
.

Approved forpub!ic.rdease; “
dstrtwtiorr is unhr@ci

l-itle

Author(s):

Submitted to

Los Alamos
NAT IO NAL LABORATORY

Optimizing the Elemental Sensitivity and Focal Spot
Size of a Monolithic Polycapillary Optic Using Micro-
X-ray Fluorescence

%“~ED~,,
4;6 ,8

6? 8*

Christopher Worley 8?/NMT-1 ‘ :
George-Havrilla NMT-1
Ning Gao X-ray Optical Systems, Inc.
Qi-Fan Xiao X-ray Optical Systems, Inc.

Proceedings of the 1998 Denver X-ray Conference

●

Los Alamos National Laboratow, an affirmative actionkqual opportunity employer, is operated by the University of California for the
U.S. Department of Energy under contract W-740E-ENG36. By acceptance of this article, the publisher recognizes that the U.S.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researchers right to publish; as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness. . Form S36 (10/95)

. ---- .- , —’7-..-... --—- .~-,??,-. .— - .- T.-., ~.-AT.- -

DISCLAIMER

This report was,.prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

,

Instruction-1evel Characterization of Scientific Computing Applications

Using Hardware Pe~ormance Counters

Yong Luo Kirk W. Cameron

Scientific Computing Group

Mail Stop 5256, CIC-19

Los Alamos National Laboratory

Los Alamos, NM 87545

{yongl, kirk} @lanl.gov

Introduction

Workload characterization has been proven an essential tool to architecture design and performance evaluation in both

scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate,

cache miss ratios, CPI (cycles per instruction or Zpc, instructions per cycle) etc. With the complexity of sophisticated

modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint

the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately

demonstrating the potential performance benefit of any architectural or functional improvement in a new processor

design. To solve these problems, many people rely on simulators, which have substantial constraints especially on

large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the

instruction level using hardware performance counters. It has the advantage of collecting instruction-level

characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to

calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units.

Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural

performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some

insight to the problem that only a small percentage of processor peak performance can be achieved even for many very

cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable

architectura~functional improvement for certain workloads. Eventually, these abstract parameters can lead to the

creation of an analytical microprocessor pipeline model and memory hierarchy model.

1

‘

This paper describes the application of this technique on two SGI RI OOOO-based systems: 0rigin2000 and

PowerChallenge, using the SGI performance counter tool perfex. Some results are directly validated by the empirical
.‘.

memory model [i] and the statistic model [5].

Methodology

The original motivation of creating an analytical pipeline model for a superscalar microprocessor leads to the definition

of a set of workload parameters. We focus on the importance of using instruction-level parameters to characterize a

workload so as to associate the workload performance behavior with the microprocessor architecture. Common

%==+-.

Multi Instruction fetch/decode

: :
u u
E E
u u
E E H

u
E
u Outstanding

E Queue

LDIST

Y If miss cache

Figure 1 GeneraI Pipeline Model

architectural features of many modern superscalar microprocessors can be generalized as separated pipelines for

functional units (Fig. 1): one or more integer pipeline(s) for ALU(S), one or more floating-point pipeline(s) for FPU(S),

and one or more memory operation pipeline(s) for load/store unit(s).

A branch prediction unit is usually employed before multiple decoded instructions being dispatched to these pipelines.

In applications with a small percentage of branches and high branch prediction hit ratio, the execution of these

applications can be virtually viewed as feeding integer, floating-point, and memory instructions into three pipeline

queues. At the end of each queue, functional units execute the instructions at a preset rate, e.g. two floating-point

instructions per cycle, one memory instruction per cycle, etc. The out-of-order execution feature provides the ability of

2

<.

.,

resolving data dependency within or between these pipeline queues. Therefore, the distributions or the mixture pattern

of these three types of instructions in the application instruction flow shall essentially determine the instruction
‘.

execution rate (WC), ignoring the memory hierarchy effect. This is the well-known lPCo or CPIO, which represents the

effective application performance on a specific microprocessor without memory slowdown.

Efficiently measuring these instruction-level workload parameters is the key component to code characterization. The

large scale of our application workloads and the big slowdown of detailed instruction-level simulations determine that

the measurement of the workload characteristics must resort to some methods other than simulators. On-chip hardware

performance counters widely available on recent generation microprocessors become good candidates for extracting

these functional-unit-related parameters.

In order to analyze the behavior of those queues illustrated in Fig. 1, we need to measure the average inter-arrival

distance in number of instructions, instead of cycles, which are dependent on both architecture and application. When

we characterize an application, one of the keys is to separate the architectural factors so that a true workload

characterization can be presented. This “number of instructions between two consecutive operations” idea is borrowed

from the concept of run-length defined in [2],

We define the following average terms for those queues illustrated in Fig. 1:

a, =
#of graduated instructions

a, =
#of graduated instructions

#of graduated FP instructions #of graduated HNTinstructions

AM =
#of graduated instructions

aL, =
#of graduated instructions

#of graduated memory instructions #of L1 cache misses

AL*=
#of graduated instructions

#of L2 cache misses

To discount the effect of branch misprediction and the overhead impact of branch instructions, we also need to obtain

the ratios of branch instructions and branch mispredictions to ensure the applications can be simplified as three major

instruction flows (FP, Int, and Memory). On the other hand, the instruction cache miss ratio is also considered to see if

the instruction fetch effect can be significant. The key of this methodology is to estimate which of the above As can

cause the stall of microprocessor due to the limitation of architectural or memory constraints.

We have devised a three-step process for analysis of the inner workings of a given microprocessor, based on our

characterization. Our first step involves assumption of an infinite L 1 cache to allow a focused study on CPIO. To ease

3

. .

.,

discussion, let us define G as the growth rate of queued instructions within the microprocessor. We must take into

account the rate at which instructions graduate as well as the rate at which they are decoded giving:
>,

where GX is the growth rate for the x-queue of interest, & is the ideal instruction dispatching rate for the given

microprocessor, & is the measured distance between instructions of type x for a given code, AXis the graduation rate of

the x-queue, and x is the current instruction type of interest, namely m, i, or f for memory , integer, or floating point

instructions. We are interested in positive growth rates (GX>O)for each queue in question. This formula, along with our

intinte L1 cache assumption, allows us to approach a lower bound for the widely discussed CPIO. Figures 2-6 show the

steady state reached for these ks. As a steady state is reached, positive growth rates will contribute to cpu stalls as any .

queue within the microprocessor reaches its capacity. These cpu stalls directly contribute to the underlying CPZO.

Multiple positive growth rates lead to contemplation of K, a threshold of maximum instructions in fligh~ in other words

in some cases we must consider queue interaction as well as individual contributions to stalling. Since we assume an

infinite L1 cache, indicate no branching effect, ignore data dependency, calculations of CPIO based on k values must

give a lower bound to CPIO. Current data supports these conclusions as work towards better approximations of CPIO

continues.

In the second step, we focus on the first level of memory hierarchy. We no longer assume an infinite L1 cache and

focus on architectural features that allow computational overlap at the queueing level. Most of today’s superscalar

microprocessors allow overlap of computation through support for outstanding cache misses. Through comparison of k

values when misses to L1 cache occur, we can infer the advantages of lengthening the number of outstandings

supported on chip. T& analysis is extendible to multi-layered caches and is not limited to this simple example. We

define a term Q. as the maximum number of outstanding cache misses utilized by a code.

Om=
Q.*2?)I

, Q~ is the maximum queue length of the memory pipeline.
AL,

This parameter gives us insight to the exploitation of outstanding misses for a particular code.

The third step of utilizing the instruction-level characterization attempts to draw conclusions related to cache size.

When cahe sizes across machines differ, L values will reflect the performance gained. Larger cache should insinuate

smaller values for the respective As. If not, then there is no significant performance gain attributable to a larger cache

for a particular code.

4

. .

. .

This multi-level procedure based on real-time code measurements can provide both analysis of current performance and

evaluation of possible gainsflosses of simple architectural changes such as increasing queue length, increasing number
?,..

of outstandings, or increasing cache size. A later section provides results obtained using this methodology on the

testbed discussed earlier.

I Application Description

Three applications (5 codes), which form the building blocks for many nuclear physics simulations in Los Alamos

National Laboratory, were used in this study.

SWEEP3D is a three dimensional solver for the time independent, neutral particle transport equation on an orthogonal

mesh [3]. The specific version used in these tests was a scalar-optimized “line-sweep” version [3] that involves

separately nested, quadrant, angle, and spatial-dimension loops. In contrast with vectorized plane-sweep versions of

SWEEP3D, there are no gather/scatter operations and memory traffic is significantly reduced through “scalarization” of

some array quantities. Because of these features, LI cache reuse on SWEEP3D is fairly high (the hit rate is about 85%).

A problem size of N implies N3 grid points. Another version of SWEEP algorithm DSWEEP is used in our experiments

too. This is a vectorizable implementation of the diagonal line-sweep.

HYDRO is a twodimensional explicit Lagrangian hydrodynamics code based on an algorithm by W. D. Schulz [4].

HYDRO is representative of a large class of codes in use at the Laboratory. The code is 1007. vectorizable. An

important characteristic of the code is that most arrays are accessed with a stride equal to the length of one dimension of

the grid. HYDRO-T is a version of HYDRO in which most of the arrays have been transposed so that access is now

largely unit-stride. A problem size of N implies N2 grid points.

HEAT solves the implicit diffusion PDE using a conjugate gradient solver for a single timestep. The code was written

originally for the CRAY T3D using SHMEM. The key aspect of HEAT is that its grid structure and data access

methods are designed to support one type of adaptive mesh refinement (AMR) mechanism, although the benchmark

code as supplied does not currently handle anything other than a single-level AMR grid (i.e. the coarse, regular level-1

grid only). A problem size of N implies N3 grid points.

5

.
●

x forSwsap

9~ _._ ——.—_.——— —-m
8-
7-J
6- 1 ,

5- 4

In

b Floatin$!Pdnl

4-
+ Integer

3- +Memay

2-

1-

07 i
0 50 100 i502c0254

Problem Size

..

Figure 2 Sweep

L for Hydro I

04 +
o 100 m 203 400

Problem Size

1 for Dsweep

:5- < . M
=
:4.

n

+floatirg Pdnt

&3-
Z

+Intew

-2
2

+Memmy

El.

2
0,

0 so WI 150200250

Problem Size

Figure 3 Dsweep

Afor Hydro-t

o~
o 100 200 Z&l 4C0

Problem Size

Figure 4 Hydro Figure 5 Hydro-t

I k for Heat

—
04 1

020406080103 120

Problem Size

Figure 6 Heat

Table 1 Branch and Icache Characteristics

I I EkaSMMio I MssFkddialR#io I EhKhn’kmtio I EzsiEiwslwio 1

I am fm65 atxtw aalo2

am (m40 aan7 aoool

1= I ao554 I af.13!L3 I aal.z aOD17 I
alfm fM9&3 afm.1 am

alfm allm (mm WX167

6

.
. ..

. .

All these benchmark codes are run on two MIPS RIOOOO-based system~ the SGI PowerChallenge and the Origin2000.

Table 1 exhibits branch ratios, branch misprediction ratios, and the instruction cache miss ratios for all these codes. It is
,,

clear from Table 1 data that both branch and instruction cache effect can be negligible. Under this condition, the

performance study of these codes can focus on the impact of the three major instruction flows (FP, Int, & Memory).

Figures 2 – 6 show the variations of the).s for all 5 benchmark codes in this study. These figures demonstrate that the

h converge to constant values with increasing problem sizes. This is understood as the instruction flow pattern of a

problem reaches its steady state. This phenomenon proves that Is can be used in characterizing a code once it reaches

the steady state.

Performance Bottleneck Estimation

This new instruction-level workload characterization technique is first applied to two RI OOOO-based systems to estimate

the application performance bottleneck. The R1OO()()microprocessor has the following major architecture constraints to

cause a CPU stall [6] (besides branch and instruction cache effects): a). one of the three main queues is full; b).

outstanding miss queue is full; c). the number of total instructions in all three queues reaches its maximum 32; d). all

renaming registers are consumed; e). there is more than one back-to-back write-back from L1. On the R1OOOO

processor, both the F queue and the M queue have 16 entries each. The I queue can accommodate 16 instructions. As a

good first-order approximation [7], at each cycle, the loadlstore unit can execute one memory instruction. The two

ALUs can graduate up to two integer instructions per cycle and the FPUS complete up to two floating-point instructions

each cycle. The total number of instructions in flight on a RIOOOO is 32. The outstanding miss queue length is less than

2 on the PowerChallenge and 4 on the 0rigin2000. According to [6], since a R1OOOOhas 64 registers for renaming, it is

unlikely that all 64 registers are exhausted before any other limit is reached. Also, the limit e) of L1 write-back buffer

may not be reached most of time. Therefore, we can focus on the other 3 constraints.

Utilizing these instruction-level characteristics, we calculate the growth rates for each code over both machines in TabIe

2. Due to their architectural similarity, the growth

Table 2

rates are identical across PowerChallenge and Origin 2000. For

Measured Growth Rates

Sweep / Dsweep f Heat ~ ~ Hydro ~ Hydro-t :.——.. .’.“.—z.
GM G (% Gm G (% (k G G Gm (2 Gf (k G Gf

PowerChallenge 0.41 -0.73 -0.68 0.84 -0.65 -1.19 0.43 -0.32 -1.11 0.08 0.11 -1.19 0.08 0.12 -1.20

Origin 2000 0.42 -0.76 -0.66 0.89 -0.70 -1.19 0.42 -0.32 -1.11 0.09 0.10 -1.19 0.08 0.12 -1.20

7

.
. .

.

Table 3 Cache Miss Distances

Sweep Dmwep ... Heat Hydro Hydro-t—..-
kLl AU ~Ll kL2 kLl kL2 kLl kL2 kLl h2

PowerChallenge 26.6 112.8 12.5 34.6 15.5 62.2 13.5 78.8 30.3 274.2
OriPin 2000 24.9 122.9 12.7 38.0 155 62.6 13.4 219.4 303 290.1

Sweep, Dsweep, and Heat the only positive growth rate is given in G~. This leads us to declare the memory instruction

growth rate as our limiting factor for these codes on these machines. A limiting factor is the key contributor to stalls

within the microprocessor (excluding dependencies and memory latency as we assume infinite LI cache). For these

codes, it is very likely the memory queue will fill, leading to stalls in decoding as entries graduate slower than they

arrive. For Hydro and Hydro-t, we have positive growth rates for the memory and integer queues. This leaves us two

possibilities for the limiting factor. The queue associated with the maximum of the two growth rates in the ideal case

would till first, namely the integer queue. This can only happen however, if the maximum instruction threshold K is not

reached. As mentioned above, K=32 for the MIPS R1OOOO. Since the memory and integer queue lengths are both 16,

we cannot reach the maximum number of instructions prior to stalling on a single queue. Thus, the limiting factor for

both of these codes will be the integer instruction growth rate.

For the second step of the process, we no longer assume infinite L1 cache, and focus on the Ls for the L1 cache misses.

In Table 3, the values for %~1over the codes and machines are given. As discussed earlier, the PowerChallenge allows

two outstanding misses. In this particular case, if the number of maximum outstandings utilized by a code is less than 2,

then the outstanding misses are not fully utilized. This is the case for Sweep, Heat, and Hydro-t. Dsweep and Hydro,

however utilize 2 outstanding misses. For the Origin 2000, we have all 5 codes utilizing less than 4 outstandings.

For the third part of the process, we observe the 1~2 values in Table 3. The fi-equency of L2 misses shows a sharp

decline from the PowerChallenge to the Origin 2000 for Hydro. This indicates that Hydro is the only code that gains an

advantage from the larger L2 cache (2MB L2 on the PowerChallenge, 4MB L2 on the Origin2000). T& is also

validated in the empirical memory model [1] and the statistic model [5].

Future Work

We intend to validate more thoroughly the proposed relationship of L values to cpio using simulators. We would also

like to expand to more comprehensive equations involving the relationships discussed above. Finally, memory

8

.

>,.
e-

“.

bandwidth, branchAcache impac~ and data dependency should be incorporated in an evolving model to extend the

applicability and validity of this modeling technique.

.’

References:

[1] Lubeck, O.M, Luo, Y., and Wasserman, H.J. et al, An Empirical Hierarchical Memory Model Based on Hardware

Performance Counters, PDPTA’98, Las Vegas, July 13-16, 1998.

[2] Bianchini, R., Lim, B., Evaluating the Pe~ormance of Multithreading and Prefetching in Multiprocessors, Journal

of Parallel and Distributed Computing, N.37, p83-97, 1996.

[3] Koch, K. R., Beker, R. S., and Alcouffe, R.E., Solution of the First-Order Form of the 3-D Discrete Ordinates

Equation on a Massively Parallel Processor, Trans. of the Amer. Nut. Sot., 65, 198, 1992.

[4] Schulz, W.D., Two-Dimensional Lugrangian Hydrodynamic Difference Equations, Methods in Computational

[5]

[6]

[7]

Phys. Vol 3, pl, 1964.

Sun, X. H., Cameron, K. W., et al., A Hierarchical Statistic Methodology for Advanced Memory System

Evaluation, submitted to IPPS’99, Sept. 1998.

Schwarzmeier, J. (SGI/Cray), Private Communications, Sept. 1997.

Turner, S. (SGI/Cray), Private Communications, Mar. 1998.

9

