
LA-UI+ 130-3023
Approved forpublic release;
distribution is unljmjted.

Title: Adaptive Tetrahedral Grid Refinement and Coarsening in
Message-Passing Environments

Author(s): Jackie Hallberg (Engineer Research and Development Center,
3909 Halls Ferry Road, Vicksburg, MS 39180)

Alan Stagg (LANL, X-8)

Joseph Schmidt (2420 Wanda Way, Reston, VA 20191)

Submitted to: ‘j’th Internation~ Conference on Numeric~ Grid Generation in
Computational Field Simulations (Whistler, British Columbia,
Canada)

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative actiotiequal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S.Department of Energy.Los Alamos National Laboratory strongly supports academic freedom and a researcher%right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

. .-.-.;-,, .,,, , ,.. , -7-T ... ,, . . . , ,. , ,. . ,., Z...,“,~.6,.,...,.,,,,,..,.....x.~ , ,.< ,. —- ,., , -—

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of anY
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be iilegible
in electronic image products. Images are
produced from the best available original
document.

. I

I

I

,

.

Adaptive Tetrahedral Grid Refinement and
Coarsening in Message-Passing Environments

Jackie P. Hallbergl
Alan K. Stag~
Joseph H. Schmid?

1Engineer Research and Development Center
Coastal and Hydraulic Laborato~
3909 Halls Ferry Road
Vicksburg, MS 39180
pettway@juanita.wes.army.mil

2Los Alamos National Laboratory
Applied Physics Division
P.O. BOX 1663, MS F645
Los Alamos, NM 87545
stagg(i?jlanl.gov

32420 Wanda Way
Reston, VA 20191
roig.and.schrnidt@erols. com

Abstract

A grid refinement and coarsening scheme has been developed for tetrahedral
and triangular grid-based calculations in message-passing environments. The
element adaption scheme is based on an edge bisection of elements marked for
refinement by an appropriate error indicator. Hash-table/linked-list data
structures are used to store nodal and element tiormation. The grid along inter-
processor boundaries is refined and coarsened consistently with the update of
these data structures via MPI calls. The parallel adaption scheme has been
applied to the solution of a transient, three-dimensional, nonlinear, groundwater
flow problem. Timings indicate efficiency of the grid refinement process
relative to the flow solver calculations.

1.0 Introduction

Adaptive grid methods based on point insertion and removal have been popular
for a number of years for achieving greater solution accuracy with relative cost

efficiency. This approach is used to resolve dynamic and fine-grid scale
phenomena. The advantage is that fine-scale flow features can be captured
without uniformly gridding the domain with a costly, fine grid. However, issues
related to implementing such schemes on parallel systems have only recently
been addressed, and much work is needed to identifi the best approaches.

We present our work in this area with application to finite element modeling in
message-passing environments. Our grid refinement strategy based on point
insertion has been described elsewhere [1]. In this paper we extend this
refinement capability to enable local grid coarsening and describe this efficient
approach for irregular tetrahedral and triangular grids. Data structures have
been selected to simplify implementation and coding complexity as much as
possible for refinement, coarsening, and load balancing components. This
software is being utilized in the Department of Defense code ADH (Adaptive
Hydrology) developed at the U.S. Army Engineer Research and Development
Center. ADH is a modular, parallel, finite element code designed to simulate
flow in groundwater and two- and three-dimensional surface water [2].

1.1 Serial Element Adaption Scheme

Given an initial grid, the model subdivides grid elements according to an error
indicator to achieve the required resolution in regions of need. The parallel grid.
adaption scheme developed here is based on the serial geometric splitting
algorithm of Liu and Joe [3]. Elements are refined by edge bisection according
to an error indicator, and elements can be merged to increase efficiency where
increased resolution is no longer required. A grid closure step is used to
eliminate hanging nodes. Element edges are selected for subdivision based on a
modified longest-edge bisection approach in which the oldest edge is flagged for
bisection followed by the longest edge. Refinement and coarsening of a
tetrahedral element are illustrated in Figure 1. Here a new node is added to an
edge, creating two new tetrahedral. The new elements may be merged to recover
the original element by removing the inserted node.

-.. . I

Figure 1. Tetrahedral Grid Adaption Based on Edge Bisection

The refinement process begins with determination of elements to be split
according to an explicit error indicator. The following pseudo-code illustrates
the basic steps in the refinement scheme.

Refinementpseudo-code

loop over elements
refine element via edge bisection l~its error > tolerance;

conforming_grid = false;
do while conforming_grid == false {

conforming_grid = true;
loop over elements

if element has an edge with a newly inserted node{
refine element;
conforming_grid = false;

)
)

A refined grid can be coarsened only to the extent of the original grid. In other
words, an unrefined element cannot be firther coarsened. A grid closure
method is used to insure that the grid has no hanging nodes from the refinement
process. This conforming grid is necessary before the coarsening phase can
begin. The first step in the coarsening phase is to mark elements as potential
candidates to be coarsened according to an appropriate error indicator. Some of
these elements may not be allowed to merge with neighbor elements, depending
on the error associated with the neighbor elements.

In this adaption scheme, the coarsening process occurs precisely in reverse order
of the refinement process at the element level. That is, the new node created on

an edge during element refinement is the same node removed to merge the two
elements during coarsening. To identi~ the last node added within an element,
node levels are maintained during the refinement process. Higher node levels
indicate newer nodes. Another requirement to merge two elements and restore
their parent element is information for the nodes neighboring the node to be
removed. This node-adjacency information is set during refinement by storing
the nodes of the edge being split. If each of the two elements agrees to merge
and remove the newest node, then each element retrieves the node-adjacency
information for that node.

2.0 Parallel Implementation of Element Adaption
Scheme

Parallel implementation of local grid refinement schemes, like the edge
bisection scheme above, presents a number of challenges. First, in the standard
approach where the grid is partitioned and geographic subregions are assigned to
processors, these subregions must be refined and coarsened consistently along
processor boundaries. Also, closure requirements may force refinement to
spread to a processor that has no elements marked for refinement by the error
indicator. Finally, the local adaption process will likely lead to load imbalance
among the processors, and nodes and elements must be transfemed among
processors during dynamic load balancing so that processing efficiency is
maintained.

In our approach grid partitioning is accomplished by assigning element nodes
uniquely to processors. Processors owning the element nodes share elements
along processor boundaries. Nodal information for these elements is
communicated among processors using MPI, and each processor stores complete
data for its shared elements [3]. The ability of the code to run on several parallel
platforms and maintain portability was a major concern during development.

2.1 Data Structures

Data structures were selected to simplifi the parallel implementation of the
adaption scheme and to facilitate the coupling of the refinement, coarsening, and
load balancing components. During early work we realized that common
techniques like the use of tree structures for refinement could adversely impact
other adaption components such as load balancing. In this case, the use of graph
partitioners and the resulting grid point movement between processors requires
splitting refinement trees between processors. To avoid the difficulties
associated with splitting trees between processors and subsequent grid

coarsening, we chose to use hash-tablehlced-list structures [4]. Such structures
are naturally suited for grid adaption since they are dynamic in nature and
facilitate node and element searches. These structures handle all grid
refinement, coarsening, and load balancing needs without complicating the
implementation of any single component.

Hash tables are used to store nodes and element edges. Each entry in the node
hash table consists of a local node number relative to the owning processor and
corresponding node identifier in the global grid. Each entry in the edge hash
table consists of the two local node numbers that define the edge, an integer
edge rank based on comparative lengths of the edges, and an integer that stores
the new node number if a node is inserted on the edge. Prior to refinement, the
node and edge hash tables are allocated and fille~ this memory is freed once the
refinement process, including closure, is complete. Similarly, the element hash
tables are allocated and filled, and this memory is freed once the coarsening
process is complete. The nodes and elements are renumbered after each
refinement and coarsening phase, and load balancing is performed after a
complete adaption cycle (refinement, closure, renumbering, coarsening, and
renumbering) as necessa~.

2.2 Grid Consistency among Processors

The grid refinement scheme presented here is primarily a local process and thus
is amenable to parallel processing. The principal requirement in a parallel
environment is that processors periodically communicate to maintain grid
consistency along the inter-processor boundaries. An example is illustrated in
Figure 2 where three elements are distributed over two processors as indicated
by the shaded background. The two processors share the center and right
elements. In the first step, processor PO splits the left element because of high
error. Next PO splits the original center element in the closure phase because
that element now has a new node on one of its edges. Note that the center
element’s longest edge is bisected rather than the edge with the new node.
Following this second step, PO communicates the new node number on the
shared edge to P1 using the edge communication lists. This communication
provides the necessary data for P 1 to refine its copies of the center and right
elements so that the shared grid region is identical on both processors. In this
example grid refinement has spread from POto P 1 even though P 1 did not have
any elements marked for refinement by the error indicator.

In the serial case, the new node number on the edge is stored in the edge hash
table, and the adjacent element checks for the presence of a new node in the
hash table to see if refinement for closure is required. In our parallel approach,

an edge that spans two processors will appear in each of these processors’ hash
tables, and a protocol must be established to maintain consistency of the edge
hash tables between processors. To support this communication, edge
communication lists are constructed which provide a mapping between these
duplicated edge storage locations. For each such edge, one of the processors
sharing the edge is assigned ownership of it.

Po ; PI

~.

Figure 2. Edge Bisected by Owning Processor

2.3. Edge Ranking

After constructing the edge communication lists, edges are ranked based on their
length so that they are uniquely and consistently identified throughout the global
grid for the refinement phase. Integer rankings are utilized rather than using
computed edge lengths so that processors are easily able to make consistent edge
bisection decisions when multiple edges in an element are the same length.

Following a parallel, odd-even transposition sort, global ranks are returned to
processors owning the edges, and these processors then store the ranks in their
edge hash tables. These processors then communicate the ranks to the
processors sharing the edges using the edge communication lists that have been
constructed. The receiving processors finally store the ranks in their edge hash
tables.

2.4 Element Refinement

Atler elements have been selected for refinement based on the error indicator,
edges are selected for bisection based on their age and rank within the element.
To refine an element, the oldest edge (or longest edge in a tie) in the element is

.

bisected. To determine if another processor has already bisected the edge, the
new node entry in the edge structure is inspected for that edge. If the edge has
not been bisected, a new node is created for the edge, and the hash table is
adjusted locally. Two new elements are created with the bisection of an edge,
and the element Jacobians and other data are established for these new elements.
The new node entries for the edges in these new elements are reinitialized to
indicate that new nodes are not present.

2.5 Closure

Aller elements have been refined based on the error indicator, fiuther
refinement might be required to obtain a closed grid (no hanging nodes). In the
serial case, each element is checked for edges with new nodes via the edge hash
table. If any element has an edge with a new node, that element is marked for
refinement according to the established rules. The refinement process continues
iteratively until a closed grid is obtained.

In a parallel environment this procedure is complicated by the fact that shared
edges may be bisected by only one of the processors spanned by the edge. To
maintain consistency of the edge hash tables, processors owning shared edges
communicate new node information to processors sharing the edges. If a
message indicates that an edge has a new node, then the receiving processor
creates a new node for the edge and updates its hash table. Similarly, processors
may bisect edges they do not own. To handle this situation, the edge
communication lists are utilized in reverse order (the send list becomes a receive
list, and vice versa) so that processors owning edges that are shared can update
their hash tables if other processors bisect them. Atler this communication, the
elements with new nodes on edges are refined, and the process is repeated until
the grid is closed.

2.6 Parallel Coarsening

Node removal flags, set by error indicators, are updated across processor
boundaries, and the adjacent node information is communicated to allow for
proper merging of elements across inter-processor boundaries. Each processor
now has sufficient information to merge its marked elements concurrently and
independently. Each new, merged element is created only once using hash table
lookups to avoid duplicate element creation.

The coarsening process is fiu-ther complicated in the parallel environment since
new elements can be created along the inter-processor boundaries during
element merging. New elements spanning processor boundaries obtain element
node levels (which enable additional coarsening) via communication after the
element merging phase. During the merging process, new elements created
along the processor boundaries are marked for outgoing node-level
communication by storing their numbers in a linked list. At this point,
processors have determined the destinations and message sizes for outbound
messages, but no processor has information about the number of messages it
will receive. Each processor then sends its messages and probes for each
incoming message to obtain the sending processor identification number and
message size. With this information, the processor is able to receive and process
each message.

2.7 Cleanup

Following node level communication, the remaining steps in the coarsening
process involve bookkeeping updates for the new ~d. First, adjacent node data
is set for the new grid, and unused nodes and elements are re-initialized. The
nodes and elements are renumbered so that unused iterns are placed at the end of
the lists in memory. Given the new grid numbering, the communication lists for
exchanges between processors are updated. Finally, the global node identifiers
and adjacent node data are updated using the new communication lists. At this
point, the grid is ready for subsequent refinement and coarsening. Also, the grid
may be repartitioned dynamically among the processors if desired.

3.0 Groundwater Application

The capabilities of the parallel grid refinement scheme have been investigated
for the solution of a draining heterogeneous column. In this problem a column
is filled with a mixture of clay, silt, and sand. The column consist primarily of
sand with a clay lens near the bottom and silt lenses in several places throughout
the column. Initially, the column is completely saturated with water, and then
the water is allowed to drain from the bottom of the column. The grid is
allowed to refine and coarsen locally as dictated by the explicit error indicator,
and dynamic load balancing is used to improve processor efficiency.

A snapshot of the adaptively refined grid for the heterogeneous column is
illustrated in Figure 3. The area shaded black represents the clay material, while
the sand and silt are represented by the gray and white regions, respectively.
Grid refinement is visible at the sandlsilt interface in the lowest points of the

. .

sand. Water travels through the sand at a faster rate than through the silt and
large pressure gradients will develop at the material interface. The refinement
shows the points of local flow concentration.

Preliminary timings for the heterogeneous column described above were
obtained on 1-8 processors of a Silicon Oraphics Origin 2000. During the
refinement step, the number of nodes was increased by 35°/0,and the total time
spent in grid refinement was an order of magnitude less than the time spent in
the flow solver. The time spent in grid closure, including communication, was
less than half of the total time in grid refinement for these cases. Though
preliminary, these timings indicate eficiency of the grid refinement process
;elative to the flow solver.

Figure 3. Adaptively Refined Grid for Heterogeneous Column

4.0 Conclusion

A parallel refinement scheme has been developed for tetrahedral and triangular
grids. The refinement scheme and data structures described here have been
developed to facilitate the parallel implementation of both grid refinement and
coarsening. The refinement and coarsening schemes are based on
communicating a minimum set of data and reconstructing information locally
without the use of tree structures. The goal with this approach is a balanced
design between refinement, coarsening, and load balancing in terms of
efficiency and ease of implementation. Preliminary application of the adaptive
grid scheme to an unsteady groundwater flow problem has demonstrated the
capability and efficiency of the method.

5.0 Acknowledgment

Funding for this project was provided by the Department of Defense High
Performance Computing Modernization Office. Permission to publish this paper
was granted by the Chief of Engineers and by Los Alarnos National Laboratory.

References

[1]

[2]

[3]

[4]

[5]

Stagg, A.K., Hallberg, J.P., and Schmidt, J.H., “Parallel, Adaptive
Refinement Scheme for Tetrahedral and Triangular Grids”, International
and Parallel Distributed Processing Symposium Workshop Proceedings,
Springer-Verlag Lecture Notes in Computer Science, Cancun, Mexico, May
2000.
Jenkins, E.W., Berger, R.C., Hallberg, J.P., Howington, S.E., Kelley, C.T.,
Schmidt, J.H., Stagg, A.K., and Tocci, M.D., “Newton-Krylov-Scharz
Methods for Richards’ Equation”, submitted to the SIAM Journal on
Scientl~c Computing, October 1999.
Liu, A. and Joe, B., “Quality Local Refinement of Tetrahedral Meshes
Based on Bisection”, SIAM Journal on Scientljlc Computing, vol. 16, no. 6,
pp.269-1291, November 1995.
Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI-
l%e Complete Reference, Volume 1, l%e MPI Core, The MIT Press,
Cambridge, Massachusetts, 1998.
Cormen, T., Leiserso~ C., and Rivest, R., Introduction to Algorithms, The
MIT Press, Cambridge, Massachusetts, 1990.

