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ABSTRACT

Disposing of oily drill cuttings and fluids from oil and gas operations imposes major
costs on producers, particularly those operating offshore. New environmental
regulations are restrictive for discharging oil base drill cuttings and related waste both
in onshore and offshore operations. Producers in the Gulf of Mexico, for example,
commonly must barge wastes to onshore disposal sites for treatment. This expense can
often make economically marginal oil and gas formations unprofitable, and for the

United States, this leads to increasing reliance on oil imports.

Injection of these oily cuttings and associated wastes into unconsolidated and poorly
consolidated sand formations offer an economical disposal mechanism. Injection of a
significant volume slurry of oily drill cuttings and water into unconsolidated and clayey
sand formations requires fracturing the formation by increasing the downhole pressure

above the minimum principle stress.

Westport Technology Center Intermational and professors from Stanford University,
doing business as Petrophysical Consulting Inc., worked together to develop the
algorithms for a computer model designed to predict the influence of changes in the
stress state on elastic moduli and plastic properties of these formations. These models,
when verified by field data, should provide a means to more accurately assess the
conditions for environmentally safe injection of oily cuttings and associated wastes into

unconsolidated and clayey sand formations.

The deliverables of the project include experimental data and a set of models for relating
elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure
relationships for unconsolidated sands and clayey sands. The results of the project
should provide the industry with a basis for wider use of oil base drilling fluids in water
sensitive formations by implementing drill cutting injection into existing wells at
abandoned formations and controlling fracture geometry to prevent ground water

contamination.
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INTRODUCTION

Disposing of oily drill cuttings and fluids from oil and gas operations imposes major
costs on producers, particularly those operating offshore. New environmental
regulations are restrictive for discharging oil base drill cuttings and related waste both
in onshore and offshore operations. Producers in the Gulf of Mexico, for example,
commmonly must barge wastes to onshore disposal sites for treatment. This expense can
often make economically marginal oil and gas formations unprofitable, and for the

United States, this leads to increasing reliance on oil imports.

Injection of these oily cuttings and associated wastes into unconsolidated and poorly
consolidated sand formations offer an economical disposal mechanism. Injection of a
significant volume slurry of oily drill cuttings and water into unconsolidated and clayey
sand formations requires fracturing the formation by increasing the downhole pressure

above the minimum principle stress.

It is well known that most materials indicate elastic behavior at low stresses. As stress
is increased, the material will begin to yield at some point if it is ductile, while it will
fracture at some point without appreciable yielding if the material is brittle. It is also
noted that the behavior of a material varies significantly with saturation, deviatoric
stress and rate of strain. It has been known for decades that the physical properties of
rocks depend on the stress state at which they exist. Therefore, the mechanical
properties of rocks should be studied under simulated downhole conditions. Simple
tension or compression tests of rocks at atmospheric pressure cannot provide adequate

data to define the mechanism of rock failure in various stability problems.

Although many consolidation studies on unconsolidated materials have been performed
for more than 70 years, these tests have been limited largely to a low-pressure range.
Most investigators used mainly well-indured sandstones or limestones in their
laboratory experiments. Carpenter and Spencer (1940) measured the "pseudo-bulk”
compressibility of various consolidated sandstones in an attempt to investigate effect of

production on subsidence.

Fatt (1958) studied the relationship between compressibility and rock composition. He
reported that unconsolidated sediments, which are poorly sorted and contain clay, have
higher compressibility than do consolidated and well-sorted sands, also he found out

that the Cy's of sandstones are a function of rock composition for a given grain shape



and sorting. The procedure used in the laboratory by Fatt (1958) was similar to that of
Carpenter and Spencer (1940), but in the former case the fluid was expelled under
constant hydrostatic pressure with a reduction in pore pressure rather than an increase

in the external stress. This method is believed duplicate reservoir conditions.

Van der Knaap (1959) noted that pore compressibility (Cp) increases with decreasing
porosity. It has been suggested that certain minimum and maximum pressures, the
relationship between C, and the logarithm of pressure, can be approximated by a
straight line. This relationship has been found to exist between the log of the C, and the
log of the effective pressure, which in this case was equal to the applied axial load. Van
der Vlis concluded that clay and sand layers compact almost to the same extend, the
main difference being that the low permeability to fluid of the clay prevents

instantaneous compaction and time effects become important.

The vertical in-situ stress in a formation reflects the weight of the overburden material
resting on top. Part of the vertical stress is carried by the reservoir pore pressure. The
remainder is supported by the matrix. During depletion, the reservoir pressure
decreases. As the weight of the overburden does not change, the effective stress
increases accordingly. This leads to compression of the formation and a reduction in
volume. In general, the volume change corresponds to a diminished porosity. Besides
porosity, parameters such as permeability, resistivity and acoustic properties are also
effected. Reservoir compaction is predicted on the basis of core measurements. The
experiments are carried out using vertical core samples. The stress in the axial direction
is specified equal to the in situ vertical effective stress in the axial direction is specified
equal to the in situ vertical effective stress during depletion. Similarly, the stress in the
radjal direction should simulate the in situ horizontal stress. Usually, the horizontal
stress change is not known. Instead, the radial stress is controlled to maintain a limited
radial deformation, or it is taken equal to the axial effective stress. Depletion leads to a
modest decrease of permeability due to the reduction in throat size. The part of the
reduction in permeability is associated with core damage, as coring has led the creation
of microfractures. The concept of effective stress can be expressed as follows:

Ceff=g - P (1)

where ceff is the effective normal stress,
¢ is the total normal stress and
P denotes the fluid pressure.
The pore fluid can not sustain shear stress. Therefore the effective shear stress is the

same as the total shear stress i.e.



Teff = T 2
Equation (1) is called Terzaghi's effective stress law and was originally designed for
saturated soil materials. The relationship has been verified for a wide variety of porous
materials by Skempton. The deformation of rock material is largely due to effective
stress as defined above. However, the fluid pressure contributes to the deformation as
well since the hydrostatic pressure compresses the grain material. One may choose to
incorporate the pore pressure contribution in the definition of effective stress as follows
ceff=c B P 3)
where B = 1 - K/Ks is Biot’s constant and K/Ks is the ratio between the rock bulk
stiffness and the solid material bulk stiffness. This ratio generally ranges between 0.0
and 0.3; also, O< 0 < 1.0. Equation (3) is exact where linear elastic rock deformation is
concerned; Biot’s constant may assume different values when considering non-linear,

non-elastic deformation.

With the foregoing in mind, Westport Technology Center International (“Westport"”) and
Petrophysical Consulting Inc. ("PCI") undertook the study to predict porosity, texture,
and large-strain deformational properties of rock from well-log data. The approach was
‘to investigate how the lithology, pore fluid, pore pressure and the concentration of drill
cutting waste in the pore space and fractures affected:

¢ Small strain elastic properties (dynamic elastic moduli)

¢ Large strain elastic and plastic properties (static moduli)

¢ The failure envelope

+ Storage (porosity), and

¢ Permeability.

The goal was then to develop physics based elasticity-plasticity-failure-storage-transport
models for rocks subject to cuttings injection. The work consisted of four (4) major
tasks:

1. Conduct stress deformation and acoustic property measurements in unconsolidated
and poorly consolidated sands;

2. Review and evaluate the theoretical models for dynamic and static moduli develop a
mathematical model for failure and velocity-strength relations of these sands;

3. Determine the strengths and accompanying velocity measurements of these sands;
and

4. Apply the theoretical models and methods developed in the project to develop a
mathematical model for failure and velocity-strength relations.



Tasks 1 and 3, which involved laboratory measurements, were performed by Westport.
Tasks 2 and 4, which involved the development of mathematical models, were
performed by PCI.



Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and
Clayey Sands

EXECUTIVE SUMMARY

The new environmental requirements are very strict for discharging oil base drill
cuttings and related waste both in onshore and offshore operations. Injection of these
oily cuttings and associated wastes into unconsolidated and poorly consolidated sand
formations offer an economical disposal mechanism. There have been several
successful injection operations conducted by major oil companies like ARCO, British
Petroleum, Shell and Mobil both onshore and offshore fields of Alaska, Gulf of Mexico
and North Sea. These operations proved that the injection of drill cuttings is technically
feasible, and confirmed that unconsolidated zones provide cost effective areas for
disposal. In addition, the procedure eliminates discharge for onshore as well as offshore
disposal in a cost-effective manner.

In order to inject significant volume of slurry that is a mixture of drill cuttings and
water into the unconsolidated sand formation, it is necessary to fracture the formation
by increasing the downhole pressure above the minimum principal stress. A number of
fracture mechanisms are possible during the injection of the slurry. The dominating
mechanism depends on the leak characteristics of the disposal formation, the direction
of minimum principal stress in the formation, and the injection sequence of the
cuttings.

Periodic fracturing injections are expected to change the in situ closure stress of the
formation, resulting in some associated casing problems. Not all of the injection
attempts tried in the field have been successful. Operations failed in several cases
where shallow drilling problems were encountered near the shallow casing shoe cluster.
Issues that need to be addressed in planning for drill cutting injection operations are:

1) the amount of waste generated during drilling;
2) which well(s) and formation(s) should the waste injected into; and

3) how much waste could be injected into each well without adversely affecting the
environment and field management strategy.

There are also several principal operational considerations that need to be considered
during the injection:

1) possible migration of the slurry into neighboring producers;

2) pressure interference of induced fractures with drilling activity;

3) the likelihood of breach of the surface or fresh water aquifers;

4) casing and wellhead ratings for injection at the required pumping pressures; and

5) stress distribution around the wellbore.

A recent study has shown that the state of stress has significant influence on the elastic
and plastic behavior of unconsolidated sand formations. Experimental results indicate
that loosely consolidated and clayey sands experience plastic deformation almost with
the initiation of loading. In other words, if the sample is unloaded from a given state of
stress during loading, it does not return to its original configuration and experiences
inelastic or plastic deformation. This plastic behavior of the unconsolidated sand causes
significant amount of fracturing fluid leak off into these high permeability formations,
resulting in more difficult and expensive fracturing operations in such formations.



One of the major successes of this study is to observe and understand the storage and
transport properties in unconsolidated sands and to predict the role of change in the in
situ stress conditions on the stability and failure behavior of clayey sand formations.
The study, the stress-deformation profiles, ultrasonic wave velocities, permeability and
pore volume changes of the consolidated and loosely consolidated and clayey
sandstones with respect to increasing and decreasing pore pressure were
simultaneously monitored. From the experimental study it was concluded that
unconsolidated sands respond as a strain hardening material at high strain rates.

The role of cementation material and the amount of cement on elastic moduli has been
reported by others. Using this published data, a relevant cementation model in high
porosity sands was developed to explain the stress dependence of the elastic moduli as a
part of the current study.

The experimental investigation conducted during this study indicates strong plasticity
in these loose sands. A new model was then developed to take into consideration this
plastic behavior in unconsolidated sands to predict the influence of changes in the
stress state on the plastic and elastic moduli in these formations.

The work accomplished during this study should be followed by pilot field tests of drill
cutting injection. The theoretical models can be used to estimate the storage and
transport properties of the reservoir subject to injection. Selected samples from the well
will be taken to conduct static and dynamic moduli tests and obtain field information
(wire log). Based on these results, we should be able to provide the needed input for
designing the cutting injection process. Special attention should be paid to the
properties of depleted and clayey sands, as these will be the primary targets for drill
cuttings injection.



EXPERIMENTAL

1.0 EXPERIMENTAL STUDIES

The objectives of the experimental part of the program were to obtain static and
dynamic P and S wave velocity as a function of effective stress on twenty 1%' diameter
core samples from the North Sea, twelve 1'%’ diameter core samples from Clearfolk,
seventeen 1% diameter core samples from GOM, six 1%2' diameter Berea core samples,

and twelve 1'% ' diameter Barnett shale samples.

The variation of elastic static, acoustic moduli and electrical properties were determined
at the first phase of the experimental study. The second phase of the experimental
study was involved to measure porosity and permeability change as a function of
hydrostatic stress at zero pore pressure. Bulk compressibility, elastic moduli, elastic
and residual deformations, acoustic compressional and shear velocity, change in
porosity and permeability have been calculated and presented in tabular and graphical

form.

1.1 TEST PROCEDURES

The testing procedures used were designed to obtain the maximum amount of

information from each test.

1.1.1 Effective Stress Cycling Test Procedure

The Effective Stress Cycling Test involved simultaneous measurement of compressional
and shear wave acoustic travel time, volumetric strain was made at each stress level
and this data was used to compute the static and acoustic bulk moduli, stress state, P

and S wave velocities, static and dynamic values of moduli.

1.1.2 Isostatic Compression Test Procedure

Samples are subjected to an isostatic stress 61 = o2 = o3 and simultaneous
measurement of volumetric strain, expelled pore fluid, and upstream and down stream
pressure changes were made at each stress level and this data was used to compute the
static bulk compressibility, change of porosity and permeability as tabulated in

Appendix.



1.1.3 Biaxial or Confined Compression Test Procedure

The biaxial compression test is the most frequent rock mechanical test, which gives,
among others, values for elastic moduli. In reality, rock rarely behaves in purely linear
elastic fashion. For increasing axial stress the slope of Gaxa Versus €aa first increases
then reaches a more or less constant value and subsequently starts to decrease. The
increase at low stress is usually attributed to closure of coring induced microcracks or
increasing contact area between grains; the reduction at high stress indicates the onset
of permanent, plastic deformation. The slope of the stress-strain curves is used to

calculate moduli leads to the following definition:

E = ao_axial AND V= agraalia] ( 4)
Je o€

axial axial

Experiments indicate that the first loading elastic parameters differ from the unloading
elastic parameters. Both sets of parameters are useful depending on the specific
applications. For example, first loading is most representative of reservoir compaction,

while unloading best characterizes formation stiffness during hydraulic fracturing.
1.2 EXPERIMENTAL SET-UP

The equipment used in this study consists of four components: the pressure manifold, the deformation

system, the acoustic assembly, and the signal processing hardware and software.

1.2,1 The Pressure Manifold

The equipment used for these tests includes two interactive systems. One system
applies axial load and includes a load frame, a load cell, and a displacement transducer.
The overburden load is provided by means of a high-stiffness, rock mechanics load
frame which is consist of an actuator with a heavy, one piece, U shaped upper frame
bolted directly to the base plate. This arrangement provides a maximum compressive

capacity of 0.5 million pounds.

The actuator is single ended, double acting, and has large bearing surfaces to enable
the piston rod to withstand large side loads. An upper platen is mounted to the lower
surface of the transverse portion of the U shaped frame, and a lower platen is attached
to the top end of the actuator piston rod. A linear variable differential transformer
displacement transducer is mounted coaxially inside the lower part of the actuator.

The end caps made of polished steel are coated with resin, used to eliminate friction between the end caps

and the specimen. The second system consists of a pressure vessel, a digital pressure gauge with 1 psi



resolution, and a motor driven hydraulic pump. Mineral oil is used as confining fluid to produce a

homogeneous horizontal stress.

1.2.2 The Deformation System
Both the axial and radial deformations are recorded using 350-ohm foil CEA type
cantilever strain gages connected into a four armm Wheatstone bridge circuit, in order to

provide temperature compensation.

1.2.3 The Acoustic Assembly

Two dual mode (compressional and shear) transducers with center frequencies of about
0.8 MHz are used in a pulse transmission type arrangement. The transducers are
enclosed in cells in order to isolate them from high pressure applied to the pressure
vessel during testing. The transducer placed at the bottom acts as a transmitter and the
top transducer acts as a receiver. Travel time of compressional and shear waves are
determined under pressure by measuring the face to face delay times of the transmitter-
receiver set. Their delays are then subtracted from the measured arrival times for the

samples in order to obtain the transit time within the sample.

1.2.4 The Signal Processing Hardware and Software

This consists of two Panametric ultrasonic analyzers, a computer controller, a
programmable digitizer, an oscilloscope, and a computer. The ultrasonic analyzers are
connected to electronic gates in order to transfer only the required part of the signals for

processing.
1.3 SAMPLE TESTING AND DATA REDUCTION

This report contains the completion of static and ultrasonic data on total 49 core
samples. The sample inventory is displayed in Tables 1.1 through 1.4, following. These
tables also indicate which measurements were completed in this study. Static moduli

were determined from the effective stress-volumetric strain curves.
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The dynamic Young’s modulus and Poisson’s ratio values are calculated using the length of sample
corrected for axial deformation and the wave arrival time data. Well-known equations for elastic materials

are used for the calculation of these dynamic properties.
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Where p is the density of sample, and V_and Vp are S and P wave velocities respectively.

Table 1.1: Berea Sandstone Sample Inventory.

Permesbiity | Mechanical (Dry and Sstursted) | ¢and Grain | Acoustic (Dry snd Sstursted) | Resistivity
mD Density
75 x 3 x ® x x 4 X
100 x x X x x 3 X X
200 x x X x X X X 4
300 x x x x X x x X
400 x 4 ® X X X X X
750 x x X X x x X %
Table 1.2: Clearfolk Sample Inventory.
_ Sample | Depth |  Steic (DryandSatursted) | Permeabity |  Acoustic (Dry and Seturated)
# | ot} ConfringPresswe(ps) | and | ConfiningPressure (psi)
4000 { 4500 | 5000 | 5500 Porosity 4000 ] 4500 | 5000 | 5500
1 6349.00 X ] 4 X % X X % X
3 5854 .00 2 X 2 x % ; ¥ X X
5 6354.00 X ] % % % X X X X
18 5416.00 X X 2 % X X X X X
19 708250 X X % X % X X X ]
20 715520 k] X X X X X X X ]
2 642200 X X X % X X X X X
24 694650 X X X X X % X X X
27 713600 X X X 2 X X X X X
30 717750 X X X L3 X X X X X
H 7188.00 X X 2 X X % X X X
36 722200 ; | % % X % % X X
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Table 1.3: GOM Sample Inventory.

Sample Depth Static (Dry) Permeability Acoustic (Dry)
# ft Confining Pressure (psi) and Confining Pressure (psi)
0 500 2000 Porosity 0 500 2000
A1 10117.90 X x X
A2 10118.90 X x %
A3 10119.30 X X X
B1 10123.40 X 3 X
B2 10121.11 x X X
B3 1012260 x x X
C1 10137.60 X X x
C2 10136.00 X X x
C3 10136.80 X Y %
D1 10156.90 X X X
D2 10157.70 X ® X
D3 10157.70 X % x
E1 10165.50 x X x
E2 10166.00 x 2 X
E3 10165.90 X X ®
F1 10199.50 X X x
F2 10197.70 x X X
Table 1.4: North Sea Sample Inventory.
Sample Depth ~ Mechanical Properties Acoustic Properties ) k, ¢ and
# f Under Hydrostatic Stress | Under Hydrostatic Stress XRD Grain | Resistivity
Condition (Dry) Congdiition (Dry) Density
12 13259.68 x ® x x x
14 13261.15 X 13 3 X X
18 13264.44 X X x® X X
26 13271.16 ® X ® ] x
37 13284 28 x x x X R
60 13435.04 ® x X x x
76 13448.16 ¥ x ® x x
92 13461.29 ® X x X X
104 1347113 ® x X x X
116 13480.97 ® X 3 x x
120 13484 .25 L3 ® x ® 3
127 13589.24 X X ] x X
143 13602.36 ® X x X X
147 13605.64 X X - X o 2
155 13612.20 13 X X x x
187 13638.45 13 3 X x X
215 13661 .42 x X ® x X
XXX 13314 .47 .3 x X x x
158 13595.05 3 ] ] x X
162 13590.72 3 3 3 x X
“x” represents completed measurements
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2.0 THEORETICAL STUDIES

2.1 Theoretical Model Development

In this part of the study, we developed explicit theoretical models that link the porosity,
mineralogy, sorting, and texture of sands to their elastic properties. The main goal of
this development is to be able to predict, from non-destructive acoustic measurements,
the storage and transport properties of sands. The models also link the elastic
properties of sands to the amount of fine particles placed between the framework grains.
As such, the models developed here can serve as diagnostic tools for identifying the
amount of drill cuttings in the framework sand. A special attention is paid to the so-
called “binary” mixtures of grains. The new theory of the elasticity of binary mixtures

can be directly applied to sands with drill cuttings.

First, we will describe the “critical porosity” and “critical concentration” concepts and
show how they can be used to build effective medium models for sands. Next, we will
introduce the “rock physics diagnostic” concept and show how it cam be used to derive
the textural rock properties, and, eventually, strength and permeability, from well log
measurements. Finally, we will introduce the new binary mixture theory and show how
it can be used to model the elastic moduli of mixtures of sands and smaller particles.
The binary mixture theory is applicable to the system that includes sand grains and
injected drill cuttings and as such can be used to deduce the porosity and texture of the

sand/cuttings system from remote acoustic measurements.

2.2. Critical Porosity Concept

Porosity is one of the parameters required for reservoir characterization and
management. It can be derived, in principle, from seismic and sonic data by using
relations between the elastic-wave velocity (impedance) and porosity. Critical porosity is
the porosity above which the rock can exist only as a suspension. In sandstones the
critical porosity is 36% - 40%, that is the porosity of a random close pack of well-sorted
rounded quartz grains. This pack is often the starting point for the formation of

consolidated sandstones. We show how by using this staring point for effective medium
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modeling, rational models can be built that relate velocity to porosity depending on rock

texture and lithology.

In order to derive porosity from such seismic observables as impedance and velocity, a
velocity-porosity relation has to be used. Such relations vary depending on lithology
and rock texture. To appreciate the effect of texture on velocity, consider Figure 1.2.1
where P- and S-wave velocity is plotted versus the total porosity for relatively clay-free

gas-saturated sands at the differential pressure (confining minus pore pressure) of

about 20 MPa.

All sandstone data points in Figure 2.2.1 represent rock that is mainly quartz with clay
content not exceeding 10%. Yet, in the same porosity range, the P-wave velocity may
span from 1.5 to over 3 km/s, and the S-wave velocity from 1 to over 2 km/s. One
apparent reason for this large velocity difference between mineralogically similar
samples is rock texture -- the arrangement of the sand grains and pore-filling material
in the pore space. In the Strandenes (1991} sandstone samples, the grains appear to be

slightly cemented at their contacts while the Blangy (1992) samples are friable sands.
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Figure 2.2.1. P- and S-wave velocity in rocks with gas at 20 MPa differential pressure. Circles
represent laboratory data obtained on high-porosity "fast” (Strandenes, 1991) and "slow" (Blangy,
1992) sands, both data sets are from the North Sea. Gray symbols are from a Gulf Coast gas
well. The filled square is for a hand-made mixture of Ottawa sand and 10% kaolinite (Yin's,
1993). Clay content for these data does not exceed 10%.

The velocity in the well log data (Dvorkin et al., 1999) is even smaller than that in

the friable sands. These rocks are elastically equivalent to a hand-made mixture of
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Ottawa sand and kaolinite where the small kaolinite particles fill the pore space without

noticeably affecting the velocity.

In order to create rational effective medium models that can explain and predict the
observed velocity-porosity behavior, let us examine the textural nature of sandstones.
Consider Figure 2.2.2a where the compressional modulus (bulk density times the
compressional-wave velocity squared) of water-saturated clean sandstones and quartz
marine sediment (suspensions) is plotted versus porosity. The porosity of 36 - 40% is
the point where the modulus-porosity trend abruptly changes. The reason is that this
porosity is the porosity of well-sorted quartz sand. In the lower porosity domain, the
stiffness of the sandstone is determined by the framework of contacting quartz grains. ,
In the higher-porosity domain the grains are not in contact anymore and are suspended
in water. In this case, the stiffness of the sediment is determined by the pore fluid. We

call this threshold porosity "critical porosity" (Nur et al., 1998).

The rocks where the solid phase is spatially continuous and dominates the stiffness of
the rock have porosity that is smaller than the critical porosity. This fact is illustrated
in Figure 2.2.2b where the compressional and shear moduli of many sandstone samples
(room-dry at 30 - 40 MPa differential pressure) are plotted versus porosity. The data

used are discussed in Nur et al. (1998).
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Figure 2.2.2. a. Compressional modulus versus porosity in clean sandstones and marine
sediment versus porosity. b. Compressional and shear modulus of sandstones versus porosity.
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The critical porosity concept is valid not only for sandstones but also for other natural
and artificial rocks. An example is given in Figure 2.2.3 where the compressional
modulus is plotted versus porosity for cracked igneous rocks and pumice (Nur et al.,
1998). In the first case, the critical porosity is as small as 6% while in the second case
it reaches 70%. The reason is the peculiar microstructural topology of the rocks under
examination. The igneous rocks are permeated by cracks that percolate and make the
solid phase loose its spatial continuity at very small porosity. In the pumice, the

honeycomb structure of the solid ensures its spatial continuity at high porosity values.
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Figure 2.2.3. Compressional modulus versus porosity in cracked igneous rocks and pumice.
The data used are discussed in Nur et al. (1998}.

Nur et al. (1998) summarize the critical porosity values for various rocks as follows:

Material Critical Porosity
Sandstones 40%
Limestones 40%

Dolomites 40%

Pumice 80%

Chalks 65%

Rock Salt 40%
Cracked Igneous Rocks 5%
Qceanic Basalts 20%
Sintered Glass Beads 40%
Glass Foam 90%

2.2.3 Critical Concentration Concept.
The critical porosity concept leads to the "critical concentration” concept of Marion
{1990) and Yin (1993) used to describe the properties of sands with shale. Consider the

experimental data from Yin (1993) obtained on samples hand-made by mixing Ottawa
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sand and kaolinite. The volumetric clay content in the samples varied from O to 100%.
The total porosity at 20 MPa differential pressure is plotted versus the volumetric clay
content in Figure 1.2.4a. The two end members of the data set are the porosity of
Ottawa sand at zero clay content and porosity of kaolinite at 100% clay content. The
porosity of the mixture reaches its minimum at the point where the volumetric
concentration of clay equals the porosity of Ottawa sand which is closer to the critical

porosity for sandstones. This clay content is called "critical clay concentration.”

The critical concentration is important not only for the total porosity but also for the
elastic moduli of the mixture (Figure 2.2.4b). The stiffness of the mixture is maximum
at the critical concentration and decreases as the clay content increases or decreases
from the critical concentration value. Poisson’s ratio behaves in a similar way (Figure
2.2.4c). Elastic properties of the Ottawa sand and kaolinite mixture are plotted versus
the total porosity in Figure 2.2.5. The non-uniqueness of the elastic moduli, and,

especially, Poisson’s ratio in the cross-plots is due to the grain-scale texture of the rock.
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Figure 2.2.4. Porosity (a), elastic moduli (b), and Poisson’s ratio (¢) versus volumetric clay content
in room-dry Ottawa sand mixed with kaolinite at 20 MPa differential pressure (after Yin, 1993).
This effect has to be considered when examining well-log data. In Figure 2.2.6a and
2.2.6b, we plot the bulk density and P-wave impedance versus the gamma-ray values
for a well in Colombia (Gutierrez, 1998). The trends have the low-gamma-ray and the
high-gamma-ray branches. They produce non-uniqueness as the impedance is plotted

versus the bulk density and porosity (Figure 2.2.6c and 2.2.64d).
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Figure 2.2.5. Elastic moduli (a) and Poisson’s ratio (b) versus total porosity in room-dry Ottawa
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sand mixed with kaolinite at 20 MPa differential pressure (after Yin, 1993).
The arrows show increasing clay content.
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Figure 2.2.6. Well log data. Bulk density and P-impedance versus gamma-ray (a and b); P-
impedance versus bulk density and total porosity (c and d).
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2.2.4. Models For High-Porosity Sandstones.

The initial building point for effective medium models that describe high-porosity
sandstones should be unconsolidated well-sorted sand, as proposed by the critical
porosity concept. In mathematical modeling, such sand is approximated by a dense

pack of identical elastic spheres (Figure 2.2.7).

The contact-cement model (Dvorkin and Nur, 1996) assumes that porosity reduces from

the initial critical porosity value due to uniform deposition of cement layers on the
surface of the grains. This cement may be diagenetic quartz, calcite, or reactive clay
(e.g., illite). The diagenetic cement dramatically increases the stiffness of the sand by
reinforcing the grain contacts (Figure 2.2.8). The mathematical model, shown in Exhibit

A, is based on a rigorous contact-problem solution by Dvorkin et al. (1994).

Figure 2.2.7. Approximating sand by a sphere pack (microphotographs of well-sorted sand, left,
and a glass-bead pack, right).
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Figure 2.2.8. Schematic depiction of three effective-medium models for high-porosity sandstones
and corresponding diagenetic transformations.
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The contact cement theory allows one to accurately model the velocity in fast high-
porosity sands (Figure 2.2.9). One may find that the contact-cement model is
appropriate for describing sands in high-energy depositional environment where the

grains are well-sorted and not covered by organic matter.
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Figure 2.2.9. P-wave velocity versus porosity. a. Water-saturated-rock data based on laboratory
measurements of fast high-porosity North Sea sandstones by Strandenes (1991). Solid circles are
for very clean samples. Open circles are for samples with some clay. The curves are from the
contact cement model for pure quartz grains with quartz and clay cement. b. Well-log data. The
clean sand interval is saturated with water. The curve is from the contact cement theory for pure
quartz grains with quartz cement.

The friable sand model (Dvorkin and Nur, 1996) assumes that porosity reduces from the

initial critical porosity value due to the deposition of the solid matter away from the
grain contacts. Such a diagenetic process of porosity reduction may correspond to
deteriorating grain sorting. This non-contact additional solid matter weakly affects the

stiffness of the rock (Figure 2.2.8b).

The theoretical effective-medium model connects two end-points in the elastic-modulus-
porosity plane. One end point is at critical porosity. The elastic moduli of the dry rock
at that point are assumed to be the same as of an elastic sphere pack subject to
confining pressure. The other end-point is at zero porosity and has the bulk and shear
moduli of the pure solid phase. These two points in the porosity-moduli plane are
connected with the curves that have the algebraic expressions of the lower Hashin-

Shtrikman (1963) bound (bulk and shear moduli} for the mixture of two components:
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the pure solid phase and the phase that is the sphere pack. The reasoning is that in
unconsolidated sediment, the softest component (the sphere pack) envelopes the stiffest
component (the solid) in the Hashin-Shtrikman fashion (Figure 2.2.10). The equations

are given in Appendix A.

Increasing Porosity ———pm-

>4 9=1

Figure 2.2.10. Hashin-Shtrikman arrangements of sphere pack, solid, and void.

The friable sand model allows one to accurately predict velocity in soft high-porosity
sands (Figure 2.2.11). This model is appropriate for describing sands where contact

cement deposition was inhibited by organic matter deposited on the grain surface.

Velocity (kin/s)
S
¥
i
Vp (km/s)

0.2 0.3 0.4
Porosity

0.30 0.35 0.40
Porosity

Figure 2.2.11. Velocity versus porosity. a. Water-saturated-rock data based on laboratory
measurements of soft high-porosity North Sea sandstones by Blangy (1992). b. Well-log data
(Avseth et al., 1998) for oil-saturated pay zone. The curves are from the friable sand model.

The constant-cement model (Avseth et al., 1998) assumes that the initial porosity

reduction from critical porosity is due to the contact cement deposition. At some high
porosity, this diagenetic process stops and after that porosity reduces due to the
deposition of the solid phase away from the grain contacts as in the friable sand model

(Figure 2.2.8c). This model is mathematically analogous to the friable sand model
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except that the high-porosity end point bulk and shear moduli are calculated at some
"cemented" porosity from the contact-cement model. An example of applying this model

to well-log data is given in Figure 2.2.12. See equations in Appendix A.

T ¥ Ll T T

3.4+

0.2 0.3 0.4
Porosity

Figure 2.2.12. Velocity versus porosity. Well-log data (Avseth et al., 1998) for oil-saturated pay
zone. The curve is from the constant cement model.

The marine sediment model (Dvorkin et al., 1999} is analogous to the friable sand model

but covers the porosity range above critical porosity. One end point is the critical
porosity where the elastic moduli of the sphere pack depend on effective pressure. To
arrive at higher porosity, we add empty voids to the sphere pack (Figure 2.2.9). In this
case the voids are placed inside the pack in the Hashin-Shtrikman fashion. Now the
pack is the stiffest component, so we have to use the upper Hashin-Shtrikman limit.

The saturated-rock elastic moduli can be calculated using Gassmann’s (1951) equation.

An example of applying this model to log data is given in Figure 2.2.13 (Dvorkin et al,
1999). A good agreement between the model and the data is apparent. At the same
time, the often used suspension model fails to correctly mimic the data. This model's
departure from the data increases with depth which is due to the effect of confining
pressure that adds stiffness to the dry frame of the sediment thus making the

suspension model inadequate. See equations in Appendix A.
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Figure 2.2.13. DSDP Well 974. a. Porosity versus depth. b. Velocity versus depth.

The critical porosity and critical concentration concepts allow the geophysicist to better
understand the diversity of well log and core elastic data. Effective-medium models
built on the basis of the critical porosity concept can accurately model data. By
superimposing theoretical model curves on velocity-porosity and elastic-moduli-porosity
crossplots, one may mathematically diagnose rock, i.e., determine the texture of the
sediment (e.g., contact-cemented versus friable). Examples of rock diagnostic are given
in Figure 2.2,14. Such diagnostic has implications for fluid detection (Avseth et al.,
1998), and strength and permeability (Dvorkin and Brevik, 1999).
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Figure 2.2.14. Velocity versus porosity. Theoretical curves superimposed on data allow one to
identify the rock type. a. Data from Figures 2.2.9a and 2.2.11a.
b. Data from Figures 2.2.11b and 2.2.12.
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2.3. ROCK PHYSICS DIAGNOSTIC TECHNIQUE

Rock physics laws that relate porosity, mineralogy (shale content), saturation, and pore-
fluid properties to the elastic rock properties -- elastic-wave velocity and impedance --
give the connection between seismic impedance and velocity inversion and physical
reservoir properties. They can also be used to produce synthetic seismic images from

flow simulation results.

Often, an earth volume under examination has to be described by more that one rock
physics law: different depth intervals may have distinctively different velocity-porosity
trends due to variations in depositional and diagenetic history. When building a rock
physics model, one has to single out various velocity-porosity trends from the entire
volume of data and assign these separate trends to appropriate depth intervals and
depositional sequences. This procedure is called rock physics diagnostic. Rock

physics diagnostic is typically conducted on well log and core data.

Rock physics diagnostic allows not only to produce useful relations between seismic
observables and porosity. It allows one to describe the texture of rock: the position of
diagenetic cement; grain size sorting; effect of clay, etc. This texture description in turn
can be linked to the depositional and stratigraphic features of the subsurface. For
example, well-sorted grains with small amount of intergranular cement may correspond
to a high-energy stream whereas deteriorating sorting is likely to be found in a low-
energy depositional environment downstream. Sorting and cementation in turmn

determine permeability and strength.

2.3.1 Rock Physics Diagnostic

Rock physics laws can be obtained from: (a) core measurements where velocity,
mineralogy, density, and porosity are measured simultaneously on a suite of rock
samples representative of the earth volume subject to modeling; and (b) well log data
that include velocity, mineralogy (gamma-ray), saturation, density, and porosity curves.

The work space for rock physics diagnostic is the rock physics plane that may be (a)

23



velocity-porosity; (b) impedance-porosity; and/or (¢c) modulus-porosity plane.

The P- (Ip) and S-impedance (Is) are defined, respectively, as
Ip:Vppb’ 1s=Vspb’

where Vp and V, are the P- and S-wave velocity, respectively; and p, is the bulk

density.

The compressional (M) and shear (&) moduli are defined, respectively, as

M=V/'p, u=V’p,.

Below, we show how log data measured in a continuous depth interval (Figure 2.3.1)
can be separated into three distinctively different trends (Figure 2.3.2). It also follows
from Figure 2.3.2 that the rock physics trends appear to be "sharper” in the impedance-
porosity or modulus-porosity plane than they are in the velocity-porosity plane. This is

why we recommend using impedance or elastic modulus instead of velocity.

During rock diagnostic, it is important to eliminate from consideration as many factors

affecting velocity as possible. One of such factors, that can be easily eliminated, is

saturation. Velocity may strongly depend on saturation and/or pore fluid

compressibility that, in turn, may vary with depth. Because of varying saturation or

fluid properties, the same rock type may appear to have no velocity-porosity trend at all

(Figure 2.3.3). In fact, identical samples of rock (especially soft rock} will have very

different velocity, ' impedance, and moduli, if saturated with different fluids. To

eliminate this additional complication, one has to bring the entire interval to common

pore fluid saturation. This common saturation process consists of three steps:

Step 1: Use well log data to calculate the elastic moduli of the dry rock.

Step 2: Use the dry-rock elastic moduli thus obtained to calculate those of rock
saturated with the same fluid for the entire interval or data set.

Step 3: Use the common-fluid rock moduli to calculate velocity and impedance as

needed.
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Figure 2.3.1. Well log data versus depth (fictitious). a. Gamma-ray; b. velocity.
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Figure 2.3.2. Cross-plotting well-log data in the rock physics plane. a. Velocity versus porosity
b. impedance versus porosity; c. modulus versus porosity. The trends marked correspond to
the depth intervals shown in Figure 2.3.1a.

The details of fluid substitution needed for these tasks are given below.
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Figure 2.3.3. Velocity versus porosity for a soft rock dataset, with variable and common
saturation.
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2.3.2. Three Types of Rock Physics Diagnostic

We define rock physics diagnostic as the procedure of establishing elastic moduli versus

porosity relations for the volume of earth under examination. The principal data source

for rock physics diagnostic are well logs and/or core measurements. Once the moduli-

porosity relations are established, it is easy to transform them into impedance-porosity

and velocity-porosity relations. The three types of rock physics diagnostic are:

Type 1: Finding a theoretical modulus-porosity relation that describes the dataset.

Type 2: Finding a data set that is elastically analogous to the dataset under
investigation.

Type 3: Finding an empirical fit from the data.

It is understood in the second case that the analog has been well studied and some of
its properties (e.g., a relation between Vp and Vs) can be used for the data set under
investigation. The three types of rock physics diagnostic can be used separately or

simultaneously since they complement each other.

Diagnostic Type 1: Theoretical Modulus-Porosity Relations. This procedure consists of
the following steps:

STEP 1: Bring the entire interval under examination, or the suite of core data, to
common pore fluid saturation. Calculate the elastic moduli at this common saturation.

This step includes the following sub-steps:

Substep 1.1: Calculate the effective bulk moduli of pore fluid components in the

interval. Based on these, calculate the effective bulk modulus K mig Of the pore fluid

U

mixture as
_1 = Sga-‘ + Sotl + Shr ,
K fluid gas Koil Kbr
where S, i, and K, ., are the saturations and bulk moduli of the gas, oil, and

brine, respectively.
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Substep 1.2: Calculate the rock bulk modulus K
2
K, =p,(V,} =4V /3).

10g from the well log (or core) data as

If the shear-velocity data are not available, calculate the compressional modulus

M

log

Mlog =prp2 .

as

Tips to Substep 1.2: (1) Even if the shear-wave data are available, calculate the

compressional modulus anyway since the shear-wave data may be of low quality.

Substep 1.3: Calculate the dry-rock bulk modulus from the rock bulk modulus as
1-1-9¢)K,,/K

log mineral ~ Klog / E fluid
I K g =Koy | K.

log mineral

K, =K.
dry mineral 1+ ¢_ ¢Km

ineral

where ¢ is the total porosity, and K

minera

, is the bulk modulus of the mineral phase (for

calculating K

mineral *
If the shear-velocity data are not available, calculate the dry-rock compressional

modulus M, as

1 - (l - ¢)Mlog / Mmineral - ¢Mlog /Kvﬂuid

I Kpia = My | K piperar

log mineral

Mdry = Mmineral 1+ ¢_ ¢M

mineral

where M, K iverat ¥ 4 Minera 1 3. and L. . is the shear modulus of the mineral

mineral — **m

phase (for calculating 4,,....., -

Tips to Substep 1.3: (1) Even if the shear-wave data are available, calculate the dry-
rock compressional modulus anyway since the shear-wave data may be of low quality.
(2) If the elastic moduli of the dry rock have unreasonable (e.g., negative) values for
some data points, this may be due to small errors in input parameters (porosity,

mineral’s elastic moduli, etc.). These errors will be corrected in Substep 1.4 below.

Substep 1.4: Calculate the bulk modulus K of the rock saturated with common

conmmon
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{uniform for the entire interval or data set) pore fluid:

KCOmmon = Km’nem[ ¢Kdr\' — (1 + ¢) KCde , /1K
(- K, +¢K

mineral + ch
- ch Kdry /K

k4

mineral mineral

where ch is the bulk modulus of the common fluid. As common fluid use the stiffest
pore-fluid component (formation water or mud filtrate). We emphasize that ch has to

be the same for the entire interval or data set.

Next, calculate the compressional modulus M of the rock saturated with common

common

(uniform for the entire interval or data set) pore fluid:

M, =K__ +p4V?/3

common common

If the shear-velocity data are not available, calculate the compressional modulus

M,,,... of the rock saturated with common pore fluid as
M =M ¢Ma'n' — (1 + ¢)chMdrv / Mmineral + ch
mmon — *'*mineral N
commer (]‘ - ¢)ch + ¢Mmineral - ch Mdry / Mmineral

! e ! ! i
: ® Water Zone

Compressional Modulus ({GPa)

i

0.2 0.3 0.2 0.3
a Total Porosity b Total Porosity

Figure 2.3.4. Example of bringing an interval to a common saturation. a. Compressional
modulus directly from log data plotted versus porosity. Trends seem to be different for water,
oil, and gas zones. b. Data at common saturation (formation water).

Most of the data exhibit a single trend.

Tips to Substep 1.4: (1} Even if the shear-wave data are available, use the last equation
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to calculate the compressional modulus of the rock saturated with common pore fluid
anyway since the shear-wave data may be of low quality. Compare it to the modulus

obtained from the previous equation for quality control.

STEP 2: Cross-plot the compressional modulus at common saturation versus porosity

and fit appropriate theoretical modulus-porosity models.

Substep 2.1: Plot the compressional modulus versus porosity for the entire interval or
data set or for selected parts of it. Use plotting package where you can easily
superimpose theoretical model curves or other datasets. Some candidates are Excel,
KaleidaGraph, Matlab. An example in Figure 2.3.5 shows how the well-log data from an
interval where a very clean (low gamma ray) interval is present, separates into two parts
when the compressional modulus is plotted versus total porosity. The upper branch of
the data is form the low-GR interval whereas the lower branch is from the rest of the

interval where shale is present.

Substep 2.2: Select the appropriate rock physics theory (theories) and superimpose on
the modulus-porosity cross-plot. When using a theoretical relation, make sure that the
pore fluid is the same as the common pore fluid used in Step 1. It is not easy to select
the appropriate theory. Below, we give equations for existing theoretical and empirical
modulus-porosity equations and recommend applying them depending on porosity
range and rock type. The more models the user superimposes on the modulus-porosity

cross-plot the better is the chance of finding the appropriate theory.

Example: Consider the log data in Figure 2.3.5. The rock is high-porosity
sandstone.  Appropriate theories to try are: (a) cementation theory; and (b)
unconsolidated rock theory. Both provide the dry-rock elastic moduli. We use
Gassmann’s equation to theoretically saturate these dry rocks with the common pore
fluid. The results are shown in Figure 2.3.6a. We can see that the unconsolidated rock

theory describes the part of the interval where shale is present, and the cementation
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theory approximately describes the clean (low-GR} interval.

Substep 2.3: Adjust the theory selected. Practically every rock physics modulus-
porosity model has adjustable parameters. They may mineral elastic moduli, critical
porosity, etc. (see below in model description). As we see in Figure 2.3.6a, the Model A
curve computed with default input parameters does not fit the data precisely. Our next
attempt is to refine the fit between the theory and the data by adjusting some input
parameters (of course, within reasonable ranges). This procedure is illustrated in
Figure 2.3.6b where we changed the critical porosity value from 0.38 (default mode} to

0.36 to fit the data.
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Figure 2.3.5. Example of cross-plotting compressional modulus versus porosity.
a. Gamma-ray versus depth in the interval under investigation. b. Total porosity versus depth.
c. Compressional modulus at common saturation versus depth. d. Compressional modulus at

common saturation versus porosity.

As a result of Step 2, we will have modulus-porosity models that describe the data set
under examination on the interval basis. Now these models are ready to be applied to

the entire volume of rock.
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As we move in space, porosity and saturation may change, but the models (we assume)

will remain the same. It is very important to know (or assume) the spatial extension of

the intervals to which specific models have been fitted.

For example, in the above-discussed case, one has to know the spatial configuration of

clean cemented rocks that give very low gamma-ray signature (Figure 2.3.5).

r — . . e
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0.3 0.35
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0.25 0.3 0.35 0.25
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Figure 2.3.6. a. Selecting the appropriate rock physics models. b. Adjusting the models.
Model A is from cementation theory; Model B is from unconsolidated rock theory.

A rock diagnostic flowchart is shown in Figure 2.3.7, following.
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Figure 2.3.7. Rock physics diagnostic flowchart.

Diagnostic Type 2: Finding Analogous Data Set.

STEP 1: Bring the entire interval under examination, or the suite of core data, to

common pore fluid saturation and calculate the elastic moduli. Same as in Type 1.

STEP 2: Cross-plot the compressional modulus at common saturation versus porosity
and add on top of this cross-plot well-understood data that may be elastically close to
the data set to be diagnosed. The moduli of the analogous data set should be
recalculated to have the same common fluid as the data set under examination. This
data set should be taken at the same effective pressure as the data set under

examination. This step requires calibration datasets.

In Figure 2.3.8 we show a set of well log measurements in a vertical well drilled through
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deep consolidated sandstones. Figure 2.3.8a (GR versus depth) indicates that these
sandstones are very clean, especially in the lower part of the interval, with only a few

thin shaley layers. Only compressional-wave measurements are available.

The goal is to diagnose these rocks and establish velocity-porosity relations for both P-
and S-waves. We choose the common saturation fluid as a mixture of oil and formation
water and cross-plot (Figure 2.3.9) P-impedance versus density-porosity (total porosity
calculated from the bulk density data). In Figure 2.3.9a we plot the data from the entire

interval under examination.

These data show a fairly tight impedance-porosity trend that can be used for further
modeling. Even better trend appears if we plot only the cleanest sandstone data points
versus porosity (Figure 2.3.9b). In Figure 2.3.10, we replot the same data as in Figure
2.3.9 with laboratory data set plotted on top. These superimposed data points are from
Han’s (1986) data set.

We can see now that for the entire interval trend (Figure 2.3.10a) can be approximated
by that of a subset of Han’s data set where the volumétric clay content is between 2%
and 14%. The cleanest-sand trend (Figure 2.3.10b) can be approximated by that of a
subset of Han’s data set where the volumetric clay content in the rock is between 2%
and 7%. Based on this similarity between the well log data under examination and
Han’s data, we speculate that all rock physics relations valid for the selected Han's data
points hold for the well log data. The desired Vs versus Vp relations are plotted in

Figure 2.3.11. They can be used for the well log data under examination.
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Figure 2.3.9. P-impedance versus porosity. a. For the entire interval. b. For the cleanest parts

where gamma-ray count is below 19 API.

T

2o
.
s

1

P-Impedance

—
=]

Han's Data

A 2% < Clay < 14%

Han's Data

& 2% <Clay<7%
[ ]
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gamma-ray count is below 19 API. Superimposed are data points from Han's (1986) dataset. a.

A
0.15
Density-Porosity

L
0.15
Density-Porosity

Clay content between 2% and 14%. b. Clay content between 2% and 7%.

34



" Vs =-0.3427 + 0.73 Vp ]| Vs =-0.46 + 0.75 Vp Vs =-0.62 + 0.77 Vp
L ® °
3t ¢ - - e® - e®
@ °
E L ...' . B 0.. * . B ﬂ.. .
sl o it -~
g Pore Fluid: Gas o with Oil o with Brine
2- L L 1 [ L 1 1 B B i 1 1 N
4 5 4 5 4 5
a Vp (km/s) b Vp (km/s) c Vp (km/s)

Figure 2.3.11. Vp versus Vs for Han's dataset for (a) gas-saturated rocks; (b) oil-saturated rocks;
and (c) brine-saturated rocks. The relations can be used for the well log data under examination.

Diagnostic Type 3: Finding Empirical Trends.

STEP 1: Bring the entire interval under examination, or the suite of core data, to

common pore fluid saturation. Calculate the elastic moduli at this common saturation.

STEP 2: Cross-plot the compressional modulus at common saturation versus porosity,

identify trends and relate them to specific depth intervals and depositional sequences.

As an example, we apply this diagnostic type to well log curves from a North Sea well.

Several velocity-porosity trends are present in the well which are likely to be related to

the vertical variation of intergranular cement type and clay content.
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Figure 2.3.12. Gamma-ray (a), water saturation (b), porosity (c), and P-wave velocity (d) versus
depth. Depth is counted not from the surface.
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The gamma-ray, water saturation, porosity, and P-wave velocity curves are given in
Figure 2.3.12. Porosity has been calculated from bulk density. It's values are very close
to those directly measured on several core plugs. The depth interval under examination

can be subdivided into four pay zones (Figure 2.3.12b).

We use the velocity, porosity, and saturation data and the Vp-only fluid substitution
equation to calculate the compressional modulus of the rock fully saturated with

formation water. This modulus is plotted versus log-derived porosity in Figure 2.3.13.

Four data clusters are present in Figure 2.3.13. One is associated with part of the
deepest Zone 4 and falls on the cementation theoretical curve (Zone 4a). Another also
belongs to Zone 4 and is grouped to the left of the cementation curve (Zone 4b). The
data from Zone 2 and 3 form a linear modulus-porosity trend. The data from the
shallowest Zone 1 form a low-velocity, high-porosity cluster. The data points from Zone
2 and 3 do not fall on any of the theoretical lines. The observed modulus-porosity trend
is probably due to deteriorating sorting. A simple linear least-square line can be
calculated that will fit those data. This line can be used as a modulus-porosity relation

for rock physics transformations required in reservoir characterization.

Comtaet-Cement

M-Modulus {GPa)

Porosity

Figure 2.3.13. Compressional modulus versus porosity.

Note that a group of datapoints from Zone 4 (4b) forms a cluster in the modulus-
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porosity plane that is separate from the contact-cement Zone 4a trend. At a fixed
porosity, the modulus in this cluster is smaller than that predicted by the contact-
cement theory and larger than that in the other zones. To analyze Zone 4b, consider
the gamma-ray, porosity, and compressional-modulus curves for Zone 4 only (Figure
2.3.13). The Zone 4a datapoints correspond to the thin black lines whereas those from

Zone 4b are shown by the bold gray lines.

It is clear from Figure 2.3.13 that the low-velocity Zone 4b cluster correspond to the
relatively high gamma-ray 2 meter long interval at the bottom of Zone 2 and to a very
thin interval in the middle. These two intervals also have relatively small porosity.

Apparently here clay fills the pore space and reduces porosity without affecting the

= =

stiffness of the contact-cemented frame.
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Figure 2.3.13. Gamma-ray (a), porosity (b), and compressional modulus (¢} versus depth for Zone
4. Thin black curves correspond to the data points that lie along the contact-cement line in
Figure 2.3.12. Bold gray lines correspond to the Zone 4b cluster in Figure 2.3.12.

Depth is counted not from the surface.

The three diagnostic methods discussed above have been designed to help one to
establish a rock physics model for relating reservoir simulation data to the elastic
reservoir parameters for creating synthetic seismic data. One does not have to be
limited by any of these three approaches. It is beneficial if all three of them are used
simultaneously to establish a relation, understand its physical basis, and calibrate it by

using comparable data sets.
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2.4. BINARY MIXTURE THEORY

The constant cement and unconsolidated sand models (see Appendix A} mimic the
process of deteriorating sorting in sands. Core analysis supports the hypothesis that in
the constant cement model the data and the theoretical curve deviate from the contact
cement curve because grain sorting starts to deteriorate at the cemented porosity point.
The same reason produces the unconsolidated sand model: smaller particles fall

between the larger well-sorted grains (Figure 2.4.1).
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Figure 2.4.1. Porosity reduction in sands due to deteriorating sorting.

2.4.1 Geometry of a Bimodal Grain Mixture.

Assume that there are two grain sizes present in a mixture: large grains and
significantly smaller grains. Depending on the volumetric fraction of the large and
small grains, various configurations are possible, as shown in Figure 2.4.2, where on
the left we have only large particles and on the right only small particles. Let the
number of large particles in a representative volume be L and that of small particles be

{ (Figure 2.4.3). The radii are R (for large particles) and r (for small particles).

oG Fo

*%e

s NG

OO0

Figure 2.4.2. Porosity reduction in sands due to deteriorating sorting. It is assumed here that
the porosity of the large particle pack is the same for large and small grain packs.
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r Radius R
Figure 2.4.3. Size distribution in a binary particle mixture.

The total volume of the small grains when they are packed together at porosity ¢

cs?

which is the critical porosity for the small grains, (as in Figure 2.4.2, right) is
4 ol
31-¢,

(2.4.1)

That of the large grains when they are packed together at porosity ¢,, which is the
critical porosity for the large grains, (as in Figure 2.4.2, left) is

4 7R’L
z ‘ (2.4.2)
31-9¢,

The pore-space volume of the large grains packed together is
4 RL
49,7KL (2.4.3)
31- ¢cl

If the volume of the small grains in a pack is smaller than the pore-space volume of the
large grains in a pack, all small grains can be accommodated inside the pore space of
the large grains pack. Then we have a configuration shown in Figure 2.4.2, second

frame from left. The condition for this geometry is

4 mr’l 4 ¢ 7R L rl RL
31-9, 31- P =>(1—¢m)/ (1_9/,01)S s = P < Q. (2.4.4)
where
ril R3L
- / ' (2.4.5)
B (1_ ¢“) (1_ ¢d)

The total porosity ¢ of this mixture is
¢ = ¢c[ - ﬂ(l - ¢cs)' (2.4.6)
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If the volume of the small grain pack equals that of the pore-space volume of the large
grain pack, then ff= ¢, and
¢ = ¢c[¢cs’ (2.4.7)

as in Figure 2.4.2, middle frame.
In the case of > @, the large grains will be suspended in the pack of the small

grains (Figure 2.4.2, fourth frame). The total volume of the composite is

4 4 ’l
SRL+ = (2.4.8)
3 31-9,

and the pore volume is that of the small grain pack:
4 ¢ nmrl
- (2.4.9)
31-9,

As a result, the total porosity of the composite is

— ¢cs
1+(1-¢,) B
(2.4.10)

¢

If = ¢,, then the large grains touch each other and ¢ = ¢_,¢_ . If f = o, which
means that only the small grains are present, the porosity of the composite is ¢, . The

summary of these results is:

¢p=¢, <=p=0

¢=9¢,-pl-9,) =p<¢,

¢=90.0, <=p=9¢. (2.4.11)
p=9¢,/0+A-9¢)/B) <=p>9¢,

p=9, <f=co

The graph of the total porosity of the composite is given in Figure 2.4.4.
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Figure 2.4.4. Total porosity versus the ratio of the small grain pack volume to the large grain
pack volume. The critical porosity for large grains is 0.4 and that for small grains is 0.6.

2.4.2. Elasticity of a Bimodal Grain Mixture.

Let us first assume that 2> ¢, i.e., the small grains fill the entire pore space of the
large grain pack, or the large grains are suspended in the small grain pack (Figure
2.4.2, third, fourth, and fifth frame). Let us also assume that the elastic moduli of the
large grain material are much larger that those of the small grain pack. In this case,
and because the small grain pack (soft) envelopes the large grains (stiff), we propose to
model the effective elastic moduli of the composite as the lower Hashin-Shtrikman
bound of two elastic components: (1) the soft component that is the small grain pack

and (2) the stiff components that is the large grain material.

For 2 ¢,, the total volume of the composite is given by Equation (2.4.8) and the
volume of the small grain pack is 47r’l/ 3(1—@_)). Therefore, the volumetric
concentration of the small grain pack (the soft component) in the composite is

1
1+(1-9)/ B

Foop = (2.4.12)

Then, the Hashin-Shtrikman lower bound gives the following effective-medium

elastic moduli of the dry composite:

f 0; 1 —f » _ 4
Ky = Sof + M) —— G,
KSoft + (4/ 3)G30ﬁ K[ + (4 / 3pSOﬁ 3 ( 3)
2.4.1
— Ssop 1= fop o _ Gy 9K, + 8G,,
GEM - ( + ) - ZSofz’ ZSa - ’
GSoﬁ + ZSoﬁ GI + ZSoﬁ 6 KSofz + 2GSoﬁ
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where K, and G, are the bulk and shear moduli of the large grain material,
respectively; and K, and G;,; are the bulk and shear moduli of the small grain pack,

respectively.

If the small grain pack can be approximated by a random dense pack of identical elastic

spheres, its elastic moduli can be calculated from the Hertz-Mindlin contact theory as

2 2 1 2 2 1
n’1-¢ YG? 3 5-4v. 3n°(1-¢.YG* 3.
K. — (s cs si_p 31 G = s s cs S P3,
St (1873(1—1/5)2 Vs Gay 5(2—v5)( 21— v,y )
1, K 2,,K 1

v =§(?_§)/ (€+§)

(2.4.14)

where K, and G, are the bulk and shear moduli of the small grain material,
respectively; P is the differential pressure; and n, is the coordination number (the
average number of contacts per grain) for the pack of small grains. This approximation

may not be appropriate if the small grain pack is a pack of, e.g., clay particles.

Consider now the case < ¢, (Figure 2.4.2, first three panels). The two elastic end-
members are: (1)5 = 0, i.e., the pack of the large grains (without small grains present
in the pore space, Figure 2.4.2, first panel) with porosity ¢,; and (2) B = ¢,, i.e., the
small grains fill the entire pore space of the large grain pack (Figure 2.4.2, third panel).

The elastic moduli of the first end-member (at # = 0) can be calculated from the Hertz-
Mindlin contact theory by assuming that the large grains are identical elastic spheres

with bulk modulus K,, shear modulus G,, and coordination number #, .

Then the bulk modulus K, and the shear modulus G, are:

‘1-9.YG’ 5 5-4v, 3n’(1-9,YG’ o3
K1=(n[( a2 7Py G = L2 al i py;
187°(1 - v )’ L52- 27 (1-
A S 2ats
=_(—L = —L 4=
V=36 P

The bulk and shear moduli of the second end-member are given by Equations (13)
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where £, has to be replaced by O,
¢cl 1- ¢cl )—1 _A_l: G

K, = + — i
P Ky +(4/3)Gs, K, +(4/3)G, 3
(2.4.16)
_T ¢cl 1- ¢c[ -l_ 7 — GSoﬁ 9KSofr + 8GSoft
GZ =1 + ] Soft / ZSo - '
GSoﬁ + ZsOﬁ G + ZSoﬁ 6 K son T 2G50ﬁ

We will connect these two end points by a lower Hashin-Shtrikman bound curve. In
order to calculate the volumetric fractions of the two end members in the composite, let
us assume that the two end-members added together result in the given numbers of

small and large grains (Figure 2.4.5).

OO
OO

Figure 2.4.5. Two end members added provide required configuration.

If the volume fraction of the first end member in the composite is f, and that of the
second end member is f, =1~ f, then the number of the small grains in a unit volume

of the composite is

l - f2¢cl(]‘_ ¢Cx)

2.4.17
4nr /3 ( )
and the number of the large grains is
1- ¢I
L=——"—. 2.4.18
4R/ 3 ( :
Then
r’l R’L
= = . 2.4.19
BT Gy fia 2.4.19)
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As a results, we have:

f2=,6/¢d, f1=1_]‘2- 2.4.

Then, the Hashin-Shtrikman lower bound of the mixture of the elastic end me
with the bulk and shear moduli X, and G,, and K, and G,, respectively, and .

fractions f, and f,, respectively, is

’ 1, I8 a4
K., = + -=G,
BTk +(4]3)G K2+(4/3)G1) 30! 0401
4.21
fi 12} G, 9K, +8G,

)_l -Z,Z =

Gen (G+ +G 6 K ’
tZ4 G +Z 1+ 26,

and it is assumed that the first end member is softer than the second end mx«
Equations (2.4.13) and (2.4.21) provide the elastic moduli of the composite’s dry i
In the low-frequency limit, the shear modulus of the saturated composite is the s&
that of the dry frame. The bulk modulus of the saturated composite K, ¢

calculated from that of the dry composite using Gassmann’s equation

¢K EM (1 + ¢)Knuid KEM / K Solid + KFluid
Solid ’
(1 - ¢)KFluid + ¢K501id - KFluidKEM/ KSoIid

K, =K (2.4.92)

where K, ., is the bulk modulus of the pore fluid and K

2ia 1S that of the com

solid.

K,,;; can be calculated by mixing the material of the large grains with that of ti
grains and using, e.g., Hill's average. The volume of the solid material in the
grains is 47R°L / 3 and that in the small grains is 477°l / 3. Then the volume fr:

f, of the large grain material in the entire solid phase of the composite is

= RL 1 B 1 2.4.93
'""RL+7l 1+7°1/ (RL) 1+pA-¢.)/A-9,) o
The resulting Hill's average is
K, = 1 (f,K +(Q-f)K +(-1’—+—1;f—’-)“). (2.4.24)
ol 2 Pt} s K[ K

S
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2.4.3. Example of Applying the Theory.

We use the theory to simulate well log data from Well 1879 in La Cira field in Colombia.
The log data span the depth interval from 414 ft to 2258 ft with sands and shales
represented in the section. The average bulk density is 2.36 g/cm3. The pore fluid
density is about 1 g/cm3. Therefore, the differential pressure is about 1.7 MPa at the

top and 9.4 MPa at the bottom of the interval, respectively.

The compressional modulus is plotted versus the density-derived porosity in Figure
2.4.6. The lower branch of the trend corresponds to shallow formations with high GR
values and, apparently, large clay content. The upper branch corresponds to higher GR

values and deeper intervals where sand starts to dominate.

In order to model the effect of changing effective pressure, we used the model twice,
with 2 MPa and 10 MPa differential pressure as input. Other inputs are:
¢,=30¢,=2n=1Ln =14,
K, =37GPa; G, = 45GPa K, = 21GPC; G, = 8GPa K, = 2.5GPa.

The results (Figure 2.4.6) show that the theory can reasonably well mimic the data.
Some laboratory data on binary mixtures of sand and clay are presented in Appendix A,

Section 5.
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Figure 2.4.6. Well log data and model curves.
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RESULTS AND DISCUSSION

1.0 STATIC AND DYNAMIC MODULI, DEFORMATION AND FAILURE MODELS

1.1 Clayey Sandstone Core Data

New laboratory data have been obtained on a sandstone core with large amounts of clay
spanning depth interval from 10118 ft to 10197 ft. The data have been analyzed to
establish relations between the static and dynamic elastic moduli of the rock and its
failure characteristics. Relations have been established between the static Young’s
modulus and Poisson’s ratio on the one hand and the dynamic shear modulus on the
other hand (the dynamic properties are those that are calculated from the elastic-wave
velocity measurements). These relations will allow one to predict the static moduli from

velocity well log data. The relations are:

E_Static = -0.34 + 0.59 G_Dynamic; R=0.96,
PR_Static = 0.37 - 0.0208 G_Dynamic; R= 0.99;

where E_Static and PR_Static are the static Young’s modulus and Poisson’s ratio,
respectively, and G_Dynamic is the dynamic shear modulus. All moduli are in GPa.
The dynamic shear modulus is the product of the bulk density times the shear-wave

velocity squared (Figure 1.1.1).
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Figure 1.1.1. Static shear modulus and static Poisson’s ratio versus dynamic shear modulus.

It has been established that the failure envelope for the samples can be adequately
modeled by the Drucker-Prager and CAP model. The hardening law can be

approximated by either CAP equation or linear equation that are fairly close to each
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other in the case under examination. The resulting fixed and moving yield surfaces are

shown in Figure 1.12.
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Figure 1.1.2. Fixed and moving yield surfaces.

All results are implemented as Matlab applets that can be used by the engineer.

1.2 Shaley Sandstone Core Data

New laboratory data have been obtained on a sandstone core with large amounts of clay
spanning depth interval from 10118 ft to 10197 ft. The total of 28 experiments have
been conducted on rock plugs from six separate portions of the core. The experiments
included the elastic-wave velocity measurements under hydrostatic and axial-load
conditions, and the static axial deformation measurements with and without

hydrostatic confining stress.

The porosity, permeability, and mineralogy of the plugs are summarized in Table 1.2.1.
The porosity and permeability measured at 4000 psi are plotted versus the values
measured at 400 psi in Figure 1.2.1a and 1.2.1b, respectively. As we can see, the

pressure-induced changes of these reservoir properties are not very significant.

The permeability is plotted versus porosity in Figure 1.2.2 at 400 and 4000 psi. There

is no clear permeability-porosity trend in the samples under examination. The velocity

versus pressure data obtained on room-dry plugs are given in Figure 1.2.3.
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Table 1.2.1. Properties of the shaley samples tested (10118 - 10197 ft)

Sample Grain Porosity Porosity Permeability | Permeability | Quartz | F-Spar | Clay
Depth Density | @ 400 psi | @ 4000 @ 400 psi @ 4000 psi
psi

10117.90 | 2.65 0.267 0.243 17.8 14.5 0.22 0.15 0.63
10118.90 | 2.67 0.242 0.226 15.2 10.4 0.22 0.19 0.59
10119.30 | 2.67 0.237 0.216 4.78 3.77 0.41 0.21 0.38
10121.11 | 2.62 0.235 0.212 18.9 15.46 0.34 0.15 0.51
10122.60 | 2.66 0.228 0.228 5.34 4.15 0.45 0.06 0.49
10123.40 | 2.66 0.168 0.168 3.12 2.74 0.4 0.13 0.47
10136.00 | 2.68 0.278 0.247 3.57 2.05 0.3 0.17 0.53
10136.80 | 2.64 0.165 0.137 11.0 8.0 0.16 0.18 0.66
10137.60 | 2.66 0.172 0.146 2.1 1.60 0.2 0.15 0.65
10156.90 | 2.68 0.16 0.138 3.73 2.48 0.29 0.14 0.57
10157.70 | 2.68 0.108 0.103 2.5 1.12 0.59 0.08 0.33
10157.70 | 2.66 0.202 0.177 15.9 15.0 0.45 0.1 0.45
10165.50 | 2.64 0.151 0.129 3.45 2.8 0.43 0.03 0.54
10165.90 | 2.65 0.162 0.162 18.23 14.8 0.62 0.05 0.33
10166.00 | 2.67 0.112 0.11 9.92 7.9 0.31 0.1 0.59
10197.00 | 2.67 0.122 0.118 52.3 30.5 0.43 0.09 0.48
10199.50 | 2.65 0.162 0.162 19.6 14.7 0.59 0.06 0.35
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Figure 1.2.1. Porosity (a} and permeability (b} at 4000 psi versus the values at 400 psi for the
shaley sandstone core.
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Figure 1.2.2. Permeability versus porosity at 400 and 4000 psi.
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Figure 1.2.3. Velocity versus pressure from 10 experiments.
The legend gives the plug ID (see Table 1.2.1).

50



1.3. Elastic-Wave (Dynamic) Data Analysis

Below, we display the elastic-wave velocity measurement results for the six separate
portions of the core. All samples were room-dry. The stress conditions of the
experiments are indicated on the graphs. It is impossible to conclude whether the
velocity difference between the hydrostatic-loading experiments and uniaxial-loading
experiments is due to the difference in the loading conditions or to the porosity and
mineralogy difference between the samples. Below, we will compare the results of these

experiments to each other disregarding whether the loading was hydrostatic or uniaxial.
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Figure 1.3.1. P- and S-wave velocity and Poisson’s ratio versus axial stress in sample 10118.9.
The experiment is axial loading without confining pressure.
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Figure 1.3.2. P- and S-wave velocity and Poisson’s ratio versus pressure in samples 10123.4 and
10121-22. The experiment is axial loading without confining pressure in 10123.4 and
hydrostatic loading and unloading in 10121-22.
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Figure 1.3.3. P- and S-wave velocity and Poisson’s ratio versus pressure in samples 10136.8 and
10137.6. The experiment is axial loading without confining pressure in 10136.8 and hydrostatic
loading and unloading in 10137.6.
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Figure 1.3.4. P- and S-wave velocity and Poisson’s ratio versus pressure in samples 10156.9 and
10157.7. The experiment is axial loading without confining pressure in 10156.9 and hydrostatic
loading and unloading in 10157.7.
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Figure 1.3.5. P- and S-wave velocity and Poisson’s ratio versus pressure in samples 10165.5 and
10165-66. The experiment is axial loading without confining pressure in 10165.5 and
hydrostatic loading and unloading in 10165-66.
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Figure 1.3.6. P- and S-wave velocity and Poisson’s ratio versus pressure in samples 10198 and
10197-9.5. The experiment is axial loading without confining pressure in 10198 and hydrostatic
loading and unloading in 10197-9.5.

By plotting velocity versus porosity in the samples under examination, we observe that
a velocity-porosity trends exist. In Figure 1.3.7, we compare the new velocity data
presented here with the velocity data from Han’s (1986). In the latter, only the samples
with the volumetric clay content between 28 and 45% are shown. The Han data lie on

the same velocity-porosity trend as the new data. The position of the samples with clay
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among cleaner rock samples is shown in Figure 1.3.8 where the new data and the Han

shaley-rock data are plotted together with the Han low-clay (below 6%).
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Figure 1.3.7. P- (a) and S-wave (b) velocity versus porosity (at 4000 psi) in the shaley core under
examination (red symbols). The data are compared to Han’s (1986) shaley sandstone (clay
content between 28 and 45%) data (blue symbols). All data are for room-dry samples at 25 - 30
MPa confining or axial pressure. Han’s data collected at hydrostatic loading.
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Figure 1.3.8. P-wave velocity versus porosity (at 4000 psi) in the shaley core under examination
{red symbols). The data are compared to Han’s (1986) shaley sandstone (clay content between 28
and 45%) data (light-blue svmbols) and clean sandstone (clay content below 6%) data (blue
symbols). All data are for room-dry samples at 25 - 30 MPa confining or axial pressure. Han’s
data collected at hydrostatic loading.
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1.4. Static Measurement Analysis

The static test results for the six separate locations of the core are displayed in Figures
1.4.1 - 1.4.6. In these graphs, the axial and radial deformation is plotted versus the
axial stress. The conditions of the experiment are shown in the graphs. The elastic
moduli calculated from the static tests are shown in Figures 1.4.7 — 1.4.23. They are

compared to the dynamic moduli in Figures 1.4.24 - 1.4.29.
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Figure 1.4.1. Stress-strain curves for the 10118-19 plugs.
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1.5. COMPARING STATIC TO DYNAMIC DATA
The static (average tangent} and dynamic (at 25 MPa, loading) elastic moduli are plotted

versus porosity, quartz content, clay content, and feldspar content in Figures 1.5.1 -

1.5.4, respectively. Both static Young's modulus and Poisson's ratio show trends when

plotted versus quartz content and feldspar content (Figures 1.5.2 and 1.5.4).

1 H H 1 H £ 3 ¥
ﬁ ‘ DYNAMIC
- .
& & DYNAMIC 03} & -
= 5 i k= é
gz 201 ¢ = @&
I (Y
< g @ ®
2 12
% 10k ° e 1 ¢ ¢ O STATIC
E TATIC o1k P .
| ol op
@
L
0 i £ i O i 3 i i
o 010 015 020 025 5 010 015 020 025

H 3 3 ] H H 3 H }H
DYNAMIC
= ovnanic @ @ ® .
& @ 0.3} & @ & .
et
= 20} @ ’ E 2 2 )
tle® o E ¢
E ® sl d® Po e
3 @ 02 @ @ ) ® -
4 ) ] @
@ W L.
e 104 . STATIO - E % STATIC
§ 0.1p @ -
\ toph b °
0 b3 i i i 3
a 0.2 0.3 0.4 O.o 0.6 b 02 03 04 05 08

Porosity at 4000 psi

Quartz Content

Porosity at 4000 psi

Figure 1.5.1. Young's modulus and Poisson’s ratio versus porosity.

Guartz Content

Figure 1.5.2. Young's modulus and Poisson’s ratio versus quartz content.
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In Figure 1.5.5a, we plot the static Young's modulus (average tangent) versus the
dynamic Young’s modulus (at 25 MPa, loading}. Except for one out-layer, we see a clear
trend. The trend improves if we take out two more samples (Figure 1.5.5b), with linear
fit:

E_Static = -1.1 + 0.29 E_Dynamic; R= 0.95,

where the moduli are in GPa. The intercept of this line with the zero-static-modulus
line is about 3.8 GPa. This modulus is close to the Young’s modulus of dry pure

kaolinite (Yin, 1993) at 30 MPa hydrostatic pressure that is 4.2 GPa during loading.
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Figure 1.5.5. Static Young’s modulus (average tangent) versus dynamic Young's modulus {at 25
MPa, loading) for all (a) and selected (b) samples. The samples selected for the linear fitting are
surrounded by a contour in (a).
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In Figure 1.5.6, we plot the static Poisson’s ratio (average tangent} versus the dynamic
Poisson’s ratio (at 25 MPa, loading). No clear trend is apparent in this case, unless two

datapoints are taken out (see the contour in Figure 1.5.6.

Static Poisson’s Ratio

0 1 1 i
0 1 2 3
Dynamic Poisson’s Ratio

Figure 1.5.6. Static Poisson’s ratio (average tangent) versus dynamic Poisson’s ratio (at 25 MPa,
loading) for all samples. The contour shows a subset that may constitute a trend.

With the goal in mind to be able to predict the static elastic moduli from well log data,
let us relate the static moduli to the compressional (bulk density times th P-wave

velocity squared) and shear (bulk density times th P-wave velocity squared) moduli.

Static Young's Modulus (GPa)
L)

5

L
10

1
15

L
20

25

30

b

5

10

15

Dynamic Shear Modulus (GPa)

Dynamic Compressional Modulus (GPa)

Figure 1.5.7. Static Young’s modulus (average tangent) versus dynamic compressional {(a) and
shear (b) moduli (25 MPa, loading). The contour shows a subset for linear fitting.
The linear-fit trends are {a subset is used in the dynamic shear modulus case}:
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E_Static = -1.22 + 0.27 M_Dynamic; R= 0.63;
E_Static = -0.34 + 0.59 G_Dynamic; R= 0.96,

where the moduli are in GPa, and "M" stands for the compressional, and "G" for shear

modulus, respectively.

The static Poisson’s ratio (average tangent) is plotted versus the dynamic compressional
and shear moduli (at 25 MPa, loading} in Figure 1.5.8a and 1.5.8b, respectively. No
relation is apparent between the static Poisson’s ratio and dynamic compressional
modulus (Figure 1.5.8a). However, a clear relation exists between the static Poisson’s
ratio and dynamic shear modulus (Figure 1.5.8b). By using a subset of these data, we
obtain the following equation:

PR_Static = 0.37 - 0.0208 G_Dynamic; R= 0.99,

where the moduli are in GPa, and "PR" stands for the static Poisson’s ratio.

Static Poisson’s Ratio

a

Figure 1.5.8. Static Poisson’s ratio (average tangent) versus dynamic compressional (a} and shear

Dynamic Compressional Modulus (GPa)

b

1 T
3t - -
o
° o
2F¢F @ ® ..- -
o
®9
AF - -
O 1 L L L L
20 25 o} 5 10 15

Dynamic Shear Modulus (GPa)

(b) moduli (25 MPa, loading). The contour shows a subset for linear fitting.
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1.6. The GOM (Gulf of Mexico) Data

Six sandstone plugs have been tested satirically and dynamically. The summary of the
static test experiments is given in Figure 1.6.1. The conditions of the experiments are

described in Table 1.6.1.

All these plugs are of essentially the same porosity (about 20%). Their permeability
appears to be much higher than that of the shaley core from the 10118 ft to 10197 ft
interval (Figure 1.6.2). This fact is likely to mean that the GOM plugs have much less
clay than the shaley core.

H H
GOM Samples
80 ' ] -
3
1 A3 .
34%:)/%%
60 z
g
w3
yg N B
z 8k
2 40 .
20 - w
G RADIAL~~ % e AXIAL

0 4
0 Strain 0.005

Figure 1.6.1. Axial deformation of the GOM plugs due to axial stress at varying radial stress (see
Table 1.6.1).
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Figure 1.6.2. Permeability versus porosity for the GOM plugs and the shaley core plugs at 400

The porosity, permeability, and mineralogy of the GOM plugs are summarized in Table
1.6.2. The clay content indicated in Table 1.6.2 seems to be on the order of that

indicated in Table 1.2.1 for the shaley core. It is likely that the major part of this "clay"

Table 1.6.1. Properties of the shaley samples tested (10118 - 10197 {t)

Sample Experiment Conditions
33a Axial Load, 500 psi Confining Pressure
33b Axial Load, 2000 psi Confining Pressure
33¢ Axial Load, 5000 psi Confining Pressure
34a Axial Load, 500 psi Confining Pressure
34b Axial Load, 1000 psi Confining Pressure
34c Axial Load, 5000 psi Confining Pressure
GOM T GOM ’ T
Plugs Plugs
o
®
® o W e o o
- @ o 4 ‘® ©® o 4
“» o
o N ~° °
- 400psi 1 -@ 4000 psi
0.11 l O.|2 ' 0.I3 b O.ll l O.I2 I 0.3
Porosity Porosity

psi (a) and 4000 psi (b).

is mica, which explains the high permeability of the GOM samples.

Table 1.6.2. Properties of the GOM plugs

Sample Grain Porosity Porosity Permeability | Permeability | Quartz | F-Spar | Clay
Depth Density | @ 400 psi | @ 4000 @ 400 psi @ 4000 psi
psi
33a 2.606 0.2210 0.2050 853 678 0.54 0.060 0.40
33b 2.631 0.2160 0.2033 456 419 0.19 0.010 0.80
33c 2.631 0.2200 0.2059 1001 928 0.60 0.070 0.33
34a 2.624 0.2123 0.2000 1165 1006 0.39 0.050 0.56
34b 2.633 0.2223 0.2121 903 763 0.38 0.040 0.58
34c 2.612 0.2234 0.2089 597 458 0.41 0.080 0.51
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The elastic-wave velocity versus the axial stress is given in Figure 1.6.3. The
measurements have been conducted on room-dry plugs at zero axial stress and at 5000

psi (about 35 MPa) radial stress.

The velocity-porosity plots for these plugs, together with those for the shaley core and
Han’s sandstone data are given in Figure 1.6.4. The data selected are for about 25 MPa
axial stress. We can see that the P-wave velocity in the GOM plugs plots above the

shaley core trend and close to the clean Han’s sandstone data points.

This effect is not that obvious in the S-wave velocity plots (Figure 1.6.4b). Nevertheless,
the position of the GOM data points in both the permeability and velocity cross-plots

indicate that these plugs have much less clay than the shaley sand core.

The loading curves and the corresponding static Young's modulus and Poisson’s ratio
are plotted versus the axial stress for the GOM plugs in Figures 1.6.5 — 1.6.10. The
static Young's modulus is compared to the dynamic Young's modulus in Figure 1.6.11.
It appears in this case that the static and dynamic moduli are very close to each other.

The same is approximately true for Poisson's ratio (Figure 1.6.12).
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Figure 1.6.3. Elastic-wave velocity Vp (a) and Vs (b) versus axial stress for the GOM plugs. All
experiments have been conducted on room-dry plugs. The stress conditions of the experiments

Room-Dry Rocks
Axicl Stress Cycled

Raddial Stress Conditions:
33a No Radial Stress
33k No Radial Stress
33¢ 500 psi Radial Stress
34a No Radial Stress
34 No Rodigl Stress
34¢ 500psi Radial Stress

340
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F H

4]

20

40 60
Axial Stress [MPa)

are given in the table in (a).
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Figure 1.6.4. Elastic-wave velocity Vp (a) and Vs (b) versus porosity (at 4000 psi) for the shaley
core plugs, GOM plugs, Han's shaley sandstones, and [1an’s clean sandstones. All experiments
have been conducted on room-dry plugs.
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Figure 1.6.5. Loading curves and Young's modulus and Poisson’s ratio for plug GOM_33a.
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Figure 1.6.6. Loading curves and Young's modulus and Poisson’s ratio for plug GOM_33b.
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Figure 1.6.7. Loading curves and Young's modulus and Poisson’s ratio for plug GOM_33c.
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Figure 1.6.8. Loading curves and Young’s modulus and Poisson’s ratio for plug GOM_34a.

94



1 T
PR () — .
5 GOM 34b
s 60 Pc = 1000 psi
% 50
v
S 40
L=
o 30 :
%’ 20 :
10 ;
0 Axial Strain ;
a
0
£
g
o
£-0.001
g GOM 34b
Pc = 1000 psi :
. . Axial Strain :
3 : ‘ :
& : »
g 20 GOM 34b ‘ﬁ;wpm»mngemf =203 GPa ———
@ 16 Pc = 1000 psi 7 N
3 VS N
g 12 P 1 Y
= A Wl ‘ N,
w ) i : " AN
o 1\ ol ; : N\
| — , ] S
=] H ;
> ~ Axial Strain - AN
c
L] L
0.4 : Jdl .
3 Pc(ioll\go%élgsi ; Tangent = 0.36
g o3 f
» ( :
|~ .
0.2 - -
3 ; ' |
£ 01 — A
oL M sl ;
d 0 0.002 0.004

Figure 1.6.9. Loading curves and Young’s modulus and Poisson’s ratio for plug GOM_34b.
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Figure 1.6.10. Loading curves and Young's modulus and Poisson’s ratio for plug GOM_34c.
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Figure 1.6.11. Dynamic and static Young’s moduli versus axial stress for GOM plugs.
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Figure 1.6.12. Dynamic and static Poisson’s ratio versus axial stress for GOM plugs.
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1.7 Summary of Relations Obtained on the Shaley Core 10118 - 10197 ft

The three useful relations that allow for calculating the static Young’s modulus and

Poisson’s ratio from dynamic data are summarized below in Figures 1.7.1 and 1.7.2.

Dry-Rock Data
8t 25 MPa .

(2]
T

Static Young’s Modulus (GPa)
o
L]

N
T

E_Static =-1.1 + 0.29 E_Dynamic

0 5 10 15 20 25
Dynamic Young's Modulus (GPa)

a

Figure 1.7.1. Static Young's modulus vs. dynamic Young’s modulus in 10118 - 10197 ft plugs.
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g e 1 2
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Rl {1 2
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w 2k =
_E—}’“C =-0.34+0.59 G_Dynamic | PR_Static = 0.37 - 0.0208 G_Dynamic
° 5 10 Is ol 5 10 5

a Dynamic Shear Modulus {(GPa) Dynamic Shear Modulus (GPa)

Figure 1.7.2. Static Young's modulus (a) and Poisson’s ratio (b) vs. dynamic shear modulus in
10118 - 10197 ft plugs.
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1.8 Comparing Shaley Core 10118 - 10197 ft to "GOM" Plugs

Below, we compare the permeability (Figure 1.8.1a)}, velocity (Figure 1.8.1b), and static
moduli (Figure 1.8.2) of the 10118 - 10197 ft plugs to the "GOM" plugs. It appears that
the static moduli of the GOM plugs are larger than those of the 10118 - 10197 ft plugs
at the same porosity. This observation is consistent with the fact that the permeability
and velocity of the "GOM" plugs are larger than those of the 10118 - 10197 ft plugs.
The reason may be smaller amount of clay in the "GOM" plugs. This conclusion is in
contradiction with Table 1.6.2. One possibility is that the clay content in Table 1.6.2

includes micas as well.

The relations between the static and dynamic moduli for the two data sets are compared
in Figure 1.8.3. The relations for the "GOM" samples are very different form those for
the 10118 - 10197 ft plugs. Also, these relations for the "GOM" samples have much

more scatter.

GOM
B 4 R Plugs i
1000~y 3.6 9
Plugs ]
®
&)
E100} i _sar .. o -
Z 10118-10197 ff € °
8 Plugs e‘&
2 10118 -10197 ft
£ L J > 39} .
5 10F oo o L d . 82 Plugs
Q o
® o
@ © ° ®
o 3.0F J
1@ 4000 psi o o
a 0.1 0.2 0.3 b 0.1 0.2 0.3
Porosity Porosity

Figure 1.8.1. Permeability (a) and P-wave velocity (b) versus porosity for the 10118 - 10197 ft
plugs (blue) and "GOM" plugs (red).
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Figure 1.8.3. Static Young's modulus versus dynamic Young's modulus (a) and dynamic shear
modulus (b). Static Poisson’s ratio versus dynamic shear modulus (c¢). The data for the 10118 -
10197 ft plugs is blue and for "GOM" plugs is red. The moduli for the "GOM" plugs have been
calculated from the loading curves at two locations on the curve: minimum modulus and
maximum modulus.
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1.9

The Mohr circles based on the ultimate failure axial stress are plotted in Figure 1.9.1 for

Failure Data

all the samples under examination.
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Figure 1.9.1. Mohr circles for the 10118 - 10197 ft plugs (a - f}) and for "GOM" plugs (g and h).
The radial stress conditions are shown in legend.
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1.10. Failure Criteria

The Mohr-Coulomb failure criterion states that on the failure plain, the normal stress O
is related to the shear stress 7 as:

T=c+otang, (1.10.1)

where ¢ is the cohesion and ¢ is the angle of internal friction. Equation (1.10.1) can
be re-written as

0.5(c, - 6,)=k+0.5(c, + 0, )tan ¢, k = cCcos . (1.10.2)

Now we can use the failure data from Section 1.9 to calculate the Mohr-Coulomb failure
criterion parameters for the groups of plugs under examination. The coefficients in

Equation (1.10.2) are computed from the data shown in Figure 1.10.1.

The Mohr-Coulomb failure criterion parameters are very similar for the entire 10117 -
10199 plug suite with the average k = 7.2 MPa and QN ¢ = .47 (Figure 1.10.2a). From
these values we calculate the cohesion as ¢ = 8 MPa = 1.14 kpsi and the angle of

internal friction as ¢ = 25°.

The 10117 - 10199 plug data are compared to the "GOM" data in Figure 1.10.2b. The
two outliers for both plugs, 33 and 34, are the failure data points obtained at 5000 psi
radial pressure. If these two data points are eliminated, then the cohesion and angle of

internal friction for the "GOM" plugs are close to those in the 10117 - 10199 plug suite.

The Drucker-Prager failure criterion operates in the stress invariant space and states
that on the failure plain, the first invariant of the stress tensor J, and the second

invariant of the deviatoric stress tensor J,,, are related as
Jyp—0 —m=0, (1.10.3)

where ¢ and m are positive material parameters. J, and J,, can be computed as:
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J=0+0,+0;,
Jp,=J,=J 16, (1.10.3)
J,=(ct +0,+07) 2,

where O; are the principal stresses.

For the case under investigation, where
0, = 03,
we have
Ji=0,+20, J,,=J,-J} ] 6,
J, =(ct +203)] 2.

where 0, is the axial stress and is the radial stress.

The Drucker-Prager coefficients are shown for the 10117 - 10199 plugs in Figure 1.10.3.
All six groups give approximately the same & =0.2 and m = 9—15. The average
Drucker-Prager coefficients for these data are & =0.22 and m = 10 (Figure 1.10.4a).
As in the Mohr-Coulomb case, the "GOM" samples fall approximately on the same

failure line except the test data at 5000 psi radial pressure (Figure 1.10.4b}.

105



1 T L) T T L] T T T L)

3oL 10117-10119 10121 - 10123

N
=20}
«@
3 k=85
10 tan(Phi) = .42 .
o ] 1 1 1 1 1 1 L 1 1
a b
30k 10136-10137 L 10156 - 10157
N
=200 R
@
[+s]
@10 k=9.1 i k=72
tan(Phi) = .39 tan(Phi) = .46 7
0 5 1 1 1 1 1 1 1 L L
c d
30F 10165-10166 K71 7 L 10197 -10199 4
tan(Phi) = .45
N
=20k K=10.3 .
2 tan(Phi) = .25
2 10 4 " k=115 i
tan(Phi) = .44
O 1 1 1 1 1 1 1 1 L 1
0 10 20 30 40 50 0 10 20 30 40 50
e {S3+S1)/2 e (S3+S1)/2

Figure 1.10.1. Determining gradient and intercept for the Mohr-Coulomb failure criterion for the
10118 - 10197 ft plugs. Plug ID is shown on the graphs. For the three 10165 - 10166 plugs, the
2000 psi test data had to be eliminate to achieve the behavior typical for the other plugs. The
intercept and gradient are given on the graphs.
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Figure 1.10.2. a. Average gradient and intercept for the Mohr-Coulomb failure criterion for the
10118 - 10197 ft plugs. (b) "GOM" data added. The outliers are the data points at 5000 psi

radial pressure.
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Figure 1.10.4. Average Drucker-Prager coefficients (a) and GOM data (b).
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1.11 Volumetric Deformation and CAP Model

In Figure 1.11.1 we plot the hydrostatic stress versus the volumetric deformation for the

six groups of the 10118 ft to 10197 ft.

The hydrostatic stress was calculated as the average of the axial stress plus twice the
radial stress and the volumetric deformation was the sum of the axial strain plus twice

the radial strain (with appropriate signs}):

P = (O-Axial + 2 O-Radial )/ 3’. 8V01ume = gAxial + 28Radial ' (1’ 11. 1]

The failure points and the stress paths in the (J. ,JJZ ») plane are plotted in Figure
1.11.2.

The cap model uses two yield surfaces: one is the fixed, ultimate failure, surface f, and

the other is a moving elliptical cap f,. The equation for f, is:
-0 = -Ah _ _ — _ P
fi=0=4/J,p + 2 0l —o, J,p ==+ +a. (1.11.2)

where ¥, [, 6, and @ are material constants. The constants in this equation are
calculated from the condition that the curve asymptotically approaches the final
Drucker-Prager line at J, — o and has the same value and tangent as the initial

Drucker-Prager line at J, = 0 (Figure 1.11.3).

Let us assume that the equation for the initial Drucker-Prager line is y = ax +b, and
for the final Drucker-Prager line is y = Ax+ B, where y =4/J,, and x = J,. At very

large J,, we have

Jp =0

Tp + 4 =0, —a = |1, - 61, —a=4J,, — AJ, - B. (1.11.3)
Therefore,
6=A a=B. (1.11.4)

At J, = 0, we require that

5=0
J2D+7g_'wl—wl—a: JZD+}/—aE JZD_b' (1.11.5)
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Therefore,

y—a=-b, y=0a-b=B-b. (1.11.6)

The tangent of curve given by Equation (1.11.2) is

dyJ,, d=y? + 0]+ ) IRl
= = ' 4 8 = -+ 6. 1.11.7
a a7, YBe 78 ( )
Therefore,
yvB+0=a B=(-0) y=(@-A) (B-b) (1.11.8)

In the example shown in Figure 1.11.3,

a=0.2,b=97 A=0.067 B=1552. (1.11.9)
Therefore,
6 =0.067; ¢ =15.52; y = 5.82; f = 0.0229. (1.11.10)

The corresponding curve is shown in red in Figure 1.11.3.

In case where all yield points lay on a straight line (Figure 1.11.2a, b, and d), or only
two yield points are available (Figure 1.11.2f), it follows from Equation (1.11.6) that

¥ = 0. Therefore, the fixed yield surface becomes a straight line:

Jp=8+a,8=a=A a=b=B. (1.11.11)

Let us now determine the moving elliptical cap. One condition for building a cap is that
its center is located on the J, axis; the second condition is that the top of the ellipsis is
where it intersects the fixed yield surface; and the third condition is that the volumetric

plastic deformation is constant on the ellipsis. An equation to describe the cap is:
W) + KU, - CY KR =0, (1.11.12)

where C is the coordinate of the center; R is the horizontal semi-axis; and kR =r is

the vertical semi-axis (Figure 1.11.3).

The distance Z = C+ R (Figure 10.3) depends on the volumetric plastic strain &’ as
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&,
W

1
Z=—-——In(- + Z,, 1.11.13
5 ( ) ( )

where D, W, and Z, are material constants. This is a point on the J; axis where a
hydrostatic compression condition is realized. Three data points are enough to
determine the material constants in Equation {1.11.13). These data can come from
triaxial tests from the points where the axial load equals the radial pressure (points

where the green loading paths intersect the horizontal axis in Figure 1.11.3).

The plastic volumetric strain £’ is the difference between the total volumetric strain &,

and the elastic part of the strain & :

&g=¢-¢. (1.11.19)

The elastic part is proportional to the elastic bulk modulus which is the unloading path

modulus in the static tests.

In the case under examination, we do not have unloading data. Therefore, we assume
that the plastic deformation £’ equals the total deformation &, :
e =g, (1.11.15)

Next, we assume that there is no initial yield cap which means the plastic deformation
is zero at zero hydrostatic stress (see Figure 1.11.1 where the load paths at zero
confining pressure pass through the origin). Then Z; = 0 in Equation (1.11.13) and

gl
w

1
Z=—-——In(1- . 1.11.16
D ( ) ( )

This equation can be transformed to

e =W(l-e?)=wQ-e>") (1.11.17)

where P = J, / 3 is the hydrostatic pressure.
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If we know the volumetric strain £, and €/, at two values of J,, J, =Z and J, = Z,,
respectively, where the deviatoric stress is zero, we can calculate the needed constants

D and W from equations

g 1-eP e
S 27 _gw=—b1_, (1.11.18)
€p2 1-e bz, l—eDZI

v

The key in establishing the hardening equation according to (1.11.15) is to know the
true absolute values of the volumetric strain. It is clear from Figure 1.11.1 that the
volumetric strain values given in the measurements are relative because the strain
appears to be zero at a finite hydrostatic stress. In order to obtain the correct strain
values, we assume that all hydrostatic stress-strain curves have to pass through the
origin. Furthermore, we will approximate the hydrostatic stress-strain curve by a linear
function and then shift it as needed. The corresponding shifted stress-strain curves are
shown in Figure 1.11.4. The J, (Z) values at J,, = 0 and the corresponding €, and

&’ values are given in Table 1.11.1.

Table 1.11.1. First stress invariant and volumetric deformation at pure
volumetric compression points for the shaley samples tested (10118 - 10197 ft).

Plug Z1 (MPa) eVP1 Z2 (MPa) evP2 Z1/22 eVP1/eVP2
10117-19 10.559 0.0014808 42.222 0.0061188 0.25 0.24201
10121-22 10.573 0.0014058 42.221 0.0061757 0.25 0.22763
10136-37 10.551 0.00061362 42.221 0.0023888 0.25 0.25687
10156-57 10.566 0.0013413 42.193 0.0047819 0.25 0.28049
10165-66 10.573 0.0012367 42.221 0.0061486 0.25 0.20114
10197-99 10.566 0.0011768 42.207 0.0047533 0.25 0.24758

Consider Equation (1.11.18) at D — 0. In this limit case 1—eXp(—~DZ) — DZ, and
el | €, > 7/ Z,. Theratio (1—e )/ (1 —e ®*) will increase with the increasing
D because its derivative with respect to D is positive. Therefore, a solution to

Equation (1.11.18) exists only if £/, / €, > Z,/ Z,.

We can see from Table 1.11.1 that this condition is not satisfied except for plug 10157.
This is the only case where both test have been made on the same plug, 10157.7.

Therefore, we will use it to resolve Equation (1.11.18) and use the result for all other
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cases. We find D = 0.0074 MPa'l and W = 0.018. The volumetric strain is plotted

versus the first stress invariant J,, according to Equation (1.11.17), in Figure 1.11.5.

As we mentioned above, Equation (1.11.17} cannot be fit to the data in Figure 1.11.5,
except for plug 10157.7. An alternative solution is to use a linear equation instead of
Equation (1.11.17). To find this equation, we fit a straight line to the data points from

Table 10.1 (Figure 1.11.5). The corresponding linear equation is:
gl =W, + D, J, = —0.000094 +0.000135/,, (1.11.17a)

where W, and D, are constants for the linear hardening equation. We suggest that
Equation (1.11.17a) may be used alternatively to Equation (1.11.17) when building

hardening caps for the experimental data under examination.

In order to build the cap ellipsis, it is enough to have two points with the same

volumetric deformation on the (J, J J, ) plane shown in Figure 1.11.3.

Let us rename the variables as

Jlsx;JJZD = y. (1.11.19)
Then Equation (1.11.12) for the ellipsis becomes

V' +k(x-CY -kKR =0. (1.11.20)
The condition that its top lies on the fixed yield surface (1.11.2)
Vop = =" + @ + & gives:

g -8 -
y=kR=—- "'+ 0x+a=—-r " +0C+ . (1.11.21)

Therefore, Equation (1.11.20) becomes
V+EGx=-CYf - +6C+a) =0. (1.11.22)

Now we will use the condition that a cap is a surface of constant volumetric strain. Let
us assume that we have two points in the (x,y) plane where the volumetric
deformation is the same. These points are (x,,y,) and (x,,y,). Then we have a system

of two equations for determining the constants k£ and C:
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W+ E(x —CY-(-* +06C+ay =0,
%

] (1.11.23)
% +k (% -CY - (- +6C+ay =0
From these equations we find:
o Y-y
(x, = %, Xx, +x, —2C)
) , (1.11.24)
¥ - N =Y (x, —CY - (=1 +6C+ a) =0.

(n =% Xx +x -2C)

The last of these two equations has to be solved for C. After C is found, it has to be
substituted into the first equation of the system (1.11.24) to find k. If the (x,,y,)
points is located on the J, (y = 0) axis, then y, =0 and x, can be calculated versus
the volumetric deformation from equation (1.11.16):

Z=J=x,=—A/D)InQ-¢g"/ W) (1.11.25)

Of course now (x,, y,) has to be selected such that the volumetric deformation at this

point is the same used in Equation (1.11.25). Then the system (1.11.24) simplifies as:

k2:_ y12

(x, = %, Xx, +x, =2C)

2
ylz_ Y
(x = Xx, + x, =2C)

(1.11.26)

(x,-CY -~ +6C+ a) =0.

For the group 10117-19, the ultimate surface is a straight line yJ,, = &J, + & with «
= 11.45 and @ = 0.19. For the rest of the groups, except group 10165-66, it is
reasonable to assume that the ultimate surface is also a straight line. The coefficients
a and @ for these groups are given in Table 1.11.2. Coefficient ¥ for all of them is

ZE€ro.

Table 1.11.2. Ultimate yield surface constants for plugs 10118 - 10197 ft.

Plug Alpha Theta Gamma Beta
10117-19 11.45 0.19 0 0
10121-22 9.6 0.2 0 0
10136-37 12.17 0.172 0 0
10156-57 9.78 0.21 0 0
10165-66 15.52 0.067 5.82 0.0229
10197-99 15.581 0.2 0 0

Moving caps for some plugs under examination are plotted in Figure 1.11.6.
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Figure 1.11.1. Average hydrostatic stress versus volumetric deformation for the 10118-97 ft core.
Loading is axial.
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2.0 RESULTS OF THE EXPERIMENTAL STUDIES

2.1 Berea Sandstone

Results from the Berea sandstone samples were obtained from pore cycling tests under

hydrostatic stress in which two principal stresses are in equal magnitude. The

volumetric strains and wave velocities were measured during the tests. Pore pressures

in the range from O to 9200 psi were employed in the testing program. Static and

dynamic measurements were made concurrently on the same sample. It is evident from

Table 2.1 and Figure 2.1 that Vp velocities calculated for constant 500 psi effective

stresses are decreasing with increasing confining pressures.

Table 2.1 Acoustic properties of the Berea Sandstone tested at variable effective stress

Paxial Pradial Ppore Peff dX Tp Ts Vp Vs VpiNs

psi psi psi psi inch usec usec msis mis

500 500 0 500 0.0000 13.8460 | 23.9270 4983 2915 1.7092
1000 1000 500 500 0.0001 13.8460 | 23,9270 4982 2915 1.7082
1500 1500 1000 500 0.0003 13.8460 | 23.9068 4982 2917 1.7077
2000 2000 1500 500 0.0004 13.8325 | 23.9365 4987 2913 1.7118
2500 2500 2000 500 0.0005 13.8318 | 24.0020 4987 2805 1.7169
3000 3000 2500 500 0.0006 13.8261 24.0180 4989 2802 1.7189
3500 3500 3000 500 0.0007 13.8204 | 24.0466 4991 2899 1.7219
4000 4000 3500 500 0.0009 13.7840 | 240768 5001 2894 1.7278
5000 5000 4500 500 0.0010 13.7495 | 241430 5018 2886 1.7389
5500 5500 5000 500 0.0011 13.7132 | 24.2049 5032 2878 1.7487
6000 6000 5500 500 0.0013 13.6948 | 24.2010 5039 2878 1.75089
6500 6500 6000 500 0.0014 13.6640 | 24.2348 5051 2873 1.7578
7000 7000 6500 500 0.0014 13.6410 | 24.2448 5060 2872 1.7618
8000 8000 7500 500 0.0016 13.6327 | 24.2860 5063 2867 1.7681
8500 8500 8000 500 0.0017 13.6094 | 242849 5072 2867 1.7683
9000 9000 8500 500 0.0020 13.6000 | 24.2930 5075 2865 1.7713
9000 9000 8000 1000 0.0020 13.3553 | 23.8883 5175 2918 1.7736
9000 9000 7500 1500 0.0021 13.1900 | 23.5600 5245 2962 1.7707
9000 9000 7000 2000 0.0022 13.0260 | 23.1940 5315 3013 1.7645
9000 9000 6500 2500 0.0022 12.8848 | 22.8693 5378 3059 1.7581
9000 9000 6000 3000 0.0023 127790 | 22,6450 5426 3002 1.7549
9000 9000 5500 3500 0.0023 126425 | 22.4620 5489 3119 1.7597
9000 9000 5000 4000 0.0024 125380 | 22.3700 5538 3133 1.7676
9000 9000 4500 4500 0.0024 12.4180 | 22.1870 5596 3161 1.7702
9000 9000 5000 4000 0.0024 12.4920 | 22.2801 5560 3147 1.7669
9000 9000 5500 3500 0.0024 125330 | 22.3700 5540 3133 1.7684
9000 9000 6000 3000 0.0024 12.6292 | 22.4620 5435 3119 1.7617
9000 9000 6500 2500 0.0024 127380 | 22.5754 5444 3102 1.7551
9000 9000 7000 2000 0.0024 12.8397 | 22.7360 5398 3078 1.7538
9000 9000 7500 1500 0.0023 12.8921 229138 5330 3052 1.7462
9000 9000 8000 1000 0.0023 13.1080 | 23.1940 5279 3012 1.7526
8000 39000 8500 500 0.0022 13,3130 1 235010 5182 2370 1.7484
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Figure 2.1. P wave velocities of the Berea Sandstone tested at variable effective stress

The initial loading curve for Berea sample (Figure 2.2), generated by keeping the
effective stress constant while increasing the pore fluid pressure and confining stress,
allows computation of the so-called "unjacketed" compliance of the rock and pore space.
Figure 2.3 shows elastic and residual deformations as a function of effective and

hydrostatic stresses.
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Figure 2.2: Sample loading history showing confining stress, pore pressure and volumetric strain.
A-B raise hydrostatic stress at constant effective stress; B-C decrease pore pressure maintaining
hydrostatic stress; C-D increase pore pressure to measure plastic deformation; and D to end
decrease stresses at constant effective stress.

Loading limbs B-C and C-D reproduce the effects of fluid drawdown and subsequent
recharge. The total volume compliance was computed independently for the loading
portion (B-C) and then for the unloading portion (C-D) by fitting each portion of the

curve to a smooth power law, as shown in Figure 2.3.

1 1 oV
Cop=0r—=0or

Kg VP,

P, (7)

Inverting the power law relationship allows a computation of the total compressibility
due to a change in pore pressure keeping the confining pressure constant which can

then be plotted as a function of the sample effective confining stress, Table 2.1.
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Figure 2.4. Stress-strain curves over the drawdown (B-C) and recharge (C-D) portions of the
loading curve. Also shown is the power law fit to each, from which the total compliance due to
pore pressure changes can be determined as a function of effective stress at constant confining
stress equivalent to the overburden at the depth from which the sample was obtained.

Figure 2.3 indicates that, the compressibility of the Berea sandstone with high
permeability (k = 750 mD) is greater during loading (Cicad = 2.03E-6 psi‘}) (that is, during

pore pressure reduction accompanying production of hydrocarbons) than during

123



unloading (Cunicad = 1.0936E-6 psi!) (pore pressure increase). From the biaxial test
results (Figure 2.6), compressibility of the Berea sandstone with high permeability was
calculated to be 2.777E-6 psil. Figure 2.5 indicates that this is a consequence of the
permanent deformation associated with a pore pressure decrease (effective pressure
increase), as discussed below. An important implication of this is that the state of the
reservoir cannot be recovered by injection once the reservoir fluid pressure has been
decreased by production. Neither the total volume change, nor the porosity change, is
fully recoverable. Therefore, stresses on casing and surface deformation (subsidence)
that occur as a consequence of production cannot be entirely mitigated by re-injection.
Experience reveals that in depleted sands only 10% of the volume loss due to

production is recoverable.

A consequence of the difference between the loading and unloading compressibilities is
that, on increasing the pore fluid pressure (C-D), not all of the volume reduction is
recovered. The portion that is not recovered is the anelastic permanent deformation and

is approximately 4x10-3 strain accompanying approximately 4000 psi draw down and

recovery.
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Figure 2.5. Elastic moduli, and failure strength of Berea sandstones with permeabilities of 75
mD, 300 mD and 750 mD.
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If the permanent deformation is a linear function of the draw down, this corresponds to
a "reservoir non-recoverable compliance” of 8x10-7 psi-!. Because the rock properties are
strongly effective-stress dependent, this is at best only an approximation. The
recoverable deformation is approximately 90% of the total volume reduction, indicating
that Berea with high permeability has experienced good consolidation and cementation.
The values of the compressibilities calculated from two type of the test results obviously
indicates that samples should be tested under in situ stress conditions and current

testing practices are not representative.

The maintenance of the pore pressure of the formation depends critically on the fluid
properties, the porosity, the permeability, the production rate, the pore compliance, and
the volume of fluid available to maintain the in situ pressure. The higher the
permeability and the lower the production and higher injection rate, the more likely it is
that the reservoir pressure can be maintained by recharge. The permeability, pore
compliance, and porosity are all measurable in the lab. Once these are known reservoir
simulation can be carried out using reasonable reservoir volumes and fluid properties to
establish how pore pressure will change as a function of injection or production rate.

This allows engineers to choose the injection rate to achieve the desired results.

We address now a method to obtain a measure of the pore compliance associated with the loading path B-C:

oV
CPore = 1 = 1 — Pc (8)
K pore Vpore aP P

This is the portion of the loading path that mimics the behavior of the reservoir during drawdown and thus it

is of particular relevance to reservoir performance.

The pore compliance provides a measure of the ability of the reservoir to deliver energy to the system as the
fluid is withdrawn. It is not the same as the total compliance presented in Figure 2.8. These results were
computed using the strain that was measured over this loading path of the entire volume of the sample (solid
plus void). Therefore a correction needs to be applied to this data before a measure of the pore compliance
can be obtained. If
1) The material obeys the Gassmann assumptions, and
2) The volume change due to a change in pore pressure at constant confining pressure is
equal to the volume change due to a change in pore pressure at constant effective pressure
minus the volume change due to a change in confining pressure at a constant pore

pressure,
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then the desired compliance (which describes the pore volume change due to a change in fluid pressure) can
be calculated from the measurements as:

Cpore = K— = _¢— + CAB (14)

pore

The result of this calculation is Cpore = 13.9x10°° psi™' for ¢ = 0.21 as above.

Compressional and shear velocities of Berea sandstone with various permeabilities were carried out using

pulse transmission technique to obtain the corresponding dynamic moduli (Table 2.1, Figures 2.1 and 2.6).
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Figure 2.6. S wave velocities of the Berea Sandstone tested at variable effective stress
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2.2

Ultrasonic Velocities and Elastic Moduli of GOM Clayey Sandstones

Biaxial compaction test was performed. Pore and confining pressures were held

constants as axial pressure was varied, duplicating conventional rock testing

procedures. The measured axial and radial strains provided estimated values of Young's

modulus and Poisson’s ratios for the bulk solid based upon the tangent moduli. The

effective stress coefficient of the sample was assumed to be unity. Compressive

strength, compressional and shear velocities of the GOM samples were measured. In the

testing program confining pressure of O, 500 and 2000 psi were employed (Figures 2.7
through 2.12 and Tables 2.2 through 2.14).
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Figure 2.7. Axial, radial strains and failure strength of GOM clayey sandstone (10118’) for various
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Figure 2.8. Axial, radial strains and failure strength of GOM clayey sandstone (10123’) for various

confining pressures.
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Figure 2.10. Axial, radial strains and failure strength of GOM clayey sandstone (10156’) for various confining
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Figure 2.12. Axial, radial strains and failure strength of GOM clayey sandstone (10195’) for

various confining stresses.

129

2.20E-02



Table 2.2. Compressive strength and elastic moduli of GOM samples tested at various stress

conditions.
Depth Pc Pf;ihm E Vv
ft psi psi psi
10118.90 o 4197 5.44E+05 0.2660
1014790 500 5915 6.77E+05 0.2434
10118.30 2000 M123 7.ME+05 0.1809
1012340 o 3627 SA5E+05 0.2296
10121.1 500 5383 6.51E+05 0.2284
1012260 2000 10848 7.24E+05 0.2200
1013760 o 3974 9.78E+05 0.2229
10136.00 500 5348 1.33E+06 0.2081
10136.80 2000 10657 1.46E+06 0.2000
10156.90 0 3723 6.03E+05 0.219
10157.70 500 5613 6.30E+05 0.2026
10157.00 2000 11300 7.02E+05 01977
10165.00 o 3673 7 55E+05 0.2096
10166.00 500 5513 7.90E+05 0.1951
1016590 2000 8989 8.44E+05 | -0.1889
10199.50 500 7645 8.89E+05 01732
10197.00 2000 12961 9.86E+05 01711

2.3 Acoustic Moduli of GOM Samples Tested

Compressional and shear velocity measurements have been completed on twelve 1 4"
diameter GOM samples, all samples vertically oriented. The sample depth interval s
range from 10118 ft to 10195 ft. An increase in compressional velocity for the all
samples designated for hysterisis effect ranged from 10 to 13 percent for the initial
increase of net stress from 500 psi to 4000 psi, while shear velocities increased from 12
to 17 percent. When net stress was lowered from maximum to initial stresses, the
compressional velocities decreased from 3 to 5.6 percent from maximum velocity and
the shear velocities decreased from 3 to 4 percent. The total hysteresis for all samples at
around 4000 psi ranges from 2 to 9 percent for compressional velocity and 4 to 12
percent for shear velocities. Poisson's ratio, Vp/Vs, and interval transit times from

measurements were calculated.
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An initial axial stress of 500 psi was applied to each sample with an atmospheric
pressure. The acoustic transmit times were determined via a 100 MHz digital oscillope.
Rock transit times corrected for system transit times were then divided by the sample
length to obtain velocity. Acoustic velocities were determined for compressional and
shear waves. Dynamic elastic moduli are determined from bulk density and

compressional and shear wave velocities (Table 2.3 through 2.13).

Table 2.3. Compression, shear wave velocities, and acoustic moduli of sample 10117’ tested under
various stress conditions.

Paxial {Pconfining] AX Tp Ts Vp Vs Ypi's v E
500 500 0.0000 | 11.0110 203300 2495 1422 1.7539 0.2592 6.161
1000 1000 0.0007 | 107330 191300 2577 1546 1.6673 0.219 6.364

1508 1500 0.0013 | 10.5490 18.5300 2634 1615 1.6308 0.1987 6.538

2000 2000 0.0021 | 104180 18.1900 2675 1657 16148 0.1890 6.690

3000 3000 0.0038 | 101980 17.9200 2746 1689 1.6259 0.1958 7.088

4008 4000 0.0065 | 10.0220 17.7800 2801 1703 1.6454 0.2071 7447

3000 3000 0.0057 | 10.0440 17.8100 2796 1700 1.6445 0.2067 7415

2000 2000 0.0049 | 101240 18.0000 2769 1676 1.6522 0.2110 7.300

1500 1500 0.0043 | 10.2000 18.1400 2744 1658 1.6541 0.2120 71473

1000 | 1000 | 00035 | 103300 | 182900 2701 1641 16458 0.2074 6923
500 500 | 00028 | 104620 | 184700 2658 1620 | 16411 0.2047 6.602

2850 i 1808

2750 1700 l |
g N ) N ] |
E 2650 -—I——. Euxn/ AT H
s . : n

s )W l'mmm i 1500 [mincreasing Pryal ||

. 8 Decressing Phyd |I Decreasing Phyd
2458 — 1000 1L i .
© 1000 2008 3060 4008 5000 9 1000 2000 3000 4000 5000
Hydrostatic Stress (psi) Hydrostaticl Stress (psi)
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Table 2.4. Unconfined compression, shear wave velocities and acoustic moduli of sample 10118’

tested.
Paxial AX Tp Ts ¥p ¥s VpNs v E
psi inch usec usec mis mis psi
178 0.0000 | 275460 | 442880 2308 1487 1.5524 0.1454 4.7966
462 0.0001 26.3050 43,6260 2428 1512 1.6056 0.1832 5.4848
996 0.0001 24.3460 41,9610 2646 1581 1.6734 0.2223 6.7280
1476 0.0002 | 23.2420 | 40.3890 2787 1624 17157 0.2427 7.5880
1991 0.0003 | 22.4370 | 40.3300 2899 1655 17519 0.2584 8.3161
2934 0.0006 21.6480 39.8900 3019 1676 1.8011 02772 9.1484
3503 0.0011 21.2970 39.4500 3074 1697 18114 0.2808 9.5161
2912 0.0016 21.1640 39.0110 3096 1719 1.8007 0.2771 9.6198
4427 0.0021 { 21.0000 |- 38.7910 3122 1730 1.8048 0.2785 9.7980
3500
e L
3200
] L = 1658 n L]
5 2900 L ] £ ]
A || E 1588 ]
£ 2600 | £ 4550
2300 r. 1568 ]..
1456 +
2000 . 1000 2008 3008 4000 5000
[ ] 1000 2000 3000 4800 5600
Axial Stress (psi) Axial Stress (psi)

Table 2.5. Compression, shear wave velocities and acoustic moduli of sample 10121° under
various stress conditions.

Paxial [Py - Ax Lt Ts vp Vs Vpis v E
psi PSi inch usec usec mis mis psi
500 500 0.0000 8.3516 15.1150 2599 1834 1.4171 0.0040 5.331
1000 1000 0.0002 9.0659 14.8660 2711 1882 1.4408 0.0353 5.983
1500 1500 0.0006 8.8560 14.6410 2799 1927 1.4530 0.0501 6.469
20080 2000 0.0012 8.7242 14.4290 2856 1970 1.4497 0.0462 6.711
3000 3000 0.0021 8.5784 14.1850 2921 2022 1.4444 0.0387 6.974
4000 4000 0.0033 84725 14.0310 2968 2055 1.4442 0.0385 7.198
3000 3000 0.0026 8.4945 14.0710 2960 2048 1.4456 0.0411 7171
2000 2000 0.0020 B.5824 14.2340 2820 2012 1.4515 0.0483 7.025
1500 1500 0.0016 8.6484 14.3560 28990 1985 1.4558 0.0533 6.915
1000 1000 0.0012 8.7582 14.5100 2841 1953 1.4548 0.0522 6.675
500 580 0.0008 8.8058 14.6300 2777 19186 1.4494 0.0457 6.338

e I Y 2100 T
2900 2050 *———-‘
T 2800 ® 2660
2 E 1950
Y
> =00 2 1900 L
ze00 i-hereasing Phyd 1ase l I-mem Phryd
2s00 ® Do ing Phyd 4300 ® Decreasing Phyd
O SO0 100 130 230 2 o T o o e 1008 2006 3000 4000 5000
Nydevctaric Straes (pei) Hydrostaticl Stress (pei)
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Table 2.6. Compression, shear wave velocities and acoustic moduli of sample 10123’ tested at
2000 psi confining pressure.

Paxial AX Tp Ts Vp Vs YpAfs v E
psi inch usec usec mis mis psi
516 0.0000 30.1650 51.4290 2593 1558 1.6637 0.2172 6.4324
996 0.0001 28.2420 49.4510 2787 1628 1.7111 0.2407 7.5729
1529 0.0001 27.2340 48.3520 2900 1670 1.7365 0.2519 8.2768
2045 0.0002 | 26.6850 47.8120 2966 1691 1.7535 0.2590 8.7059
3005 0.0004 259520 47.2530 3058 1714 1.7845 0.2711 9.3464
3734 0.0007 25.5310 47.0330 3114 1723 1.8076 0.2795 9.7532
3soo 1750
3200 - B 1709 L ﬁ L
% 2900 - e » 2 1880 L
s | & |
£ 2600 3 ; 1600
2300 1550
2000 1500
° 1000 2000  So00 4000 ° 1008 2080 3000 2000
Axial Stress (psi) Axial Stress (psi)

Table 2.7. Compression and shear wave velocities and acoustic moduli of sample 10136’
under various stress conditions.

Paxial |Pconfining Ax Tp Ts Vp Vs Vpis Vv E
psi psi inch usec usec mis mis psi
500 500 0.0000 9.2311 19.0000 3001 1485 2.0205 0.3378 9.469
1000 1000 0.0002 9.0982 18.0700 3061 1594 1.9201 0.3139 9.675
1500 1500 0.0003 8.8766 17.6630 3167 1647 1.9230 0.3147 10.363
2000 2000 0.0005 8.6993 17.4500 3256 1675 1.9437 0.3200 11.004
3000 3000 0.0014 £.4333 17.2000 3398 1709 1.9888 0.3308 12.087
4000 4000 0.0026 8.2117 17.0000 3526 1736 2.0310 0.3400 13.093
3000 3000 0.0023 8.2980 17.1000 3475 1722 2.0187 0.3374 12.699
2000 2000 0.0017 8.4977 17.2900 3361 1695 1.9824 0.3283 11.805
1500 1500 0.0012 8.6393 17.5800 3285 1656 1.9839 0.3297 11.283
1000 1000 0.0007 8.8538 18.0040 3176 1601 1.9837 0.3286 10.545
500 500 0.0003 8.9606 19.0000 3125 1485 2.1052 0.3543 10.399
1750 3600
| |
aroo i_l scos ’ * -
& 1550 | Z 330 ‘
E 1500 L) = 3208 i
F-4 1550 = 3100 Mincreasing Phyd
!-lncreasing Phyd 3080 1I Decreasing Phyd l:
1500 Decreasing Phyd 2300 }
1450 0 580 100 150 200 250 300 350 400 450
° 1080 2000 3000 4000 5000 6 8 o 6 8 e ©o 3
Hydrostaticl Stress (psi) Hydrostatic Strees (psi)
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Table 2.8. Unconfined compression, shear wave velocities and acoustic moduli of sample 10137’

tested.

Paxiat Ax Tp Ts p Vs VpANs v E
psi inch usec usec mis mis psi
178 0.0000 20.6300 36.0330 2665 1577 1.6885 0.2304 6.8680
5186 0.0001 19.1580 35.0550 2900 1629 1.7801 0.2695 8.3838

1013 0.0002 18.4080 34.3150 3037 1671 1.8175 0.2829 9.3015

1511 0.0002 17.8130 33.7360 3134 1705 1.8383 0.2899 9.9620

1991 0.0003 17.5210 33.2970 3216 1732 1.8571 0.2958 10.5366

2880 0.0085 16.8860 32.7470 3332 1766 1.8864 0.3046 11.3886
3688 0.0009 16.3770 32.0880 3480 1810 1.9231 0.3147 12.5191

3974 0.0011 16.1520 31.8800 3538 1823 1.9403 0.3192 12.9771

3800 1850 -
3500 J 1800 |
3200 -- - - 1750 |

® m J i

& 2000 |18 E 1700 .

o (. -

* 2600 IR = 1650 ]

2300 1600 C
1550 +
2000
o 2000 4000 6000 1} 1000 2000 3000 4000 5000
Axial Stvave (peid Axial Stress (psi)

Table 2.9. Unconfined compression, shear velocities and acoustic moduli of sample 10156’ tested.

Paxial Ax ™ Ts Vp s VpNs v E

psi inch usec usec ms mis psi
0 0.0000 24.4080 40.3300 2648 1661 1.5842 0.1756 6.4308
462 0.0001 24.1480 40.1000 2680 1672 1.6027 8.1813 6.6687
1014 0.0001 22.5000 39.8900 2901 1682 1.7244 0.2466 8.2456
1511 0.0002 20.8970 39.2310 3153 1715 1.8389 0.2900 10.0349
1991 0.0002 20.1650 38.3810 3284 1759 1.8675 0.2880 11.0142
2969 0.0003 19.3410 37.2100 3445 1824 1.8888 0.3053 121764
3698 0.0006 18.8830 36.5930 3541 1860 1.8039 0.3085 12.9064

3800 | 1900 |

ssoe 4—-— 1358 - L
g 2 -—i EE" 1300
& 2900 L =
s ® 1750 -
> 2600l = =

1700
2300 B F
2000 1650
o 1000 2000 3000 a000 [ 1000 2009 3000 4000
Axiel Seress (orid Axial Stress (psi)
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Table 2.10. Compression, shear wave velocities and acoustic moduli of sample 10157 at

various stress conditions.

Pazial |Pconfining Ax Tp Ts Vp Vs Vs v E
psi psi inch usec usec mss mis psi
500 5060 0.0000 3.9121 16.0230 2436 1701 1.4324 0.0247 4.781

1000 1008 0.0015 8.4505 15.0470 2593 1869 1.3871 -0.0411 5.068
1500 1500 0.0029 8.9890 146130 2772 1954 1.4188 0.0065 6.081
2000 2008 0.0041 8.7473 14.4190 2875 1993 1.4428 0.0377 6.742
3000 3000 0.0069 38.4176 14.1780 3023 2039 1.4825 0.0826 7.778
4000 4000 0.0088 3.2088 13.9660 3120 2081 1.4996 0.0986 8.417
3600 3000 0.0073 3.2308 14.1510 3120 2044 1.5262 0.1238 8.601
2000 2000 0.0048 8.2527 14.3340 3118 2010 1.5522 0.1452 8.760
1500 1508 0.0037 8.3407 14.5070 3077 1974 1.5585 0.1501 8.560
1000 1000 0.0031 8.5385 14,8000 2978 1914 1.5559 0.1481 8.006
500 500 0.0024 9.1648 15.2000 2701 1838 1.4696 0.0689 6.129

1200 2100 " |

LI WL "y

% = 1300
€ m ‘ = E =
8 2600 ®
= ]Ihcreasing Phyd = 1700 —IB Mincreasing Phyd |

2a00 | W |® Decreasing Physi |7 & Decreasing Phyd

22600 ~+ 1500

[ 1000 20808 3000 4800 5000 ] 1080 2000 3000 4600 5000
Hydrostatic Tess (psi) Hydrostaticl Stress (psi)

Table 2.11. Unconfined compression, shear velocities and acoustic moduli of sample 10165
tested.

Paxial AX Tp Ts \p Vs YpAfs v E
psi inch usec usec mis mis psi
445 0.0000 24.0000 36.3740 2418 1672 1.4404 0.0348 4.7570
1013 0.0000 21.6330 35.2750 2718 1741 1.5612 0.1521 6.6887
1529 0.0001 20.2740 34.8350 2925 1767 1.6559 0.2130 8.1602
2045 0.0001 19.4600 34.6150 3066 1780 1.7224 0.2458 9.2049
3023 0.0002 18.2330 34.2300 3305 1804 1.8323 0.2879 11.0682
3200 0.0002 17.9860 341270 3358 1810 1.8549 0.2951 11.4779

3600 1850
2200 - am
3200 1800
T 000 —— g m "
£ >s00 E 1750 -
£ 2e00 L 2
2400 1— 1700
2200 1650 n
2000 [y 1000 2000 3000 4000 14 1000 2000 3000 4000
Axiatl Stress (psi) Axial Stress (psi)
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Table 2.12. Compression, shear wave velocities and acoustic moduli of sample 10166’ at various stress

conditions.

Paxiat |Pcosfining Ax Tp Ts Vp Vs Vphis v E

psi (=] inch usec usec mis mfs psi

500 500 0.0000 8.6813 14.0510 2708 1936 1.3986 -0.0230 5.633
1000 1080 $.0001 8.2857 13.8460 2893 1983 1.4589 B8.0569 6.954
1500 1500 0.0002 8.0220 13.7000 3031 2018 1.5022 0.1021 7.961
2000 2000 0.0002 7.8681 13.6070 3118 2041 1.5280 0.1254 8.603
3000 3000 0.0002 7.6923 13.4300 3224 2086 1.5456 0.1400 9.315
4000 4000 0.0002 7.5604 13.2910 3308 2123 1.5585 0.1501 9.894
3000 3080 0.0002 7.6224 13.4300 3268 2086 1.5668 0.1563 9.708
2000 2000 0.0002 7.7382 13.5980 3196 2043 1.6642 0.1544 9.268
1500 1500 0.0002 7.8681 13.7030 3118 2017 1.5459 0.1402 8.716
1000 1000 0.0002 8.0718 13.8400 3004 1984 1.5139 0.1129 7.895

500 580 0.0002 8.3835 14.0000 2845 1947 1.4608 0.05981 6.737

3500 2200
- [T T4 1 4
2109
T s10e l—. )
< E 2000 -—. u
£ 2900 2 .
2700 '-hcr it d 1900 W increasin,
l easing Phy: g Phyd
2500 w Decreasing Phyd 1800 = Decreasing Phyd
© 560 100 150 200 250
° ° o © * ° ° e 40080 2008 3000 4000 5000
Nydeostatic Stress [pri) Hydrostaticl Stress (psi)

Table 2.13. Compression, shear velocities and acoustic moduli of sample 10197 at various stress

conditions.
Paxial |Pconfining AX TR Ts Vp Vs Vpnfs v E
psi psu inch usec usec mis mis psi
500 500 0.0000 11.6570 18.1940 2943 1955 1.50568 0.1055 7.530
1000 1000 0.0000 11.29810 18.8280 3066 2008 1.5268 0.1245 8.311
1500 1500 0.0008 11.0670 18.5050 3166 2058 1.5400 0.1354 2.948
2000 2000 0.0018 10.8030 18.1850 3241 2104 1.5405 0.1358 9.388
3000 3000 0.0035 10.5590 17.8400 3334 2161 1.5430 0.1379 9.944
4000 4000 0.0048 10.3560 17.7070 3416 2181 1.5660 0.1557 10.603
3000 3000 0.0048 10.3560 17.7520 3416 2173 1.5718 0.1600 10.642
2000 2000 0.0040 10.51980 17.7860 3349 2167 1.5453 0.1397 10.050
1500 1500 0.0032 10.6410 17.9730 3301 2138 1.5438 0.1386 8.755
1000 1000 0.0023 10.8220 18.2390 3232 2096 1.5422 01373 9.341
500 500 0.0013 11.0880 18.6380 3135 2034 1.5409 0.1362 8.778
3500 2300
oy [ WAL *I g = =
21006
¥ 3100 - [ ]
€ T oo |
o 2300 o
td |-hcreesing Phyd 2 -
2700 ® Decreasing Phyd [ 1789 |Ilnc1easmg Phyd r
2560 ¥ 3 ¥ ® Decreasing Phyd
@ 500 100 158 288 256 308 358 400 450 1500
L] o L ] 9 ] o @ L] ] 1000 2008 3000 4000 5000
Hydeacratic Srrace (psi) Axial Stress (psi)
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2.4 Ultrasonic Velocities and Elastic moduli of Clearfolk Dolomite

Compressive strength, Elastic moduli, porosity and permeabilities, grain densities,
compressional and shear wave velocities of the dry and saturated Clearfolk samples
were measured (Table 2.14). In the testing program confining pressure of 4000, 4500,
5000 and 5500 psi were employed (Tables 2.15 through 2.26).

Table 2.14. Dry and saturated elastic moduli, porosity and permeabilities of Clearfolk samples at various

stress conditions.

Sample Pc Eioad (PSI™ME+E Vioad Euntoad (PSM E+B Vyntoad K ) P
No. (psi) Dry Saturated Dry Saturated Dry Saturated Dry Ssturated | mD | % | giec
1 4000 10.121 11.743 0.1886 0.2451 9.192 15.037 0.1606 0.2482 16506 1440 284

4500 8867 12.580 02260 6.1209 7.159 3.965 0.1615 02343
5000 8508 12.165 0.1343 9.2015 7.017 8.230 0.1456 —
5500 3576 12.283 0.1883 0.2651 £.179 9.027 0.103¢ 0.1769
3 4000 7.356 7.015 02043 0.1891 3.088 8.181 02325 0.1917 245 | 1130 283
4500 6673 3.030 02583 0.2094 10.957 7.511 0.137¢ 0.2113
5000 6.666 9,058 0.2138 0.1610 3790 7.112 0.1751 02203
5500 6.166 7371 02176 0.1870 10386 6.188 0.1235 02166
s 4000 9.103 78339 0.2324 0.2046 18677 9.742 02459 02441 060 | 10.30] 233
4500 8.903 8.323 D.2618 0.2173 10319 10.641 0.1392 0.1941
5000 7.364 3456 2243 02142 3385 13.170 013861 0.1880
5500 10.775 3.997 2832 0.2470 14.363 9.985 0.2168 0.2632
s ] 4000 5433 7.330 0.1801 0.1847 7509 9257 02136 0.1807 4385 | 1100 | 284
4500 5.183 £.002 0.1448 0.1964 6425 6.506 0.1645 0.1931
5000 6.836 317 0.1230 08.2062 9552 9.651 0.1523 02154
5500 10.479 3.763 2255 0.336¢ 16656 13470 0.2667 0.3347,
18 4000 12308 3972 0.1626 0.1345 12008 9.988 0.1766 0.1845 476 | 1220 | 284
4500 12082 3359 0.1888 0.1737 11578 9439 0.1887
5000 12270 9.737 0.1839 0.1473 11216 3818 0.1305 0.1314
5500 12550 9214 0.1340 0.1734 11.971 9.302 0.1362 0.1845
13 4000 9.971 7.792 00733 0.1065 11.961 3.4339 0.0680 0.1151 079 { 100 | 273
4500 10.344 5.841 0.0743 0.1257 12607 7.066 0.077¢ 0.1371
5000 12.148 3.491 0.0872 0.0501 15.062 10.830 0.0726 _
5500 11412 2017 0.1177 0.1203 17.765 11.773 0.0800 0.1331
20 4000 11.168 9.087 0.1772 0.1970 14.231 10.976 0.2423 0.15339 075 | 5.10 | 281
4500 10.127 — _ 12143 _ 0.3443
5000 9.748 7223 0.2026 0.1874 14.338 7381 0.1161 0.1096
5500 11.922 6.605 0.1785 02187 10.568 8.370 0.2839 0.1030
22 4000 5431 0.2146 I 8.040 i 03321 1630 10.30] 283
4500 8572 6.561 0.2069 02356 £379 10457 0.2525 0.3061
5000 6.897 6533 02047 02391 9.385 11.471 0.2733 0.3991
5500 5.738 5853 0.1927 0.2210 8.865 3.174 0.2841 0.2360
24 4000 2871 8613 0.1254 0.1149 _ 10.038 _ 0.0398 1620] 1100} 283
4500 11.939 8.127 0.0984 0.2160 14.621 7.931 0.0679 0.2135 '
5000 12.709 6.754 0.1183 0.1767 15.5539 7.372 0.0552 0.0788
5500 11.875 8.142 0.1034 0.1752 16.056 10.705 0.0386 0.0805
27 4000 8.527 £.843 0.2638 0.2072 14875 10.114 0.2835 0.1895 036 | 270 | 284
4500 9.611 8.170 0.1052 0.2104 14454 11383 0.1514 02034
5000 10.290 7.795 0.1565 0.2008 17.314 11.693 —_ 02512
5500 11559 10.600 0.1663 0.1513 16.587 12213 0.0854 0.1673 _
30 4000 9.043 10.830 0.1541 0.1536 _ __ 0.1913 - 845 | 1130 282
4500 11.303 7.955 0.1733 02157 10.856 02454 0.3600
5000 11.638 11.063 02702 0.1836 16.527 02122
5500 11.437 9.917 0.1533 0.2632 3.174
EQ 4000 5.713 o _ 7.345 __ 1310 10.10] 283
4500 8487 7432 02572 0.3830 9.496 7371 0.1173 0.2307
5000 8.858 £.500 02194 0.2993 12653 7.065 0.1311 0.2106
5500 7.815 €215 0.3311 10.228 3.320 0.1782
36 4000 7772 5.712 0.1582 0.2156 12520 10.259 02210 134 | 600 { 271
4500 8625 6.754 0.2007 0.2561 17.017 12.804 02951
5000 8279 6.802 8.1700 0.2539 13313 12.879 —
5500 6.922 6207 0.2006 0.1613 11.151 11.399 0.3479 0.3140 |
41 4000 5596 8.783 017339 0.1648 12,634 9.570 0.2935 0.2041 935 {1235 283
4500 6.941 6.643 0.1870 0.1608 20.073 16.613 0.3228 0.2380
5000 8.125 10876 0.167% 0.2130 25.248 23.965 J—
5500 8.640 10.567 0.1647 0.2120 31.304 30.154
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Table 2.15. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 1

aid | netavia Vo (misec) Vs (misec) VioMs E (ps*IES) v
Stressos)|vessps] Dy | Setwmtes | Dy | Sawated | Dy | Setwsed | Dy | Setwstes | Dry | Setursted
4000 0 0 | 5118 | 2856 | 2764 | 17125 | 18514 | 7750 | 75780 | 02413 | 02940

5250 1230 4970 5150 2859 2764 17145 | 18632 | 79996 | 75934 | 02422 | 0297
6500 2500 3032 5206 2937 2764 17134 | 18033 | 82074 76345 | 02417 | 03037
4500 500 4985 150 21 74 17123 | 18981 $.0625 73806 | 02412 | 03079
4500 0 489% 5167 2820 714 17110 | 18042 | 81054 73808 | 02406 | 030%
5730 1250 02 5178 2933 2714 17122 | 19082 | 81800 73865 | 02412 | o307
7000 2500 3069 5223 2854 2227 1758 | 19150 | 8314 | 74817 | 048 | 03NS
5000 500 5027 5178 2833 M 17142 | 19107 | 81858 | 73813 | 02420 | 03194
5000 0 5032 5167 2841 714 17108 | 1.904 82238 | 73910 | 02406 | 030%
6250 1250 5053 5200 2854 2720 17104 | 19067 | 82947 | 74688 | 02403 | 03103
7500 2500 5090 5234 287 74 17131 19094 | 84010 | 75489 | 02416 | 03118
5500 500 5063 5184 2854 X% 17141 18053 | 83061 746200 | 02420 | 03088
5500 0 3063 5189 2858 vt 17116 | 1903 83227 | 745% } 02409 | 0.3083
£750 1250 3084 5200 2967 Iy 17138 | 19059 | 83780 | 74740 | 02418 | 0300
8000 2500 5N 5274 2588 275 17100 | 19174 | 84913 | 76149 | 02402 | 0332
6000 500 5079 5228 287 2734 17083 19123 | 83834 | 75145 | 02338 | 03118

Ory

2580 1

&
b4

Hpial Stross (psi)
g

Herial Stregs (pai)
-
P
o=
=

1408 -

504 - 408 -

0 : 4 3 % 3 ty Y T ]

SLOOE-84  .0GE-D  LBIED4  200E-04  3A0EY 06584 G00E+08  A0DE-DY  ZB0E-B4  3N0EB4
Strain {inchinch) Strain finchinch)
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Table 2.16. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 3

Avial | Net Axial Wp (misec) Vs (misec) Yalv's E (psPE6) v
Stress(ps)|Stresspsi)} Dry | Setwsted | Dry | Sotwates | Ory | Saturated | Dry | Setwates | Ory | Satursted
4000 0 5597 5495 3666 353 | 1520 | 15336 | 15 | e | oas2 | oms

5250 1250 5604 5533 3671 3615 15264 15305 116012 | 11.2858 01275 0.3100
6500 2500 5623 5565 3681 3635 15274 1530 116741 | 114128 0.1280 03035

4500 500 5604 5552 3675 3635 15250 15274 116089 | 11.3514 01249 03128
4500 0 5623 5561 3661 3635 15274 1.5288 116741 | 11.4028 01270 0310
5750 1250 5636 5559 3681 3635 1.5309 1.5293 117050 | 11.3980 01265 0.3054
7000 2500 5623 5571 3681 3641 15274 1.5300 116741 | 11.4451 01271 03032
5000 500 5604 5565 36581 3641 15222 15282 116272 | 114302 | 04256 0.3090
5000 0 5610 5571 3681 41 15238 1.5300 116429 | 11451 01271 03136

6250 1250 5610 5584 3661 3641 15239 1.5334 116428 | 114748 | 01300 03049
7500 2500 5636 5564 3668 3648 15281 1.5307 117230 | 114925 01277 0.2883
5500 500 5610 5578 3688 3648 15211 15289 116601 | 114775 01262 0.3064
5500 0 5604 5580 3681 3648 15222 1.5287 116272 | 114842 01269 0.3037
6750 1250 5616 5584 3681 3648 15257 15307 116585 | 114825 04277 0.3003
8000 2500 5656 5597 3588 3655 15335 15316 117711 | 115419 0.1284 0.2968

6000 500 5623 5530 3688 3655 15246 15286 118917 | 115252 01268 03016
T
400 3504 -
4988 -
i
3508 ~
2500
- 3060 - -
?’-; g 2008
g 2508 - g
£ £
2z 2088 - o 4500 -
2 B
x X
4 1500 4 <
1808
1568 + e Pg = 4000 pai
™ Po o= 4500 psi .
500 - P = 3000 pai S0
= Pe= 5500 psi
i . y 4 8 v . ¥
400584 0.00E+00 448504 BBOE44 -200E-04  000F+00 20DEB4  400FBY  SHUEN4
Strain inchinch} Strain (inchinchy
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Table 2.17. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 5

Axial Net Axial Yp (mnfsec) s {mésec) Yphv's E (psi*1E6) Y
Stress (psh) | Stress (ps)} Dry Saturated Dry Saturated Dry Saturated Dry Setursted Dry Saturated
4000 1] 4859 ar 2834 2630 16441 1.7952 6.7588 96753 0.2064 02751
5250 1250 4707 4736 2859 2796 16461 1.6938 7.3860 86500 02076 02325
6500 2500 4761 4796 2530 2823 16249 1.6987 75438 9.7183 0.1952 0.2348
4500 500 4702 4768 2868 280 16385 17018 74311 96792 02038 02363
4500 ] 4717 4746 2879 2813 16384 1.6873 74545 98540 0.2031 02283
5750 1250 4736 4756 2910 283 16278 1.6800 75283 9.6889 0.1969 0.2256
7000 2500 4766 4776 2932 2845 16254 16791 75872 9.7082 01855 02252
5000 500 Eyic 4756 2831 2822 16421 16851 7 4984 96772 0.2053 02282
5000 1] 4659 4761 2834 2819 18441 1.6888 74923 94136 0.2064 02300
6250 1250 4659 4771 2334 2630 16441 15861 75393 94244 0.2064 02287
7500 2500 4659 4781 2834 2845 16441 1.6808 76027 94351 02064 02260
5500 500 4859 4761 2834 2828 16441 156838 7518 94280 02064 0.2276
5500 0 4659 4761 2834 2633 15441 1.6804 75418 34280 02064 0.2258
6750 1250 4858 4776 2834 2845 18441 186791 75972 9.4438 0.2084 0.2252
8000 2500 4658 478 2834 2645 1.6441 16008 76027 94737 02064 02260
6000 500 4853 4761 2834 2836 156441 16788 75512 94560 02064 02250
3060 - 2500
Dry Ssturated
2508 - 2000 -
o 2600 &
4 £ 1500 -
H &
2 1500 - o
& B
% g 1686 -
< yo0p 4 e
= Pe = 4000 psi 500 = P = 4000 psi
500 = P = 4500 pai = Pp= 4500 psi
P = 3000 g Pe = 5000 psl
- P = 5500 psi " Pro= 5500 pal
H] 1 2 ¢ Y ¥
-200E-94 8.88E+00 240004 4.60E-04 -280E-04 0.00E+08 2.B0E-04 4.80£-04
Strain {inchinch) Strain {inchfineh)
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Table 2.18. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 18

b\fpﬂfs

Axial Net &xial ¥p (mfsec) ¥s (misec) E (psi*1EB) ¥
Stress (psi) | Stress (psi) Dry Saturated Dry Saturated Dry Satursted Dry Saturated Dry Saturated
4000 0 4758 5265 32 32" 1.5243 1.6094 8.3785 97233 01222 01856
5250 1250 5100 5328 3% 3306 15958 16115 92114 §.8420 01767 0.1869
6500 2500 5183 5385 3240 3330 15995 18173 94870 101150 01792 0.1905
4500 500 5088 5315 3188 3283 15961 1619 91660 9.8420 0.1769 01917
4500 0 5123 5315 3193 3289 16044 16163 92395 9.8621 01823 0.1889
5730 1250 5183 5366 3234 3321 16023 16159 94688 10.0539 01810 01897
7000 2500 5219 5372 3268 3345 15967 16083 96386 101463 01773 01836
5000 500 5147 534 3223 3303 15968 1.6148 93745 9.9418 04773 01890
5000 0 5164 5346 3229 3288 15994 1.6258 94210 9.9096 04791 0.1857
6250 1250 s213 5398 3263 3336 1.5977 16184 96102 104573 01780 04912
7500 2500 5261 5444 3281 3360 15985 16205 97830 10.3147 01785 01925
5500 500 5183 5379 3251 3N 15840 16197 95233 100738 0.1755 01920
5500 0 5188 5365 3251 337 15958 18130 95331 10.0745 04767 01879
6750 1250 5225 5392 3286 3351 1.5901 16083 9.7041 101993 04729 01855
8000 2500 5274 5431 3309 3375 15937 16094 98625 10.3477 01753 0.1855
6000 500 523 5385 3274 3338 15976 16130 96771 10.1463 0.4779 01878
3068 ~ 2508 -
Dry
2508 -
2064 -
-~ 2008 - -
B %
2 2 1500 -
@ @
@ #
& 1506 4 @
B &
E 2 1000 -
* =
< 4050 - <
500 ~
506 -
8 t r 5 ] 7 7 J
SLB0E84  S00E400  18EN4 200E39 3.00E84 SLBHE-84  DUBEL08  1.00E84  LO0E84  34BEN4

Strain dnchinch}
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Table 2.19. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 19

- Aol et Axial Wp (mssec) Vs (mfsec) Vpivs E (psi*EB) ¥
Shress {psi}] Stress (psi) Dry Seturgted Dry Satursted Dry Satursted Dry Seturated Dry Saturated
4000 0 6922 6864 4035 3728 17155 18415 154806 | 13.7253 02427 02809
5250 1250 6919 6867 4054 374 17068 18343 155755 | 138189 02387 0.2886
6500 2500 §922 6872 4073 3772 16996 18219 156784 | 139850 0.2352 0.2844
4500 500 6913 6864 4063 3764 1715 18237 156168 | 139308 02362 0.2850
4500 0 8911 5864 4073 3764 16968 18237 156620 | 13.9309 0.2338 0.2850
5750 1250 6913 6864 4082 3764 16935 18237 157154 | 13.9308 02323 0.2850
7000 2500 6930 6564 4082 3764 156976 18237 15.7404 | 13.9309 0.2343 0.2850
5000 500 6313 5664 4073 3784 16975 18237 15.6661 13.9309 02343 0.2850
5000 o 6918 6364 4082 3764 16947 18237 157226 | 139309 02329 0.2850
6250 1250 §922 5564 4092 3764 16916 18237 15.7774 | 13.9309 02314 0.2850
7500 2500 6927 6864 4082 3764 16829 18237 157858 | 13.9309 0.2320 0.2850
5500 500 8925 5064 4082 3764 16862 18237 157321 13.9309 02336 0.2850
5500 0 6941 6664 4082 3764 1.7003 18237 157569 | 139309 0.2356 02850
6750 1250 6947 6364 4032 3764 16976 18237 158149 | 13.9309 0.2343 0.2850
8000 2500 6960 6864 4102 3764 16970 18237 158860 | 13.9308 0.2340 0.2850
5000 500 8947 6864 4092 3764 16976 18237 158149 | 13.9309 0.2343 0.2850
5000 3500 -
4500 - [}r-,f Sty ot
E 3000 - Ssturated
4845 ~
3508 - 2500 4
& 3000 - g
® 5 20884
@ ?
g 2500 &
@ & .
E 2000 4 g 0
x x
< o
A58 2008
|
W
54 -
A0 -
SBBEBS  LEOE-83  ZBODE-84  S.00EBY 7ROy <LOBE-B4  10BEB4  3BDE-D4  AB0E-R4  L.00E84

Strain finchinch)
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Table 2.20. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 20

aviel | Net A yip (misec) Vs (mises) Vpis E (ps1E6)
Stress (ps|Stress (ps)|  Ory | Setwrsted | Dry | Setwsted | Ory | Setwsted | Dry | Satwated | Dry | Satursted
4000 0 8371 5401 355 | 3551 | 1792 | 18027 | 12330 | 12389 | 0279 | 02778
550 | 1250 | 6403 | s48 | 379 | 367 | 17989 | 18019 | 124923 | 12455 | 0278 | 02775
8500 | 2500 | o414 | o449 | 3595 | 3592 | 17890 | 17954 | 125346 | 126025 | 0278 | 02751
4500 500 6392 | 6401 351 39575 | 17952 | 17904 | 123851 | 124689 | o2t | 02733
4500 0 8403 | o414 | 3579 | 3575 | 47889 | 17981 | 124903 | 124821 | 0B | 02746
5750 | 1250 | 45 | 14 | 3850 3392 | 17600 | 17858 | 128820 | 125676 | 02616 | 02016
7000 | 2500 | 6425 | 4% | 3653 | 3617 | 1758 | 17793 | 1205 | 121191 | 02600 | 02692
5000 500 B414 | 6409 | 342 | 358 | 17811 | 17885 | 128263 | 125195 | 0% | 02r%
5000 0 6414 | 414 | 3e82 | 3842 | 17811 | 17611 | 12863 | 128253 | 0mn | 0262
8250 | 1250 | 45 | 645 | 3% 351 | 17600 | 17600 | 128820 | 128820 | 02616 | 02616
7500 | 2600 | 6425 | 645 | 3668 | 3888 | 17517 | 17517 | 129683 | 129603 | 02583 | 02583
5500 500 6414 | 6419 | 3851 3651 | 17570 | 17570 | 128697 | 128697 | 02604 | 0.2604
5500 0 85 | 645 | 35 BO0 | 17600 | 17846 | 128820 | 126215 | 02616 | 02012
5750 | 1290 | s | 6425 | ®™ | %5 | 1758 | 1772 | 12926 | 127512 | 02600 | 0266¢
8000 | 2500 | 543 | 643 | 68 | 3333 | 17547 | 17888 | 12982 | 127984 | 02585 | 02655
5000 500 B45 | 6430 | 3651 /M7 | 17600 | 17778 | 128820 | 127135 | 02616 | 02686
4808 - 2086 -
Saturates
3500 - 3506 <
3900 3608
@ 2500 1 g 08
g S .
£ 20087 £
¢ %
’g 1500 - 3
1068 -
1086 -
m F
500 -
g . . )
0 ; . ' -200F- 0.0E+0 280E-04 4.00E-04 6.80E-04 3.00E-04

200503 0.00E:D0 200603 400E-04  G.00ER4
Strain (inchinch)
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Table 2.21. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 22

el | Net Axil Vp (misec) ¥ (misec) Vpivs E (psiES) v
Stress (psh|Stess psi)|  Dry | Satwated | Dry | Satwated | Dy | Satwsted | Dy | Satwsted | Dy | Sctursted
4000 0 520 | 60X 279 | 367 | 1743 | 19031 | 103459 | 100645 | 02552 | 03093
550 | 1250 | se4 | o047 [ | 69 | 17520 | 19079 | 106949 | 100883 | 02584 | 03106
6500 | 2500 | soo | 6058 | 377 | 3170 | 175%2 | 19112 | 110009 | 104013 | 02588 | 03115
4500 500 594 | 603 | 3357 | 3168 | 1755 | 19053 | 108831 | 100781 | 02598 | 03099
4500 0 5o | 6083 | 374 | 68 | 17545 | 19072 | 109891 | 100830 | 02594 | 03104
5750 | 1250 | 5e40 | 6050 | 3380 | 371 | 17572 | 19108 | 110380 | 104047 | 02605 | 0314
7000 | 200 | 5948 | 6oes | 33 | 3172 | 17584 | 19123 | 110588 | 104165 | 02610 | 03118
5000 500 5931 5051 38 | 3169 | 17555 | 19092 | 110207 | 100926 | 02598 | 0310
5000 0 5041 6066 | 9 70 | 17518 | 19133 | 110821 | 101072 | 02583 | o3
6250 | 1250 | 596 | 6080 | 3B® | 3173 | 1753 | 19165 | 11436 | 104281 | 02588 | 03130
7500 | 2500 | 52 | 6086 | 3400 | 3174 | 175% | 19174 | 111554 | 10434 | 02590 | 03®
5500 500 2950 | 6074 | 3% | 3171 | 17525 | 19152 | 111180 | 104185 | 02588 | 03126
5500 0 5979 | 608t 0 | 3174 | 17532 | 19158 | 112217 | 10436 | 02589 | 03128
6750 | 1250 | 5o | 6089 | 3413 | 3176 | 17552 | 19173 | 112024 | 101490 | 0297 | 0%
8000 | 2500 | ses2 | 60s | 3413 | 3176 | 1755 | 19192 | 112488 | 104578 | 02598 | 03137
6000 500 5955 | 6085 | 3902 | 3175 | 17506 | 19166 | 111547 | 101433 | 02578 | 03130
2580 5 1008 -
Dy
908 - aturatad
2000 - 800
700 -
] %
2 1500 - 2 600
] -3
33 &
3 5004
# &
B 1000 - E 400
= 4
- €
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o . o ; . .
280E84  ODOF+0D 200604  400E04 SO0E-05 D00Es00 SO0DE-05 1.00E04  1.50E-04
Strain (inchinch) Strain (inchiinch)

144




Table 2.22. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 24

Axial et Axial ¥p (mésec) ¥s (misec) Ypivs E (psi*1EB) ¥
Siress (psi){ Stress (psi) Dry Saturated Dry Satursted Dry Saturated Dry Seturgted Dry Saturated
4000 0 5523 5612 3021 3014 18264 1.8620 89794 90150 02666 0.2873
5250 1250 5555 5615 3048 3019 18225 1.8601 91299 90380 02646 0.2968
6500 2500 5579 5624 3057 M9 18248 1.8632 91907 90446 02854 02977
4500 500 5584 5612 2950 304 1.8867 1.8620 87417 9.0150 0.3046 02973
4500 0 5587 5621 3087 3023 18217 1.8395 92393 90637 0.2844 0.2965
5750 1250 5583 5621 3067 3023 18238 1.8595 92443 90637 02851 02965
7000 2500 5599 5628 3076 3028 18203 1.8588 92022 90894 02839 0.2963
5000 500 5608 5568 3076 19 18233 18447 §.2995 9.0044 02845 02918
5000 g 5624 5624 3078 3023 18270 1.8604 9.3226 90657 02861 0.2968
6250 1250 5628 5630 3078 3023 18282 1.8595 9.3254 9.0908 0.2865 0.2966
7500 2500 5633 5639 3083 3032 18272 1.8598 9.3516 91188 0.2862 0.2966
5500 500 3631 5628 3078 3028 18281 1.8568 93277 90894 0.2868 0.2963
5500 0 5631 5640 3083 3032 18263 1.8600 93494 91194 02859 02967
6750 1250 5643 5646 3633 3037 18305 1.8593 93595 91453 02873 0.2965
8000 2500 5649 5649 3038 3041 18295 1.8575 92859 91688 02870 0.2959
6000 500 5648 5643 3083 3032 18321 1.8612 9.36534 91219 0.2878 02971
4808 5 3500 +
Dry
3500 - 3000 4 Selurated
3800 -
2500 4
g 200 2
# @ 20001
g % 1500 4
é 45040 - é
4008 -
4088 -
: Pcifmﬁ gi; o < 5500 ui
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Table 2.23. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 27

Axial Net Axial ¥p (misec) Vs (misec) Vpivs E (psi*1E6) v
Stress (psi){ Stress (psi) Dry Satursted Dry Saturated Dry Seturated Dry Satursted Dry Setursted
4000 0 6664 5790 3480 X7 19152 1.9251 124747 | 125332 0.3126 0.3152
5250 1250 6689 5907 3491 33572 19159 1.9058 122588 | 128025 0.3128 0.3100
£500 2500 6731 8815 3502 33620 18218 1.8826 12,3501 | 13.0871 03144 0.3035
4500 500 6639 6807 3494 3552 19144 19164 122741 | 126892 0.3124 03129
4500 0 6697 6333 % 3378 19162 1.9094 122856 | 128604 0.3129 0.3110
5750 1250 6722 6333 3306 3616 19174 18894 123652 | 130731 0.3132 0.3054
7000 2500 6747 6858 3516 3645 19191 18818 124399 | 132624 0.3136 0.3032
5000 500 6714 8807 3499 %719 19185 1.9021 123227 | 12844 0.3135 0.3090
5000 Q 5714 6824 3508 3556 1914 19191 123691 | 127238 03123 0.3136
6250 1250 6731 5858 3519 3633 19129 18876 124434 | 131979 03120 0.3048
7500 2500 6756 8367 354 3682 15080 18653 125878 | 13461 03106 0.2983
5500 500 B73 6841 3513 3614 19158 18928 124122 | 130743 03128 0.3064
5500 0 6722 8533 3513 3628 19135 18832 124081 | 131465 0.2 0.3037
5750 1250 6739 6858 3524 3664 19122 18720 124808 | 133723 03118 0.3003
8000 2500 6773 6876 3609 3636 18768 1.8602 129864 | 135736 0.3018 0.2968
6000 500 6747 6541 3519 3647 19176 18761 124556 | 13.2580 0.3132 0.3016
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Dry Ssturated
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Table 2.24. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 30

Axial | NetAxial Yo (misec) Vs (misec) VoNs E (psMEB) v
Sress (us)lStress (osy|  Dry | Sotwated | Ory | Sotwsted | Dry | Setweted | Dy | Satreted | Dry | Seturated
4000 0 254 | M | 2974 | 299 | 17665 | 18517 | 85630 | 863 | 02642 | 02041

5250 1230 5318 3558 2989 3040 1.7794 18284 8.6828 91056 0.2692 0.2666

8500 200 5371 3609 3009 3063 1.7852 18313 88147 9.2500 02714 02876

4500 500 5325 5366 2989 3003 17816 18536 8.6885 89387 0.2700 02947

4500 0 5338 5558 2988 3006 1.7860 18489 86598 89514 02717 | 0.2832

5750 1250 53N 5573 3004 3032 1.7881 1.8381 8799 9.0791 0.2725 02598

7000 2500 5405 3587 3029 3068 1.7643 18211 89319 9.2569 0.2710 0.2641

5000 500 5365 5544 2898 3027 1.7889 18317 8.7655 80339 02728 02877

5000 0 53N 5573 3004 3029 1.7881 18397 8.7929 9.0673 02725 02903

65250 1250 5405 3573 3024 3055 1.7873 18241 8.9097 91857 0212 | 02852

7500 2500 5432 5602 3045 3071 1.7842 18242 3.0229 9.2805 827110 | 02852

3500 500 5405 3573 3018 3050 1.7803 18272 8.8875 91618 062733 02862

5500 0 5412 5580 3024 3050 1.78%6 18286 §.9155 9.1675 62730 0.2870

6750 1250 5432 5587 3045 3071 17842 18195 90223 9.2688 8.2710 0.2835

8000 2500 5460 5616 3060 307 1.7841 18280 | 941452 | 92920 | 02710 | 0.2868

6000 500 5419 5602 3040 3085 17827 | 18274 | 89884 | 92563 | 02704 | 02863
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Table 2.25. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 34

avial | Net Axial ¥p (misec) Vs (misec) VpiVs E (psiIEB) y
Stress (psi)|Sress(psh|  Dry | Satwated | Dry | Setwated | Dry | Satwsted | Dry | Setwated | Dry | Satuwated
4000 0 6042 | 6131 1% | ;2 | 18113 | 18153 | 10951 | 108217 | 02808 | 02021
550 | 120 | 605 | em | mm | atr2 | 18182 | 18477 | 110 | 104788 | 028m2 | 03210
g0 | 2500 | 6142 | a7 | w9 | 311 | 1828 | 1874 | 111883 | 100329 | 02847 | 030w
4500 500 B0GD | 6138 | 3352 | 3137 | 18136 | 19566 | 110006 | 99738 | 02816 | 0m®@
4500 0 6068 | 6633 | 352 | 3142 | 18159 | 21109 | 110574 | 102475 | 02824 | 033
5750 | 1250 | 6126 | o177 | 3%e | a5 | 18183 | 19568 | 114548 | 100888 | 02832 | 03233
7000 | 2500 | 6149 | o7 | 3380 | 3149 | 1818t | 19739 | 112318 | 100830 | 02835 | 03204
5000 500 B111 154 | 4 | 3149 | 167 | 19540 | 1132 | 100466 | 02826 | 0328
5000 0 6118 | 6146 | 34 | 3149 | 18190 | 19515 | 110199 | 10048 | 02834 | 0320
6250 | 1250 | 6142 | &170 | 3375 | 164 | 118 | 18488 | 111986 | 101330 | o028y | o3ms
7500 | 2200 | e85 | 6193 | 36 | 370 | 1808 | 1953 | 112741 | 104777 | 02840 | 038
5500 500 o192 | o177 | 339 | 3154 | 1828 | 19583 | 111683 | 10080 | 07 | o:m
5500 0 6142 | 6177 | 395 | 62 | 18188 | 19538 | 114986 | 101247 | 0283 | 0325
6750 | 1250 | 6185 | 69 | 330 | w67 | 1827 | 19607 | 112455 | 101604 | 02850 | 03242
8000 | 2500 | o181 | w9 | :n | s | 1822 | 19598 | 11385 | 101785 | 02845 | 03040
500 8157 | 6170 | 3380 | 156 | 1824 | 19561 | 11238 | 100818 | 02842 | 032
3008 + 3008 »
Sshursted
2560 -
2508 -
3000 -
- o 2508 -
g 2508 - g
& %
% 2
C 2000 - £ 1500
] #
£ 1500 - g
& < 100 4
1600 - .
= Pe= 4000 pel T Po= 400 psi
= Pe = 4500 psi 500 - P = 4500 sl
506 - P =500 psi _ Fo=5000psi
= Pe=5500 psi P = 5500 ps
8 * * ¥ £ % a * £ k]
380 4.80E 1.00E-04 3.00.04 5.08E-04 7.006-04 JM0E- AB0E- 1.90E-04 300504 S.00E-04 7.00E-04
T 0 o

Strain {inchinch)

148

Strain {inchiinch)




Table 2.26. Compressional and shear wave velocities, acoustic moduli, strain response

for various confining pressures of dry and saturated Clearfolk sample No. 36

Axial Net Axial ¥p (misec) Y3 (misec) VpiVs E (psi*1EE) v
Stress (psi) | Stress (psi) Dry Saturated Dry Saturated Dry Satursted Dry Saturated Dry Satursted
4000 o] 5328 6189 2870 3078 1.7943 20118 §.6023 96753 0.2747 0.3359
5250 1250 5387 5236 2970 3067 18141 20332 §6496 96500 02817 0.3404
6500 2500 5441 6276 2983 2076 1.8241 20400 8.7487 9.7183 0.2851 03418
4500 500 5435 6197 2974 078 18274 20143 §.7055 96792 0.2863 0.3385
4500 0 5453 6696 3109 3075 17537 21778 93154 9.8840 0.25%1 0.3664
5750 1250 5453 6236 3119 3075 1.7454 20283 9.3560 96889 0.2569 0.3394
7000 2500 5459 5276 3124 3075 1.7476 20413 93822 97082 0.2566 0.3421
5000 500 5447 5213 3119 3075 1.7465 20206 9.3501 96772 0.2561 0.3378
5000 1] 5485 6205 3124 3025 1.7496 20509 9.3681 94136 0.2574 0.3440
6250 1250 5447 6228 3128 2025 17412 20587 9.3307 9.4244 0.2539 0.3456
7500 2500 54865 6252 3133 3025 17442 20665 9.4291 9.4351 0.2552 0.3471
5500 500 5453 6236 3128 3025 1.7431 20613 9.3967 9.4280 0.2547 0.3461
5500 0 5459 6236 3076 3025 17745 20613 91783 94280 0.2673 0.3461
6750 1250 5465 6268 3067 3027 17817 20708 91433 9.4498 0.2701 0.3480
8000 2500 5471 6268 3076 3031 17783 20678 81831 94737 0.2688 0.3474
6000 500 5465 6229 3076 3031 17764 20548 91837 9.4560 0.2680 0.3448
35806 ~ 3500 ~
bry Saturate:d
3000 - 3600 ~
25008 ~ 2500
% 2008 ~ g 2000 -
2 2
§ 4508 - § 4588 ~
2 B
3 &
4808 ~ 1888 -
™ Fe = 3000 psi - oo 400 pet
“ . 4500 i = B = 4500 pal
500 P - 2000 pe 00 1 be = Sot0 b
. £ ™ Po = S50 ped ™ Po =50 ps
8 4 . . 8 ¢ ¢ , .
-208E.84 O.40E+08  20DE-84  4BOE-64  B.ODE-DS SZ00E-84  O80E<08 280E04 408E.84  S.BOES4

Strain (inch/inch)
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2.5 ULTRASONIC VELOCITIES IN NORTH SEA FRIABLE SANDS

Measurements were performed in the following order.

e CT scans

e Compressional and shear velocity vs. Stress of dry samples
e Grain density

e Porosity and permeability vs. Stress

e Particle Size Distribution

CT density scans of the horizontal cross section were taken of each sample prior to
testing. Each sample was then cleaned and trimmed to achieve parallelistn between
opposite faces. Porosity and permeability were measured under hydrostatic stress state
at controlled room temperature. Dry and saturated wave velocities were measured after
first cycle of loading and unloading completed between 725 and 3625 psi in 725 psi
increments along both the loading and unloading cycle. The change in length was
measured as a function of siress and used to correct the sample length in the velocity

calculations.

Wave velocities were measured using the ultrasonic pulsed through-transmission
technique. The central frequency of the compressional and shear transducers was 0.8
MHz. Compressional wave velocity calculations were based on signal first arrivals,
while shear wave velocity calculations were based on the shear signal first negative
peak. Calibration of the apparatus included measuring the intrinsic delay times of both
the compressional and shear wave signals as a function of stress. These delay times
were subtracted from the corresponding signal arrival times in the wave velocity
calculations. Signal waveforms of dry and saturated samples were captured and stored

in electronic files.

During the measurement of the acoustic properties simultaneous measurements are
carried out for the pore volume and air permeability at three different hydrostatic stress
levels - 725 psi, 2175 psi, and 3625 psi. These three stress levels were chosen so that
correlation between velocity and porosity/permeability could be adjusted for stress. The
grain density was measured using Boyle’s Law helium porosimetry and was performed
at the conclusion of the porosity/permeability measurements. Particle size distributions

of each sample were then determined.
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Table 2.27. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 12

Grain Density (gm/cc) = 2.6400 Grain Volume (cc) = 9.0030
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclee mD

0.5 3.1031 24.6157 13.1900
1.5 3.0176 23.9375 12.3204
7.5 2.9750 23.5995 12.2226
15 2.9505 23.4052 11.9538
20 2.9274 23.2219 11.7604
25 2.9072 23.0617 11.5359
20 2.9288 23.2330 11.5669

Table 2.28: Acoustic properties of Sample # 12, Depth = 4041.55 m. 34/11-3

Paxial Tpi Tsi dX Tp Ts Vp A Vpivs
Mpa usec usec inch usec usec m/s mis
25 27218 54028 0.0000 12.0878 19.0108 2693 1853 14528
50 2.7216 5.4029 0.0036 115164 18.3689 2857 1938 14744
75 27124 54028 0.0079 10.8010 17.7289 3056 2030 1.5053
10.0 27033 54028 00115 104615 17.1794 3214 2117 15178
150 27033 54028 0.0176 10.0769 16.7216 3360 2189 1.5350
200 27033 54029 0.0228 9.8791 16.4468 3434 2231 1.5380
249 2.7033 54029 0.0264 9.7812 16.2383 3464 2266 15287
200 27033 54029 0.0261 97812 16.2637 3465 2261 1.5323
150 2.7033 54029 0.0244 9.8348 16.3553 3450 2246 15358
100 27033 54028 0.0205 9.8923 16.5384 3389 2218 15277
75 27124 54028 00178 10.1208 16.7216 3344 2188 15278
50 27124 54028 00138 10.3846 16.9963 3242 2145 1511
25 27124 54028 0.0085 10.6881 17.3673 3135 2090 1.5001
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Figure 2. 13: Acoustic properties of Sample # 12, Depth = 4041.55 m. 34/11-3
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Table 2.29. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 14
Grain Density (gm/cc) = 2.6500 Grain Volume (cc) = 9.3480
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclee mD

0.5 2.8584 22.6749 9.9876
1.5 2.7953 221741 9.4675
7.5 2.7767 22.0266 9.2192
15 2.7525 21.8346 8.6556
20 2.7543 21.8489 8.2176
25 2.7312 21.6657 7.8156
20 2.7506 21.8196 7.9038

Table 2.30. Acoustic properties of Sample # 14, Depth = 4042.00 m. 34/11-3

Paxial Tpi Tsi dX Tp Ts vp Vs Vpivs
Mpa usec usec inch usec usec mis mis
25 27218 54029 0.0000 114285 17.1881 2811 2151 1.3535
50 27218 54029 0.0002 10.5689 16.7112 3229 2291 1.4409
75 27124 54028 0.0004 10.1738 16.3738 33886 2310 14704
100 2.7033 54029 0.0005 9.9123 16.2024 3515 2346 1.4881
150 27033 54029 0.0007 9.6923 16.0128 3624 2388 15181
200 2.7033 5.4028 0.0009 9.6263 15.8974 3658 2413 15158
249 2.7033 54029 0.0012 95164 15.8341 3716 2427 15311
200 2.7033 54029 0.0012 9.5164 15.8448 3718 2425 1.5326
15.0 2.7033 54029 0.0011 9.5384 15.9318 3705 2405 1.5404
10.0 2.7033 54028 0.0010 9.5604 16.0453 3693 2379 1.5520
75 27124 54028 0.0010 9.6263 16.1954 3663 2348 15610
50 27124 54028 0.0010 8.8021 16.4468 3572 2283 15577
25 27124 54028 0.0008 10.2197 16.8131 3373 2220 15188

153




Wimy)
i

2700 { I—
mioad -Unioad

o0 5.0 10.0 15.0 z0.0 2s.0
Akl 2rvet COMIvnG Prossuras (VEa)

[
—a

r
2950 - mLlocao munioad

oo 5.0 0.0 s z0.0 2s5.0
ozl and Confining Prossures (MOa)

1.600

- . =

1.500

VipNs
9
»
3

i

1.400
1.350 -

‘ ERlLosd MUnload I
1.300

0.0 5.0 10.0 15.0 20.0 250
Paffective (psi)

Figure 2. 14: Acoustic properties of Sample # 14, Depth = 4042.00 m. 34/11-3
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Table 2.31. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 18
Grain Density (gm/cc) = 2.6920 Grain Volume (cc) = 9.7520
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclee mD
0.5 2.7543 21.8487 2.0920
1.5 2.5827 20.4875 1.9742
7.5 2.5261 20.0385 1.8812
15 2.4676 19.5745 1.7818
20 2.4470 19.4111 1.7356
25 2.4291 19.2691 1.6600
20 2.4474 19.4142 1.7096

Table 2.32: Acoustic properties of sample 18.

Paxial Tpi Tsi dx Tp Ts vp Vs Vpivs
Mpa usec usec inch usec usec mfs m/s
25 27216 54029 0.0000 10.3406 16.7218 3324 2237 14856
50 27216 54029 0.0019 10.0270 164186 3480 2295 1.5079
T5 27124 54029 0.0036 8.8045 16.2393 3558 2328 15280
100 27033 54029 0.0046 86344 16.8970 3637 2357 15428
15.0 27033 54029 0.0060 94625 15.9298 3724 2381 1.5574
200 2.7033 54029 0.0067 8.3856 15.8468 3759 2408 1.5609
248 2.7033 54029 0.0071 9.3295 15.8058 3795 2417 1.5699
200 27033 540289 0.0071 83296 15.8058 3795 2417 1.5699
150 2.7033 54029 0.0068 8.3797 15.8751 3767 2402 1.5685
100 27033 54029 0.0063 84M 15.9890 3718 2377 1.5642
75 27124 54029 0.0059 8.5867 16.0805 3662 2358 15533
50 27124 54029 0.0051 8.7105 16.2637 3600 2320 1.5520
25 27124 540289 0.0038 89154 16.4727 3502 2278 15368
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Table 2.33. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 26

Grain Density (gm/cc) = 2.6500 Grain Volume (cc) = 10.3610
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclce mD
0.5 1.9245 15.2659 0.4960
1.5 1.8694 14.8288 0.3636
7.5 1.8530 14.6987 0.3473
15 1.8428 14.6178 0.3194
20 1.8232 14.4623 0.3042
25 1.8218 14.4512 0.2820
20 1.8290 14.5084 0.2912

Table 2.34: Acoustic properties of sample 26.

Paxial Tpi Tsi dX Tp Ts Vp Vs Vpivs
Mpa usec usec inch usec usec mis mis
25 272186 54029 0.0000 104395 16.8131 3288 2224 14784
5.0 27216 54029 00017 10.2228 16.6151 3377 2258 14847
75 27124 54029 0.0026 10.0476 164336 3450 2294 1.5038
100 2.7033 54029 0.0034 8.9367 16.2892 3498 2323 1.5050
150 27033 54029 0.0044 8.7435 16.0941 3588 2363 15186
200 2.7033 54029 0.0052 86548 15.8910 3631 2384 15231
250 2.7033 54029 0.0058 95604 158974 3679 2404 15305
200 27033 54029 0.0057 95972 158237 3660 2388 15261
150 27033 54029 0.0055 86754 16.0143 3619 2378 1.5220
100 27033 54028 0.0852 88174 16.1721 3548 2344 15138
75 27124 54029 0.0051 89075 16.2780 3509 2321 15114
50 27124 54029 0.0048 10.0400 1641983 3448 2292 1.5034
25 27124 54028 0.0047 10.18%4 165747 3378 2281 1.4942
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Table 2.35. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 37

Grain Density (gm/cc) = 2.6510 Grain Volume (cc) = 9.6200
Hydrostatic Stress Pore Volume Porosity Permeability
psi cc cclee mD

0.5 2.9859 24.3070 8.8395

1.5 2.9642 24.1306 8.8455

7.5 2.6166 21.3009 7.6567

15 2.5622 20.8580 6.8933

20 2.5400 20.6773 5.8455

25 2.5256 20.5601 5.2688

20 2.5363 20.6472 5.6256

Table 2.36: Acoustic properties of Sample # 37, Depth = 4049.05 m. 34/11-3

Phyd Tl Tsi ax Te Ts Ve vs Ve
Mpa usec usec ineh usec usec s s
1.4 27218 5.4029 £.0000 11.8681 17.3626 2774 2122 1.3076
3.4 2.7216 5.4029 0.0029 10.9909 15.7638 3060 2442 1.2529
6.9 2.7124 54029 00045 10.2967 14.8575 3330 2671 1.2466
10.3 2.7033 5.4029 0.0056 9.9450 14.2475 3484 2853 1.2213
13.8 2.7033 5.4029 0.0064 97728 13.8241 3566 2994 1.1912
17.2 2.7033 5.4029 0.0070 9.5263 13.6043 3640 3072 1.1847
20.7 2.7033 5.4029 0.0077 9 5229 134725 3692 3120 1.1833
24.1 2.7033 54029 0.0085 9.4432 13.3406 3733 3170 1.1777
27.8 2.7033 5.4029 0 00324 9.3699 132527 3770 3202 1.1778
31.0 2.7033 54029 0.0108 9.3315 13.1648 37e8 3235 1.1710
34.5 2.7033 54029 00113 9.2673 13.0329 3822 3288 1.1624
31.0 27023 5.4029 0.0110 9.2673 13.0329 3823 3289 1.1624
27.6 2.7023 54029 0.0108 9.2867 13.0769 3808 3271 1.16389
241 2.7033 5.4029 0.0103 o 3058 13.0769 3804 3273 1.1623
0.7 2.7033 5.4029 0.0100 a.a7a1 13.1648 3763 3238 11627
17.2 2.7033 5.4029 0.0098 54199 132067 3744 3183 1.1761
138 2 7033 54029 0.0095 5409 134285 3704 3132 1.1827
10.3 2.7033 5.4029 0.0091 ae721 13.6923 3608 3033 1.1895
sa 2.7124 5.4029 0.0088 ©.901 13.956 3499 2941 1.1898
3.4 2.7124 5.4029 0.0083 10,4395 14 5274 3257 2758 1.1808
14 27124 5.4029 C.0080 11 0989 15 4945 3001 2494 1.2033
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Table 2.37. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 60
Grain Density (gm/cc) = 2.6410 Grain Volume (cc) = 9.5080
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclee mb
0.5 2.7982 20.2363 10.4390
1.5 2.6292 19.0140 10.2652
7.5 2.6138 18.9026 10.0462
15 2.6008 18.8086 9.8078
20 2.5887 18.7211 9.4084
25 2.5803 18.6603 8.9743
20 2.6041 18.8324 9.2112

Table 2.38. Acoustic properties of Sample # 60, Depth = 4095.00 m. 34/11-3
Phyd Tpi Tsi dX Tp Ts Vp Vs Vpivs
Mpa usec usec inch usec usec mis my's
1.4 2.72186 5.4029 0.0000 11.8010 19.0108 2759 1861 1.4824
34 2.7216 5.4029 0.0001 11.2571 18.6042 28867 1918 1.54886
6.9 27124 5.4029 0.0002 10.5120 18.1868 3248 1981 1.8390
103 2.7033 5.4029 0.0003 10.0842 17.7308 3430 2054 1.6702
13.8 2.7033 5.4029 0.0004 9.8736 174774 3530 2097 1.6840
17.2 2.7033 §.4a029 0.0004 96758 17.3376 3630 2121 17117
207 2.7033 £.4029 0.0005 9.59834 17.1945 3674 2147 1.7114
241 2.7033 5.4029 0.0005 8.5109 17.0288 3718 2177 1.7078
278 2.7033 $.4029 0.0005 94285 16.8010 37864 2201 1.7097
31.0 2.7033 5.4029 0.0005 84010 16.8020 377¢ 2220 1.7018
34.5 2.7033 5.4029 0.0006 8.3967 16.7614 3781 2228 1.6970
310 2.7033 5.4029 0.0005 8 3967 16.8261 3781 2216 1.7086
2786 2.7033 5.4029 0.0005 8.4461 18.8847 3754 2202 1.7043
241 2.7033 5.4029 0.0005 55164 16.96385364 3715 2189 1.6969
20.7 2.7033 5.4029 0.0005 35208 17.0879 3713 2166 1.7140
372 2.7033 5.4029 0.0005 2 5868 17 1434901 3877 2156 1.7056
138 2.7033 5.4029 0.0005 |ggesseaasg 17271 3625 2133 1.6995
10.3 2.7033 5.4029 0.0005 98021 17.4542 3566 2100 1.6977
59 2.7124 5.4029 £.0005 10.0835 17.7044572 3434 2058 16889
3.4 2.7124 5.4028 0.0004 104725 | 18.13228375 3282 1989 1.6404
14 2.7124 5.4029 0.0004 10.9362 | 18.40407494 3078 1947 1.5809
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Table 2.39. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 76
Grain Density (gm/cc) = 2.6380 Grain Volume (cc) = 9.3920
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclce mD

0.5 3.2186 25.4960 6.8810
1.5 3.2181 25.4924 6.0310
7.5 2.9175 23.1111 4.7564
15 2.8861 22.8624 4.3043
20 2.8559 22.6232 3.6734
25 2.8091 22.2524 3.2850
20 2.8191 22.3317 3.3948

Table 2.40: Acoustic properties of Sample # 76, Depth = 4099.00 m. 34/11-3

Phyd Tpl Tsi dx Tp Ts ¥p Vs Vpivs
Mpa usec usec inch usec usec mis mis
14 2.7216 54029 0.gc0g 11.8610 19.0109 2759 16861 1.4824
34 27216 54028 0.0001 11.2571 18.6042 2867 1918 1.5486
G989 27124 54028 0.0002 105120 10.1060 J246 1901 1 62380
10.3 2.7033 54029 0.0003 10.0842 17.7308 3430 2054 16702
13.8 2.7033 54029 0.0004 9.8736 174774 3530 2087 1.6840
1772 27033 54N29 nnnn4g AR75A 17 R37R 3R3N 211 17117
20.7 2.7033 54029 0.0005 9.5934 17.1945 3874 2147 1.7114
244 2.7033 54029 0.0005 9.5109 17.0288 3718 2177 1.7078
276 2.7033 54029 0.0005 94285 16.9010 3764 2201 1.7097
310 2.7033 54029 0.0005 94010 16.8020 3779 2220 17019
345 2.7033 54028 0.0006 9.3987 186.7614 3781 2228 1.6970
31.0 27033 54029 0.0008 9.3967 16.8261 3781 2218 1 7066
278 2.7033 5.40289 0.0005 244861 16.8947 3754 2202 1.7043
241 2.7033 54029 0.0005 95164 16.96389364 3715 2189 1.6959
207 2.7033 54029 0.0005 9.5200 17 0874 3713 2166 1.7140
172 2.7033 54029 0.0005 9.5868 17.1434901 3677 2156 1.7056
13.8 2.7033 54029 0.0005 o B8B568959 17271 3625 2133 1.6985
103 2.7033 54029 0.0005 9.8021 17 4542 3566 2100 1.6977
5.9 27124 54029 0.0005 100835 17.7044572 3434 2058 1 6688
3.4 27124 54028 0.0004 104725 18.13226375 3262 1989 1.6404
1.4 27124 54029 0.0004 10.0362 1840407494 3078 1847 1.5808
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Table 2.41. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 92
Grain Density (gm/cc) = 2.6360 Grain Volume (cc) = 9.4170
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclee mD

0.5 3.1892 25.2990 4.4480
1.5 3.1220 24.7658 4.4412
7.5 2.8440 22.5606 4.0405
15 2.7941 22.1647 3.5424
20 2.7890 22.1243 3.3563
25 2.7800 22.0529 3.0584
20 2.7900 22.1322 3.0905

Table 2.42:

Acoustic properties of Sample # 92, Depth = 4103.00 m. 34/11-3

Phyd Tpi Tsi ax Tp Ts Vp Vs Vpivs
NMpa usec usec inch usec usec mis mis
1.4 27216 54029 6.0000 11.6630 21.8047 2838 1538 1.8455
34 27216 54029 0.0004 10.7545 19.5238 3158 1796 1.7579
6.9 27124 54029 0.0010 10.2702 10.7912 2351 1083 1.7696
10.3 2.7033 §.4020 0.0014 g 8964 18.2417 3527 1974 1.7874
13.3 2.7033 54029 0.0019 94341 17.9670 729 2016 1.8502
172 ? 7NRR 54073 nnn2s Q 52493 17 AADR ’7NR TNARN 1 ANN4a
20.7 27033 54029 0.0031 84285 17.5091 3762 2080 1.8001
24.1 2.7033 54029 0.0036 9.3736 174178 3790 2104 1.8012
27.6 2.7033 54029 0.0042 9.3095 17.3260 3825 2119 1.8048
31.0 2.7033 54029 0.0049 9.2545 17.2344 3854 2134 1.8060
345 2.7033 54029 0.0057 9.2282 17.1428 3867 2148 1.7983
31.0 2.7033 £4020 0.00586 82395 17.1428 3860 2149 1.7961
276 27033 54029 0.0055 9.24861 17.1428 3857 2150 1.7843
241 2.7033 £.4020 0.0054 g 2505 17.2344 3855 2133 1.8071
20.7 2.7033 54029 0.0053 8.2801 17.2344 3832 2133 1.7862
17.2 2.7033 54029 0.0031 9.3296 17.326 3810 2117 1.7884
13.8 2.7033 £4029 0.0048 9.3868 17.4175 3779 2102 1.7977
10.3 2.7033 54029 0.0043 94815 17.5007 3738 2071 1.8049
590 27124 54029 0.0038 8.6395 17.8754 3649 2027 1.8005
3.4 27124 £.4020 0.0033 9.9058 18.4249 3473 1842 1.7880
1.4 27124 54029 0.0029 10.589 19.3406 3212 1815 1.7885
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Table 2.43. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 104
Grain Density (gm/cc) = 2.6590 Grain Volume (cc) = 9.6990
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclce mD

0.5 2.7070 21.4733 16.5500
1.5 2.6404 20.9449 15.3869
7.5 2.5627 20.3285 14.9122
15 2.5479 20.2111 14.5920
20 2.5252 20.0311 14.1001
25 2.5219 20.0049 13.7320
20 2.5312 20.0787 13.7750

Table 2.44. Acoustic properties of Sample # 104, Depth = 4106.00 m. 34/11-3

Paxial Tpi Tsi dX Tp Ts Yp Vs Vpivs
Mpa usec usec inch usec usec mis mfs
25 2.7218 54028 0.0000 10.9560 17.5457 3072 2083 14746
50 27218 54029 0.0043 10.6483 17.0898 3178 2154 1.4756
75 27124 54029 0.0087 104505 16.8095 3241 2198 14741
10.0 2.7033 54029 00127 10.2080 16.5863 3328 2233 1.4802
15.0 2.7033 54029 0.0208 9.8791 16.2637 3452 2281 15135
200 2.7033 54029 0.0272 9.6813 15.9880 3526 2325 15171
250 2.7033 54029 0.0328 84615 15.8058 3620 2352 1.5393
200 2.7033 54029 0.0300 8.4947 15.8700 3613 2344 1.5412
15.0 2.7033 54029 0.0265 8.5273 15.9372 3608 2338 1.5437
10.0 2.7033 54029 0.0233 8.6037 16.0168 3580 2328 15382
75 27124 54029 0.0208 9.6851 16.0935 3552 2317 1.5332
50 27124 54028 0.0178 8.7912 16.2229 3510 2296 15285
25 27124 54028 00125 10.1778 18.4468 3346 2262 14794
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Table 2.45. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 116
Grain Density (gm/cc) = 2.6640 Grain Volume (cc) = 9.5420
Hydrostatic Stress Pore Volume Porosity Permeability
psi cc cclcc mD
0.5 3.0642 24.3070 5.6140
1.5 3.0574 24.2529 4.9110
7.5 2.6770 21.2354 4.2511
15 2.6494 21.0164 3.9932
20 2.5929 20.5682 3.5836
25 2.5748 20.4247 3.3438
20 2.5975 20.6047 3.5011
Table 2.46: Acoustic properties of Sample # 116, Depth = 4109.00 m. 34/11-3
Phyd Tpi Tsi dax e Ts vp vs Vpivs
Mpa usec usec inch usec usec mis mis
14 27216 54029 0.0000 18.6721 18.7510 3188 1787 1.8047
34 27218 54029 0.0010 10.3223 19.4229 3332 1806 1.8448
89 27124 54028 0.0014 9.9835 18.9727 3481 1885 1.8863
103 27033 54029 0.0018 9.6904 18.7362 3621 1898 1.9083
138 2.7033 5.4029 0.0023 95295 18.4615 3705 1937 1.9130
17.2 27033 54028 0.0027 9.3958 18.1868 3777 1877 1.8102
207 27033 54028 0.0032 9.3315 18.0034 3812 2005 1.9010
24.1 27033 5.4029 0.0036 82857 17.8205 3837 2034 1.8865
276 2.7033 54029 0.0043 9.2582 17.6676 3851 2058 1.8711
31.0 27033 5.4029 0.0049 92185 175457 3871 2077 1.8635
345 2.7033 5.4029 0.0058 9.1848 17.4542 3888 2031 1.8593
310 2.7033 54028 0.0055 92109 174676 3874 2089 1.8539
276 2.7033 54028 0.0053 92307 17.5259 3863 2080 1.8572
241 2.7033 5.4029 0.0050 82615 | 17 59839281 3848 2068 18596
207 27033 5.4029 00048 | gogs515185 | 17 66036142 3827 2058 1.8594
17.2 2.7033 5.4029 0.0045 93404 17.77782298 3797 2039 1.8620
128 2.7033 54029 0.0042 94085 | 17.91582713 3766 2017 1.8687
103 27033 5.4028 0.0040 9.5208 18.09013821 3703 1890 1.8610
5.9 27124 54029 0.0038 97208 | 1820801003 3598 1858 1.8373
34 2.7124 5.4029 0.0035 100417 | 1853481624 3447 1924 1.7917
14 27124 54029 0.0031 109714 | 18.71204988 3288 1899 1.7378
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Table 2.47 Change of porosity and permeability as a function of hydrostatic stress.

Sample : 120
Grain Density (gm/cc) = 2.6420 Grain Volume (cc) = 9.3370
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclcc mD

0.5 3.0696 24.3504 45.3920
1.5 2.8922 22.9432 43.0527
7.5 2.8426 22.5497 41.0569
15 2.8156 22.3355 38.7717
20 2.8079 22.2744 36.4348
25 2.7928 22.1547 35.0362
20 2.8123 22.3093 35.9004

Table 2.48: Acoustic properties of Sample # 120, Depth = 4110.00 m. 34/11-3

Paxial Tpi Tsi dX Tp Ts Vp Vs Vpi¥s
Mpa usec usec inch usec usec m/s m/s
25 27216 54029 £.0000 11.3516 194688 2934 1800 16298
50 27216 54029 0.0009 10.8740 18.2384 3104 1971 15745
75 27124 54029 0.0016 105144 17.5457 3241 2082 15564
10.0 27033 54029 0.0021 10.2708 17.1749 3340 2147 1.5556
150 27033 54029 0.0028 3.9638 16.7218 3478 2231 1.5588
200 2.7033 54029 0.0035 38131 16.3553 3549 2304 1.5405
250 27033 54029 0.0042 9.7032 16.1721 3603 2342 1.5385
200 2.7033 54029 0.0038 9.7032 18.1721 3604 2342 15385
150 2.7033 54029 0.0036 9.7252 16.2637 3593 2323 1.5467
100 2.7033 54029 0.0032 9.7692 16.3553 3572 2305 1.5500
5 27124 54029 0.0030 9.8571 16.4468 3534 2286 15457
50 27124 54029 0.0027 99450 166300 3492 2243 1.5523
25 27124 54029 0.0024 104845 17.1911 3248 2143 15148
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Table 2.49. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 127
Grain Density (gm/cc) = 2.6370 Grain Volume (cc) = 10.6910
Hydrostatic Stress Pore Volume Porosity Permeability
psi cc cclce mD
0.5 1.9150 15.1910 0.3453
1.5 1.6393 13.0042 0.2811
7.5 1.5691 12.4473 0.2886
15 1.5149 12.0173 0.2657
20 1.5067 11.9523 0.2542
25 1.4918 11.8341 0.2428
20 1.5100 11.9785 0.2657
Table 2.50: Acoustic properties of Sample # 127, Depth = 4142.00 m. 34/11-3
Paxial Tpi Tsi dX Tp Ts Vp Vs Vpivs
Mpa usec usec inch usec usec mis mfs
25 27218 54029 0.0600 105274 18.6300 3247 2258 14383
50 27218 54029 0.0025 9.9412 15.8862 3502 2412 14521
75 27124 54028 0.0080 8.6710 155413 3621 2485 14570
100 27033 54028 0.0084 84789 15.3102 3706 2535 14622
150 2.7033 54929 0.0162 9.2081 149816 3834 2803 14725
200 2.7033 54028 0.0215 8.0763 14.7985 3892 2640 14741
250 27033 54029 0.0262 8.9670 14.70869 3941 2653 14854
200 27033 54028 0.0248 8.9948 14.7069 3928 2657 14788
15.0 27033 54028 0.0228 9.0483 14.7758 3903 2642 14770
100 27033 54028 0.0208 9.1008 14.8800 3879 2618 14814
75 27124 54029 0.0191 8.1753 149871 3847 2594 14828
50 27124 54028 0.0165 9.2958 15.1620 3787 2555 14824
25 27124 54028 0.0136 9.4562 154957 3708 2477 1.48866
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Table 2.51. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 143

Grain Density (gm/cc) = 2.6640 Grain Volume (cc) = 9.7820
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclee mD

0.5 2.5246 20.0265 8.8395
1.5 2.4045 19.0741 3.3353
7.5 2.3903 18.9615 3.0409
15 2.3386 18.5514 2.5703
20 2.3286 18.4721 21771
25 2.3060 18.2928 1.9293
20 2.3182 18.3896 2.0054

Table 2.52: Acoustic properties of Sample # 143, Depth = 4146.00 m. 34/11-3

Paxial Tpi Tsi dX Tp Ts vp Vs Vpi¥s
Mpa ' usec usec inch usec usec mis m's
25 27218 54028 0.0000 10.8131 174756 3158 2117 14820
50 27218 54028 0.0003 10.3591 16.7218 3345 2257 14820
15 27124 54029 0.0005 10.0681 18.1329 3472 2380 14587
100 27033 54029 0.0007 98139 15.8852 3591 2438 14742
158 27033 54028 0.0003 95073 15,6463 3752 2492 1.5055
28 2.7033 54029 0.0011 93112 155288 3883 2521 15324
250 2.7033 54028 0.0014 9.1868 154395 3938 2542 1.5480
200 27033 54029 0.0014 92455 15.4585 3900 2538 1.5370
150 27033 54029 0.0014 9285 154962 3871 2528 15312
100 27033 54028 00013 93991 155311 381 2520 15128
75 27124 54029 0.0013 95258 156227 3748 2497 1.5000
50 271124 54028 00013 96850 158441 3680 2444 148975
25 27124 54028 0.8012 88881 162837 3557 2350 15135
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Table 2.53. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 147

Grain Density (gm/cc) = 2.6420 Grain Volume (cc) = 9.6500
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclee mD

0.5 2.5558 21.0671 14.5140
1.5 2.4227 19.9698 13.4198
7.5 2.4122 19.8833 13.1240
15 2.3994 19.7778 12.4090
20 2.3839 19.6500 11.9852
25 2.3717 19.5494 11.5944
20 2.3858 19.6657 11.8490

Table 2.54: Acoustic properties of Sample # 147, Depth = 4147.00 m. 34/11-3

Paxial Tpi Tsi dX Tp Ts ¥p Vs Vpivs
Mpa usec usec inch usec usec mis mis
25 2.7218 54029 0.0000 10.6153 16.4363 3227 2308 1.3977
50 2.72186 5.4029 0.0012 10.0932 16.0842 3452 2380 1.4503
75 27124 54029 0.0023 9.8219 15.8968 3575 2422 1.4760
100 2.7033 54029 0.0033 9.5934 15.7142 3685 2483 1.4965
15.0 2.7033 5.4029 0.0050 9.3166 15.5362 3833 2502 1.5323
200 2.7033 54028 0.0065 8.1504 15.4385 3928 2522 1.5568
250 2.7033 54028 0.0080 9.0109 15.3479 4007 2541 15767
200 2.7033 54029 0.0078 8.0378 15.3652 3991 2537 1.5727
15.0 2.7033 54028 0.0076 8.1009 154161 3952 2525 1.5651
10.0 2.7033 5.4029 0.0073 8.2307 154725 3874 2512 1.5427
75 27124 54029 0.0072 9.3626 155311 3803 2497 1.5230
50 27124 54029 0.0071 8.5389 15.7142 3706 2453 1.5105
25 27124 54029 0.0069 8.8104 15.8105 3565 2408 14804
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Table 2.55. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 155
Grain Density (gm/cc) = 2.6420 Grain Volume (cc) = 9.6570
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclce mD

0.5 2.7020 20.8101 12.5500

1.5 2.6504 20.4127 11.2588

7.5 2.6027 20.0453 11.0739

15 2.5312 19.4946 10.5029

20 2.5118 19.3452 10.3485

25 2.5049 19.2921 9.8001

20 2.5114 19.3421 9.8629

Table 2.56: Acoustic properties of Sample # 155, Depth = 4149.00 m. 34/11-3
Paxial Tpi Tsi dX Tp Ts Vp Vs Vpis

Mpa usec usec inch usec usec mfis mis
25 27218 54029 0.000C 10.7142 17.3626 3184 2128 1.4963
50 27216 54028 0.0009 10.1436 16.8131 3426 2229 1.5373
75 27124 54029 0.0018 9.8028 16.3553 3583 2320 15447
100 2.7033 54029 0.0040 95253 15.9880 3718 2385 1.5518
150 2.7033 54028 0.0085 8.1821 158227 3895 2469 15774
198 2.7033 54029 0.0128 8.9780 15.3479 4004 2526 1.5849
250 2.7033 54029 0.0166 8.7791 15.1648 4119 2564 1.6067
200 2.7033 54028 0.0157 8.8241 15.1648 4093 2568 1.5948
150 2.7033 54028 0.0137 89120 15.2698 4043 2544 15892
100 2.7033 54028 0.0113 9.0879 154385 3841 2507 15720
5 27124 54029 0.0090 92128 156227 3880 2468 15722
50 27124 54029 0.00866 94013 15.8974 3780 2409 1.5689
25 27124 54029 0.0044 9.6698 16.3553 3642 2314 15742
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Table 2.57. Change of porosity and permeability as a function of hydrostatic stress.

Sample# 187
Hydrostatic Stress Pore Volume Porosity Permeability

Mpa cc cclee mD
0.5 2.0795 16.4960 1.3345
1.5 2.0350 16.1432 1.2298
3.5 1.9880 15.7703 1.0063
7.5 1.9410 15.3975 0.9529
10 1.9110 15.1595 0.9373
15 1.8690 14.8263 0.8723
20 1.8370 14.5725 0.7993
25 1.7980 14.2631 0.7979
20 1.8240 14.4693 0.8016

Table 2.58: Acoustic properties of Sample # 187, Depth = 4157.00 m. 34/11-3

Phyd Tei Tsi ax Tp Ts vp Vs Vpivs
Mpa usec usec inch usec usec nvs s
1.4 27216 5.4029 0.0000 11.5312 18.69986 2889 18314 1.5084
34 2.7218 5.4029 0.0091 10.7472 18.05886 3142 1893 1.5769
8.9 2.7124 54029 0.0153 10.1538 174175 3368 2086 1.6146
10.3 2.7033 5.4029 0.0188 8.7243 17.1428 3557 2127 1.8721
13.8 2.7033 5.4029 0.0212 9.3848 16.9449 3729 2188 1.7276
17.2 2.7033 5.4029 0.0228 9.1868 16.8108 3836 2180 1.7595
20.7 2.7033 5.4029 0.0242 9.0851 18.7495 3904 2189 1.783%
24.1 2.7033 5.4029 0.02582 8.9981 16.6849 3941 2199 1.7923
27.6 2.7033 5.4028 0.0280 8.9249 16.6564 3985 2203 1.8088
31.0 2.7033 5.4029 0.0272 8.8791 16.6293 4009 2205 1.8178
34.5 2.7033 $.4028 0.0287 8.8469 16.8075 4024 2206 1.8238
31.0 2.7033 5.4029 0.0282 8.8638 16.6178 4015 2205 1.8204
276 2.7033 5.4029 0.0276 8.9109 16.6293 3987 2205 1.8085
24.1 2.7033 5.4029 0.0270 6.9335 16.6541 2975 2201 1.8059
20.7 2.7033 5.4029 0.0264 0.0573 16.6831 3956 2197 1.8008
17.2 27033 54029 0.0258 5.0048 18 7250 3935 2190 1.7968
138 2.7033 54029 0.0245 a.0942 16.8230 3865 2174 1.7869
10.3 2.7033 5.4029 0.0234 91763 16.9335 3640 2156 1.7813
6.9 27124 5.4029 0.0218 9.3955 17.0500 3725 2137 1.7428
a4 27124 54028 00197 5.9560 17 2344 3444 2108 1.6334
14 2.7124 5.4029 0.0181 10.6263 17.5723 3158 2054 1.5377
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Table 2.59. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 215
Grain Density (gm/cc) = 2.6660 Grain Volume (cc) = 10.2060
Hydrostatic Stress Pore Volume Porosity Permeability
psi cc cclec mD
0.5 2.3001 18.2458 2.6840
1.5 2.2261 17.6589 2.6446
7.5 2.1491 17.0481 2.4917
15 2.1128 16.7601 2.4492
20 2.0978 16.6411 2.4015
25 2.0859 16.5467 2.3643
20 2.1027 16.6800 2.4300
Table 2.60: Acoustic properties of Sample # 215, Depth = 4164.00 m. 34/11-3
Paxial Tpi Tsi dX Tp Ts Vp Vs VpiVs
Mpa usec usec inch usec usec mis mis
25 27216 54029 0.0000 11.9560 20.0025 2748 1738 1.5810
50 27216 54029 0.0063 11.3406 18.8827 2926 1871 1.5640
75 27124 54028 0.8113 10.8010 17.9670 3064 1997 1.5343
100 2.7033 54028 08157 10.5484 174175 3183 2078 15313
150 2.7033 54028 0.0243 10.2471 16.8131 3282 2170 15125
208 2.7033 5.4029 0.0312 9.9780 16.2637 3379 2283 14930
250 2.7033 54029 0.8370 9.7582 15.8974 3464 2328 14875
208 2.7033 5.4029 0.0383 9.8021 15.9918 3443 2308 14916
150 2.7033 54028 0.0358 9.8204 16.0805 3437 2281 1.5003
10.0 2.7033 5.4028 0.0347 9.8461 16.2599 3429 2258 1.5200
75 27124 54029 0.0333 9.8801 16.4616 3417 2218 1.5407
50 27124 54029 0.0302 98780 16.7381 3387 217 1.5601
25 27124 54029 0.0241 10.2585 17.1222 3282 2113 1.5530
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Table 2.61. Change of porosity and permeability as a function of hydrostatic stress.

Sample : 4058.25

Grain Density (gm/cc) = 2.5420 Grain Volume (cc) = 9.4210
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc cclee mD

0.5 2.7857 22.0982 5.1286
1.5 2.6188 20.7744 5.0820
7.5 2.3608 18.7275 3.8789
15 2.2997 18.2428 3.4801
20 2.2386 17.7581 2.7381
25 2.2230 17.6344 2.3075
20 2.2248 17.6486 2.2320

Table 2.62: Acoustic properties of Sample # 4085.25, Depth = 4058.25 m. 34/11-1

Phyd Tpi Tsi dX Tp Ts vp Vs Vpivs
Mpa usec usec inch usec usec /s m/s
14 2.72186 5.4028 0.0000 10.1318 19.8351 3373 1732 1.8478
34 272186 5.4029 00018 9.8131 18.8452 3518 18586 1.8955
8.9 27124 54028 D.0062 9.3278 18.0852 3754 1957 1.9188
10.3 2.7033 5.4029 D.0082 9.0164 17.6373 3822 2024 1.9379
13.8 2.7033 5.4029 B.0111 8.7362 17.2710 4098 2082 1.9672
17.2 2.7033 54029 0.0127 8.6355 17.0878 4158 2111 1.9698
20.7 2.7033 5.4029 0.0124 8.55872 16.9047 4211 2143 1.9648
241 2.7033 5.4029 D0.0142 8.5033 16.7216 4247 2176 18815
276 2.7033 5.4029 0.0148 B8.4523 16.5384 4282 221 1.9369
31.0 2.7032 5.4029 0.0153 84157 16.4468 4307 2228 1.9333
34.5 27033 5.4029 0.0158 8.3699 16.3949 4340 2237 1.9398
31.0 2.7033 5.4029 0.01589 8.3882 16.4003 4328 2236 1.9345
276 2.7033 5.4029 00158 8.3882 164286 4326 2231 1.9395
241 2.7033 5.4029 0.0157 8.4065 16.44568 4312 2227 1.9364
20.7 2.7033 54029 0.0155 84249 16.48871752 4300 2219 1.8375
17.2 2.7033 54029 0.0152 84432 16.5384 4287 2210 1.8400
13.8 2.7033 5.4029 0.0149 8.4432 16.63 4288 2182 1.8560
10.3 2.7033 5.4029 0.0148 84523 16.7216 4283 2175 1.9688
6.9 27124 54029 00138 84981 16.9047 4259 2142 1.9880
3.4 2.7124 54029 0.0128 8.6703 17 4542 4141 2047 2.0227
1.4 2.7124 5.4029 0.0114 8934 17.912 3971 1975 2.0106
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Table 2.63. Change of porosity and permeability as a function of hydrostatic stress.

Sample 158
Grain Density (gm/cc) = 2.6480 Grain Volume (cc) = 10.6900
Hydrostatic Stress Pore Volume Porosity Permeability

psi cc ccl/ce mD
0.5 1.9166 15.2040 0.5462
1.5 1.8197 14.9994 0.5400
7.5 1.7610 14.5156 0.5328
15 1.6736 13.7951 0.5024
20 1.6631 13.7086 0.4810
25 1.6430 13.5429 0.4596
20 1.6518 13.6154 0.4795

Table 2.64: Acoustic properties of Sample # 158, Depth =4143.77 m. 34/11-1.

Paxial Tpi Tsi dX Tp Ts Vp Vs Vpivs
Mpa usec usec inch usec usec m/s m/s
25 2.7216 54029 0.0000 11.1758 17.7289 3046 2090 14580
50 2.7216 54029 0.0000 10.6043 16.8093 3267 2258 14470
75 27124 54029 0.0002 10.1648 16.2366 3456 2377 14537
10.0 2.7033 54029 0.0003 9.7921 15.7142 3632 2497 14546
150 2.7033 54028 0.0009 9.3296 15.1648 3864 2836 14732
200 2.7033 54029 0.0018 8.9780 14.7089 4098 2764 1.4828
250 2.7033 54029 0.0024 8.8681 14.4322 4168 2846 14647
200 2.7033 54029 0.0024 88120 14.4730 4139 2833 1.4608
15.0 2.7033 54028 0.0022 8.8535 14.5238 4112 2818 14583
100 2.7033 54028 0.0016 8.8780 14.8153 4098 2719 14682
75 27124 54029 0.0012 80218 14.7985 4077 2738 14891
50 2.7124 54029 0.0008 8.1978 15.1648 3968 2636 1.5052
25 27124 54029 0.0004 895714 15.6196 3754 2520 1.4895
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CONCLUSIONS

As a result of the studies, relations were established between the static Young’s modulus
and Poisson’s ratio on the one hand and the dynamic shear modulus on the other hand
(the dynamic properties are those that are calculated from the elastic-wave velocity
measurements). From these relations, we prepared theoretical models that will allow
one to predict the static moduli from velocity well log data for elastic systems, and
provide an order of magnitude estimate for systems exhibiting both elastic and plastic

deformation.

We also determined that the failure envelope for the samples can be adequately modeled
by the Drucker-Prager and CAP model. The hardening law can be approximated by
either CAP algorithms or linear equation that are fairly close to each other in the case
under examination. As a part of the experimental part of the project, the static-

dynamic moduli transforms and the CAP model were programmed as Matlab applets.

The theoretical models developed include:

1. Elastic moduli/porosity/texture relations. These relations to can be used
diagnose rock, i.e., derive its texture type, and, eventually, strength and
permeability, from well log data. A step-by-step manual for application of these

relations is given in Appendix 1.

2. Static-to-dynamic moduli relations. These relations allow one to predict the static
Young’s modulus and Poisson’s ratio (required for cutting injection design) from

shear-wave velocity well log data.

3. Strength and failure relations. These relations are given in subsections 1.10 and

1.11 of the Experimental Section of this report.

The magnitude of residual plastic deformation of Berea sandstones, GOM clayey
sandstones and Clearfolk dolomite discovered during the experimental was unexpected.
The results indicate that the problem is more complex than originally estimated. A
missing parameter not included in the scope of the study is the stress distribution
around the well bore, i.e., tangential stress as a function of overburden, Shmin and Shmax

(minimum and maximum horizontal stresses), hydrostatic stress, and deviation.
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It is recommended that additional work be undertaken to simulate and measure the
tangential stresses around the well bores, using selected samples from downhole
formations. The data developed can then be used to calibrate or modify the theoretical
models to consider both elastic and plastic deformation. (Special attention should be
paid to the properties of depleted sands, as these remain the primary targets for drill
cutting injection.) Based on these results, we should be able to provide the needed

input for designing the cutting injection process.
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APPENDIX A
GUIDE TO VELOCITY-POROSITY MODELS

For detailed assumptions, limitations and applicability of the models see Mavko, Mukerji, and Dvorkin,

1998, "The Rock Physics Handbook."

Below, velocity is in km/s; porosity is in volumetric fraction (pu); clay content is in volumetric fraction;
density is in g/cm3; and modulus is in GPa.
1. Wyllie et al. (1956) Time Average (Empirical)
1 1-
__¢ , 1-¢

Vp Vp—ﬂ

b

p—mineral

where @ is total porosity; and V, g and V,_ ., are the compressional-wave velocity in the common
pore fluid and mineral phase, respectively. Vp - should be calculated from the bulk modulus I_< wia and

fluid density 0, as
Vs =‘4 Kpia ! Ppuia-

V  —minera ShoUld be calculated from K

p mineral >

Vp —mineral — 'J(Kmineral +4ﬂmineral / 3)/ p mineral *

M ,iverar » and mineral density g, . . as

For Calc"ﬂatlng K fluid * p fluid » Kmineral ? lu mineral * and p mineral * see below

To calculate the compressional modulus from Wyllie’s equation, use

Wyllie _ 2
M —pr‘!7 .

common

where p, is bulk density of the rock saturated with common fluid.
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Figure Al.1. Applicability of Wyllie’s and Raymer’s models to sandstones.

Adjustable parameters in Wyllie’'s equation are the elastic moduli of the mineral
components that make up the mineral phase. For example, for quartz, the bulk
modulus may be chosen between 34 GPa and 38 GPa; for clay these moduli may span
quite a wide interval (see Mavko et al., 1998).

Whyllie et al. recommend the following ranges for Vp

—mineral *

Rock Type Mineral Velocity (km/s)
Sandstone 5.480 to 5.950
Limestone 6.400 to 7.000
Dolomite 7.000 to 7.925

This model has a very simple analytical expression but is strictly empirical. It can be applied only to
fully-saturated rocks and should not be applied to soft unconsolidated rocks (Figure Al.1).
2. Raymer-Hunt-Gardner (1980) Relations (Empirical)
Vp =(1- ¢)2 Vp —mineral T ¢Vp_ﬂ for ¢<37%;
Migon =01 Ky + (1= ) (K vt + Mo 1 3) TOT 9> 47%;
1/ Vp =10{(0.47-¢)/ V,+(¢-0.37)/V, ]

where V,, and V,, are calculated from the first-line equation at ¢ =.37 and second-line equation at
@ =.47, respectively. As in the Wyllie model, the compressional modulus at common saturation is
Mj:fl e =PV pz. This model is strictly empirical and mimics real data much better than Wyllie’s model

does (Figure Al.1 and A1.2). It should not be applied to soft unconsolidated rocks.



Consolidated Sandstones Consolidated Sandstones
Raymer’s Equation Wyllie’s Equation

Vp Predicted (km/s)

a Vp Measured (km/s) b

Vp Measured (km/s)

Figure Al1.2. Raymer’'s equation (a) mimics data better than Wyllie’s equation (b).

3. Han’s (1986) Relations (Empirical)

Clean Water-Saturated Sandstones Effective Pressure 40 MPa:
V,=6.08—8.069, V,=4.06-6.28¢.

Shaley Water-Saturated Sandstones
Effective Pressure:

40 MPa: V, =559-693¢~2.18C, V,=3.52-491¢-189C,
30 MPa: V, =555-6.969-2.18C, V,=347-484¢9-187C
20 MPa: V,=549-694¢-217C, V,=339-4.73¢9-181C;
10 MPa: V, =5.39-7.08¢-2.13C, V,=3.29-4.73¢-L74C,
5 MPa: V,=526-7.08¢—-2.02C, V,=3.16-4.77¢9—1.64C.

Shaley Room-Dry Sandstones Effective Pressure 40 MPa:

V,=5.41-6.35¢-2.87C, V, =3.57-457¢—-183C.

In these equations, C is the volumetric clay content in rock. These equations have been obtained from
lab ultrasonic measurements on sandstones saturated with pure water (density 1 g/cm3 and bulk modulus
2.25 GPa). They cannot be used for any other pore fluid. Be cautious when using these equation at small
(below 30 MPa) effective pressure. The ultrasonic velocity dispersion effect may bias the results. The
compressional modulus can be calculated from Vp and bulk density as M, Han oA sz .

common

4. Tosaya and Nur (1982) Relations (Empirical)

Shaley Water-Saturated Sandstones Effective Pressure 40 MPa:
V,=58-86¢-24C, V, =37-6.3¢-2.1C,




where C is the volumetric clay content in rock. These equations have been obtained from laboratory
ultrasonic measurements on high-shale-content sandstones saturated with pure water. When using them to
diagnose rock, use pure water (density 1 g/cm> and bulk modulus 2.25 GPa) as common fluid. See velocity

. . . . . . Tosaya 2
dispersion effect warning for Han’s equations. The compressional modulus is M e = P Vp .

common
5. Eberhart-Phillips (1989) Relations (Empirical)

Shaley Water-Saturated Sandstones
V, =5.77-6.94¢-1.73{ C+0.446( P- ™),

V, =3.70 - 4.94¢— 157 C+0.361( P- &%),

This equations are very approximate and should be used for rough estimates only. In these equations,
C is the volumetric clay content in rock and P is the effective pressure (overburden minus pore pressure)
in kilobars. These equations have been obtained from labofatory ultrasonic measurements on high-shale-
content sandstones saturated with pure water. When using them to diagnose rock, use pure water (density 1
g/cm3 and bulk modulus 2.25 GPa) as common fluid. See velocity dispersion effect warning for Han’s
equations below. The compressional modulus is M 2°%¢ = prpz.

common

6. Critical Porosity (Nur et al., 1998) -- Modified Voigt Average (heuristic)

1 g r T . I
Theoretical
L\_Cﬁtica.l Porosity ®  Basalt

« Line /\  Dolomite
’5 0.8 8 E‘ N  Foam
g £ 1] Glass Beads
= g A  Limestone
E 06 A5 AAEE\E . O RockSalt
£ v°r ® @, Clean Sandstone
S &Z ﬁ O,
P R A
=3
S 04fF
k]
=
S A
=
g 0.2f
5]

0 L L 'l 1

(o] 0.2 0.4 0.6 0.8 1
Porosity /Critical Porosity

Figure A1.3. Critical porosity model and data for various rocks. The model overestimates the
data.

Kdry = Kmineral(l - ¢ / ¢c)’ ludry = lumineral(l - ¢/ ¢c)'

where @, is the critical porosity. See details in Mavko et al., 1998. To calculate the saturated-rock

moduli, use Gassmann’s fluid substitution equation. Below is a table for critical porosity values in different

A-4



rocks. This model tends to over-estimate the elastic moduli (Figure A1.3). Adjustable parameters in the
Critical Porosity model are: critical porosity, and the bulk and shear moduli of the mineral phase.

7. Contact Cement Model of Dvorkin and Nur, 1996 (Theoretical)

This model assumes that sandstone starts as a pack of identical spherical grains at critical porosity
and porosity reduces due to the uniform deposition of cement on the surface of every grain (Figure Al.4).
Inputs: critical porosity in fraction (@, );
bulk modulus of grain in GPa (K,);
shear modulus of grain in GPa (G, );
bulk modulus of cement in GPa ( K o
shear modulus of cement in GPa (Gc );
bulk modulus of common fluid in GPa (K o )R
coordination number (7 ) (number of contacts per grain: 6-9);
total porosity @ (varies between 0.15 and @,).
The effective bulk ( K d,y) and shear (Gdry ) moduli of dry rock are:
K, =n(l- ¢, M,/ 6 G, =3K, | 5+3n0-9)G.S,/ 20,

where M, = K, +4G,_ /3 is the compressional modulus of the cement. S, and S are:
S =A (Ao’ +B (Ao +C,(A,), A (A,)=-0.024153-A, 7,
B.(A,)=0.20405-A %% C (A,)=0.00024649- A, **%;
S, =AM, V)& +B.(A,, V) +C(A, V),
A(A,V,)=-107-(2.26V,” +2.07v, +2.3)- A OO 70138
B.(A,,v,)=(0.0573v,> +0.0937v, + 0.202)- A 207" 0052, -08763
C.(A,,v,)=10"-(9.654 v +4.945y, +3.1)- A DOI8Tw +04011v-18186,
A, =2G.(1-v)A-v)/[xG.(1-2v)L A, =G, | (nG.),
a=[2/3X¢.~9)/ 1~ 4)I"";
v, =0.5(K. /G.-2/3)/ (K, /G.+1/3); v,=0.5K, /G ,—213)/ (K, /G, +1/3).

The bulk modulus K, of the rock saturated with common fluid is calculated from K, using

4
Gassmann’s equation. The bulk modulus of the solid phase K, to for Gassmann’s equation is Hill’s

average of those of the grains and cement:

Ksa = OS((’gsKs + fcch>+1 / ()‘85/ Ks + f“ / KC)]’
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Figure Al.4. Cementation model.
. . . . cem
The desired theoretical compressional modulusis: M.~ =K +4G, /3.

Adjustable parameters in this model are: 7 (between 6 and 9), ¢C (between 0.35 and 0.42 for
sandstones); as well as the elastic moduli of the mineral components that make up the grains and

cement. An example is given below in Figure Al.5.
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Figure Al1.5. Example of adjusting cementation model to a lab data set. By changing the
properties of cement, we can match the very clean sandstone data and the data from sandstones
with more shale.

8. Constant Cement Model of Avseth et al. (Theoretical)

This model assumes that sandstone starts as a pack of identical spherical grains at critical porosity,
then porosity reduces to some "cemented porosity” due to the uniform deposition of cement on the surface

of every grain. After that porosity reduces due to the deposition of cement away from grain contacts.
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Figure Al1.6. Constant cement model.

At cemented porosity, the dry-rock moduli are calculated from the contact-cement theory. For smaller
porosities, we connect the cemented porosity point with the solid-phase modulus at zero porosity. This
solid-phase modulus is that of the mixture of 1 — @, fractions of grains and @, fraction of cement. We

connect these two points in the lower Hashin-Shtrikman fashion (Figure A1.6).

Inputs: critical porosity in fraction ( ¢c );
cemented porosity in fraction ( @, );
bulk modulus of grain in GPa (K|);
shear modulus of grain in GPa (G, );
bulk modulus of cement in GPa (K, );
shear modulus of cement in GPa (G, );
bulk modulus of common fluid in GPa ( K of );
coordination number (7 ) (number of contacts per grain: 6-9);
total porosity @ (varies between 0.1 and @,).

The effective bulk ( K 4ry) and shear (Gd,), )y moduli of dry rock are:

00 1018 o
" K,,+4Gb/3 K, +4G,/3

010, 1=0/0_, , G 9K +3G,

a (G Tz Gfs+z ‘ 6 K,+2G,’
l 1

1

=026+ 96+ T G vl G

II

N | =

where K, and G, are the dry-rock bulk and shear moduli, respectively, calculated from the cementation



model at @ = @, (see previous model).

The bulk modulus K, of the rock saturated with common fluid is calculated from Kd,y using
Gassmann’s equation. The bulk modulus of the solid phase K to be used in Gassmann’s equation is
calculated as Hill’s average of those of the grains and cement:

K, = 0.5[(}‘gSKs+ fcch)+1/()‘gs /K, +f.,/K)l]

fos =A=0)/A=9), [,=(o.—9)/A-9).

The desired theoretical compressional modulus is: Moo =K + 4G, / 3.

Adjustable parameters in this model are: @, (choose it to match the data); 1 (between 6 and 9), @.
(between 0.35 and 0.42 for sandstones); as well as the elastic moduli of the mineral components that make

up the grains and cement. An example is given in Figure A1.7.
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Figure Al.7. Example of adjusting constant cementation model (choosing appropriate cemented

porosity) to well log data.

9. Unconsolidated Model (Friable Sand) of Dvorkin and Nur, 1996 (Theoretical)

This model assumes that sandstone starts as a pack of identical spherical grains at critical porosity,
then porosity reduces due to the deposition of cement away from grain contacts. At critical porosity, the
elastic moduli of the dry frame are calculated versus effective pressure from the Hertz-Mindlin equations.
For smaller porosities, we connect the critical porosity point with the solid-phase modulus at 0% porosity

(Figure A1.8).
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Figure A1.8. Unconsolidated model.
Inputs: critical porosity in fraction ( ¢c );
bulk modulus of the solid phase in GPa (K, ;... );
shear modulus of the solid phase in GPa (G, );
effective pressure in MPa ( P);
coordination number (72 ) (number of contacts per grain: 6-9);
total porosity @ (varies between 0.1 and @,).

The effective bulk (K 4ry) and shear (Gd,y ) moduli of dry rock are:

/ 1-¢/ 4 4
Kdry — [ ¢ 4¢c + ¢ 4¢c ] 1 _ = GHM ,
K +3GCum Koinerar +3 G 3
Gd = [‘ ¢/ ¢c + 1_ ¢/ ¢c ]"1 _ Z, Z - GHM 9KHM +8GHM .
i GHM +Z (;mineral +Z 6 KHM + 2GHM
n*(1- )G , - 5-4y_ . 3n*(1-9.)°G,, "
K minera P 3, G minera mmera P 3
e [ 1 Sﬂz (]‘ mmeral ) ] HM 5(2 mneral ) [ 2 ”2 (1 mmeral ) ]
mmeral O S(K mineral / Gmineral 2/ 3) / mineral / Gmmeral + 1 / 3)

The bulk modulus K, of the rock saturated with common fluid is calculated from K, using

Gassmann’s equation. The bulk modulus of the solid phase for Gassmann’s equation is

The desired compressional modulus is: M unconsolid _ g 4 4G, /3.
sat

common

K

mineral *

Adjustable parameters in this model are: 71 (between 6 and 9), ¢C (between 0.35 and 0.42 for

sandstones); as well as the elastic moduli of the mineral components that make up the grains and cement.

An example is given in Figure A1.9.
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Figure A1.9. Example of fitting well log data with unconsolidated model curve. Constant cement

data and curve are shown. Cementation model curve is shown as well.

11. Marine Sediment Model of Dvorkin and Prasad, 1999 (Theoretical):

This model is designed to describe unconsolidated ocean-bottom sediments and may be useful for
modeling the seismic response of the very top part of the marine sediment column. It assumes that
sediment starts as a pack of identical spherical grains at critical porosity, then porosity increases due to the
insertion of voids in the sediment fabric. At critical porosity, the elastic moduli of the dry frame are
calculated versus effective pressure by using the Hertz-Mindlin equations. For higher porosities, we
connect the critical porosity point with zero modulus at 100% porosity. We connect these two points in the
upper Hashin-Shtrikman fashion.

Inputs: critical porosity in fraction (@, );
bulk modulus of the solid phase in GPa (K, ... );
shear modulus of the solid phase in GPa (G, );
effective pressure in MPa (P );
coordination number (7 ) (number of contacts per grain: 6-9);
total porosity @ (varies between @, and 1).

The effective bulk ( K d,y) and shear ( Gd,y ) moduli of dry rock are:

(1-¢)/1-9¢) (¥-9¢)/(1-9¢) . 4
K, =l et T~ Gy
“ Ky +3 Gy 3 Gun 3
_r(1_¢)/(1_¢0) (¢—¢c)/(1_¢c)—l_
Oy =1 Gy +2 * G+12 I'-z
_ﬁ 9KHM +8GHM _[n2(1 — ¢ )zc;mineral2 P]-:l’,
- 6 KHM +2GHM e 18”2 (- Vmineral)2 ’
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5 — 4 mineral 3712 (1 - ¢c )2 Gmineral7 é
HM = [ 2 > - PTs
5(2— Vmineral) 272" (1 - Vmineral )
Vmineral = O'S(Kmineral / Gmineral - 2/ 3) / (Kmineral / Gminera[ + 1 / 3)

The bulk modulus K, of the rock saturated with common fluid is calculated from Kd,y using

Gassmann’s equation. The bulk modulus of the solid phase for Gassmann’s equation is K, .-

The

. . . marine
desired compressional modulus is: M., = K, +4G,, /3.
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Figure A1.10. Well 974. a. Neutron porosity versus depth. b. Velocity versus depth: data, our
model, and suspension model. All curves are smoothed.

Adjustable parameters in this model are the same as in the previous one.

An example of applying this model to log data is given below. The modeling results are compared
with the sonic velocity data in Figure A1.10b where a good agreement between the model and the data is

apparent.

12. Model for Chalks of Walls et al., 1998 (Theoretical):

Based on well-log data from Ekofisk. The model curve in the modulus-porosity plane connects the
high-porosity point that has to be manually picked from the data to the zero-porosity point at which the
moduli of the rock are those of the mineral phase. The high-porosity point has to is based on the dry-frame
moduli. Use Gassmann’s equation to calculate the dry-frame moduli from log data. Example is in Figures
Al.11-Al1.13.

Inputs: initial (high) porosity chosen from the data, in fraction ( @ );
bulk modulus at @, in GPa (K,));

shear modulus at @, in GPa (G, );
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bulk modulus of the solid phase in GPa ( K

mineral )’

shear modulus of the solid phase in GPa (G

mineral )’

total porosity @ (varies between @, and zero).

The effective bulk ( K dry) and shear (Gd,y ) moduli of dry rock are:

=[ ¢/¢0 + 1"¢/¢o ]_I—EG
dry — 4 4 mineral *
KO + 3 Gmineral K mineral + 3 Gmineral 3
_[ ¢/ ¢0 + 1- ¢/ ¢0 ]"l -7 i~ Gmineral 9Kmingral + 8G ineral
dry = ’ - .
GO +Z Gmineral +Z 6 Knineral + 2Gmineral
Adjustable parameters are: @y; Ky; Goi K,;p:and G0
E 40 T T T =
S
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3 30p~-
§
'—; 20~
E
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2

Figure Al.11. Chalk data. Bulk modulus (taken directly from log data) versus porosity.
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Figure Al.12. Dry-frame bulk modulus (a) and shear modulus (b). The initial (high} porosity and
the corresponding moduli are picked from the plots.
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Figure Al1.13. Dry-frame compressional modulus matched by the model curve.
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13. Vp/Vs Models

The shear-wave velocity (or the shear modulus) is a necessary input parameter for full waveform
elastic modeling of the seismic response. Some of the rock physics models discussed here provide both
bulk and shear modulus. However, our experience shows that the shear-wave velocity theoretical curves
often do not match the data (given that the rock physics diagnostic has been done using the compressional
modulus).

For this reason, we present here Vp/Vs relations to be used for calculating Vs from the compressional-
wave data (or theoretical curves). These models are discussed and analyzed in Mavko et al. (1998). Here
we be briefly describe only several, most commonly used, of them.

3.1. Castagna et al. (1993) Mudrock Equation: V =0.862V, —1.172 (km/s). This equation
has been derived from in-situ data for water-saturated shales.

13.2. Castagna et al. (1993) Equations for Limestones and Dolomites:

Limestone: V, =-0.055V, +1.017V, - 1.031 (knvs);
Dolomite: vV, =0. 583Vp — 0. 0789 (kmy/s).

Both equations are based on laboratory measurements conducted on water-
saturated samples.

13.3. Krief et al. (1990): (V.
Vv and V

p—sat s—sat

2 2 2 2 2
- sat _Vﬂ )/ V—sat = (Vp—mineral - Vﬂ )/ V mmeral ’ where

are the compressional- and shear-wave velocity in the saturated rock, respectively;
V o inerat @4 V_ iy are the compressional- and shear-wave velocity in the mineral phase of the rock,
respectively; and V 7 is the velocity in the fluid.

13.4. Greenberg and Castagna (1992) Method: This empirical formula (below) is based on a number

of datasets where ultrasonic velocity measurements were conducted on pure water (the common saturation

fluid) saturated rocks. To calculate V_ from V for other fluids use Gassmann’s equation.

Vs=%{(ZXZ +(2X(Za”)" Z =1

where X; is the volume fraction of pure mineral constituents in the mineral phase with "1" standing for
sandstone (quartz); "2" for limestone (calcite); "3" for dolomite; and "4" for shale. The empirical

coefficients a; are tabulated below:

i Mineral a,, a, a,
1 Sandstone 0 0.80416 -0.85588
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Limestone -0.05508 1.01677 -1.03049
3 Dolomite 0 0.58321 -0.07775
Shale 0 0.76969 -0.86735

14. Velocity-Density Relations A velocity (Vp ) versus bulk density (0, ) relation may be useful where

only velocity data are available and there is a need to calculate the impedance.

14.1. Castagna, 1993: p, = anz + pr + ¢, where coefficients @, b, and ¢ are tabulated below

for various lithologies. Density is in g/cm3 and velocity is in km/s.

Mineral a b c

Shale -0.0261 0.373 1.458
Sandstone -0.0115 0.261 1.515
Limestone -0.0296 0.461 0.963
Dolomite -0.0235 0.390 1.242
Anhydrite -0.0203 0.321 1.732

14.2. Gardner etal., 1974: p, = 1.741V, ™. Density is in g/em® and velocity is in km/s.
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Appendix 1.2. Example 1 of Rock Physics Diagnostic:
Competing Effects of Saturation and Rock Texture

Summary. In this example we analyze an interval in a vertical North Sea well that intersects oil-water
and gas-oil contacts. Velocity in the gas zone appears to be higher that in the oil- and water zone, in spite
of the high total porosity. This section of the interval corresponds to the constant and relatively low GR
values. Therefore, this high-velocity effect is due to the texture of rock in the gas zone that is most likely to
be connected with the depositional environment.

Introduction and Problem Formulation. It is generally expected that velocity in gas-saturated rock is
smaller than in rock saturated with oil or water. However, in the well under examination, the opposite is
true: the P-wave velocity increases across the gas-oil contact being larger in the gas zone (Figure A2.1b).
This is in spite of the total porosity in the gas zone being much larger than porosity in the oil and water
zones (Figure A2.1d). Our goal is to resolve this apparent inconsistency by the means of rock physics
diagnostic.

Solution via Rock Diagnostic. Notice that in the well under examination, a low-GR (about 75 API)
interval starts just above GOC and ends at about 1.53 km depth. In contrast, gamma-ray values between
GOC and OWC reach 125 API. The low-GR interval corresponds to relatively high P-wave velocity (2.4
km/s) and high porosity (33% - 35%). Velocity above GOC is higher than below GOC. The shear-wave
velocity also exceeds that below the gas-oil contact. This observation tells us that in addition to pore fluid,
rock fabric may be also responsible for velocity-depth variations.

To approach this task we have to diagnose rocks in the interval under examination. To do so, we have
to determine the elastic constants and densities of pore fluid components. We determine these properties
using the Batzle-Wang (see in Mavko et al., 1998) formulas for reservoir temperature 70 °C and pore
pressure 16 MPa. The results are given in Table A2.1 below.

The sonic data come from dipole measurements. We assume that there is no mud-filtrate invasion
effect on the dipole and density data because porosity is high and, therefore, the invasion radius has to be
small.

Therefore, we use the virgin saturation data to calculate the bulk modulus of the
pore fluid that is a mixture of water, oil, and gas. When doing so, we assume that there
is no oil above GOC and no gas below it. Obviously, such an assumption approximates

the real situation. These fluid properties are used to calculate the compressional
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modulus in the interval at 100% water saturation.
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Figure A2.1. Gamma-ray, velocity, and total porosity versus depth. Velocity in the gas-saturated
zone is higher than below it.

Table A2.1. Estimates for Pore Fluid Properties

Fluid Density (g/cm’) Bulk Modulus (GPa) Gravity (API) Salinity (ppm)
Water 1.024 2.72 56,000

Oil 0.68 0.6 40 (GOR = 150)

Gas 0.116 0.03 0.6

Let us cross-plot the compressional (M) modulus versus porosity for the entire
interval under examination (Figure A2.2a). The water and oil zones show clear
modulus-porosity trends. The gas zone shows two trends: one for the interval above
1527 m, and the other for the interval between 1561 m and 1527 m. Notice that the
latter interval corresponds to low gamma-ray readings (Figure A2.3).

In order to be able to compare gas to oil to water intervals, we theoretically
resaturate the entire interval with 100% formation water. We crossplot the resulting

compressional modulus versus porosity in Figure A2.2b. All parts of the interval,
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except the low-GR interval in the gas zone between 1561 m and 1527 m appear to be on
the same modulus-porosity trend that is the unconsolidated theoretical line of Dvorkin
and Nur (1996). The low-GR gas interval stands out and lies on a constant-cement line
(Avseth et al., 1998} with very small amounts of contact cement. The shear-modulus

crossplot (Figure 3.4) further supports this hypothesis.
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Figure A2.2. Compressional-modulus versus porosity below OWC, between OWC and GOC, and
above GOC. Left: modulus as measured; right: modulus with uniform saturation (100% brine}

with superimposed theoretical curves.

Conclusion. We conclude that it is rock texture rather than pore fluid that is
responsible in this case for the observed vertical velocity variations and contrasts. The
thin section images (Figure A2.5) do not directly show the presence of contact cement.
However, the apparent angularity of the coarse grains corresponding to the low-gamma-

ray gas-filled interval may indirectly indicate the presence of slight contact cementation.
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Appendix 1.3. Example 2 of Rock Physics Diagnostic:
Strength and Permeability from Porosity and Velocity for High-Porosity Sands

Summary. In high-porosity sandstones, permeability depends not only on porosity, but also on the
location of the pore-filling minerals. It is affected mostly by the part of the pore-filling cement that is
deposited away from grain contacts and clogs the pore space. On the other hand, the elasticity of
sandstones (which determines the elastic-wave velocity) is affected mostly by the rest of the cement, i.e.,
by its part deposited at grain contacts. Then, by analyzing velocity data, one can estimate the volume of the
contact cement. Once this quantity is known, porosity can be used to find the volume of the remaining,
non-contact, cement whose effect on permeability is large. We offer a new rock physics theory to quantify
the amount of the non-contact cement in sandstones from dry-rock velocity and porosity data. We apply
this theory to field well-log data and show that by relating permeability to the volume of the non-contact
cement a meaningful trend can be achieved, with much less scatter than the corresponding permeability-
porosity trend. This success renders viable the approach where sonic and porosity logs are used together to
diagnose the rock for its pore-scale structure and, based on this diagnostic, quantify properties that cannot
be measured directly.

Introduction and Problem Formulation. Non-uniqueness in relating velocity to porosity in core and
well-log data complicates interpretation of sonic and seismic measurements. One reason for this non-
uniqueness in sandstones is clay (e.g., Han, 1986). Another reason is textural variability among samples.
Dvorkin and Nur (1996) examine two relatively clay-free sandstone groups in the same porosity range, but
whose velocities significantly differed (Figure A3.1a). By comparing the data with effective-medium
theories they interpret this velocity difference as resulting from the difference in the position of diagenetic
cement. The explanation is that in the "fast” (Oseberg) rocks (contact) cement is located predominantly at
the grain contacts whereas in the "slow" (Troll) rocks (non-contact) cement is located predominantly away
from these contacts.

Coincidentally, the permeability of the Troll rocks is smaller than that of the Oseberg rocks (Figure
A3.1b). This fact allows us to assume that the position of the diagenetic cement affects not only velocity
but also permeability. The assumption is supported by numerical simulations of Bosl et al. (1998). This
effect has a simple physical explanation: the non-contact cement acts to increase the specific surface area
(Figure A3.1b) and thus decrease permeability.

To do so, we use log-derived velocity and porosity together with rock physics theory to subdivide the
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diagenetic cement into the contact and non-contact parts. Then by relating permeability to the volumetric
fraction of the non-contract cement in the rock we obtain a usable trend. This non-contact cement fraction
is the desired textural property. By quantifying the amount of contact and non-contact cement we diagnose
sandstone’s texture from well log data, similar to Dvorkin and Nur (1998). We show that such diagnostic is

important not only for obtaining a high-correlation permeability trend but also for assessing the strength of

the rock.
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Figure A3.1. a. Compressional modulus (the product of bulk density and P -wave velocity squared) versus porosity
for the Oseberg and Troll samples. The data displayed are for room-dry rocks at 30 MPa effective pressure
(Strandenes, 1991; and Blangy, 1992). The upper curve is from the contact cement theory and the bottom curve is from
the non-contact cement theory (Dvorkin and Nur, 1996). b. Permeability versus porosity for the same datasets
(Strandenes, 1995). The cartoons schematically show the location of cement among grains (contact for Oseberg and
non-contact for Troll).

North Sea Sleipner Field, Well 15/9-16. A vertical well, 15/9-16, penetrates the
North Sea Sleipner gas/condensate reservoir comprised of Paleocene turbiditic sand.
Porosity and permeability are available from about 60 plugs that evenly cover the
interval from 2380 to 2460 m. The vertical and horizontal permeabilities are practically
identical. The latter is used in this study. The sandstone is very well sorted with the
average sorting coefficient of 1.7; grain size varies between 0.15 and 0.25 mm. The
grains are predominantly quartz (average 80%) with the rest being feldspar (average
14%]), mica (average 2.3%), and clay, mostly chlorite, (average 2.2%). Traces of calcite
and other minerals are also present. The contact cement in these rocks is quartz
{(Nadeau, 1998). The upper part of the well is saturated with gas, with the gas-water

contact at 2430 m. The bulk moduli and densities of the formation water and gas are
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2.75 GPa and 1.02 g/ cm3, and 0.07 GPa and 0.27 g/ cm3, respectively (following Batzle
and Wang, 1992).

The interval under investigation can be subdivided into a high-resistivity zone (HRZ)
overlaying a low-resistivity zone (LRZ) with the transition at about 2410 m (Figure 4.2a).
Nadeau (1998) shows that there is a diagenetic change associated with this transition.
HRZ has a restricted distribution of diagenetic chlorite and up to 5% quartz cement.

LRZ has a slightly larger content of chlorite and a smaller degree of cementation.
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Figure A3.2. Various parameters versus depth in well 15/9-16. a. Far resistivity. Gray curve is for LRZ. b.
Log-derived (gray curve) and core porosity. Open symbols are for LRZ. c¢. Permeability. Open symbols are for
LRZ. d. Dry-rock (gray curve) and directly measured (black curve) compressional modulus. Symbols are from
dry-rock lab measurements at 30 MPa.

Porosity in the interval is high. We calculate it from bulk density (Schiumberger,
1989). It's values do not differ much from those measured on cores except for a few
points in LRZ (Figure 4.2b). The results of this study practically do not depend on what
porosity (log-derived or core} we use. We relate all parameters to the log-derived
porosity.

The log data contain only compressional-wave velocity. We calculate the dry-frame
compressional modulus (the product of bulk density and P -wave velocity squared) by

the Vp -only fluid substitution method (Mavko et al.,, 1995). The result is matched by
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the values measured on several room-dry plugs (Figure A3.2d). The 30 MPa effective
pressure for these datapoints equals the reservoir effective pressure (about 29 MPa).
Analysis of Data. There is a weak and not useful correlation between permeability
and porosity (either log-derived or core) in well 15/9-16 (Figure A3.3). This fact can
also be observed in Figures A3.2b and A3.2c where porosity and permeability are
plotted versus depth. The lower-porosity sandstones in HRZ have permeability larger
than that of the higher-porosity sandstones in LRZ. Notice also that the LRZ

sandstones are softer than the HRZ sandstones (Figure A3.2d).
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Figure A3.3. Horizontal permeability versus log-derived (a) and core (b) porosity. Gray lines show best linear fits.
Correlation coefficients are given in the graphs.

The modulus-porosity and permeability-porosity trends for HRZ and LRZ are given
in Figure A3.4. In the modulus-porosity plane (Figure A3.4a) the HRZ trend parallels
that of the contact-cemented Oseberg rocks and the contact cement theoretical
trajectory (the latter calculated for quartz grains with quartz cement). The HRZ rocks
have a tight modulus-porosity trend. Remarkably, in the permeability-porosity plane
(Figure A3.4b) the HRZ sandstones plot on top of the Oseberg data and also exhibit a
noticeable permeability-porosity trend. The LRZ sandstones on the other hand do not
show a modulus-porosity trend. These datapoints fill the space between the contact
and non-contact cement theoretical trajectories (the latter calculated for quartz rock at
29 MPa effective pressure). Similarly, in the permeability-porosity plane these rocks fill
the space between the Troll and Oseberg datapoints, and a permeability-porosity trend
is absent.

Both HRZ and LRZ rocks are quartz-cemented and have very close
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mineralogy. Based on this, we assume that both the modulus- and permeability-

porosity non-uniqueness (Figure A3.4) is due to the varying amounts of contact and

non-contact cement.
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The upper curve is from the contact cement theory and the bottom

curve is from the non-contact cement theory. b. Permeability versus porosity for the same
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open circles are for LRZ. The Oseberg and Troll data are plotted versus core porosity whereas the
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Diagnosing Rock for Non-Contact Cement. To calculate the amount of the non-
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contact cement from sonic and porosity we use a model where a high-porosity
sandstone has an idealized texture. Its basis is a random dense pack of identical
spherical grains at some critical porosity ¢, which may vary between 0.36 and 0.4 (Nur
et al.,, 1998). Every grain is identically and evenly enveloped by a layer of contact
cement, and the rest of the solid phase (additional to the grains and contact cement)
forms non-contact cement deposited in the pore space away from grain contacts (Figure
A3.5a). One is unlikely to encounter such an idealized picture in a thin section.
However, this is a way to build effective medium models, some of which have been
effectively used to model granular rocks (e.g., Dvorkin and Nur, 1996; Moos et al.,
1997).

Consider now a datapoint in the modulus-porosity plane that lies below a
theoretical contact cement trajectory (Figure 4.5b). We assume that the non-contact
cement does not contribute to the stiffness of this rock. Thus its modulus is identical

to that of a higher porosity (¢

cem

)} rock of the same texture but without the non-contact
cement. The corresponding datapoint is the horizontal projection (in the modulus-
porosity plane) of the original one onto a contact-cement trajectory (Figure 4.5b).
Volume balance gives the following relations between the porosity of the datapoint (@),

its projection on the contact-cement trajectory (¢

cem

), critical porosity (¢,), and the

volume fractions of the contact ( f_.) and non-contact ( f,..) cement in rock:

nce

fcc = ¢c - ¢cem; fncc = ¢c_ ¢_ fcc' (A3.1)

The contact-cement trajectory can be plotted using equations in Dvorkin and Nur
(1996); it depends on the elastic moduli of grains and cement, and on the chosen
critical porosity value. An additional input parameter is the average number of contacts
per grain in the original sphere pack (). It may vary between 9 and 6. In the case
under examination we choose ¢, = 0.38 (average between 0.36 and 0.4) and n = 8.5.
Because the grains and contact cement are predominantly quartz, we plot the contact-
cement trajectory for quartz-cemented quartz grains (Figure A3.5b). In calculating this
trajectory, we use 38 GPa and 44 GPa for the bulk and shear moduli of quartz,

respectively (Carmichael, 1990). This trajectory can be statistically fitted (with
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correlation coefficient about 1) by equation

1.0370.38— ¢, =—0.0013+0.0134M +4.3-107° M, (A3.2)

where M is the compressional modulus of the dry contact-cemented rock. The contact-
cement trajectory for any set of input parameters can be obtained from Dvorkin and
Nur (1996). Then it can be statistically fitted by an equation similar to Equation (A3.2).
Now we can combine Equations (A3.1) and (A3.2) to arrive at a formula that relates
the volumetric fractions of the contact and non-contact cement to the dry-frame

compressional modulus and porosity:

f..=0.93(-0.0013+0.0134M + 4.3-10° M*)*, f,.. = 0.38— ¢ — f,.. (A3.3)

These fractions, as calculated for well 5/9-16 (using the dry-frame compressional
modulus from fluid substitution) are given in Figure A3.5c. The contact cement
dominates in HRZ whereas the non-contact cement is prevalent in LRZ.

This diagnostic can be immediately used to assess the strength of the rock: clearly
the larger the amount of contact cement the stronger the rock (at the same porosity).
This effect could be clearly seen in the Troll and Oseberg example (Figure A3.1). The
Troll samples that do not have contact cement are friable sands (Blangy, 1992), whereas
the Oseberg samples show significant structural integrity (Strandenes, 1991). In the
case under examination, our diagnostic is also consistent with the rock’s strength:
Nadeau (1998) states that quartz cementation progressed more readily in HRZ and is
associated with intervals less prone to sand production.

Permeability Trend. In Figure A3.6a we plot the logarithm of permeability (k) versus
the volumetric fraction of the non-contact cement. A linear trend is evident (as opposed

to the absence of such in Figure A3.3). The linear-fit equation for this trend is

Log,k=33-19.46f,. R=0.85. (A3.4)

nee?

The correlation slightly improves if the permeability is normalized by the grain size

(d) squared (Figure A3.6b):

Log,,(k/d*)=4.8-20.47f, ;R =0.86. (A3.5)

cc?
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Such normalization is often used to improve permeability trends because permeability
strongly depends on the grain size (e.g., Bourbie et al., 1987). In our case this
improvement is small due to a relatively uniform grain size distribution in the interval

(between 0.15 and 0.25 mm).
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Figure A3.6. Permeability (a) and permeability normalized by grain size squared (b) versus the volumetric fraction of
non-contact cement. Gray lines show best linear fits. Correlation coefficients are given in the graphs.

Conclusion and Recommendations. The high-correlation trends in Equations (A3.4)
and (A3.5) can be used to predict permeability from sonic and porosity data. We
obtained these trends by using the amount of non-contact cement to quantify the
variability of rock texture. This confirms our initial hypothesis that textural variability
in rock, specifically, the amount of the non-contact cement, can be responsible for non-
uniqueness in permeability-porosity trends such as shown in Figure 4.3. To calculate
the amount of the non-contact cement is a way of obtaining a meaningful correlation for
permeability. The method of calculating the amount of contact and non-contact cement
presented here is in fact a method of diagnosing the texture of high-porosity sandstone
from well-log data. Such diagnostic is important not only for obtaining a usable
correlation for permeability but also for assessing the strength of rock and its
susceptibility to sanding.

Equation (A4.2) is not universal. In every separate case study it has to be re-derived
from the appropriate contact-cement trajectory where the elastic moduli of the grains
The

and cement are selected according to mineralogy or within reasonable ranges.

"free” parameters ¢, and n can be varied within reasonable (narrow) ranges until the
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best correlation, such as Equation (A4.4), is obtained.
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Appendix 1.4. Example 3 of Rock Physics Diagnostic:

Diagnosing Sands for Reservoir Characterization from Senic and Seismic

Summary. At high porosity, velocity in reservoir rocks strongly depends on the position of the
intergranular material. Velocity is high if the original grains are cemented at their contacts. It is low if the
pore-filling material is placed away from the contacts. In the latter case we have truly unconsolidated
sediments. In the former case we have high-porosity cemented rocks. Separating these two rock types is
important for hydrocarbon identification. Due to the difference in the rock frame stiffness between the
unconsolidated and high-porosity cemented rocks, seismic signatures of the former filled with water can be
very close to those of the latter filled with hydrocarbons. This may complicate direct hydrocarbon
detection. We separate the two rock types by diagnosing sand using rock physics theory. We conduct such
diagnostic on well log data from two wells that penetrate the Heimdal formation (North Sea). We show
that the Heimdal formation reservoir is composed of both unconsolidated and cemented high-porosity
sands. The initial quartz cementation present in the latter is clearly seen in the cathode-luminescent SEM
images. These images, combined with point XRD analysis, confirm our diagnostic that the high-velocity
high-porosity sands in Heimdal contain quartz grains surrounded by quartz-cement rims. We find that the
two different types of sand which are capped by similar low-impedance shales produce drastically different
AVO signatures. The oil-filled high-porosity cemented sand shows a relatively strong zero-offset
reflectivity which becomes less positive with increasing offset, while the oil-filled uncemented sand shows
a negative zero-offset reflectivity with increasingly negative far-offset response. These results show that
(1) rock diagnostic can be conducted not only on the log scale but also on the seismic scale; and (2) taking
into account the nature of the rock improves our ability to identify pore fluid from seismic.

Introduction and Problem Formulation. Quartz cementation of sands greatly affects porosity,
permeability, and seismic properties. Sandstones in continuously subsiding sedimentary basins, such as in
the North Sea and the Gulf Coast, tend to have poorly developed quartz cement down to a depth of 2.5 - 3.0
km (Bjegrlykke and Egeberg, 1993). Hence, Tertiary sands in the North Sea are usually reported to be
poorly consolidated with no (or insignificant quantities of) quartz cement. “Insignificant” is related to
volume -- small amounts of quartz cement do not significantly affect porosity. However, only small
amounts of cement at grain contacts are needed to considerably stiffen the frame of a rock (Dvorkin and
Nur, 1996) and strongly increase velocity. We apply the contact cement concept to study two clean

sandstone intervals, both representing the Palacocene age Heimdal Formation in the North Sea. Both
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intervals are oil-filled reservoir sands of commercial interest. We diagnose the rock using well log
measurements and rock physics theory. We assume that if in the velocity-porosity plane a datapoint falls
close to a theoretical line, the internal structure of the rock is similar to the idealized structure used in the
model. We find from such diagnostic that one interval is composed of unconsolidated sand, while the other
interval is composed of cemented high-porosity sand. Thin-section and SEM images confirm this
diagnostic. By studying the seismic signatures of these two different types of clean sands we upscale the
log-based diagnostic to the seismic scale.

Diagnostic and Confirmation. We examine two wells -- Well #1 and Well #2. Sonic velocity and
gamma-ray are plotted versus depth for both wells in Figures A4.1a to A4.1d. Vp is plotted versus porosity
in Figures 1d and 1f. Notice that in Well #2 a thick sand interval (gray bar in Figure A4.1c) is marked by
extremely low and constant gamma-ray readings. This sand layer is surrounded by high-gamma-ray shale
packages. In Figure A4.1f, these two lithologies fall into two distinctive velocity-porosity patterns. In
Well #1, unlike in Well #2, we observe a gradual variation of clay content between very clean sand and
shale. Only a relatively thin (10 m) sand interval (gray bar in Figure A4.1a) is identified as a practically
clay-free reservoir sand. Because of the gradual variation of clay content in this well, we do not observe
(Figure A4.1le) velocity-porosity patterns as distinctive as in Well #1. These two clean sahd intervals (in
both wells) represent the same stratigraphic level, although located in different oil fields. They are shown
by bold black symbols in Figures A4.5.1e and A4.5.1f.

For the purpose of diagnostic, we plot together these two subsets of the data (Figure A4.2). We
diagnose these rocks by superimposing theoretical rock physics curves (Dvorkin and Nur, 1996) on this
plot. The contact cement line corresponds to the case where rock is formed by quartz-cement rims growing
on sand grains. Here velocity drastically increases with only slightly decreasing porosity. The
unconsolidated line corresponds to the case where porosity reduces not due to the growth of contact
cement, but due to loose pore-filling material such as small grains, mica and detrital clay particles. Here
velocity strongly depends on the effective pressure (about 20 MPa here) and only gradually increases with
decreasing porosity. Notice that the Well #2 data points do not fall on the contact cement line. This is
because the volumetric fraction of contact cement in these rocks, according to a thin section point-count
analysis, is constant (about 2%) in the entire porosity range. Therefore this contact cement is responsible
for the initial drastic velocity increase (as compared to uncemented sand) at 37% porosity, but the

continuing porosity decrease is due to loose pore-filling material. This concept is represented by the
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constant cement fraction line that has the shape of the unconsolidated line, but a different high-porosity end

member. The two sand intervals can be diagnosed by rock physics theory as:

unconsolidated quartz sand; and (b) Well #2 --

cement in the whole rock.

2.1

[ ell #1

Depth (km)
¢
[ 8]

23

A Vp (km/s)

4 L) L) L] 1]
Well #1
% 3t 4
<
(=%
>t o"“ -
] I S S M
E 0.1 02 03 04

Density-Porosity

(a) Well #1 -

contact-cemented quartz sand with a constant fraction of

T T T 1
Well #2 [
17 1F
'g » -‘
:5 - -
= L ]
g8 - |
19F
[ Limestone
‘ 'l L 1
2 3 4 40 80 120
C Vp (km/s) )] GR
4 T T T T v v
Well #2
£ 3} \ .
=2
o
N -
2k P —— s
F 0.1 02 03 0.4
Density-Porosity
(a-d); and P-wave

Figure A4.1. P-wave velocity and gamma-ray versus depth

porosity (e and f) for both wells.

it

i

38

Vi (kmis}
i
LI R 2

ll{\'li'

25

1

H
Constant
Cement Fraction 2%) Ling

Unconsolidated
Line

3

H
Comtact Coment

Line

PRSI SUET T

Sediednckndundomd

.25

.3
Porosity

Figure A4.2. P-wave velocity versus porosity for sand intervals in both

serve to diagnose the rocks.

A-31

velocity versus

wells. Theoretical lines



To directly confirm this diagnostic, consider the thin sections of two samples from
both intervals (Figure A4.3). The samples have approximately same porosity. They are
predominantly quartz. No contact cementation is apparent in both images. The left
image (Well #1) shows some organic coating around quartz grains. Consider now two
SEM images of a sample from Well #2 (Figure A4.4). The left-hand image is in back-
scatter light and the right-hand one is in cathode-luminescent light. Notice the V-
shaped grain in the middle. No contact cement rim is apparent around this grain in
back-scatter light. Cathode-luminescent light reveals a contact-cement rim around this
grain. The point XRD analysis shows that both the grain and cement rim are pure
quartz. This confirms our diagnostic that the Well #2 sand interval is contact-
cemented. The hexagonal crystal shapes in the upper left corner also indicate
diagenetic cementation. No cement rims or hexagonal crystal shapes have been found
around grains in the sand interval from Well #1. Another direct proof of our diagnostic
was that cores extracted from Well #1 appeared as piles of loose sand, whereas those

from Well #2 supported external stress.

Figure A4.3. Thin sections of two selected samples from Well #1 (left) and #2 (right).

Figure A4.4. SEM images of a Well #2 sample in back scatter light (left) and cathode-luminescent
light (right).

Seismic Response. To understand how the type of sand (unconsolidated versus
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cemented) affects the seismic response, we analyze CDP gathers at the well locations.
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Figure A4.5. Top. Real (a and ¢) and synthetic (b and d) CDP gathers. In synthetic gathers, the
AVO effect was modeled only at the target zones. Bottom. Real reflectivity versus offset and angle
(symbols) and theoretical Zoeppritz lines.

Figure A4.5a shows the real CDP gather at Well #1 where the picked horizon is at
the top of the Heimdal formation. Figure A4.5b gives a synthetic CDP gather for this
well produced by using a 30 Hz zero-phase Ricker wavelet and a log-derived reflectivity
series. Both the real and synthetic gathers show reflectivity increasingly negative with
increasing offset at the picked horizon. This reflectivity is plotted versus offset (angle),
together with the theoretical Zoeppritz line, in Figure A4.5e. Contrary to Well #1, the
top of the Heimdal formation in Well #2 (which is capped by similar shales) produces a
strong positive reflector with reflectivity decreasing with increasing offset (Figures A4.5c

and A4.5d). For this well, the reflectivity is plotted versus offset (angle), together with
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the theoretical Zoeppritz line, in Figure A4.5f. The synthetic response is very close to
the real data in both wells which means that we can rely on well-log-based rock
diagnostic to predict seismic response.

This offset-dependent reflectivity analysis shows that clean sands of the same
formation, similar porosity, and with comparable oil saturation produce drastically
different seismic response depending on whether they are truly unconsolidated or have
initial quartz cementation. Therefore, we can use both normal-incidence and offset-
dependent reflectivity to diagnose rock and characterize a reservoir from seismic. Such
rock diagnostic may be of great importance because if high-porosity contact-cemented
sands are not separated from truly unconsolidated sands, one may misinterpret a
change in seismic signatures caused by this petrographic effect as a pore-fluid effect.

AVO Effect and Pore Fluid. It is very important to diagnose the texture of the rock
not only for the purpose of strength estimation but also for reducing the risk of fluid
identification from AVO data.

In Figure A4.6 we plot synthetic amplitude-versus-offset curves for a contact
cemented and uncemented sandstone samples from the two wells under examination.
We use Gassmann's fluid substitution equation to calculate the effective elastic
properties of the samples with gas and water. In this model, the samples are overlaid
with a shale layer. We can see from Figure A4.6 that the AVO signature of the
uncemented sand with water may be very close to that of the cemented sand with gas.
Only by understanding the texture of the rock, the interpreter will be able to reliably

identify the pore fluid in this situation.
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Figure A4.6. AVO signatures of sandstones with two different textures saturated with gas and
water.

Figure A4.7. Amplitude map at the top of Heimdal formation with well location.

Relating Texture to Geology. A way of identifying rock texture is through comparing
the hard velocity and porosity data to geology and depositional features.

It is evident from Figure A4.7 where the reflection amplitude map is shown at the
top of the reservoir that is penetrated by the two wells under examination that Well #2,
where the sandstone appears to have slight quartz cementation, is located in the high-
energy depositional channel where the sand grains have been stripped of organic
coating and grain sorting is good. We speculate that this is one reason for the
generation of the contact cement. On the other hand, Well #1 is located in the low-

energy lobe where the large quartz grains are likely to be covered by fines and organics
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that prevent contact cementation. Therefore, by combining well log and core analysis
with the geological knowledge and seismic imaging, we can tell the likelihood of the
occurrence of a certain texture (cemented sand in the high-energy environment and
friable sand in a lobe).

Conclusion. Rock diagnostic is important for correctly characterizing prospective
reservoirs. Such diagnostic is based on rock physics theory and can be accomplished
using well log data. The diagnostic features observed in well log data can be translated
into distinctive seismic signatures. Therefore, seismic data can also be used for rock
diagnostic given that the stratigraphic unit is resolvable at the seismic scale. In this
paper we applied the diagnostic concept to the Heimdal formation, and were able to
discriminate high-porosity cemented from unconsolidated sands both from well logs

and seismic.
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Appendix 1.5. Elastic Properties of Ottawa Sand - Kaolinite Mixtures

Summary. In this Appendix we display the measured properties of hand-made mixtures of Ottawa
sand and kaolinite, following the data from Yin (1993). These hand-made mixtures have elastic properties

analogous to those of unconsolidated Gulf of Mexico sediments (See Section 1). All data are for room-dry

samples.
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0.6 1 0.6 .

o

5}
o
o

Total Porosity
o
»

Total Porosity
o
kS

o

&
o
w

0.2 0.2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Clay Fraction Weight b Clay Fraction Volume

Figure A5.1. Total porosity versus (a) clay content by weight and (b) clay content by volume. The differential
pressure of the measurement is given on the curves.
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Figure A5.2. Permeability versus (a) clay content by weight; (b) clay content by volume; and (c)
total porosity. measured at O MPa differential pressure.

Elastic-Wave Velocity.
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Figure A5.3. P-wave velocity versus (a) clay content by weight and (b} clay content by volume;
and (¢} total porosity. The differential pressure of the measurement is given on the curves.
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Figure A5.4. S-wave velocity versus (a) clay content by weight and (b) clay content by volume;
and (c) total porosity. The differential pressure of the measurement is given on the curves.

Elastic Moduli.
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Figure A5.5. Compressional modulus versus (a) clay content by weight and (b) clay content by
volume; and (c) total porosity. The differential pressure of the measurement is given on the
curves.
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Figure A5.6. Shear modulus versus (a) clay content by weight and (b) clay content by volume;

and (c) total porosity. The differential pressure of the measurement is given on the curves.
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