skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ROBOTIC TANK INSPECTION END EFFECTOR

Abstract

The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and finemore » inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of the contract, the focus remains on the RTIEE.« less

Authors:
Publication Date:
Research Org.:
Federal Energy Technology Center Morgantown (FETC-MGN), Morgantown, WV (United States); Federal Energy Technology Center Pittsburgh (FETC-PGH), Pittsburgh, PA (United States)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
772483
Report Number(s):
DE-AR21-93MC30363-01
TRN: US0302608
DOE Contract Number:  
AR21-93MC30363
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Oct 1999
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 36 MATERIALS SCIENCE; ALTERNATING CURRENT; BY-PRODUCTS; COATINGS; CORROSION; DECOMMISSIONING; DEFECTS; RADIOACTIVE WASTE STORAGE; REPAIR; RESIDUES; SAMPLING; STEELS; STORAGE FACILITIES; TANKS; WASTES

Citation Formats

Landry, Rachel. ROBOTIC TANK INSPECTION END EFFECTOR. United States: N. p., 1999. Web. doi:10.2172/772483.
Landry, Rachel. ROBOTIC TANK INSPECTION END EFFECTOR. United States. https://doi.org/10.2172/772483
Landry, Rachel. 1999. "ROBOTIC TANK INSPECTION END EFFECTOR". United States. https://doi.org/10.2172/772483. https://www.osti.gov/servlets/purl/772483.
@article{osti_772483,
title = {ROBOTIC TANK INSPECTION END EFFECTOR},
author = {Landry, Rachel},
abstractNote = {The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of the contract, the focus remains on the RTIEE.},
doi = {10.2172/772483},
url = {https://www.osti.gov/biblio/772483}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Oct 01 00:00:00 EDT 1999},
month = {Fri Oct 01 00:00:00 EDT 1999}
}