76/
SAND9Y-2z240C

Efficient Control Law Simulafieas. .

for Multiple Mobile Robots?7 19 o
Brian J. Driessen

Sandia National Laboratories, Albuquerque, NM 87185-0439, bjdries @sandia.gov
Joseph D. Kotulski
Sandia National Laboratories, Albuquerque, NM 87185-1152, jdkotul @sandia.gov
Kwan S. Kwok
Sandia National Laboratories, Albuquerque, NM 87185-1004, kskwok @sandia.gov
John T. Feddema
Sandia National Laboratories, Albuquerque, NM 87185-1003, jtfedde @sandia.gov

Abstract: In this paper we consider the problem of simulating simple control laws involving large
numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is
large enough, say 1 million, due to the O(N?) cost of each time step. This work therefore uses
hierarchical tree-based methods for calculating the control law. These tree-based approaches have
O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots.
For concreteness, a decentralized control law which involves only the distance and bearing to the closest
neighbor robot will be considered. The time to calculate the control law for each robot at each time step is

demonstrated to be O(logN).

1. Imtroduction

Control laws for each mobile robot of a
large number of inexpensive mobile robots are
typically decentralized and very simple because
of the small amount of memory and compute-
power available to each robot. See, for example,
[61, [4]1, [11, [7], [2], and [5]. The number N of
such robots can make the simulation of their
control laws very expensive, i.e., O(N*). Tree-
based hierarchical spatial decomposition
however enables one to calculate the control law
for every robot in O(NlogN) time, as we shall
see in Section 2 and Section 3. We will consider
the prototypical case of a control law which
involves only the distance and bearing to the
closest neighbor robot. Clearly the naive
approach to finding the closest neighbor vehicle
at each time step would cost O(N?) because N
distances would have to be calculated for each
vehicle before the smallest distance is
determined. The tree-based approach will allow

us to find the closest robot to any given robot in
O(log N) time.

2. The Method

As indicated in Section 1, the real
problem boils down to finding the closest robot
to any given robot in O(log N) time. For ease of
presentation, we will consider the two-
dimensional case; all methodology herein can be
easily extended to the three-dimensional case.

The first step of the method is to create
a tree-based hierarchical decomposition of the
domain in which the robots reside. Figure 1
below illustrates such a spatial decomposition.

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under Contract DE-AC04-94 AL85000.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

-2

Figure 1. Ilustration of Tree-Based
Hierarchical Spatial Decomposition

3

Each dot in Figure 1 represents a mobile robot.
For simplicity and without loss of generality, we
consider the original domain to be a square. This
domain is the parent of four subdomains which
constitute the first generation. Each subdomain is
further divided into four more subdomains. This
process proceeds until each subdomain of the
generation has no more than one robot. If the
ratio of the maximum to average spatial density of
the robots is upper bounded as N increases, then
the number of generations of the tree can be easily
seen to be O(log, N)=0O(logN).

The next step is to take each robot
consecutively through the generations of the tree
while throwing out those subdomains that could
not possibly contain the closest neighbor robot. If
a subdomain is thrown out, none of the children
or sub-subdomains of this subdomain are
considered in the next generation of the tree. It is
this ability to throw out large numbers of robots at
once that makes the method efficient. When we
reach the final generation, we have to compare
only O(1) robots' distances to the robot under
consideration to obtain the closest robot.

The method by which we decide what
subdomains of a generation to throw out is as
follows. Each remaining subdomain of a
generation has a closest and farthest point to our
robot. If we sketch these subdomains on a
distance number line we obtain a figure analogous
to Figure 2 below.

[
s
t
i
t
t
[
[
RSO TV,

B ——
|
—_

1

t

1

1

1

I

1

1

t

i)

t 1

t I

t 1

i

3

1

1 t
aof !

1 1

1 !

1 t

) !
20f |
| t
i,
) i
I ;

distance

dmin dmax
. 1 s

Figure 2. Graphical Illustration of Method for
Throwing Out Subdomains

where the left point of each segment in Figure 2
represents the subdomain's closest point and the
right point the farthest point of the subdomain.
Let C denote the segment with the smallest
closest-distance, denoted by dmin in Figure 2.
Then any subdomain whose segment's interval
does not overlap that of C cannot contain the
closest neighbor robot. Any such subdomain is
thrown out. In Figure 2, only three cells have
distance intervals that overlap that of C. Thus, all
but these three cells and C would be removed
from the cell list.

We will now present some details of the
algorithm. Suppose there exists a data structure
that allows us to determine in O(1) time whether a
cell contains any robots, and suppose that the time
and memory required to create this structure are
<O(NlogN) and < O(N) respectively. Suppose
also that this same data structure allows us to
determine which robot, if any, is located in any
given cell of the Mth generation, also in O(1)
time. One such data structure and its creation will
be presented shortly. Let M denote the number of
generations of geometrical sub-division of the
original domain. Then M is the number of sub-
divisions required to make each resulting square
cell have no more than one robot. If m denotes
which of these M generations is currently under
consideration, then each cell of the mth
generation is a square with sides of length

L(%) , where L is the length of a side of the

original square domain. Let n, denote the

number of remaining cells in the mth generation
list of cells, where n, =1. (Many cells are thrown

out as we step down through the generations.) A
cell of a generation will be denoted by its center-

point's location (x,,y,). Let (x',y") denote the
position of the robot under consideration. Then
the algorithm is as follows.

Loop m=1to M 2.1)
From the list of n,_, cells of the previous
generation, divide each such cell into four child

cells to create a list of 4n,__, cells. 2.2)
Free the memory for the (m-1)th
generation cell list. (2.3)

Remove from the list created in (2.2) all
those cells that contain no robots. Recall the cost
to test whether a cell has any robots is O(1), by the
assumption of the existence of the required data
structures. 24

Calculate the shortest and farthest
distance from (x",y") to each cell in the list from
(2.4). 2.5)

Using the results of (2.5), remove from
the cell list those cells that contain only the robot
at (x",y"). (Such cells will have zero distance to

(x,¥)) (2.6)
Find the remaining cell whose closest-
point (to (x",y")) is smallest. 2.7

Let d_,, denote the associated smallest

distance from (2.7), and let 4, denote the largest
distance for that same cell. 2.8)

Remove from the remaining list of cells
all of those cells whose shortest-distance to
(x",y") is greater than d___. (2.9)
EndLoop (2.10)

After the loop (2.1)-(2.10) is completed,
we have a list of generation-M cells where the
length of this list is O(1). Each of these cells
contains a single robot. Finally, of these O(1)
robots, we find the one with the smallest distance
to (x',y"). This robot is the closest neighbor
robot that we were seeking.

We will now describe the data structures,
and their creation, that allow us to determine in
O(1) time whether a cell of generation m,
(m=1,...,M), has any robots and also what the
robot index of a generation-M cell is. The data
structures that were used were M+1 matrices. For
each generation m, let Q, e R”* denote a
matrix of integers that tells the number of robots
in the associated cell. The invertible mapping
from the matrix's row/column indices (i,j) to the
cell's center position (x,,y,) is given by

x, =h/2+({-Dh+x,, 2.11)

y.=h/2+({@-Dh+y,, (2.12)

where h=L(%) is the cell-size of the mth

generation cells and (x,;,,¥,;) is the location of
the lower left corner of the original domain.
Equation (2.11) can be solve for i given x, and
(2.12) can be solved for j given y,. In particular,
i=(x,—h/2—-x_) h+1 (2.13)
J=ly,=h/2=yu) h+1 (2.14)
Finally let Pe R***" denote a matrix whose F;
value is equal to the index of the robot contained

in the associated cell of the Mth generation (as
determined by (2.11)-(2.14)). Let C,, denote the

nth entry in a list of cells for the mth generation.
Each such cell has a centroid (x,,y,) attribute and
a list-of-robots (contained in the cell) attribute
f’m. Each cell also has a number-of-robots
attribute N, .

The creation of the @, (m=1,...,M) and P

data structures is as follows.

m=0 (2.15)
While max(N,,)>1 (2.16)
m=m-+1 2.17)
Divide each entry in the (m-1)th list of
cells to produce a list of 4n,_, cells. (2.18)

Loop through all of the robots of each of
the (m-1)th generation cells while assigning each
such robot to one of the four mth-generation
children cells of the (m-1)th generation cell.

(2.19)

~ Delete all cells from the list from (2.18)

that have no robots, while setting the appropriate
Q,(i,j) value to 0. (2.20)

For each cell in the remaining list, set the
associated Q, (i,j) value equal to the number of
robots in that cell. 2.21)
EndWhile (2.22)
For each cell in the list of Mth generation cells,
set the associated F; value equal to the index of
the (single) robot the cell holds. (2.23)

This completes the creation of the

Q.(@,j) and P.
3. Numerical Example

The example considered herein is one in
which a large set of inexpensive mobile robots are
to converge to a target without colliding with each
other . If we let v be the velocity of the robot,
then the control law takes the following form

- —C -
v ==—r3—‘el +C.é, 3.0
where the first term is a repulsive term directed

away from the closest neighbor vehicle r distance
units away and & is the bearing vector to the

target. Clearly to simulate this very simple
control law efficiently, one must be able to find
the closest robot efficiently. See [6] for more
details of this problem. This problem is what
motivated the development of the method
presented herein.

In this section we would like to
demonstrate the O(NlogN) complexity of the
simulation method. The creation of the data
structures in (2.15)-(2.23) is well known to
require O(NogN) time and O(N) storage, based
upon the theory of the well-known Barnes-Hut
algorithm [3].

To our knowledge the cost of (2.1)-(2.10)
is not established in the existing theory as it is a
new approach to finding the closest neighbor
robot. In this paper we will only demonstrate
empirically that (2.1)-(2.10) has O(logN) run
time. To do this it is sufficient to show that the
average (over the M generations) number of cells
in the cell list after step (2.9) is O(1). For this
empirical demonstration, we considered a
Gaussian distribution of robots and determined
how this average number of cells per generation
varied with N. Table 1 illustrates the results of
this experiment. We see that this average number
of cells is in fact essentially independent of N.
Thus, the method of (2.1)-(2.10) shows promise of
being O(logN). In future work we will provide a
proof of the O(logN) complexity of (2.1)-(2.10).

Table 1. Demonstration of Algorithm Complexity

N | AvgNumber of Cells After Step(2.9)
30 43

160 3.9

320 5.3

640 4.8

1280 3.6

4. Conclusion

In this paper we presented a method for
simulating control laws involving large numbers
of mobile robots. Such robots are typically very
inexpensive and use very simple decentralized
control laws. The prototypical case considered
involved a very simple decentralized control in
which the only interaction (between robots) in the
control law was a function of the distance and
bearing to the closest neighbor robot. Letting N

denote the number of robots, the method presented
allowed for the calculation of all N control laws in
O(NlogN) time, which is more efficient than the
typical O(N?) approach. The method is a novel
one that uses a hierarchical decomposition of the
spatial domain containing the robots to obtain the
closest neighbor robot for all robots in O(NogV)
time.

References

[11 Arkin, Ronald C., "Cooperation Without
Communication: = Multiagent Schema-
Based Robot Navigation," Journal of
Robotic Systems 9(3), 1992, pp. 351-364.

[21 Asama, H., 'Distributed Autonomous
Robotic System Configured with Muliiple
Agents and Its Cooperative Behaviors,"
Journal of Robotics and Mechatronics, Vol.
4, No. 3, 1992.

[3] Barnes, J. and Hut. P.; "A Hierarchical
O(NlogN) Force-Calculation Algorithm,"
Nature, Vol. 324, No.4, December 1986,
pp- 446-449.

[4] Brooks, Rodney A. and Flynn, Anita M.,
"Fast, Cheap and Out of Control: A
Robot Invasion of the Solar System,”
Journal of the British Interplanetary
Society, Vol. 42, 1989, pp. 478-485.

[5] Chen, Q., and Luh, J., "Coordination and
Control of a Group of Small Mobile
Robots,” IEEE International Conference on
Robotics and Automation, vol. 3, 1994, pp.
2315-2320.

[6] Driessen, B., Feddema, J., and Kwok, K.,
"Decentralized Fuzzy Control of Multiple
Nonholonomic Vehicles," American
Control Conference, 1998.

[71 Kube, C. and Zhang, H., "Collective
Robotics: From Social Insects to Robots,"”
Adaptive Behavior, Vol. 2, No. 2, pp. 189-
218.

