relax this restriction and
examine a set of functions that also consider the attributes associated with each node
and edge. By using the semantic information associated with each system element and
element dependency, this enhancement will enable us to pursue more meaningful lay-

outs due to the additional layout criteria we can apply.
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Listed below is an initial compilation of attributed-based objective functions. Since
all of these functions can be implemented with a single scan of the edge set E, the time

complexity of each is O(|El).

Coupling - J

In typical system design, it is common for certain system elements to be more
tightly coupled than others. In Section 2.5, the restricted attribute was introduced to
help capture this tighter element dependency relationship. To aid understanding, a
mechanism for indicating this strict dependence is desirable. Restricted edges, there-
fore, will be arranged vertically (i.e. parallel to the hierarchy vector & defined in the pre-
vious section) whenever possible.

Let

=

1, if IMPLIED( w, vj) );
M -—

0, otherwise.
and let

{ L, fhx@-p)=0;

0, otherwise.

The term Mij is nonzero for any edge (v;, vj) which possesses the implied attribute.
The term Xij is nonzero if the vector connecting the two distinct positions p; and pj"for

nodes v; and Vir respectively, is parallel to A.
Jc = ZEIJ‘MUXIJ
ij
The function J - is a measure of implied vertical edges. Since it requires maximiza-

tion, it is assigned a negative weight. When combined with Jy, it can be used to insure




184

that implied edges are hierarchically arranged. Similarly, when combined with J, it

can be used to insure that implied edges are also layered as is shown in Figure 5.7.

=k
-

Figure 5.7 Implied edge layout

Information Hiding - J;

Information hiding is one of the most powerful software engineering principles cur-
rently in use. Under this principle, system elements are only allowed access to objects
which are required to implement that element’s function. Similarly, the internal behav-
. ior and implementation of these objects are concealed. The existence of other objects
that are not needed by the element is' also hidden.

A popular mechanism for implementing information hiding is to divide system ele-
ments into two parts; their specification and their implementation. Recall from Section
2.4 that a node may possess the specification or implementation attributes. When gener-
ating a layout for these two elements, it is generally customary that the specification

node by placed in close proximity (recall the definition Pij) to the implementation node.

Let
;= IMPLEMENTATION(v,) ;

{ 1, if SPECIFICATION(V‘-) A
0, otherwise.
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Given two arbitrary nodes v; and v ' Sij returns true (nonzero) whenever v, is a specifica-
tion and Vi is an implementation. The resulting formula to be maximized is as follows:
J; = ZEUIIJP i
i
Note that the use of J is an improvemént over J,, alone as J; attempts to minimize
only the distances between nodes of a specific type, allowing other nodes to be more
appropriately placed according to other optimization criteria. The component J; can

again be combined with both J;; and J; to insure that implementation nodes are posi-

tioned directly beneath their specification nodes as in Figure 5.8.

Figure 5.8 Specification - implementation layout -

(c) Reusability - Jy,

Another popular principle employed in modern system designs is the ability to reuse
system elements. Programming languages such as Ada provide an explicit mechanism
for parameterization of system elements. These generic elements must be instantiated
with types, procedures, objects, etc. in order for the element to actually be used. Be-
cause of the dependency between an instantiation and its generic template, instantiated
elements are customarily drawn above their generic templates. As a result of the reus-
ability construct, frequently more than one instantiation will be depend upon the same
generic template. Multiple instantiations of the same element should appear in close

proximity of each other.
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GENERlC(vj) R

{ 1, ileSTANTIATlON(v‘-) A
0, otherwise.

The function Uij returns true only when node v; possesses the instantiation attribute and

the node v; possesses the generic attribute. The resulting formula to be maximized is:
Ty =D _EiUsPy
i
J can again be used with the compdnents Jy; and J; to also insure a hierarchical and

layered layout. An optimal reusable element configuration is shown in Figure 5.9.

Figure 5.9 Instantiation - generic layout

(d) Top-Down Decomposition - J.»

Top-down decomposition or step-wise refinement is a common system design meth-
odology that makes use of abstraction hierarchy. As was demonstrated with the Jp;
function in the previous section, we can use the hierarchical relationship implied by a
dependency structure to construct a top-down decompositional arrangement. In section
2.4, the restricted attribute was proposed to capture this relationship. Since use of the
restricted attribute implies a strict hierarchical dependence, a element’s subelements

should appear in close proximity of each other whenever possible.
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Let

1, ifRESTRICTED((v,V)));

g~ .
0, otherwise.

The function T}, retumns true only when edge (v, vj) possesses the restricted attribute.

The resulting function to be maximized is

As with the three previous cases, J.» can be again combined with J;; and J; to en-

force hierarchy and layering. Figure 5.10 contains a corresponding layout.

Figure 5.10 Decomposition layout

(e) Foreign Interfaces - J.

In large system designs, there frequently exist interfaces to other external systems
such as operating systems, resource servers, other cooperating processes, etc. These in-
terfaces are commonly encapsulated within a system element to reduce foreign depend-
encies and enhance portability. In many software designs, these interfaces may be
viewed as the lowest level of an abstraction hierarchy. Hence, it may be desirable to
always constrain these elements to the “bottom” of the visualization space. The hierar-

chy vector h will once again be used to establish this direction.
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{ 1,  if FOREIGN(v);
F.=

0, otherwise.

and let

1, ifh-pi>h-pj;
B..=
Y 0, otherwise.

The function F f is used to determine if the node V; represents a foreign interface.
The function Bij determines if the node v, is located at a higher diagram position along

the hierarchy vector 4 than node v; The function for optimal foreign interface place-

ment is then:
Jp =) _EgFBy
i

Figure 5.11 contains an optimal foreign interface layout.

MAIN
P ‘ ' r
INPUT COMPUTE OUTPUT
10

Figure 5.11 Foreign interface layout

(f) Similarity - J ¢
Another organizational technique that can be employed is the grouping of similar

elements. It may often be desirable to position nodes with similar attributes within close

proximity of each other.
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0, otherwise.

That is, Aij is non-zero whenever the attribute set @; for node v; is equal to the attribute

set J for node v bur similarity measure can then be defined as
Jg = Z;EUSLIAU
where A,.j is a distance or pmxinﬁty measure such as Dij or Pij. Note that if we wish to

constrain our similarity search to nodes, say, within a single layer, we can add the addi-

tional term Lij. That is
Js, = ;Euszﬁul'u

Alternatively, we can limit our search to hierarchical similarities by instead adding the

term H i to our basic J S definition as follows:

Is, = ZEUSUAH‘HU
y

A hierarciiically arranged system with high similarity is shown in Figure 5.12 below.

Figure 5.12 Hierarchical, similarity arrangement
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The ability to compose additional functions in this manner leads to a general form of
objective function definition. If i Bij’ xij, ... are all functions of nodes v; and Vi, then a

composite objective functionJ, can be generated as follows:

Ts, = 3 EiShHy
y
With the exception of the edge crossing and reflectivity functions, all of the above ob-
jective functions were of this general form.
. For example, suppose we desire a function J, which will minimize the distance be-

tween specification nodes and implementation nodes and constrain them to the same

‘layer of the visualization space. The following function achieves this purpose:

Tx = ;Ethz’uLu

With the above three families of energy functions now defined, a diverse collection
of configuration cvaluation tools are now available that provide a rich quantitative
measure of a configuration’s visuai complexity. By combining these functions and ad-
justing their weights as described in Section 5.1, a single scalar complexity value can be
generated for any arbitrary configuration. This aggregate function will now be used as
the basis of an automated scheme for finding an “optimal” configuration with a desired

set of characteristics.



191

6. Configuration Optimization

With establishment of the A-Vu configiration model, operations for constructing
and manipulating configurations under this model, and techniques for evaluating the re-
sults of these manipulation sequences, attention can now shift to the integration of these
methods. In this chapter, an automated process for generating simplified, aesthetically-
pleasing configurations of complex dependency structures will be developed. An over-
view of the optimization process is presented in Section 6.1. The details of the optimi-
zation algorithms are presented in Section 6.2. The configuration generation techniques
used during optimizatioxi are described in Section 6.3. An automated sequencing tech-

nique which joins all of these methods together is described in Section 6.4.

6.1 Process Overview
The configuration optimization process is equated to the optimal placement of nodes
in a composite visualization space representation coupled with an appropriate configura-
tion viewing strategy. This integrated process involves the following three distinct ele-
ments:
1) Optimization Paradigm
2) Node Placement
3) Sequencing
In order to generate a configuration of minimal complexity, a suitable optimization
paradigm must first be adopted. Due to the complex nature of the underlying multi-
variable minimization problem, it is common to select a strategy that has proven suc-
cessful in natural systems. The strategy developed below uses an annealing “metaphor”
as a guide. Given a suitable optimization paradigm, the second element of this process

involves the creation of new configurations and the modification of existing configura-
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tions to achieve an optimal state. While the optimization paradigm provides direction
during the simplification process, the placement techniques are required for preparation
of the configuration sets to be evaluated.

The last element to be discussed involves the development of a single unified
method of automatically applying or sequencing all of these tools and techmiques.
Given an arbitrary dependency structure, this mechanism is used to construct an initial
configuration and perform a sequence of desired operations on this configuration with-
out intervention. The original configuration is systematically transformed to aéhieve the
desired result. Each of these elements comprising the configuration automation process

are discussed in their respective sections below.

6.2 Optimization Paradigm

Configuration optimization is tantamount to the formulation of a suitable set of algo-
rithms, heuristics, and complexity measures for processing and evaluating configuration
structures. This involves the selection of a function J which, when applied to a configu-
ration C of G, returns a scalar value characterizing the complexity of C. Under the A-
Vu model, this involves a search for a configuration C that results in a minimum value

for J(C). The optimization task at hand can then be stated as follows:

Given a system with a dependency graph G = (V, E) and attributes A,

find a configuration C = (G, L, A, B) as defined above such that J(C) is

minimized.

Within the context of a particular graph G and a single layout L and its associated
visualization space S, this problem reduces to a search for an optimal set of node posi-

tion vectors P. The solution space to this problem, however, involves many parameters.
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If the number of nodes is n = IV1, and S is an N-dimensional space, then nN scalar values
which minimize J must be found. Given a graph G with n vertices and a visualization

space S with m unique locations for positioning the vertices, there are

(F)ri= w2
different possible combinations for vertex positioning. Generally, m will be greater than
n if S is a discrete space and infinite if S is a continuous or hybrid space. Regardless,
there is an enormous number of choices for P. It is obviously not practical to exhaus-
tively search the entire space in order to determine which configuration of dependency
structure appears most useful. A better search strategy must be employed. Fortunately,
several satisfactory strategies which yield near-optimal results have been developed in
recent years. These strategies can be grouped into two broad categories, heuristic meth-
ods and metaphoric methods, each discussed below. The A-Vu approach uses a hybrid

of these methods as will become apparent throughout the discussion.

Heuristic Methods

Perhaps the most widely used strategy for generating optimal graph layouts involves
the use of specialized heuristic algorithms for organizing and positioning nodes within a
two-dimensional plane. As outlined early in Chapter 2, this process typically consists of
four basic steps which convert a cyclic graph to acyclic, decompose the acyclic graph
into distinct layers, order nodes along each layer to minimize edge crossings and edge
lengths, and then fine-tune the positions of each node to enforce aesthetic appeal favor-
ing symmetry and balance. These particular methods have been deployed with consid-
erable success offering numerous performance advantages (e.g. [Ga’93, Ea’90]). Many of

the operations described in Chapter 3 conform to this class.




194

The primary drawback of the heuristic approach, however, is that these methods em-
ploy fixed layout criteria that can not be readily adjusted or tuned for a specific system.
Consequently, the layout generated for a system may be inappropriate or only capture
and convey one particular aspect of the system. In addition, these methods are often not
intuitive, involving a series of complex algorithms for rank assignment and node order-

ing.

Metaphoric Methods

An alternative to discrete heuristic methods is to base the algorithms on an approxi-
mation or simplified simulation of natural, physical systems. The physical system mim-
icked serves as metaphor which guides the design and implementation of the method.
Conceptually, this approach offers the advantage of being more intuitive assuming the
process associated with the physical system is reasonably well understood. The most
popular examples of these methods include spring-based models [Ka’89, Ea’84], force-
directed placement [Fr'91], simulated annealing [Da’89, Ki'83], and genetic algorithms
[Ko0'91, Go’90, Gr'85]. Note that these methods in themselves can also be considered heu-
ristic, but their link to the physical world is used here tc set them apart.

The advantages and disadvantages of each of these techniques are mixed. The
spring-based and force-directed techniques offer reasonable performance, but are again
based on fixed layout criteria that may not be applicable to the problem at hand. While
simulated annealing and genetic algorithm techniques offer greater adaptability to vary-
ing criteria, care must be exercised in their deployment. The performance of both tech-
niques can be extremely slow.

Fortunately, the simulated annealing mechanism is very flexible and adaptable.

Heuristic methods can be easily incorporated and the entire process can be readily
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tuned. Although traditionally considered inappropriate for interactive use, some simple
modifications to the basic simulated annealing algorith-rn make it an ideal candidate for
use in the A-Vu model. The ability to control the optimization process, adjust optimiza-
tion criteria, and determine the amount of computational time to be invested offer sev-
eral unique advantages.

While not to be dismissed, genetic algorithms are cumbersome as the primary opti-
mization strategy. This technique converges to an optimal solution along several simul-
taneous paths. As a result, genetic algorithms formulated in their traditional sense for
this application can not be easily configured, interrupted, and restarted without consider-
able expense. A variant of;’ the basic genetic algorithm, however, will be adopted in Sec-
tion 6.3 as a more intelligent means for generating configuration node placements. Con-

tinued discussion of their use will be postponed to that time.

The A-Vu model assumes a hybrid of the above techniques can be used to generate
configurations. The integration of these techniques will be described in Section 6.4.
The actual optimization strategy used by A-Vu depends heavily on the simulated-
annealing model because of its adaptability and is best characterized as iterative im-
provement.

The simplest form of iterative improvement starts with an arbitrary initial placement
of elements ar;d selectively perturbs an element in its visualization space. If the pertur-
bation results in an improvement of the desired evaluation fuﬁction, the new configura-
tion is accepted. The process is repeated until no further improvements are deemed pos-
sible. A modification to this scheme is repeated iterative improvement where the above
procedure is essentially repeated several times with different, randomly selected, initial

conditions in order to avoid the possibility of getting stuck in a local optimum.
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The A-Vu design _incorporates a variant of the simulated annealing algorithm, pro-
viding a repeated iterative improvement process. This design.gradually transforms a
complex configuration into a more simplified version. Unlike other optimization strate-
gies, this transformation process can be carefully controlled through parameters associ-

ated with the annealing algorithm. A description of this algorithm is presented here.

Simulated Annealing

The method of simulated annealing is inspired by the statistical mechanics of grad-
ual cooling (annealing) in condensed matter [Me’53] and has been applied successfully in
a variety of applications including VLSI cell placement [Sh’91], chip floorplanning
[Ru’89], and directed graph layout [Da’89]. This iterative heuristic technique seeks a near
optimum (say “minimum”) solution by randomly perturbing an initial conﬁguration.
(viz., a set of parameters to the energy function J) and accepting all moves that result in
a reduction in the value of J. New sets of generated parameters continue to be accepted
as long as they result in decreasing J. To prevent this process from getting “trapped” in
a local minimum, a parameter set which produces a higher value of J is occasionally ac-
cepted with a probability that decreases with an increase in J. In many implementations
of this method, the acceptance probability is given by e /T, where AJ is the increase in
J and T is called the temperature, a term borrowed from statistical mechanics. Initially,
the temperature of the system is set sufficiently high so that most configurations are ac-
cepted.

With each iteration, the temperature of the system is reduced according to a prede-
termined cooling schedule. As the system gradually begins to cool, fewer and fewer

high-J (or high energy, in statistical mechanics parlance) configurations are accepted.

At very low T, the probability of accepting a move to a much higher J configuration be-
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comes very small. Eventually, the parameter system stabilizes and the process is termi-

nated according to rules which define a sufficiently frozen (or optimized) condition. An

outline of the algorithm is as follows:

Analysis:

m :constant INTEGER :=moves per iteration,

o :constant FLOAT :=cooling rate;
T :constant FLOAT = initial temperature;
C : CONFIGURATION  := start configuration;
CO 1d * CONFIGURATION; --old configuration
J : FLOAT 1= oo
J 0ld :FLOAT; -- previous energy value
AE :FLOAT; -- change in energy
loop
foriin L..mloop
J Id =J; M
Co := GENERATE(C 0 ld);
J =J(C);
AE  =J-J1 5
if AE 20 then old
if RANDOM# > &2 then
-- reject configuration
C:=CnHi1
end if; Old
end if;
end loop;
T:=a*T,
exit when COOLED(C, T);
end loop; :

Careful examination of the above algorithm reveals that the com-
plexity of the inner loop is determined primarily by the node
placement function GENERATE(CO I d) and the configuration
evaluation function J(C). The GENERATE function will be dis-
cussed in Seetion 6.3, but is limited to @(IV1). The complexity of

J(C) is determined by the particular evaluation function selected.
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Assuming the functions presented in Chapter 5, J(C) is typically
(V1) or O(IEI), and worst case @(IEzl). The remainder of the al-
gorithm is controlled by algorithm parameters and the cooling
conditions. A performance analysis covering different parameter

values is presented in Chapter 8.

Although the above algorithm is very simple in concept, there is a great deal of
flexibility in its implementation. From the discussion in Chapter 5, the evaluation func-
tion J(C) can be as simple as a constant-time computafion or as elaborate and complex
as a series of equations. Similarly, the GENERATE function can be a simple O(IV1) ran-
dom position generator or a complex heuristic. Lacking any special insight into an ideal
configuration evaluator or an ideal configuration generator, a balance between J(C) and
GENERATE is probably advised. The details of several possible implementations of this
function are discussed in the next section.

One minor improvement to the algorithm is to save the “best” (i.e. lowest energy)
configuration reached during its execution. This refinement insures that the algorithm
yields the lowest energy solution it encountered during its search, avoiding the situation
where the algorithm explores several low energy configurations, but terminates at a
higher energy local minimum. This situation can occur when, by chance, a higher en-
ergy configuration is accepted at a sufficiently low temperature that prevents it from re-

turning to the lower energy region of the solution space.

6.3 Placement Techniques
Proper node placement is certainly the most crucial step in any graph layout prob-
lem. For very small systems, node placement can often be done by hand using intuition

and a series of trial-and-error attempts. The editing functions from Section 3.2 would be
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useful for this purpose. As the size of the system increases beyond a dozen or more
nodes, this technique rapidly becomes unfeasible. Several strategies for performing this
placement operation are presented here for complex systems. The evaluation functions
presented in Chapter 5 act as the guide for determining the desirability of each solution

space sample.

Algorithmic Placement

A significant and obvious refinement to manual trial-and-error placement method is
to apply specific layout algorithms to the conﬁguratipn to obtain a desired result. The
arrangement operations presented in Section 3.4 were provided for this purpose. These
operations offer considerable performance advantages over all otﬁer schemes in some
instances. Unfortunately, efficient algorithms are not always available. Dependﬁg
upon the la);out criteria selected, the only known algorithms for many layout problems
are NP-hard. While suitable heuristics may exist for some cases, this approach is lim-
ited by the suite of algorithms available and the layout criteria they implement. In very
large system problems, proper layout criteria is often not known and can frequently con-
flict. This issue has lead to the need for an alternative set of placement techniques that
can be more readily incorporated into the above optimization strategy.

The simulated-annealing scheme is employed when the proper position of each node
in a layout can no longer be determined by any know polynomial time algorithm or any
reasonable heuristic. Should such a method exist or were to be discovered, it could then
be incorporated into the suite of operations outlined in Chapter 3 and invoked accord-
ingly. Lacking the knowledge and availability of such an algorithm, one must again

relegate to probing the m!/(m-n)! solution space in search of a desirable layout.
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Random Placement

One of the simplest probing schemes that can be adopted involves the use of random
placement. Given a configuration C which contains an existing layout L and its associ-
ated visualization space S and a position set P, each node contained in L is assigned a
new value in P by randomly selecting a new position from S. A new configuration built
in this manner would be retumed by the GENERATE function for evaluation by J(C).
Should the result of J(C) indicates an improvement or is within an acceptable range as
determined by the probability function AT , the new configuration will be accepted. If
not, the configuration will be discarded. As outlined in the algorithm, the process re-
peats until the configuration is sufficiently “frozen” as indicated by COOLED(C, T).

This placement scheme bears resemblance to traditional Monte-Carlo techniques.
Its primary strength is that it examines samples that are well distributed throughout the
solution space and will not become trapped within a local minimum. Jts primary weak-
ness, however, is that it does not readily converge on any local minimum and depends

strictly on random chance.

Random Displacement

Rather than continually evaluating the completely new, random configurations, the
first refinement to be incorporated is to limit the movement of each node by some maxi-
mum displacement constant value 8. If the selected value for § is large, the technique is
identical to random placement. At increasingly smaller values of 9, however, examina-
tion of the solution space becomes successively localized, better enabling a local mini-
mum to be found. Because of this tendency towards localization, the probability of ex-
amining areas of the solution space which exhibit the lowest possible energy values is

somewhat smaller.
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Random Controlled Displacement

To compensate for the limitations of random displacement, the next refinement is to
allow the displacement value to change with temperature, (i.e. 8(7)). At high tempera-
tures, the value of & would be set sufficiently large to enable nodes to move freely
throughout the visualization space. As the temperature decreases, the value of & is pro-
portionally reduced, enabling the algorithm to better focus on a minimum and devote
less time to evaluating configurations which have less certainty of reaching at least a lo-

cal minimum.

Constrained Random Placement

Developing the controlled displacement idea further, the next enhancement is to im-
pose additional constraints on node movements such as purposefully limiting them to a
specific areas of the visualization space. This technique further reduces the number of
potentially useless configurations that need to be evaluated. A common constraint of
this type would be restrict nodes to a particular plane or linear segment of the visualiza-
tion space as, for example, detexmiped by one of the arrangement algorithms in Section
3.4. This refinement can be made by treating 5(T) as a displacement vector rather than

as a scalar value.
Analysis: Since each of the above techniques compute each node’s new po-
sition based on its existing position, a single iteration through the
set V to compute P is required. Each of these techniques are

therefore O(IV1).

While each of the above variations of random placement offer varying degrees of
certainty in adequately sampling the solution space, they are each plagued with the un-

fortunate outcome that a potentially enormous range of useless samples must be evalu-




202

ated in order to converge on a successful low energy configuration. While each suc-
cessful configuration carries with it some of its past history, the strengths and weakness
of each configuration generated are hard to discemn. Ideally, one would like to retain
those aspects of a configuration that lend the most towards achieving a low energy state.
Similarly, one would like to discard those aspects that contribute high energy evalu-
ations. The genetic algorithm mechanism identified above offers an attractive solution

in this regard.

Genetic Placement

Genetic algorithms (GAs) are search algorithms based on the mechanics of natural
selection and natural genetics. There usefulness in system layout has been established
in [Gr'85, Ko’91]. Unlike traditional search methods, GAs work with a coding of a pa-
rameter set and not the parameters themselves. GAs require the parameter set of an op-
timization problem to be coded as finite length (typically binary) strings. The mechan-
ics of a typical genetic algorithm involve a series of steps: random number generation,
string copying, and partial string exchanges. GAs also use an objective (or energy or
cost) function to evaluate the fitness of a particular parameter set. Unlike simulated an-
nealing, however, GAs search from a population of points and not a single point.

The basic form of a genetic algorithm consists of three main parts: 1) reproduction,
2) crossover, and 3) mutation. At the start, an initial population of strings (coded pa-
rameter sets) is generated (typically at random). Reproduction is the process of replicat-
ing each of the strings in a population. A simple reproduction scheme assigns a weight
to each string according to its fitness, the objective function J. Strings to be replicated
are then randomly selected from the population using a weighted probability. Strings

which are associated with higher fitness are replicated with a higher probability.
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After the reproduction phase, each replicated string is randomly paired with another
string in the population. Each pair of strings then undergo crossover. The crossover
process involves the selection of a-random substring from one of the strings. This sub-
string is then swapped with the substring in the corresponding position in the other
string of the pair. For example, given two strings o, and o, each of length /, an integer
position k where 1 < k < /-1 is selected at random. Two new strings are created by
swapping the substrings o, [k+1 .. [] and 0,[k+1 .. Il. The new set of strings then be-
come members of the next generation.

The reproduction-crossover cycle is repeated for a number of generations. The
string which yielded the ﬂighest fitness function value J(C) at the end of the final gen-
eration is chosen as the solution. To prevent the reproduction-crossover process from
accidentally eliminating a potentially useful solution, 2 mutation operation is introduced.
An occasional alteration is made to the value at a random string position, effectively
guarding against irrecoverable loss of important material. This process effectively
guards against getting stuck in a local minima by exploring other areas away from the
current region of the solution space.

Within the A-Vu framework, the use of genetic algorithms appears ideally suited to
the generation of the node position set P. Recall the basic optimization algorithm pre-
sented in Section 6.2. Under this scenario, the position of all nodes contained in a lay-
out L = (P, Q, S) are encoded as a binary string, o, . Using genetic placement, the GEN-
ERATE function would first construct a binary string encoding for the current layout in C
using the function ¥(C). ¥(C) returns a binary string encoding o, of the position set P
in the current layout A.

Let II be the set of binary strings representing the population and let &t = IIIl. An

initial population is formed by randomly mutating o A T-1 times yielding IT = {a,, oy,
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@y, ... &, }. This initial population then undergoes the reproduction and crossover cy-
cle ¢ times as described above. At the completion of this process, the contents of the
population P are examined. Using the inverse encoding ‘I"l(ai), the element in I
which yields the lowest value for J(¥ '(ct,)) is returned. The GENERATE(C) function

for genetic placement is summarized as follows:

Q, = (O,
II:= {(ZA};
foriin 1.x-1 loop
II:=1Tuv { MUTATE(c,) };
end loop;

foriin 1..c loop
REPRODUCTION(TY);.
CROSSOVER(II);

end loop;

min := oo;

foriin 1. loop 1

FITNESS :=J(¥ (o));
if FITNESS <min then
min ;= FITNIESS;
Conin =¥ (0%)
end If;
end loop
return (C, . );

Analysis: The performance of the genetic placement version of the GENER-
ATE(C) function is determined by the function J(C). From the dis-
cussion in Chapter 5, ©(J(C)) < @(max{IVi%, IE}). The constants
¢ (generation count) and 7t (population size) can be used to adjust

outer loop performance.

As formulated, this placement approach offers considerable flexibility. In combina-
tion with the simulated annealing algorithm, a broad range of custom optimizations are

available. With a small annealing iteration count (m =~ 1) and at low temperatures (T =
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0), the optimization sequence will exhibit primarily genetic algorithm type behavior.
Conversely, with a small population set (1t = 1) apd a small generation count (¢ = 1), the
optimization sequence will exhibit primarily simulated annealing_ type behavior.

While little has been said regarding the MUTATE function, its interesting to note that
the same choices available to the simulated annealing algorithm concerning placement
apply to mutation. The MUTATE function could simply be a random bit modifier work-
ing directly with the binary string encodings. This is traditionally what is employed in
genetic algorithm implementations. Altematively, MUTATE could work with the posi-
tion set P applying random placement, random displacement, random constrained dis-
placement, etc. In this manner, both the simulated annealing and genetic algorithm
processes have been effectively unified into a single optimization strategy. This strat-
egy can be readily tailored to take advantage of the strengths of either optimization ap-

proach. The performance of this method is discussed in Chapter 8.

6.4 Configuration Sequencing
At this stage, all of the fundamental components necessary for constructing, manipu-
lating, evaluating, and optimizing configurations have been established. Each of the
items discussed up to this point can be invoked interactively, providing a diverse range
of powerful tools for manual exploration of complex dependency structures. The proto-
type implementation presented in Chapter 7 illustrates this point. What remains, how-
ever, is the final method for integrating these tools so that the entire process can be auto-
mated.
While the tools described above offer significant flexibility that is sufficient for
many system understanding scenarios, the ability to capture a series of configuration

manipulation and optimization operations and be able reapply this same series a later

X,
\(Zf,:'y
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time or on another system offers considerable time savings. A series of operations of
this type is referred to as a configuration sequence.

A configuration sequence is simply a list of instructions that are to be applied to
configuration. The set of operations described in Chapter 3, the application of various
viewing options and parameters as discussed in Chapter 4, the selection of evaluation
functions and their corresponding weights as described in Chapter 5, and the initiation
and adjustment of the optimization process just presented in Sections 6.2 and Section
6.3 should all be capable of inclusion in a sequence.

To provide this functionality, a simple language known as the A-Vu Sequence Lan-
guage (ASL) is defined. This language is essentially an itemized list of all possible op-
erations and associated parameters that can be initiated by a full A-Vu implementation.
The complete list of instructions is contained Appendix B. This list carefully mimics
the majority of the operations presented throughout this dissertation.

Configuration sequences offer several additional advantages beyond simply auto-
mating a sequence of steps. For any given system, numerous sequences which reveal
different aspects of the system can be applied. The ability to maintain multiple se-
quences is comparable to maintaining multiple views, but with less concem over modi-
fications. If a system is modified, any of its sequences can be reapplied and, if neces-
sary, updated accordingly without having to re—ex’plore the system’s entire dependency
structure. Sequences can be captured and exchanged amongst users, providing an aid to
both documentation and visualization. In addition, sequences also provide a general
purpose machine interface to the graph layout tools of the A-Vu environment. Finally,
execution of a sequence produces a natural animation of the system’s graph layout proc-

€SS.
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Example 6.1 Recall the initial example program represented in Figure 1.1. Using the
ASL language, the layout shown in Figure 6.1 is generated via the following simple se-
quence: |

load example

arrange default

find 10

cut

arrange dependent
arrange centered
welghts symmetrical.wht
schedule default.sch
optimize i
option length 1

option filter

COMPU'I'h

Y
MATRIX
v

VECTOR

Y

SCALAR

Figure 6.1 Results of example sequence

A dramatic demonstration of the utility of the configuration sequencing tools pre-
sented in this chapter is to apply this approach to the system represented early on in Fig-
ure 1.3. This demonstration will be postponed briefly until Chapter 8 to allow the A-Vu
system to first be presented. The full sequence that will be used to transform Figure 1.3,
however, is contained in Appendix C. The discussion now tums to the integration and

interactive deployment of all A-Vu framework elements.
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7. The A-Vu System

In order to validate the effectiveness of the A-Vu model and its associated visualiza-
tion methods, a ptototypé software tool has been developed. Known simply as A-Vu,
this computer program allows a user to interactively manipulate, analyze, and explore
complex dependency structures using the techniques and operations discussed in the
previous chapters. The A-Vu tool is presented in this chapter. A comparison of this
tool with the model as presented in Chapter 2 is giv-en in Section 7.1. A description of
how this tool is organized and its information flow is presented in Section 7.2. Finally,

a description of the operational user interface is presented in Section 7.3.

7.1 Model Compliance

This A-Vu system closely conforms to the model presented in Chapter 2. Depend-
ency structures are represented using directed graphs and stored internally in both node
adjacency and edge list data structures in support of constant and linear time set opera-
tions. As defined by the model, A-Vu allows subgraphs of the system’s dependency
structure to be stored in multiple layouts. A-Vu imposes no inherent limit on the num-
ber of nodes, edges, or layouts that can be represented. The edge coordinate set 0
within each layout is generated automatically based on the locations of each node and is
currently restricted to single line segments. Spline linkage is a natural implementation
extension.

At present, oniy discrete visualization spaces are supported. A hybrid visualization
space can be simulated, however, with a discrete space by increasing its dimensions and
applying an appropriate scaling factor. Since the number of locations that can be occu-
pied in a bounded discrete space is finite, the A-Vu maintains a cache for each visualiza-

tion space. This cache enables constant time node look-ups for high-performance user
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interaction. The boundaries of this cache are maintained bj'; the node placement opera-
tions and expanded automatically when a node is placed outside the space’s current lim-
its. Automatic visualization space compaction is purposefully not implemented since it
would unnecessarily constrain the node placement algorithm used during optimization.
Visualization space compaction can be initiated manually by the user or via an ASL
command during the execution of an automated sequence.

Entire configurations are maintained internally in a data structure closely resembling
the configuration definition C = (G, L, A, B). All of the node attﬁbu.tes presented in
Section 2.6 and edge attributes presented in Section 2.8 are support by the current A-Vu
implementation. The visual representations of these attributes are implemented as pre-
sented in these sections. Currently, none of the auxih’a.;y node information presented in
Section 2.7 and Section 2.9 has been implemented. The current configuration data
structures have been designed to allow these items as future enhancements. The ability
to access, examine, and edit a node’s source code via on-screen selection has, however,
been demonstrated.

Perhaps the most powerful feature of the A-Vu system, unlike all other graph ma- -
nipulation systems, is its support of composite layouts. The A-Vu system implements
the full composite node/layout binding structure presented in Section 2.11. A single
node or a collection of nodes and their entire composite struc:ture can be freely copied,
cut, and pasted in any of the visualization spaces within the configuration. Multiple
copies of a node may even be placed in a single visualization space if desired. The at-
tributes of each node, all parent nodes, and all intervening nodes and-edges are auto-
matically updated as defined by each editing operation. The meta-configurations out-
lined in Section 2.12 are supported as a result of the export operations and the ADL

language interface described in Appendix B. Configuration state information is also
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maintained in a manner similar to that presented in Section 2.13 and updated in Chapter

4.

7.2 A-Vu Organization

A-Vu is an interactive tool that allows a user to manipulate complex dependency
structures and immediately view the results of their actions. The ability to obtain quick
results allows the user to explore the structure from many different perspectives in order
to gain a satisfactory und_erstanding of its intricacies. A block diagram of the tool’s op-

eration is shown in Figure 7.1.

Manipulator Pal’aﬂieters
Configuration
ADL -»{Openert——»

> N Filter | Viewer [» Display

Ada ‘ Saver ADL
Libra [Saver|

ry

Energy

Schedule Welghts

Figure 7.1 A-Vu block diagram

A-Vu currently accepts two forms of input. System dependency information can be
input via A-Vu’s Definition Language (ADL) as described in Appendix A. The ADL
files can be created manually using a typical text editor, generated automatically by an-
other tool, or retrieved from a previously saved A-Vu session. Altematively, A-Vu can
extract dependency information directly from a source code program library. The
OPENER and LOADER modules shown in Figure 7.1 perform these respective functions.

The ADL language interface is provided as a general-purpose mechanism for exam-

ining arbitrary dependency structures. Information specified in an arbitrary syntax can



211

be processed by A-Vu via an intermediate ADL parser/translator. The ADL language
definition closely mimics the configuration definition presented in Chapter 2. When
working with an program libraries, A-Vu parses a program library file description and
extracts all the necessary module and module dependency information. The current im-
plementation of the tool specifically supports Ada program libraries. Dependency infor-
mation input in any of these forms is stored internally using a data structure representa-
tion that also closely resembles the A-Vu model’s configuration deﬁﬁiﬁon. This data
structure is built using the operations presented in Section 3.1. Once this data structure
is constructed, the resulting configuration is continuoﬁsly process;.ad, manipulated, trans-
formed, and displayed by the remainder of the A-Vu system components.

When a new system is initially input or originally loaded, a default layout is auto-
matically generated by filling in a single plane visualization space of pfedeﬁned width
starting from left to right and top to bottom using the ARRANGE_DEFAULT operation
(Section 3.4). The height of the visualization space is expanded as necessary. This pro-
vides a common starting point for all subsequent configuration operations.

The MANIPULATOR component of the A-Vu system allows a user to perform any of
the editing, selection, arrangement, compaction, and reduction operations presented in
Section 3.2 through Section 3.6. Alternatively, an optimization schedule may be de-
fined and the OPTIMIZER component run in order to seek a minimal energy solution as
described in Chapter 6. The EVALUATOR component is used to direct the OPTIMIZER
component via its energy functions suite as described in Chapter 5. A weight set is in-
put to the EVALUATOR to define the desired minimization criteria. The SAVER compo-
nent may be used to archive any new configuration that is generated throughout this

process as discussed in Section 3.7.
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With each new generation, the configuration data structure is passed through the FIL-
TER component (Section 4.4) and displayed via the VIEWER component (Section 4.1)
System elements are automatically connected with a line segment according to the origi-
nally dependency information specified. The viewing parameters defined in Section 4.2

are used to control the display process.

7.3 User Interface

‘The A-Vu system .is implemented as an X-Windows based application using the
Open Software Foundation’s (OSF) Motif widget set. The user interface is modeled af-
ter a typical window-based text editor. Analogous to text, i_n&ividual nodes within a lay-
out are selected using a mouse pointing device. Graph nédes may then be collectively
copied, cut, and pasted throughout the éonfigurati_on as desired. Configurations can be
“reformatted” using any of the manipulation or optimization algorithms. These algo-
rithms can be applied to all or a selected subset of nodes in the configuration. Addi-
tional algorithms to find certain node arrangements analogous to finding particular text
sequences can also be applied. Unlike typical editors, however, all dependency infor-
mation including node/edge attributes and edge conniections are automatically updated
after each operation.

The A-Vu command set is organized into five pull-down type menus appearing in
its main window. A-Vu’s main window is shown in Figure 7.2 with a typical default
configuration display. The FILE menu provides access to all of the archival operations
as presented in Section 3.7. For most user sessions, either the OPEN or the LOAD menu
items within the FILE menu are typically the first to be selected. The EDIT menu pro-
vides access to all remaining operations presented in Chapter 3 via additional cascading

menus. This includes the depth-first and breadth-first search algorithms, the connected
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component reduction routines, the various selection operations, etc. The viewing pa-
rameters from Section 4.2 are adjusted using the VIEW menu. The OPTIMIZE menu is
used to control the optimization -process and provides access to the automated se-

quencer. Filtering options and miscellaneous parameters display parameters are con-

trolled via the OPTIONS menu.

Figure 7.2 Typical default configuration

Upon completion of each user operation, the A-Vu system automatically displays
the updated configuration via a REFRESH operation. Translation of the resulting visu-
alization space can be performed as necessary using the standard horizontal and vertical
window scroll bars. An overview window (Figure 7.3) is also automatically updated af-
ter each editing opefation to reflect the current size, dimeﬁsionality, and view perspec-

tive of the visualization space. Under the restraints of a discrete visnalization space im-

Y
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plementation, A-Vu allows each spaces to be viewed along any of the three major axes
with both axis rotation and axis reflection. The user can select either a planar view and
step through the space a plane at a time, or a composite view and display a parallel pro-

Jection of all nodes in the space simultaneously.

Figure 7.3 Visualization space overview window

To help analyze the complexity (or simplicity) of each configuration, the A-Vu sys-
tem integrates a display of many of the evaluation functions presented in Chapter 5.
Currently displayed metrics include volumetric complexity measures (visualization
space size and dimensions), graph measures (nodes, edges, distance, mini-
mum/maximum degree, etc.), symmetry metrics (reflectivity, translativity, rotativity),
and connectivity metrics (number of crossings, hierarchical dependencies, layerings,
etc.) The values of these metrics are displayed in a window (Figure 7.4) and are up-
dated at the completion of each user operation. With the exception of edge crossings,
all of these values may be computed in linear time or better. Due to the @(IEIZ) expense
in determining the number of edge crossing Jg, A-Vu provides an option for disabling

this computation. This option is linked directly to the edge filtering algorithm and is
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particularly useful in very large configurations where the utility of simultaneously dis-

playing all edges is of limited value.

Figure 7.4 Metrics display
While the editing tools are useful for manual manipulation of configurations, their
exclusive use for complex dependency structure analysis is inadequate due to the trial-
and-error style of interaction that is required to seek a near optimal solution. The opti-
mization techniques presented in Chapter 6 are integrated with A-Vu via two additional
windows. The weights associated with each component of J(C) are set with the control

panel shown in Figure 7.5. The weights assigned to each function may vary between
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0.00 and 1.00. As described in Chapter 5, all weights associated with complexity meas-
ures are automatically treated as positive values while those associated with simplicity
measures are automatically treated as negative values. Additional weight controls may
be attached to this panel as evaluation functions are added to the A-Vu energy function

suite.

Figure 7.5 Weight control panel

Once the desired weights for an optimization sequence have been selected, a cooling
schedule must be selected next. The control panel shown in Figure 7.6 is used for this
purpose. The initial temperature, cooling rate, and freeze temperature can each be indi-
vidually adjusted. Similarly, the number of iterations (i.e. configuration generations)
per pass and the size of the sample set can be adjusted. The node placement scheme and
node placement constraints are also selected via this~ control panel. At present, all but
the genetic place modes have been implemented. Genetic placement is currently ap-

proximated with a variant of hill-climbing that incorporates a mutation operator. Opti-
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mization schedules can be saved for reuse at another time via the SAVE and LOAD com-

Figure 7.6 Cooling schedule controls

Once the desired cooling schedule has been assigned, the optimization sequence can
be initiated via the optimization control panel shown in Figure 7.7. As a sequence pro-
gresses, the current temperature and energy is displayed on the panel. Similarly, the
execution time, the number of iterations, and the number of passes are also displayed.
The most recent configuration is displayed at the completion of each pass. The sequence
can be stopped at any time allowing the user to manually modify the configuration or to

adjust the cooling parameters and evaluation weights. The sequence can then be re-
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initiated. The energy values for each iterations may also be captured in a log file for

plotting at a later time.

Figure 7.7 Optimization controls
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8. Performance Analysis

With all elements of the A-Vu system def'ined, it is no;v possible to validate the per-
formance of the system and its aséociated visualization methods. Using a suite of test
samples described below in Section 8.1, a performance analysis was conducted for each
of operations presented in Chapter 3 and Chapter 4. The results of this analysis are pre-
sented in Section 8.2 and Section 8.3, respectively. Tl;ne performance of the evaluation
function J(C) from Chapter 5 was characterized and is summarized in Section 8.4. A
comparative analysis of the different optimizatiop methods discussed in Chapter 6 was
also performed and is presented in Section 8.5. The overall effectiveness of the A-Vu
sequencing methods are presented in Section 8.6.

During the execution of this analysis, several obvious flaws with the prototype sys-
tem implementation were identified and corrected. The majority of these flaws mani-
fested during the analysis of the very large configurations and resulted in excessive
compute times or storage allocation. The analysis also identified several areas where
the prototype system’s performance was worse than predicted due to the specifics of the

implementation. An explanation of these discrepancies are included below.

8.1 Test Samples

To conduct the performance tests below, a suite of test samples was prepared. These
samples were taken from actual software systems currently in operation [Sm’87]. All of
these programs were developed in Ada. The small systems were developed by individu-
als while the larger systems were a cooperative team effort. The dependency structure
analyzed was extracted from the context clause structure (ie. with statements) of each
program via the A-Vu LOAD command. A brief summary of each test sample is given

here.
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System ]:  Single node program, no dependencies, provided for comparison.
System 2:  Example system used throughout Chapter 1 and Chapter 2.
System 3:  Database report generation program.
System 4:  Database manipulation program.
System 5:  Parser/compiler program.
System 6:  Medium-size interactive application.
System 7:  Large aggregate application.
System 8:  Large process control/monitoring application.
System 9:  Very large aggregate application.
The size of each sample system is shown in Table 8.1. The variable n refers the
number of nodes in the sample, k refers to the number of edges. Note that the number of

edges in this sample set is approximately 2-5 times the number of nodes.

Table 8.1 Test Sample Sizes

System 1 1 0
System 2 8 11
System 3 19 31
System 4 35 70
System 5 65 210
System 6 103 208
System 7 206 560
System 8 459 2001
System 9 1021 4282

8.2 Manipulation Performance
The performance of each operation described in Chapter 3 is presented here. Since
performance differences are more dramatic among the larger samples, only the timing

measurements associated with the five largest test samples (5, 6, 7, 8, and 9) are tabu-
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lated below. These measurements were condicted using the A-Vu prototype system
running on a standalone, sipgle-user VaxStfltion 3100-76. This low to medium perform-
ance, complex instruction set workstation has a computational rating of approximately
7-8 MIPS (million instructions/second). Timing measurements were based on the sys-
tem’s clock and taken with 0.01 second resolution. In several instances, particularly
with the small test samples, time measurements less than 0.01 second were recorded.
The constant dt is used in the tables below whenever this occurred.

To validate operation performance, each timing measurement was compared against
the number of nodes and against the number of edges in the system. A best-fit approxi-
mation of all timing data was applied using one of five different models:

- Constant (CON)
- Logarithmic (LOG)
- Linear (LIN)
- Exponential (EXP)
- Power (PWR)
The model yielding the highest correlation is indicated in each table. The measured

computational complexity of each operation is given in the last column of each table.

Initialization

The performance of the initialization operations (Section 3.1) is shown in Table 8.2.
Although none of these operations are directly accessible by the user, the performance
of these operations is crucial as they comprise the fundamental primitives used by all
other high-level operations. The A-Vu System was appropriately instrumented to col-
lected this information. As expected, the majority of these operations completed in con-
stant time. The DELETE_NODE, CREATE_EDGE, and DELETE_EDGE operations com-

pleted in small, but linear time as predicted in Section 3.1 due to the additional edge and
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layout data structure maintenance that is required. Note, however, that the DE-
LETE_LAYOUT operation performs in constant time rather than linear time as predicted.
This is explained by the fact that only a small number of layouts (i.e. <3) were associ-

ated with the default configurations used by the test.

Table 8.2 Initialization Operation Performance

INITIALIZE ot ot ot |ot |t [|CON |e
CREATE_NODE ot |at jor |ot |3t JCON |ec
DELETE_NODE at |001]0.01]0.10 |007 |[LIN |n
CREATE_EDGE 0.01 |0.02}0.0210.05 |0.13 {LIN [|n
DELETE_EDGE 0.01|0.02]0.02]0.06 [0.12 |LIN |n
SET_NODE_ATTRIBUTE ot ot |t ot jor {CON |c
SET_EDGE_ATTRIBUTE ot |at ot |at ot CON |c
CLEAR_NODE_ATTRIBUTE |3t |ot |ot |{ot ot CON |c
CLEAR_EDGE_ATTRIBUTE {dt idt [at [at. |ot CON |¢
CREATE_LAYOUT ot |ot |ot ot |t |CON jc
DELETE_LAYOUT ot jdt |ot |ot |ot |CON |c
CREATE_BINDING ot |3t |ot ot ot CON |c
DELETE_BINDING ot lat |at |at ot CON |c

Editing

The performance of the editing operations described in Section 3.2 is shown in Ta-
ble 8.3. The RECONNECT, INSERT_NODE, and DELETE_NODE operations have been
excluded since they are embedded and used only by the CUT and PASTE operations.
The linear-time rather than constant-time performance of the SET_NODE_POSITION, SE-
LECT, and DESELECT operations is attributed to the linear-list implementation of sets in
the prototype. While the CUT and PASTE operations performed extremely well for large
configurations, their performance began to degrade with very large configurations. This

was tracked to the @(IVlz) component in the RECONNECT operation. The complexity
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measures for CUT and PASTE in Table 8.3 indicate the range computed with respect to

nodes and with respect to edges. This format will be used in subsequent tables below.

Table 8.3 Editing Operation Performance

'SET_NODE_POSITION

SELECT a3t & Jat [oot]oo2 [LN |n
DESELECT a {3t [a [oorfooz [LN [a

cuT 005 |0.10 {037 [1.64]9.25 |pPWR [l nl4
coPY 3t oot [oo02 [oos[o.10 [LIN |n
PASTE 006 [0.11 |034 [147]8.86 [PWR [l . nl#

Selection

Table 8.4shows the performance of the selection operations deécribed—in Section 3.3.
The majority of these operations perférmed as predicted, many demonstrating linear be-
havior as desired. Since an adjacency list data structure was not implemented in the
prototype, the SELECT_ROOT, SELECT_LEAVES, and SELECT BODY operations ap-
proached @(IVIZ) performance as expected. Unexpected however, SELECT_WEAK, SE-
LECT_STRONG, and SELECT_CYCLIC, SELECT_MAX_IN, SELECT_MAX OUT, and SE-
LECT_MAX_IN_OUT each approached @(Inlz) performance rather than linear
performance. Upon re-examining their definitions, an assumption in the original analy-
sis was discovered regarding the availability of the node adjacency list.

Although the current implementation of the A-Vu system incorporates a series of
node and edge lookupﬂcaches, a full adjacency list implementation is not supported by
the prototype. While this may seem like a minor enhancement, the ability to cut and
paste nodes and dynamically inherit edges and attributes from other nodes contained in

other spaces complicates this structure significantly. Based on these performance re-
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sults, however, a composite adjacency list structure is being examined as a subsequent

A-Vu refinement.

Table 8.4 Selection Operation Performance

SELECT_ALL ot at 001 {001 {002 |LIN n
SELECT_NONE at at 001 |001 |002 |LIN n
SELECT_INVERSE at 3t 001 |001 002 |LIN n
SELECT_ROOT 006 |0.17 [1.03 [3.57 [24.81 [PWR PR
SELECT_LEAVES 017 |040 [204 [s90 |s6.80 |PWR n'2  plo
SELECT_BODY 019 [046 |257 933 |63.10 [PWR ni4  nl®
SELECT_WEAK 0.8 1026 |11t [4.57 |31.57 {PWR nl3  pl4
SELECT_STRONG 018 J044 [1.68 [8.18 [40.82 |PWR nZ plo
SELECT_CYCLIC 018 |045 |166 |8.64 |3084 |PWR nl2 , nl®
SELECT_RELATIVE 004 |009 [035 |170 |901 |LIN n
SELECT_ABSOLUTE 004 [009 [036 [175 [9.06 [LIN n
SELECT_REFERENCED 008 [0.18 [071 |340 |188 |LIN n
SELECT_NAME 001 |002 [004 [0.a5 [029 |LIN n
SELECT_PATTERN 068 |[102 |201 (462 |1004 [LIN n
SELECT_NODE_ATTRIBUTE |at 3t 001 001 002 |LIN n
SELECT_EDGE_ATTRIBUTE [001 [001 {001 [006 009 |LIN n
SELECT_MAX_IN 0.19 |046 |1.79 [8.s51 |7428 |PWR nl3 _ plo
SELECT_MAX_OUT 020 |04s |[172 |835 |4238 [LINPWR |n..n!?
SELECT_MAX_IN_OUT 030 [076 {298 |2270|74.93 {PWR nl3  pll
Arrangement

All of the arrangement operations described in Section 3.4 performed as predicted
with the exception of ARRANGE BREATH, ARRANGE_LATERAL, and AR-
RANGE_ADJUSTED. While the performance of ARRANGE_BREADTH is still acceptable
for very large configurations, a close examination of the algorithm implementation re-
confirmed its linear time implementation, but identified an inefficiency that was due to
the lack of rapid edge lookup algorithm for each node. Hence, it is believed that AR-

RANGE_BREADTH, as implemented, will converge to linear time given an extremely
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large configuration. The relatively low exponent associated with its computed complex-
ity confirms this suspicion. The ARRANGE__LATERAL and ARRANGE_ADJUSTED opera-
tions, however, yielded poorer, unexpected performance again due to the assumption of

an edge adjacency list. The performance data for each arrangement operation is shown

in Table 8.5.

Table 8.5 Arrangement Operation Performance

/ARRANGE_DEFAULT 001 |002 002 005 [0.12 |LIN |n
ARRANGE_HIERARCHICAL [0.73 |4.89 |10.21 |204.82]337.22]PWR |nlS..A10
ARRANGE_DEPENDENT (032 [1.69 |336 |46.06 [184.90[PWR [n1%..A1%
ARRANGE_LAYERED 069 |107 |494 [13.89 |9827 |PWR [al4 . Al
ARRANGE_BREADTH 005 |0.14 |043 |218 [19.69 |PWR |[alT._ Al4
ARRANGE_DEPTH 0.13 |021 ]0.82 }6.14 1738 |LIN |=n
ARRANGE_UNIFORM 004 1006 |0.14 ]0.30 0.62 LIN |n
ARRANGE_CENTERED 004 |004 |00 [131 |197 LN |n
ARRANGE_LATERAL 0.14 [055 [3.01 {376 |18.05 |PWR [nlZ.nlS
ARRANGE_ADJUSTED 0.14 lost |148 |383 |1775 |PWR [a#l2..nIS
Reduction

Among all of the reduction operations from Section 3.5, only the REDUCE_STRONG,
REDUCE_WEAK, and REDUCE_RESTRICTED performed completely as predicted. Each
of these operations were executed using default arrangements of the initial configura-
tions. The REDUCE_SELECTED test was conducted by cutting every node in the initial
configuration and pasting them into a single composite node. The quadratic behavior
exhibited by REDUCE_SELECTED is therefore attributed to the ®(|V12) overhead of the
CUT and PASTE operations identified above.

While the REDUCE_SELECTED operation performed worse than expected, the com-
puted complexities of the REDUCE_NAMES and REDUCE_IMPLIED operations actually

appeared better. The linear behavior of both of these operations is most likely attributed
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to the extensive constant time overhead required in assembling the large number of lay-
outs and bindings associated with these operations. An extremely large configuration is
required to confirm these suspicions.

The REDUCE_ATTRIBUTES operation was excluded from the analysis since it is
equivalent to a SELECT_NODE_ATTRIBUTES, REDUCE_SELECTED sequence. The re-

sults of the reduction operation measurements is shown in Table 8.6.

Table 8.6 Reduction Operation Performance

REDUCE_SELECTED 041 {092 [321 {2030 (8175 |PWR [nl°.a
REDUCE_WEAK 0.10 {030 |6.55 [23.84 8164 [LIN |n
REDUCE_STRONG 0.18 {041 [1.61 {1209 }68.76 |[PWR [ni=. a0
REDUCE_NAMES 081 {192 |623 [4350 [175.66 [LIN |,
REDUCE_IMPLIED 108 1236 |7.94 |49.97 [26949 |LIN |,
REDUCE_RESTRICTED  [032 [o0.65 [279 [1262 6971 |PWR |15 ..nlS

Compaction

The compaction operations presented in Section 3.6 all produced linear results.
These simple algorithms are similar to the ARRANGE_UNIFORM operation described
above. Each of these operations were applied to a configuration that had been uni-
formly arranged and repositioned a unit distance from each axis. Table 8.7 contains a

summary of the results.

Table 8.7 Compaction Operation Performance

COMPACT_X 001 [001 J0.07 |0.18 [1.23 |LIN |a
COMPACT_Y 001 [001 {007 [009 [1.25 |[LIN [~
COMPACT_Z 001 {001 |009 [006 [1.40 [LIN |~
COMPACT_VOLUE  |001 {001 {001 [001 [020 |[LIN |5
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Archival

The performance of the archival operations is shown in Table 8.8. The LOAD meas-
urements were performed starting. with a null configuration. The SAVE and OPEN op-
erations were performed upon completion of an ARRANGE_DEFAULT operation follow-
ing the LOAD. The performance measurements for the OPEN operation are currently not
available due to recent changes in the configuration definition and the ASL language.
All of the operations yielded linear time performance as expected. The LOAD operation,
however, appears disproportionate to the other operations. This performance difference
was traced to the initialization of several large cache data structures used in support of
rapid node/edge references. The export operations were not included in the analysis, but

are nearly identical to the SAVE operation.

Table 8.8 Archival Operation Performance

SAVE 070 {1.17 | 195 |4.99 1152 |LIN |[n
LOAD 0.78 1131 |3.14 |17.35 15660 |LIN |n
CLOSE 007 [0.15 [041 |224 112 {LIN |n

8.3 Viewing Performance

Of all the viewing operations identified in Chapter 4, only the REFRESH operation
could not be performed in constant time. Nearly all of the other operations involve the
manipulation of viewing variables which require negligible time to perform. These
variables are used primarily for initialization of the viewing transformations that are ap-
plied during each REFRESH operation. Regardless of the specific viewing parameter
value, these transformations are applied equally each pass. As a result, the REFRESH

operation remains nearly constant as these parameters are changed. A dramatic per-
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formance change, however, can be observed by applying filtering. Table 8.9 contains
the timing measurements of the REFRESH operation with and without edge filtering en-
abled. Note that for very large configurations, REFRESH performance, although linear
time, becomes nearly intolerable for interactive applications. The filtered REFRESH op-
eration shows a noticeable improvement. This performance difference is traced to the
overhead involved in simply processing and displéying such a large number of edges.
Due to its linear time behavior, the REFRESH operation is expected to be proportion-

ately faster on a higher performance workstation.

Table 8.9 Viewing Operation Performance

REFRESH (unftered) 043
REFRESH (fitered) 021

045 |1.05

8.4 Evaluation Performance

The performance of the primary evaluation functions described in Chapter 5 that are
currently implemented within A-Vu are presented in Table 8.10. These measurements
were taken after a default arrangement of each configuration was generated. The node‘
and edge counting functions performed in linear time as expected. Although the total
number of nodes and edges in the configuration are directly accessible in the configura-
tion data structure implementation, these values must be computed as they pertain to a
particular layout view or cross-section. The values of these functions are cached by the
A-Vu system for later reference. Consequently, the performance of the volumetric and
cyclomatic functions yield constant time performance. With the exception of J, the re-
maining functions yielded linear time performance as expected. The crossing function

performed in @(IEIZ), also as expected. It is obvious from Table 8.10, however, that the
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use of J; for very large, unreduced configurations will result in unacceptable interactive
performance. Whenever possible, the reduction operations from Section 3.5 should be
applied to a configuration first to consolidate nodes and signiﬁcantly reduce the number

of visible edges.

Table 8.10 Evaluation Function Performance

Hierarchey - Jy 003 10.02]005 |0.19 |0.36
Layering - J; 002 |0.03|004 |0.16 [0.37
Reflactivity - JR 002 (0021006 |0.18 {0.41

Nodes - J, ot ot |dt at 001 |LIN |n
Edges - Jj, a fat | [003 [oos |LIN [a
Volumetric-JV ot ot |ot 3 at CON |e
Cyclomatic - J, ot ot ot ot ot CON |¢
Connectivity -J,  [0.01 |0.01 [0.04 [o09 [o21 |LIN |n
Distance - J,, 005 005023 [040 089 [LIN |n
Proximity - J, 002 |002 006 [0.18 [041 [LIN |=
Crossings - Jg 246 |4.26 | 16,31 |230.0 | 500.0 [ PWR [al7 . n21
LIN
LIN
LIN

Recall from Table 8.1 that the ratio of edges to nodes among the larger samples was
typically in the range of 2 to 5. Examination of a much larger set of software samples
reaffirmed this linear relationship. The analysis of over 200 programs written by nu-
merous multi-developer teams yielded a maximum edge to node ratio of 10. This linear
relationship was further confirmed in each of the tables above. Whenever node versus
timing information was best fit to a power curve, a similar best fit appeared on the num-
ber of edges.

Also of interest is the relationship between the number of edges and the number of
edges crossings in a default configuration. The information obtained from the test sam-
ples is shown in Table 8.11. When best fit to a curve, a relationship approaching quad-
ratic performance (i.e. J g=02x k1'9) is again observed. These empirical relationships

are important as they allow an upper bound to be established on the maximum number
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of system elements that should be represented within a given layout for a particular class

machine.

Table 8.11 Edge Crossing Relationship

System 1 0 0

System 2 11 35
System 3 31 118
System 4 70 330
System 5 210 3036
System 6 208 6423
System 7 560 31,870
System 8 2001 | 343,310
System 9 4282 11,763,398

Let J = ck? where c is an constant and let r equal the expected ratio of edges to

nodes. Since k = rn, then J, = c(rn)z. Solving for n yields the following empirical rela-

Let x be the maximum number of crossings that can be calculated per second and let &¢

tionship:

be the maximum acceptable user response time delay in seconds. The maximum allow-

able value for J; is therefore x &¢. Substituting for J; yields the following:

X0t

n = TC

Assume that reasonable interactive performance is say, one second, and that maxi-
mum expected edge to node ratio is 5 as in Table 8.1. Assuming ¢ = 0.2 as above, the

maximum recommend value for n is then:

~ fxt _ [x-1 _
n = Fc = ‘5(.—2)-—‘\/f



231

From the data in Table 8.10 and Table 8.11, the crossing calculation rate x is ap-
proximately 2000 per second (e.g. 1,763,398/900.0). Thus the maximum recommended
number of nodes per layout on the machine used for this analysis is approximately 45.
Using contemporary high-performance worksta.tion technology, this number can be in-
creased to approximately 240, providing reasonable performance for most large-sized

programs.

8.5 Optimization Performance

In contrast to its direct algorithm-based operations (i.e. Chapter 3), the iterative im-
provement methods employed by the A-Vu system appear costly. However,
deterministic polynomial-time algorithms are not always available nor possible depend-
ing upon the optimization criteria requested. Fortunately, A-Vu provides a great deal of
flexibility that allows a user to carefully control the computational investment to be ex-
pended.

To demonstrate this flexibility, the second test sample (System_2) originally pre-
sented in Example 1.1 and Example 1.2 will be used. An initial configuration for this

system is constructed using the following ASL sequence:

load system_2.lis
arrange default
select root
arrange breadth
compact volume
arrange depth
arrange defauit

The layout shown in Figure 8.1 illustrates the results of this sequence. The A-Vu com-
mand option identify was used to enable node identification. Note the resemblance to

Figure 1.1.
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Figure 8.1 System 2 - Default Layout

This initial configuration can now be transformed according to the desired layout
criteria and cooling schedule. Using the control panel shown in Figure 7.5, the user se-
lects the appropriate evaluation function weights. The éontrol panel shown in Figure
7.6 is used to adjust the cooling schedule. For these examples, a cooling rate of o =
0.90, an initial temperature of T = 500°, k£ = 0.010, and m = 100 iterations per pass were
selected. The node placement mode was initially set to random and the node placement
constraint was set to planar (i.e. two-dimensional, unconstrained). Figure 8.2 shows the
results of the optimization process using only the distance criteria J p (ie. all other
evaluation function weights are set to 0). Note that the process effectively found a
graph articulation point and clustered the eight nodes into two subgraphs. The top clus-
ter contains all of the input/output support nodes while the bottom cluster contains all

the computational nodes.

[ COMPUTEN~TMATRIX | .
[ SCALAR]MECTOR |-

Figure 8.2 System_2 - Distance Minimization
While the clustering information obtained from distance minimization is useful, the

general hierarchical structure of the system is difficult to extract from Figure 8.2. This
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structure is much more visible in Figure 8.3 where only hierarchy minimization was per-
formed using J,;. Note that the process identified five distinct levels within the system,

corresponding to the five levels originally desired as in Figure 1.2.

While hierarchy optimization is useful in identifying dependency levels, knowledge
of the system’s abstraction layers is not readily visible in Figure 8.3. This was partially
rectified in Figure 8.4 by performing only layering optimization using J ;- Three distinct
layers appear; the top layer containing program input/output and control elements, the
middle layer containing the compute element, and the bottom layer containing the

closely coupled linear algebra components.

: Flgune 8.4 "S;'stem_Z - Layering .(');.t.ir-r.;izaﬁ;)n |

While the layouts in figures 8.1 through 8.4 reveal some useful information, the or-
ganization of these diagrams still appear complicated. This visual complexity can be
reduce via edge crossing minimization using J g (Figure 8.5) or symmetry (reflectivity)

optimization using J, (Figure 8.6).
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Figure 8.6 System_2 - Symmetry Optimization

While each of the above diagrams possess their own individual strengths and weak-
nesses, a layout using a composite of these criteria is actually desired. The layout in
Figure 8.7 was generated with the weights shown in Table 8.12. To bring out the de-
pendency and abstraction structure, hierarchy and layering were weighted most heavily.
Edge crossings and reflectivity were weighted next for visual appeal. Distance was
weighted lowest to insure a compact diagram without jeopardizing the other factors.
Note the presence of the reflectivity component in the positioning of the SCALAR and
VECTOR components. Ideally, these components should be centered beneath the MA-
TRIX component to convey their close relationship. This can be accomplished by further
reducing the reflectivity weight, or more effectively, by introducing an attribute-based

function that captures the MATRIX-VECTOR-SCALAR relationship.
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Figure 8.7 System 2 - Composite Optimization

Table 8.12 Weight Assignments for Figure 8.7

Distance - J, 0.10
Hierarchy - Jp, 1.00
Layering - J, 0.80
Crossings - J 0.75
Reflectivity -J, |0.50

The total number of iterations required to generate the diagrams in Figure 8.2
through Figure 8.6 are shown in Table 8.13. Due to the random nature of the process,
these counts vary with each run and can be tuned to the desired level of performance by
adjusting the cooling rate, freeze temperature, and pass iteration count using the sched-

ule control panel. An energy profile of each optimization sequence is shown in Figure

8.8.

Table 8.13 System 2 Optimization Iterations Counts

o

Distance-J,, | 2100 :
Hierarchy - J,, 500

Layering - J, 1000
Crossings - J; 1200
Reflectivity - J,  |2600
Composite - J(C) {2700

. 22
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Examining the energy profiles in Figure 8.8 reveals some interesting results. Only
the distance and composite profiles demonstrate a clear convergence to a minimum en-
ergy state. From Table 8.13, it is known that these profiles represent a considerable
number of iterations while those for hierarchy, layering, and edge crossing are in the
range of 43% to 81% less. As a result of the higher number of iterations, the exponen-
tial limiting effect of higher energy transitions is more pronounced. The hierarchy, lay-
ering, and edge crossing profiles demonstrate the random aspects of this process at
higher temperatures. The three optimization sequences terminated due to having meet
the cooling requirement based on a repeated energy sample pattern as controlled by the
cooling schedule panel.

Of unusual interest is the reflectivity profile which yields no apparent convergence
except perhaps at the very end. This behavior is attributed to the very narrow energy
span and the discontinuity inherent in the reflectivity function. Similar to the edge
crossing function, a single displacement of a node can dramatically alter the energy
level within this energy range. Configurations which offer a much broader energy dif-
ferential and functions with a more continuous nature produce much cleaner conver-
gence profiles. These effects appear naturally as the number of nodes and edges in the
system increases as seen below.

To demonstrate the effects of different placement modes, System 6 is used as an ex-
ample. Because of the much larger configuration size, it is useful to first simplify the
amount of work the optimization process will have to perform. This can be accom-
plished by first applying the ARRANGE_HIERARCHICAL, ARRANGE_DEPENDENT, or AR-
RANGE_LAYERED operations on a reduced configuration. When coupled with a layered
placement constraint, these operations eliminate the need for hierarchical and/or layer-

ing minimization criteria. The linear option in the schedule control panel initiates this
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constraint. A reduced configuration of System 6 is prepared using the following se-

quence:

load system_6.lis
arrange default
select pattern junk.pat
cut

reduce implied
select root

arrange breadth
compact volume
arrange dependent

The energy profiles for the different placement modes are shown in Figure 8.9. The

respective acceptance and rejection rates associated with each pass of the optimization

algorithm is shown in Figure 8.10.
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The results of the optimization process on System 6 using the four different place-
ment modes is shown in Table 8.14. The count column contains the number of itera-
tions the sequence executed before coming to completion. The energy column indicates
the final energy state. The final column indicates the energy reduction from the initial

energy state of 375.

Table 8.14 System 6 Optimization Resuits

Hill Climbing 900 213 43%

Random 2600 181 52%
Random Displacement 2000 215 43%
Controlled Displacement {2200 191 49%

For this example, the simple hill climbing technique (i.e. T = 0) performed remark-
ably well. Based on repeated trials, the hill climbing technique appears to be particu-
larly useful in making initial coarse energy reductions with a minimum computational
investment. Because of the very low 'acceptance rate as seen in Figure 8.10(a), far fewer
configuration alternatives are explored. Consequently, “fine tuning” of the configura-
tion does not appear.

Surprisingly, the random placement scheme consistently produced the best (lowest
energy) results, but tended to required more time to complete. At the start of the proc-
ess, the placement generator is free to explore a broad range of possibilities. From Fig-
ure 8.9(b) it can be seen that it quickly reached a low energy state, but continued to ex-
plore higher energy alternatives. The high rejection rate and the continually decreasing

acceptance rate that is reached and sustained after only a few passes confirms this obser-

vation.
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Of the four methods, the random displacement performed the poorest with respect to
both iteration count and final energy state. Throughout an optimization sequence, this
method is restricted to small fixed displacements of nodes resulting in smaller incre-
mental changes: As a result, this method tends to sustain a much higher acceptance rate.
Much of this rate can be attributed to higher energy state transitions. Because of the
smaller displacements, the ability to locate lower energy layouts which are substantially
different from an initial configuration may not occur until much later in the sequence.
Unfortunately, the cold temperatures at this time make the necessary intermediate high
energy transitions less like to succeed.

The final technique represents an attractive compromise between the random and
random displ.acement methods. At the start of the process, the controlled displacement
technique behaves very similar to the random placement examining more diverse sec-
tions of the solution space. At cooler temperatures, this method begins to act more and
more like the random displacement method, performing the necessary configuration fine
tuning. The acceptance and rejection rates appear relatively constant throughout the en-
tire process. While the end energy results is not always as low as what can be achieved

by the random method, fewer iterations are generally required.

8.6 Sequencing Results

One of the most powerful features of the A-Vu system is its ability to integrate all of
the different techniques presented above into a single execution sequence that can be
saved, modified, and executed again at a later time. These sequences can be saved with
a system as documentation and updated as major architectural modifications are

adopted.
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To illustrate this point, the discussion again retums to System 6 presented above.
This system actually represents the software architecture for the A-Vu tool itself. This
architecture has undergone numerous changes as the A-Vu model has been refined and
new capabilities added. The sequence used for its visualization was developed early on
and has been maintained as the system evolved. In the early days of its develop, only
manual node manipulation and optimization were available as ASL components. Since
then, ASL has grown much richer, providing considerably greater flexibility with many
performance improvements. A typical sequence now begins with an OPEN or LOAD
statement, followed by a default arrangement, a series of reductions, an optimization

phase, and a final filtering phase. Figure 8.11 shows System 6 immediately after it in-
itial loading.

AR ANIBE e
“@' a

3

A s e A B s

9
%

Figure 8.11 Default configuration of the A-Vu system (System 6)
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The sequence currently used by A-Vu to visualize itself is the following:

load system_6.lis
arrange default
select pattern support.pat
reduce selected
modify support
select none

reduce implied
select none

find *callbacks
reduce selected
modify callbacks
select none

find *er

find *or

reduce selected
modify operations
arrange dependent
compact volume
optimize

option transitive off

The configuration which was generated as a result of this sequence is shown in Figure
8.12. The total time to run the entire sequence was 22 seconds. Of this time, 12 sec-

onds were required to complete the optimization sequence.
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The difference in complexity between Figure 8.11 and Figure 8.12 is striking. Fur-
thermore, no information was lost in the process. Via the A-Vu user interface, each
node can be examined individually, filtering turned on and off, nodes continued to be
cut and paste, etc. Using the methods, one final refinement which captures the design-
ers high level design for the system is shown in Figure 8.13. This diagram was created
from Figure 8.12 by removing the support tools, moving several elements into the opera-
tions node, and combining the METRICS and CONFIGURATION nodes into the database
node. These final operations were initiated with a few quick mouse clicks and could

easily be added to the automated sequence above for future use.

] callbacks

Figure 8.13. A-Vu i)e;xgner’s z)verview.

As a final example, the automated sequence described in Appendix C will now be
applied to Figure 1.3 (System 8). The total time to run this entire saquence up to the
optimization phase including the load operation was 3 minutes, 15 seconds. The
optimizer was then run for approximately 15 seconds to reduce edge crossings and
strengthen symmetry. Interim views of the system’s configuration at various stages of
the sequence are shown in Figure 8.14 and Figure 8.15. The final configuration at the
completion of the sequence is shown in Figure 8.16. The total energy J(C) of the sys-
tem was reduced from 319,641 in Figure 1.3, to 54,089 in Figure 8.14, to 616 in Figure
8.15, and ended at J(C) = 5 in Figure 8.16. The configuration in Figure 8.16 was dis-

played with the node name identification option enabled.
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9. Conclusion

This dissertation is intended to serve as a comprehensive investigation of the de-
pendency analysis process for coxﬁplex systems. To meet the research objectives pre-
sented in Section 1.3, a model was initially developed for capturing dependency infor-
mation and then subsequently refined to address # diverse range of issues that have
limited traditional graph-based approaches. Based on this model, a collection of primi-
tive operations were developed that defined an environment compliant with this model.
These operations were then extended to address issues specifically relating to user inter-
action and visualization. Due to the potential performance risk associated with many
graph theoretic problems, each operation was methodically defined within a framework
for characterizing acceptable performance.

With a wealth of operations available, a quantitative set of complexity measures
were then defined to help evaluate and direct the application of these operations. The
combination of these operations and complexity measures provided the foundation for
an optimization strategy and an automated sequencing mechanism. Integrating all of
these concepts, the design of a successful prototype tool was constructed in accordance
with the requirements presented in Section 1.4. Using this tool, a performance analysis
was then conducted to validate the effectiveness of the original model. This analysis
concluded favorably identifying areas for future algorithmic research. Reviewing Sec-
tion 1.3 affirms that the original objects of this research have been met.

This investigation now concludes with some historical background on how this ef-
fort had unfolded (Section 9.1), a summary of the advantages this approach offers (Sec-

tion 9.2), and some suggestions for continuing research and development (Section 9.3).

T
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9.1 Concept Evolution

During the early phases of this effort, an approach was sought that could be used to
gain a better understanding of how arbitrary complex systems are organized before, dur-
ing, and particularly after they have been engineered. The original method proposed to
extract various symmetry properties from systems and map these propertieé onto a
group theoretic model. This method was founded on the premise that visual simplicity
and design comprehension are closely related. Such an approach is of great theoretical
interest due to the mathematical foundation (i.e. group theory) and related visual ele-
gance than can be used to express very complicated structures. Unfortunately, actual
systems in use exhibited relatively few properties of this nature that could be used to
infer any specific organizational structure. Indeed, it was found that system organiza-
tion involved numerous criteria that fell outside the limits of this framework. Conse-
quently, the symmetry constraints were relaxed equating the problem to more traditional
dependency analysis. Nevertheless, the ability to engineer new systems under this
framework remains an open question.

Recasting the problem in | directed graph parlance, an optimization strategy was
sought that would allow the graphs to be minimized using an initial symmetry function
suite. Simulated annealing was selected as the optimization approach of choice due to
the ease with which it could be integrated and tailored in an interactive environment.
Initial applications of this approach on sample systems led to the rapid identification of
numerous other evaluation criteria. As this suite continued to expand, the limitations of
iterative improvement techniques became readily apparent.

Simulated annealing and other related techniques are notorious for their computa-
tional expense. As new layout criteria were identified, a set of polynomial time algo-

rithms for achieving specific layout objects were developed. The extensive set of opera-
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tions outline in this dissertation are a result of that effort. The limitations of fixed layout
criteria, however, has been clearly stated. The simulated annealing engine therefore re-
mains quite useful in identifying and exploring new layout methods. The attribute
mechanisms, composite layopts, meta-configuration, viewing operations, etc. were de-

veloped as a natural progression of this work.

9.2 A-Vu Advantages

The dependency visualization model that resulted from this work has several advan-
tages over traditional graph layout techniques. While most graph layout techniques are
‘based on fixed criteria, the approach developed here allows a user to select the desired
layout criteria from a la:gé criteria set. New layout criteria can be added to the system
without modification to the model or its underlying opti:ﬁization algorithm. The
weighting of any individual criterion can be readily adjusted by the user. This enables a
user to customize the visualization system for the particular problem at hand.

Unlike many graph layout techniques, the A-Vu model is specifically intended for
interactive use. Traditional graph layout algorithms, a variety of software visualization
tools, and the layout optimizer are all integrated into a single package. Consequently,
the user is free to explore a system from many different perspectives, yet is capable of
generating specific layouts.

In a typical session, the user might first apply a sequence of pattern matches to con-
solidate, reposition, or eliminate system elements of little or no consequence. Next the
user may wish to perform a sequence of rudimentary graph algorithms such as a root
node search and a hierarchical arrangement. An optimization' sequence which con-
strains nodes to a particular plane could next be performed to reduce edges crossings

and increase proximity. Based on the visual result, the user my wish to perform some
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additional editing operations and repeat the optimization sequence. A single session
could involve numerous editing/optimization operations to help the user obtain the or-
ganizational information they desire.

While conventional graph layout techniques are generally constrained to examine
only node and edge structure, the A-Vu model provides a mechanism which gives
meaning to various nodes and edges. This mechanism enables the A-Vu system to ad-
dress a much broader variety of layout concerns applicable to complex system under-
standing.

Finally, A-Vu’s composite mechanism is a powerful tool for reducing system de-
pendency. Many of the same systems engineering concepts in widespread use today can
be implied with this construct. The ability to automatically track node containment,
maintain node dependencies, and update node and edge attributes as nodes are moved
throughout multiple visualization spaces is a significant improvement to previous planar
graph methods. Under the A-Vu design, dependency structures are now multi-

dimensional objects that may be freely explored, yielding a significant departure from

traditional methods.

9.3 Future Directions

As an exploratory research effort, there are still many issues that remain to be ad-
dressed. While the A-Vu model and its current implementation provide a strong foun-
dation for structural and functional system analysis, the unification of dynamic and be-
havior properties requires an additional research investment. Based on the discussion in
Section 2.10, it appears that this can be accomplished within the existing A-Vu frame-
work by treating layouts, attributes, bindings, and configurations in general as functions

of time. This is perhaps the area of greatest of open research. Natural enhancements to
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the existing A-Vu system include the animation of layouts to track data flow, examine
data structures, view state information, and follow. execution paths.

To compensate for the computational inefficiencies of iterative improvement strate-
gies, continuance of the evolutionary process employed throughout this research effort
is envisioned. One of the most critical elements in this process has been the characteri-
zation of the objective function, J(C). Additional components may continue to be incor-
porated in the function suite. Care must be taken to avoid the introduction of a seem-
ingly endless array of options. The effectiveness of each component as it relates to
problem dependent factors must be explored in unison as endeavored in Chapter 3.

As important new evaluation criteria and useful layout sequences are identified and
tested, traditional algon'thrps or heuristic equivalents should be devised and incorporated
into the A-Vu system. Hence, ongoing expansion to the operation “catalog” in Chapter
3 is envisioned. Comparable expansion of the sequence language is also anticipated. Of
particular is the need for a recursive iteration construct in the ASL language that would
allow sub-sequences to be applied to composite structures and their dependents. A
macro facility for constructing ASL sequences by user example is also desired.

Numerous open issues regarding the optimization process are present as well. What
size and type of visualization space is needed to represent an arbitrary software system?
Are there more effective methods for placing nodes and generating new configurations?
How can optimization parameters be automatically selected? What are adequate tests
for minimum conditions and how can these conditions be selected automatically? Can
this process be applied over an entire system rather than just a single layout at a time.
Finally, how can an adequate computational balance be maintained between the energy

function J, the node placement techniques, and the automated sequencing task to obtain
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the most effective, high-performance implementation. These issues currently remain
under investigation.

The application of genetic algorithms as an alternative node placement method re-
mains an open issue. Although an algorithmic framework for their application was de-
vised, an actual implementation was not completed. A simple hill-climbing variant ex-
ists as a placeholder in the current A-Vu implementation. Consequently, a comparative
analysis between genetic placement and the other approaches has not been completed.

The intended result of future efforts is the continuing expansion and improvement of
the A-Vu model and its associated implementation, As more challenging organization
structures are encountered, the A-Vu model must similarly evolve. By applying these
techniques to existing systems, reverse engineering their designs, and extracting vital
dependency information, insight into new organization techniques may ultimately be
discovered enabling new system constructs to be formulated. In conjunction, new visu-
alization techniques are sought that move beyond basic node/edge structures in conci-
sely and elegantly depicting systems of ever increasing complexity. The notion of bus-
oriented, distributed, or perhaps even quantum mechanical dependency architectures

[Fe’8x] all offer exciting possibilities for the future.
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Appendix A: A-Vu Definition Language (ADL) Specification

The A-Vu system is capable of processing system descriptions specified in an inter-
mediate language referred to here.as the A-Vu Definition Language or ADL. ADL is
based on the A-Vu model presented above. Its programming language-like syntax,
however, makes it more convenient for specifying system configurations than the formal
definition given above. Dependency diagrams produced from other tools can therefore
by processed by A-Vu by means of an appropriate translator.

Listed below is a BNF-type syntax summary of ADL. Square brackets enclose op-
tional items. Braces enclose a repeated item which may appear zero or more times.
Bold-faced items indicate feserved words. An italicized item represents a value from a

predefined semantic category.

configuration ::=
configuration configuration_identifier Is
configuration_body
end configuration;

configuration_body ::=
{node_declaration}
{edge_declaration}
{layout_declaration}
{binding_declaration}

node_declaration ::=
node rnode_identifier is
{name_declaration}
{node_attribute_declaration}
{node_layout_declaration}
end node ;

node_declaration ::=
node node_identifier
[: edge_identifier {, edge_identifier) ];




name_declaration ::=
name : quoted string ;

node_attribute_declaration ::=
attribute : node_attribute {, node_attribute} ;

node_layout_declaration ::=
layout : layout_identifier {, layout_identifier) ;

edge_dedlaration ::=
edge edge_identifier Is
from_declaration
to_declaration
{edge__attribute_declaration}
end edge ;

edge_declaration ::=
edge edge_identifier : (node_identifier, node_identifier) ;

from_declaration ::=
from : node_identifier ;

to_declaration ::=
t0 : node_identifier ;

edge_attribute_declaration ::=
attribute : edge_astribute {, edge_attribute} ;

layout_declaration ::=

layout layout_identifier is
[name ; quoted_string ; ]
[current : boolean ; ]
[view :view type ;]
[perspective : perspective_type ; ]
[reflection : boolean : ]
[rotation : boolean ; ]
[reference : (number, number, number) ; |
[space : (number, number, number) ; ]

{node node_identifier : (number, number, number) ; )

end layout ;
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binding_declaration ::=

binding : ( node_identifier, layout_identifier) ;

A configuration consists of a configuration_identifier and a configuration_body. The
item configuration_identifier designates a unique name for the configuration using the
identifier conventions found in typical programming languages. A configuration_body
contains optional node_declaration, edge_declaration, layout_declaration, and bind-
ing_declaration sections.

The configuration_body section of a configuration may contain zero or more node
declarations. Nodes may be declared using one of two different methods. The first
method allows nodes to be completely specified as per the A-Vu model. This
node_declaration form consists of a node identifier node_identifier, an obtional
name_declaration section, an optional node_attribute_declaration section, and an optional
node_layout_declaration section. The node identifier must be unique across all configura-
tions as it may frequently be referenced from another visualization space. The second
method is provided for notational convenience in specifying directed graph structures
without attribute information. This form consists simply of a node identifier followed
by the node’s adjacency list.

The optional name_declaration field in the full node form allows the node to be la-
beled with a specific text string such as a module or procedure name. The
node_attribute_declaration is used to specify any attributes that are to be association with
the node. Legal values for node attributes are from the following set: {universal, proce-
dural, functional, parallel, aggregate, standard, generic, instantiation, specification, im-
plementation, foreign, composite}. The meaning of these attributes are discussed in

Section 2.6. Additional attributes may be added as the A-Vu model is further devel-
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oped. The node_layout_dedlaration section is provided as a short-cut method for defining
node-layout bindings. Altemnatively, bindings may be defined explicitly in the bind-
ing_declaration section of the configuration_body.

Similar to nodes, edges can also be defined using one of two methods. The first
form allows attributes to be associated with the edge while the second form provides an-
other short-cut method when no edge attributes are involved. The direction of the edge
is determined by the from_declaration and to_declaration sections in the full form or by the
order in whicl; the nodes are specified in short-cut form. The edge_attribute_deciaration
is used to specify any attributes that are to be associated with the edge. Legal values for
edge attributes are from the following set: {universal, implied, restricted, inherited, in-
duced, visible}. The meaning of these attributes are discussed.in Section 2.8. Addi-
tional edge attributes may be added as the A-Vu model is further developed.

The layout_declaration portion of a configuration_body is used to defined which nodes
are embedded in a visualization space, where they are located in that space, and how the
space is viewed. The name field provides an optional text label for the layout for dis-
play purposes. For convenience, selected portions of the configuration state information
Y may be directly specified for each layout. The current field indicates whether or not
the layout is selected as the current layout A. The view, reference, perspective, reflec-
tion, and rotation fields are all used to convey layout view paraméters as described in
Section 4.2.

The space field of a layout_declaration is used to declare the dimensions of the lay-
out’s visualization space. The number values specified may be either positive integers
or positive reals. Integer values indicate a discrete space; real values indicate a continu-
ous space; mixed values of integers and reals indicate a hybrid space. An unspecified

space field indicates that the dimensions of the visualization space are undefined and
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that no node placement has been performed. The node field of a layout_declaration is
used to specify which nodes are embedded in the layout and at what position. The num-

ber value types must match with each other and those declared in the space field.

The following is the ADL language definition for the system given in Table 1.1:

configuration TABLE_1.1 is

node COMPUTE :  MATRIX, SCALAR,VECTOR;
node INPUT ¢ IO

node 10;

node MAIN : COMPUTE, INPUT, OUTPUT:
node MATRIX :  SCALAR, VECTOR;

node OUTPUT : IO

node SCALAR;

node VECTOR : SCALAR;

end configuration;

The configuration shown in Figure 2.3 is specified in ADL as follows:

configuration FIGURE 2.3 is

node 1 is
hame :"COMPUTE"

attribute : procedural, visibie;
end node;

node2lis

name: "INPUT";

attribute : procedural, standard, visible;
end node;

node 3 is

name : "10";

attribute : aggregate, foreign;
end node;
node 4 is

name : "MAIN";

attribute : procedural, visible;
end nhode;

hode s is
name : "MATRIX";
attribute : aggregate. instantiation, visible;
end node; t




node 6 Is

name : "OUTPUT™;

attribute : procedural. Standard, visible;
end node;

node 7 Is

name : "SCALAR";

attribute : aggregate, instantiation, visible;
end node;

node 8 is

name : "VECTOR";

attribute : aggregate, instantiation, visible;
end node;

edge1 :(1,5)
edge2 :(1,8)
edge3 :(1,7);
edged :(2,7);
edge5 :(4,1)
edge6 :(4,2);
edge7 :(4,6);
edge8 :(5,8);
edge9 :(5,7);
edge 10 : (6, 3);
edge 11 :(8,7);

layout 1 is
name : "Figure 2.3";
current : TRUE;
view : PLANAR;

perspective :FRONT;
reflection : FALSE;
rotation : FALSE;

space 1 (8,5,1);
reference 1 (4,3,1);
node 1 : (4,2,1);
node2 $(3,2,1);
node 4 :(4,1,1);
node 5 :(4,3,1);
node 6 : (5,2,1);
node 7 :(4,5,1);
node 8 1 (4,4,1);

end layout;

end configuration;
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Appendix B: A-Vu Sequence Language (ASL) Specification

File commands

open { filename )

save { filename )

close { filename }

load { filename }

export containment { filename }
export dependency { filename }
analyze { filename } -

Edit commands

cut

copy

paste

create { name }

modify { name }
delete

Move commands

move left

move right
move down
move up

move forward
move backward

Select commands

select all
select inverse
select root
select leaves
select body
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select cyclic
select weak

select strong

select relative
select absolute
select referenced
select In

select out

select in out

select name {search-expression)
select pattern {file}

select node attribute
attribute € {universal, procedural, Junctional, parallel, aggregate,
standard, generic, instantiation, specification, implementa-
tion, foreign, composite )
select edge attribute
attribute e {universal, implied, restricted, inherited, induced }

Arrange commands

arrange default
arrange dependent
arrange hierarchical
arrange layered
arrange breadth
arrange depth
arrange uniform
arrange centered
arrange lateral
arrange adjust

Reduce commands

reduce selected
reduce weak
reduce strong
reduce names
reduce attributes



reduce Implied
reduce restricted

Compact commands

compact rows
compact columns
compact planes
compact volume

View commands

refresh

view planar
view composite
view spatial
view next
view previous
view front
view side
view top

view reflect
view rotate

Optimize commands

schedule {filename}

welghts (filename)
optimize

Option commands

option connect
option disconnect
option identify on
option identify off
option length n

option transitive on
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option transitive off
option reverse on
option reverse off
option level on
option level off
option shift

option swap

option directed
option undirected
option odd

option even

option random
option displacement
option constrained
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Appendix C: Example Sequence

The following ASL sequence was used to automatically generate Figure 8.16 from Fig-
ure 1.3:

| Console reduction sequence
load console.lis

1Build default configuration
arrange default

Perform graph reductions
reduce connected
reduce named

reduce restricted
reduce implied

select none

IBuild composite space for support tools and predefined elements
select pattern support.pat

reduce selected

modify Support

move backward

view previous

IBuild composite space for incident elements
select pattern incidents.pat

reduce selected

modify Incidents

select none

1Build composite space for object elements
select pattern objects.pat

reduce selected

modify Objects

select none

1Build composite space for Argus elements
select patiern argus.pat

reduce selected

modify Argus

select none

I1Build composite space for dictionary elements
find *dictionary

reduce selected

modlfy Dictionaries

cut

view next

paste

view previous

1Build composite space for menu elements
find menu*

find *menu

reduce selected

modify Menus

select none

IBuild composite space for handler elements
find *handler




find handle*
reduce selected
modity Handlers
select none

1Build composite space for painter elements
find *painter

reduce selected

modify Painters

select none

1Build composite space for video/camera elements
find video*

find camera*

reduce selected

modify Video

select none

Build composite root elements
select root

find startup

find cleanu

reduce selected

modify Console

select none

1Generate final layout
arrange dependent

view composite

compact rows

compact volume

view plane

schedule default.sch
welghts cross_mirror.wht
optimize

refresh

270



