LA-UR- 98-4179

Approved for public release;
distribution is unfimited.

Title: | Instruction-level Characterization of Scientific Computing
Applications Using Hardware Performance Counters

Author(s): | Yong Luo, CIC-19
Kirk W. Cameron, CIC-19

Submitted to: | Workshop on Workload Characterization
November 24, 1998
Dallas, TX

Los Alamos

NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
relains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Govemment purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Form 836 (10/96)




DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document. |




Instruction-level Characterization of Scientific Computing Applications
Using Hardware Performance Counters

Yong Luo Kirk W. Cameron
Scientific Computing Group
Mail Stop B256, CIC-19
Los Alamos National Laboratory
Los Alamos, NM 87545
{yongl, kirk}@lanl.gov

Introduction

Workload characterization has been proven an essential tool to architecture design and performance evaluation in both
scientific and commercial computing areas. Traditional workload characterization techniques ‘include FLOPS rate,
cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated
modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint
the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately
demonstrating the potential performance benefit of any architectural or functional improvement in a new processor
design. To solve these problems, many people rely on simulators, which have substantial constraints especially on
large-scale scientific computing applications. This paper presents a new techniqqe of characterizing applications at the
instruction level using hardware performance counters. It has the advantage of collecting instruction-level
characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to
calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units.
Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural
performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some
insight to the problem that only a small percentage of processor peak performance can be achieved even for many very
cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable
architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the

creation of an analytical microprocessor pipeline model and memory hierarchy model.




This paper describes the application of this technique on two SGI R10000-based systems: Origin2000 and
PowerChallenge, using the SGI performance counter tool perfex. Some results are directly validated by the empirical

memory model [1] and the statistic model [5].

Methodology

The original motivation of creating an analytical pipeline model for a superscalar microprocessor leads to the definition
of a set of workload parameters. We focus on the importance of using instruction-level parameters to characterize a

workload so as to associate the workload performance behavior with the microprocessor architecture. Common

Multi Instruction fetch/decode

*Branch Pred/ Register Rename
F I M
Q Q Q
0] U 8]
E E T
U S U Outstanding
E E E Queue

\ FPU / \ALU / LD/ST
* * If miss cache

Figure 1 General Pipeline Model

architectural features of many modern superscalar microprocessors can be generalized as separated pipelines for
functional units (Fig. 1): one or more integer pipeline(s) for ALU(s), one or more floating-point pipeline(s) for FPU(s),
and one or more memory operation pipeline(s) for load/store unit(s).

A branch prediction unit is usually employed before multiple decoded instructions being dispatched to these pipelines.
In applications with a small percentage of branches and high branch prediction hit ratio, the execution of these
applications can be virtually viewed as feeding integer, floating-point, and memory instructions into three pipeline
queues. At the end of each queue, functional units execute the instructions at a preset rate, e.g. two floating-point

instructions per cycle, one memory instruction per cycle, etc. The out-of-order execution feature provides the ability of




resolving data dependency within or between these pipeline queues. Therefore, the distributions or the mixture pattern
of these three types of instructions in the application instruction flow shall essentially determine the instruction
execution rate (/PC), ignoring the memory hierarchy effect.. This is the well-known IPC, or CPI,, which represents the
effective application performance on a specific microprocessor without memory slowdown.

Efficiently measuring these instruction-level workload parameters is the key component to code characterization. The
large scale of our application workloads and the big slowdown of detailed instruction-level simulations determine that
the measurement of the workload characteristics must resort to some methods other than simulators. On-chip hardware
performance counters widely available on recent generation microprocessors become good candidates for extracting
these functional-unit-related parameters.

In order to analyze the behavior of those queues illustrated in Fig. 1, we need to measure the average inter-arrival
distance in number of instructions, instead of cycles, which are dependent on both architecture and application. When
we characterize an application, one of the keys is to separate the architectural factors so that a true workload
characterization can be presented. This “number of instructions between two consecutive operations” idea is borrowed
from the concept of run-length defined in {2].

We define the following average terms for those queues illustrated in Fig. 1:

1. = #of graduated instructions 1 = # of graduated instructions
P gof graduated FP instructions T sof graduated INT instructions
1 = #of graduated instructions 1. = # of graduated instructions
M # of graduated memory instructions H # of L1cache misses
# of graduated instructions
Apy =

# of L2 cache misses

To discount the effect of branch misprediction and the overhead impact of branch instructions, we also need to obtain
the ratios of branch instructions and branch mispredictions to ensure the applications can be simplified as three major
instruction flows (FP, Int, and Memory). On the other hand, the instruction cache miss ratio is also considered to see if
the instruction fetch effect can be significant. The key of this methodology is to estimate which of the above As can
cause the stall of microprocessor due to the limitation of architectural or memory constraints.

We have devised a three-step process for analysis of the inner workings of a given microprocessor, based on our

characterization. OQur first step involves assumption of an infinite L1 cache to allow a focused study on CPl,. To ease




discussion, let us define G as the growth rate of queued instructions within the microprocessor. We must take into

account the rate at which instructions graduate as well as the rate at which they are decoded giving:

where G, is the growth rate for the x-queue of interest, B, is the ideal instruction digpatching rate for the given
microprocessor, A, is the measured distance between instructions of type x for a given code, A, is the graduation rate of
the x-queue, and x is the current instruction type of interest, namely m, i, or f for memory , integer, or floating point
instructions. We are interested in positive growth rates (G,>0) for each queue in question. This formula, along with our
infinte L1 cache assumption, allows us to approach a lower bound for the widely discussed CP/l,. Figures 2-6 show the
steady state reached for these As. As a steady state is reached, positive growth rates will contribute to cpu stalls as any
queue within the microprocessor reaches its capacity. These cpu stalls directly contribute to the underlying CPI,.
Multiple positive growth rates lead to contemplation of K, a threshold of maximum instructions in flight; in other words
in some cases we must consider queue interaction as well as individual contributions to stalling. Since we assume an
infinite L1 cache, indicate no branching effect, ignore data dependency, calculations of CPIj based on A values must
give a lower bound to CPl,. Current data supports these conclusions as work towards better approximations of CPI,
continues.

In the second step, we focus on the first level of memory hierarchy. We no longer assume an infinite L1 cache and
focus on architectural features that allow computational overlap at the queueing level. Most of today’s superscalar
microprocessors allow overlap of computation through support for outstanding cache misses. Through comparison of A
values when misses to L1 cache occur, we can infer the advantages of lengthening the number of outstandings
supported on chip. This analysis is extendible to multi-layered caches and is not limited to this simple example. We

define a term Q,, as the maximum number of outstanding cache misses utilized by a code.

_ On*An

0,
2’Ll

, Q m is the maximum queue length of the memory pipeline.

This parameter gives us insight to the exploitation of outstanding misses for a particular code.

The third step of utilizing the instruction-level characterization attempts to draw conclusions related to cache size.
When cahe sizes across machines differ, A values will reflect the performance gained. Larger cache should insinuate
smaller values for the respective As. If not, then there is no significant performance gain attributable to a larger cache

for a particular code.




This multi-level procedure based on real-time code measurements can provide both analysis of current performance and
evaluation of possible gains/losses of simple architectural changes such as increasing queue length, increasing number

of outstandings, or increasing cache size. A later section provides results obtained using this methodology on the

testbed discussed earlier.

Application Description

Three applications (5 codes), which form the building blocks for many nuclear physics simulations in Los Alamos
National Laboratory, were used in this study.

SWEEP3D is a three dimensional solver for the time independent, neutral particle transport equation on an orthogonal
mesh [3]. The specific version used in these tests was a scalar-optimized "line-sweep” version [3] that involves
separately nested, quadrant, angle, and spatial-dimension loops. In contrast with vectorized plane-sweep versions of
SWEEP3D, there are no gather/scatter operations and memory traffic is significantly reduced through "scalarization” of
some array quantities. Because of these features, L.1 cache reuse on SWEEP3D is fairly high (the hit rate is about 85%).
A problem size of N implies N° grid points. Another version of SWEEP algorithm DSWEEP is used in our experiments
too. This is a vectorizable implementation of the diagonal line-sweep.

HYDRO is a two-dimensional explicit Lagrangian hydrodynamics code based on an algorithm by W. D. Schulz [4].
HYDRO is representative of a large class of codes in use at the Laboratory. The code is 100% vectorizable. An
important characteristic of the code is that most arrays are accessed with a stride equal to the length of one dimension of
the grid. HYDRO-T is a version of HYDRO in which most of the arrays have been transposed so that access is now
largely unit-stride. A problem size of N implies N” grid points.

HEAT solves the implicit diffusion PDE using a conjugate gradient solver for a single timestep. The code was written
originally for the CRAY T3D using SHMEM. The key aspect of HEAT is that its grid structure and data access
methods are designed to support one type of adaptive mesh refinement (AMR) mechanism, although the benchmark
code as supplied does not currently handle anything other than a single-level AMR grid (i.e. the coarse, regular level-1

grid only). A problem size of N implies N° grid points.



2 for Sweep A for Dsweep
9 6
g g —e—Floating Point % 4 —e—Fioating Point
f 2 N\ —a—Integer E 34 .- -—a—8 —a—Integer
3 3%— —a—Memoy 52 e —a—Memory
2
E’ 1 E
o =0 S—
0 50 100 150 200 250 0 50 100 150 200 250
Problem Size Problem Size
Figure 2 Sweep Figure 3 Dsweep
A for Hydro A for Hydro-t
9 9
o e
R 37
% g Lan s —e—Fioating Point % g Y, SV —+—Floating Point
za A teding —m—Integer A —n—Integer
= 3 —a—Memory =3 —a—Memory
‘§2 e — éZ g -
Z1 Z 1
0 . . o . . .
0 100 200 300 490 0 100 200 300 400
Problem Size Problem Size
Figure 4 Hydro Figure 5 Hydro-t
A for Heat
6
3
55
e aaahan: S
£ —e— Floating Point
;E_ 3 —a—Integer
o W
w2 —a— Memory
£
z
0 . . .
© 20 4 & 8 100 120
Problem Size
Figure 6 Heat
Table 1Branch and Icache Characteristics
Branch Rtio Mss Prediction Ratio Branch Mss Ratio Jeache Miss Ritio
(lvandh perinstrudtion)] (miss_predper lvandh)| (niss_pred perinstition)| icache_miiss perinstrodtion)
SWHP 00633 Q1365 0.008 0.0002
IsWHP 00570 00310 00017 0.0001
HEAT 0054 00093 o2 0.0017
RO Q1052 0.0988 Q00104 0.0088
IMROT Q1057 01126 0018 0.0087




All these benchmark codes are run on two MIPS R10000-based systems: the SGI PowerChallenge and the Origin2000.
Table 1 exhibits branch ratios, branch misprediction ratios, and the instruction cache miss ratios for all these codes. It is
clear from Table 1 data that both branch and instruction&cache effect can be negligible. Under this condition, the
performance study of these codes can focus on the impact of the three major instruction flows (FP, Int, & Memory).

Figures 2 — 6 show the variations of the As for all 5 benchmark codes in this study. These figures demonstrate that the
As converge to constant values with increasing problem sizes. This is understood as the instruction flow pattern of a

problem reaches its steady state. This phenomenon proves that As can be used in characterizing a code once it reaches

the steady state.

Performance Bottleneck Estimation

This new instruction-level workload characterization technique is first applied to two R10000-based systems to estimate
the application performance bottleneck. The R10000 microprocessor has the following major architecture constraints to
cause a CPU stall [6] (besides branch and instruction cache effects): a). one of the three main queues is full; b).
outstanding miss queue is full; c). the number of total instructions in all three queues reaches its maximum 32; d). all
renaming registers are consumed; €). there is more than one back-to-back write-back from L1. On the R10000
processor, both the F queue and the M queue have 16 entries each. The I queue can accommodate 16 instructions. As a
good first-order approximation [7], at each cycle, the load/store unit can execute one memory instruction. The two
ALUs can graduate up to two integer instructions per cycle and the FPUs complete up to two floating-point instructions
each cycle. The total number of instructions in flight on a R10000 is 32. The outstanding miss queue length is less than
2 on the PowerChallenge and 4 on the Origin2000. According to [6], since a R10000 has 64 registers for renaming, it is
unlikely that all 64 registers are exhausted before any other limit is reached. Also, the limit ) of L1 write-back buffer
may not be reached most of time. Therefore, we can focus on the other 3 constraints.

Utilizing these instruction-level characteristics, we calculate the growth rates for each code over both machines in Table

2. Due to their architectural similarity, the growth rates are identical across PowerChallenge and Origin 2000. For

Table 2 Measured Growth Rates

Sweep Dsweep Heat Hydro Hydro-t
Gm |Gi Gt IGm |Gi Gr Gm |{Gi Gt IGm |G |G IGm |G Gt

PowerChallenge | 0.41} -0.73| -0.68} 0.84| -0.65] -1.19] 0.43]-0.32|-1.11]0.08} 0.11}-1.19] 0.08{ 0.12]-1.20
Origin 2000 0.42] -0.76] -0.66] 0.89] -0.70] -1.19] 0.42]-0.32]-1.11] 0.09} 0.10] -1.19] 0.08} 0.12] -1.20




Table 3 Cache Miss Distances

Sweep Dsweep . | Heat Hydro Hydro-t
Art Az AL Az JAur Az A Az JAu A
PowerChallenge 126.6 [112.8 112.5 |34.6 ]15.5 162.2 |13.5 |78.8 (30.3 |274.2
QﬂgiHZGOO 249 {1229 {12.7 138.0 |15.5 162.6 {134 {219.4]30.3 |290.1

Sweep, Dsweep, and Heat the only positive growth rate is given in G,,. This leads us to declare the memory instruction
growth rate as our limiting factor for these codes on these machines. A limiting factor is the key contributor to stalls
within the microprocessor (excluding dependencies and memory latency as we assume infinite L1 cache). For these
codes, it is very likely the memory queue will fill, leading to stalls in decoding as entries graduate slower than they
arrive. For Hydro and Hydro-t, we have positive growth rates for the memory and integer queues. This leaves us two
possibilities for the limiting factor. The queue associated with the maximum of the two growth rates in the ideal case
would fill first, namely the integer queue. This can only happen however, if the maximum instruction threshold K is not
reached. As mentioned above, K=32 for the MIPS R10000. Since the memory and integer queue lengths are both 16,
we cannot reach the maximum number of instructions prior to stalling on a single queue. Thus, the limiting factor for
both of these codes will be the integer instruction growth rate.

For the second step of the pfocess, we no longer assume infinite L1 cache, and focus on the As for the L1 cache misses.
In Table 3, the values for Ay, over the codes and machines are given. As discussed earlier, the PowerChallenge allows
two outstanding misses. In this particular case, if the number of maximum outstandings utilized by a code is less than 2,
then the outstanding misses are not fully utilized. This is the case for Sweep, Heat, and Hydro-t. Dsweep and Hydro,
however utilize 2 outstanding misses. For the Origin 2000, we have all 5 codes utilizing less fhan 4 outstandings.

For the third part of the process, we observe the Ay, values in Table 3. The frequency of L2 misses shows a sharp
decline from the PowerChallenge to the Origin 2000 for Hydro. This indicates that Hydro is the only code that gains an
advantage from the larger L2 cache (2MB L2 on the PowerChallenge, 4MB L2 on the Origin2000). This is also

validated in the empirical memory model [1] and the statistic model [5].

Future Work

We intend to validate more thoroughly the proposed relationship of A values to cpiy using simulators. We would also

like to expand to more comprehensive equations involving the relationships discussed above. Finally, memory



bandwidth, branch/icache impact, and data dependency should be incorporated in an evolving model to extend the

applicability and validity of this modeling technique.

References:

[1] Lubeck, O.M, Luo, Y., and Wasserman, H.J. et al, An Empirical Hierarchical Memory Model Based on Hardware
| Performance Counters, PDPTA’98, Las Vegas, July 13-16, 1998.

[2] Bianchini,-R., Lim, B., Evaluating the Performance of Multithreading and Prefetching in Multiprocessors, Journal
of Parallel and Distributed Computing, N.37, p83-97, 1996.

[3] Koch, K. R,, Beker, R. S., and Alcouffe, R.E., Solution of the First-Order Form of the 3-D Discrete Ordinates
Equation on a Massively Parallel Processor, Trans. of the Amer. Nuc. Soc., 65, 198, 1992.

[4] Schulz, W.D., Two-Dimensional Lagrangian Hydrodynamic Difference Equations, Methods in Computational
Phys. Vol 3, p1, 1964.

[5] Sun, X. H.,, Cameron, K. W., et al., A Hierarchical Statistic Methodology for Advanced Memory System
Evaluation, submitted to IPPS’99, Sept. 1998.

[6] Schwarzmeier, J. (SGI/Cray), Private Communications, Sept. 1997.

[7]1 Turner, S. (SGI/Cray), Private Communications, Mar. 1998,




