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ANALYTIC CRACK SOLUTIONS FOR TILT FIELDS AROUND HYDRAULIC FRACTURES
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Abstract. The recent development of downhole tiltmeter arrays for monitoring hydraulic
fractures has provided new information on fracture growth and geometry. These downhole
arrays offer the signiﬁcanf advantages of being close to the fracture (large signal) and being
unaffécted by the free surface. As with surface tiltmeter data, analysis of these measurements
requires the inversion 6f a crack or dislocation model. To supplement the dislocation models of
Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to
provide tilticalculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-
elliptic cracks and a 2D-variable-pressure crack. Equations are developed for an arbitrary
inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture
dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as
well as comparisons with the dislocation model. The results show that the tilt measurements are
very sensitive to the fracture dimensions, but also that it is difficult to separate the competing

effects of the various parameters.
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1. Introduction

Surface tiltmeter arrays have been used extensively for monitoring the azimuth and dip of
hydraulic fractures and the overall inflation of magmatic channels around volcanoes. Recently,
however, testing at the Gas Research Institute /Department Of Ener,;gy (GRI/DOE) Multi-Site
facility near Rifle Colorado has shown that downhole tiltmeters could provide useful information
about other fracture parameters [Warpinski, 1994 & 1996, Peterson et al., 1996, Branagan et al.,
1996, Warpinski et al., 1997a & 1997b] and suchnmonitoring is now available as a service
[Wright, 1998 ; Wright et al., 1998]. In both cases — surface and downhole — it is necessary to
invert the measured tilt data to extract meaningful information about the fracture. The inversion
process requires a model of the tilt field induced by a pressurized fracture.

Models for evaluating surface tilts have generally been obtained from either elastic crack
solutions [e.g., Sun, 1969; Pollard and Holzhausen, 1979] or dislocation solutions [e.g., Davis,
1983; Okada, 1992]. The Davis [1983] formulation is particularly a’gtractive for surface tilts
because of its simplicity, but the Okada [1992] results are more complete and provide both
surface and internal deformations and tilts. Both of these models apply a rect.angular dislocation
of uniform width to produce the deformation associated with a dilated fracture. Davis [1983]
notes that the rectangular dislocation is an approximation of a true tensile fracture, but the
deformation far from the fracture should be accurate. The deformation close to the fracture,
however, is likely to be considerably in error. Furthermore, there is no direct tie to the internal
pressure within the hydraulic fracture, which is usually the only parameter measured.

The purpose of this study was to develop exact analytical solutions of the tilt ﬁellds around
pressurized cracks in elastic bodies that could be used as an alternate to the dislocation solution.

These new results can be used to assess the applicability of the dislocation model as a function of
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distance from the fracture and assess the coupling of the pressure to the dislocation inversion.
No new crack models have been formulated, but rather classical solutions to constant-pressure
2D, penny-shaped, and 3D elliptical cracks and a non-constant-pressure 2D crack have been
reworked to obtain tilt equations in addition to the stress and displacement equations.

These results also provide new tools that can be used to evaluate the sensitivity of the tilt
measurements to the various parameters and the ability of an inversion procedure to adequately
distinguish between competing parameters. Any of these models can be used directly in an
inversion algorithm, although the 3D elliptic crack is the most versatile and would probably be

most useful for practical applications.

2. Models

Solutions for four crack models are applied to the problem of the downhole tilt field generated
by the presence of a pressurized crack. These models include a plane 2D crack, an a:dsyfnmetric
radial crack (penny-shaped), and a 3D flat elliptical crack for the constant-pressure case and a 2D
plane crack for a non-constant-pressure solution. In all these cases it will be assumed that the

rock mass is homogeneous, isotropic and elastic.

2.1 2-D Model

The simplest analytic solution for the tilt field around a fracture is that of an infinitely long
2-D crack, a solution that was developed by Westergaard [1939], Sneddon and Elliot [1946], and
Sneddon [1946]. The geometry for this crack is shown in Figure 1, which follows directly from
Sneddon and Elliot [1946] and Sneddon’s [1946] nomenclature and orientation. The geometry is

rotated from Sneddon’s [1946] so that the crack height is 2c, and all locations are measured by




the three distance parameters, r, 11, and 15, and the three angles 6, 0;, and 8,. The crack is
uniformly pressurized at a level P in a material having a Young’s modulus, E, and Poisson’s
ratio, v. Note that Sneddon’s [1946] original coérdinates having the x direction aligned with the
crack height and the y direction normal to the crack is somewhat contrary to the normal

geometry of a vertical slice of a 2D vertical fracture. However, those coordinates are kept here

to facilitate references to the original work.
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Figure 1. Geometry of a 2-D crack
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The basic solution is due to Westergaard [1939] in terms of a stress function, Z, given as

Z=P[;—l],
z? = ¢?

where z is the complex variable, z =x + iy. Sneddon [1946] gives equations for the stress field

around the crack, but only the displacements (u, ,u,,) are of interest here and these are given by




25 u =(1—2v)Re[Z]—yIm[Z]
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and

=, =2(0-v)Im[Z]- yRe[Z],

( + V) g
where the overbar represents the integral of the stress function Z with respect to z. The tilt vector
can be separated into two components, one orthogonal to the face of the fracture and one parallel

to the face. Upon differentiation, the tilt field orthogonal to the fracture can be deduced as

duy =(_1iL){2(1—v)Im[Z]—J’ Rz,

Ox  E

while other derivatives that will be useful for inclined fractures are given by

(1+") X0 -2v)Re[Z]- yIm[Z ],

o"x

@ (1 + V){ 2(1 V)Im[ ] y}%e[Z']} R
and

% = M{(l —2v)Re|Z]+ yIm[Z']}.

When Z is replaced, the derivatives can be written as

Juy _21+v)P (1-v)" (g__l_e __9) rsing| ¢*

ox E 2¢ | nr

3
2

cos(-z’—ﬁl + 2«92) ,
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2
o”ux=(1+v)P (1—2v cos(é?——l-el—lez) 1l- rsind| c” sin 9,+362 ,
ox E nr, 2 2 ¢ | hn
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u, 2+v)P —(I—V)Lsin(ﬁ—lﬁl——1—92)+rsme Ll cos(§-91+392) ,
dy E nr, 2 2 2¢ | nn 2 2

and

3
3 i 2 |2
uy _WvPlg s, Lcos(e—-l—e,—lezj—1 Lrsmd) e sin(-3-91+§92) .
dy E nry 2 2 c |nn| \2 2

The first of these four equations can be used directly to give the tilt component orthogonal to a

vertical fracture that is monitored in an offset well using a vertical tilt array. The tilt component
parallel to the fracture (out of the plane) is zero since the crack is infinitely long.

For fractures with dip, it is necessary to rotate the displacement gradients into the correct
orientation and it is necessary to find the correct spatial parameters. Considering the
transformation first, Figure 2 shows the fracture with dip and the observation well and then a
separate rotated view of this system. it is observed that the displacement of interest, the one

normal to the borehole (u,,), is given by
U, =u,cosy +u,siny ,
where yis the angle of the fracture plane referenced to the vertical (e.g., zero is a vertical

fracture). The tiltmeter array measures the variation of the derivatives of this displacement along

the s direction,

Ou, Ou, dy N du, dx
ds Oyds Jx ds
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Figure 2. Geometry for 2D fracture with dip.

Since the two spatial derivatives are given by

dy . dx
—=-—siny and —=cosy ,
ds 4 ds 4

the tilt can be reduced to

ou, . duy,  u
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The final step is to determine the correct geometric parameters to characterize the distance
from the fracture to the tiltmeters. Referring to the unrotated coordinate system in Figure 2, it
can be found from geometry considerations that |

X=y,siny+x,cosy

and

y=y,cosy—x,siny ,
where the variables with hats are the distances to use in the analysis. These equations complete

the analysis of downhole tilt data for any 2D fracture, as long as it is far from the free surface.

2.2 Penny-Shaped Model

For a penny-shaped crack, as shown in Figure 3, the problem is tractable because of the
axisymmetry, but is considerably more complicated than the 2-D crack. Sneddon [1946] found
solutions for stresses and displacements in terms of Bessel-function arguments, although only

displacements are needed here.
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Figure 3. Geometry of a penny-shaped crack




By adopting the following notation,

{=zlc
p=ric
r2=1+4'2

R? =(p2 +¢? —1)2 +4¢?
Stand =1

2L cotp = p* +¢2 -1

Sneddon [1946] showed that the displacements are given as the following integrals,

2Pc(1 - d (si -
" =47£2_‘0 [ (1_21/_;77)%(.«,1%77)6 ",(on)dn

and

_ 4Pc!1—v2! {n d sing ) g,
u, =-— pr- f(l+2(1—v)Jd_77( » )e ”Jo(pn)dn.

By rearranging and defining the functions C, and S as

Cr(p.¢)= ['n™e ", (om)oosy dy
and
Sr(p.6)= [ e, (on)sing dr

the integrations can be performed and the displacements can be written in terms of elementary

functions given by
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C! —ﬁ—cos(—) St = s (—)
27JR T\ 2 2" JR

Ct =3c5—cl° S? =335—Sl°
p p

C? =%c}—c§

and
\/Esin(g)-i-rsiné’ L
S0 = tan™! y , p#0 s2 ==(c} - ¢s1)

\/E COS(EJ +7rcos@ P

To find the tilts around a vertical fracture, the displacement and the gradients of the

displacements are needed and these are given by

o =2l ci-2ls o))l -si]

O;u,' = P(z J {(1: ZV)[Cl() ~C? -8 +82]-¢lcd -2 - s? +52]

2
s a-negtla-sl

From these terms, the components of tilt normal and parallel to the fracture face can be found as
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ou, —sin A ou,

Jy or

Gty _ cos Bsin S ou, ¥
oy or r

where [ is the angle from the center of the crack to the x,y position of the measurement station
and r is the distance from the center of the crack to the measurement station.

For a fracture with dip, additional derivatives are needed and are found as

Ju, _—2P(1+v)
oz 7E

1 -sy-clet - st]-a-2v)ct - s3]}
and

2
e _ 4P(;V ){c,o _ s +ﬁ[— c? -s9+¢(c? —S{’)]}-

For fractures with dip, it is neqe,ssary to rotate the displacement gradients into the correct
orientation and it is necessary to find thle correct spatial parameters. Figure 4 shows the fracture
with dip and the observation well and then the rotated view of this geometry. It is observed that
the two displacements of interest, the one normal to the fracture (u,) and the one parallel to the
fracture (u,) are given by

u, =u,cosy +(u, sin B)siny

U, =u.cosf,

where yis the angle of the fracture plane referenced to the vertical (e.g., zero is a vertical
fracture) and f is the reference angle to the measurement station (e.g., Figure 3). The tiltmeter

array measures the variation of the derivatives of these displacements along the s direction,

ou, Jdu, E_*_o"un @y
Js Oz ds OJdy ds
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and

du,, =5up éi_l_é’up dy.
ds Jdz ds Jy ds

-
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Figure 4. Geometry for penny-shaped fracture with dip.
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Since the two spatial derivatives are given by

dz ) dy
—=—siny and ——=cos
ds 4 ds 4

the tilt derivatives can be reduced to

ou, . du, ., . 0u, 2 LU, .2 . 0u, 2 . 0u,
— =sinycosy| ——=+sin® f—=—cos® f—L|—sin® ysin +cos” ysin
ds 77[& P o ar rsmpy e ysnp
and
du
———’L=—sinycosﬂﬁu’ +cosy cos Bsin S o, ¥y .
as z or r

The final task is to determine the correct geometric parameters to characterize the distance
from the fracture to the tiltmeters. Referring to the unrotated schematic in Figure 4, it can be

found from geometry considerations that

X=x N

y=2Z,siny+y,cosy =Z,siny +r,cosysin

and

Z=2z,c08y—y,siny =z,cosy —r,sinysinf3 ,

so that

F=y32*+$* and /%:tan*l(%)

x
where the variables with hats are the correct distance and angle to use in the analysis. These
equations complete the analysis of downhole tilt data for any penny-shaped fracture, as long as it

is far from the free surface.
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2.3 Flat Elliptic Crack Model

The case of a 3D flat elliptic crack will be developed in more detail here because it is the most
general model, it is considerably more complex, and it was not as well developed in the original
papers. Considering a 3-dimensional flat elliptic crack opened by internal pressure and having

the geometry shown in Figure 5, Green and Sneddon [1950] found an analytical solution for the

following assumptions:

¢ infinite medium

homogeneous isotropic material

linear elastic behavior

uniform pressure

length > height (a > b).

2b

d
z

Figure 5. Geometry of fracture for tilt and stress calculations

Given these restrictions, the displacements and stresses can be given by

32 7%
D 852{(1+277)¢+Zaz}’
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1) 4z 20
w=-81 ”)az+4zazz’

®= —SG{(1—2n)-ZZ7‘f+ z%f—} ,

I PR
CD—32G&';2 {(1 2")¢+Zaz}’

79 3622¢

o, =8Go7 973 °

and

with
‘D=u+iv,
®=o-x+cry 5
®=0,-0,+2ir,, ,and

xy ?

Y=1_+ir, .

In these equations, @is the solutiqn stress function, G is the shear modulus of the material and n
is Poisson’s ratio. AdditionallyZ is the third coordinate while z is the complex variable given
by z=x+iy and 7 is its complex conjugate. Green and Sneddon [1950] found a solution of the
problem by converting to an ellipsoidai coordinate system, A, 4, v, given by

a? (a2 —bz)x2 = (a" + /?,)(a2 +,u)(a2 + v)

b*(5% —a?)y? = (b7 + A)(b” + 1)(6” + v)
a’b*Z? = duv .

where
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©0>A202pu2-b*2v>-a’.

In this coordinate system, the solution can be found as an integration of combined coordinates

_ ab’p [ 2 y* _Z_2_ ds
#= 32GE(k) J:{az +s+b2 +s+ s 1}\/5(512 +s)(b2 +s) ,

where E(k) is a complete elliptic integral of the second kind of modulus &, with

va* -b?

a

k=

2.3.1 Application to a Vertical Fracture (Length > I-Ieiélza

The tilts normal to the face of the fracture can be found as

2
ow -84Z [_ (1—2v){k'2 sn u}ﬁ 0’%}

‘ o"y_ ab? en?u| dA 8y
dnu)( du)’ 84 92
+Z4op2 SRE DY }(—) —=
{ en®u J\d1) 8y oz

czlpr S ulfd®u 04 04  du %2
' cn’uf\ dA* 9y 6Z dA dydzZ )|

where sn, dn and cn are Jacobian elliptic functions, 4 is given by

and u is defined as

cnu
A=a>—= .
snu

The derivatives in the tilt equation are found from
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du —sn’u

ﬁ_ 2a% cnudnu

d*u  -sn’u|., so’u _,sn’ul|du
5= |3t ——+k —— 1,
dx 2a cnu dn”u |dA
A 2y/1(a +/'L)
dy (-pa-v)’

A ZZ(a2 +/1)(b2 +/1)
oz (A-gA-v)

A _ yZ 1 1 1 ¥ ¥y .z
5y0Z  4(m) ap*+2)| A b+ A 2 (@+a) (2+4) #||

and

(==Y

42(a* + 2)(b? +4)
More information about these derivatives and other characteristics of the ellipsoidal confocal
coordinate system can be found in Whittaker and Watson [1927]. This same reference has
extensive information about the Jacobian elliptic functions, as does Abramowitz and Stegun

[1970]. In addition, Sik and Liebowitz [1968] provide some discussion on the 3D-elliptic-crack

solution that is useful.

The tilts parallel to the fracture face are found from

U _8i-2mx( , Jdu O

gy P i 3y
2
+8A.22 {2k'2 snudnu}(du) A A
ab cn"u J\dA) Ix 3y

T snu | |d?u A A A, du 3*A
enul|di? ox 8y dA oxdy
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where the additional derivatives are given by

A _ 2xalp” +4)
dx (A-pfi-v)

and

e xy | a*+b*+22 L1 x? N »? +ZZ
0x0y 42 V(a? +ap? +a) @ +2JoP+2) 2 (2 4af (2 4a] P
The calculation of the A, 4, v coordinates requires the solution of the cubic equation

B+ 2@ 407 =2 —y? = 22 )+ AaPb? - b25% ~ a2y? —aPZ% —B2Z2)- a2 Z2 =0

for A, followed by solution of the quadratic equation

@24+ 2)+ p(0?072% #8227 + a* A+ P2 - G222 + 5202 4 a*B2 22 + a?bRAZE =0

for y, and then

3.

4.

_ a*b?z>?
Au

The procedure for using these equations is as follows:
Select point x,y,Z for which the calculation is to be made
Determine the appropriate 4,4, v for this point
Determine the value of »

Obtain tilts.

One confusing point is that Green and Sneddon [1950] used u for both the displacement in the x

direction as well as for a transformed function. To help eliminate confusion in this paper, # has

been used to denote the displacement. The only place the displacement enters is through the

original complex equations and in the definition of the tilt.
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2.3.2 Non-Vertical Fracture or Height Greater than Length
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The previous solution is for a vertical fracture whose height is greater than its length, which is

a quite limiting constraint. However, this model can be used to also extract the tilts for a fracture

with dip and for one whose height is greater than its length. To obtain the tilts for these cases, it

is necessary to obtain the displacement derivatives for the seven other components. These are

given as:
o _8(-2n)4,
e ————-—-—a3k2 {u E(u?}
(S o N
a dA dx

842 2 snudnu( du)2(aa )’
t—3 3 2 5
ab cn’u di) \ dx
pas?ulld ay W)
en’u a'ﬂ,z 5x di o”x

oi _ 8(1-27)4x a2 P
37 a’ di oz

8AZ o2 SR Y sn’u du A
ab2 cn’u dA dx

Z{Zk'z snudnu}(du) A AR
cn’u dl) Ox3Z

osn’ul||d*udh A du F*A
+Z3—k +—
cn?ul|di? 8x 8Z  dA Ix8Z

v _8(1-2n)dy {snz u} du R

ox a’ dn?u | dA dx
8A22 {2k'2 snudnu}(du) A A
ab2 en’u J\dA) Oy Ox

e sn’u||d*u A ok , du 3%*A
enul|di? dy Fx  da Oydx
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ﬁ_ 8(1—277)/1 {E(u)—k’zu——k snucnu}du oL

3y &k dnu |dioz

8(1 2m)dy |sn®u| du A
3 dn?u| dA dy

a
L 842°[ [, {kﬂ snudnu}(du) aY
ab® enu J\di) \ oy
k,zsnu d_zuzl_z_i_duﬁz/l

ecn’u||d?\3y) dA gy

ov _8(1-2n)dy [sn’u| du A
/A a. |do?u|dioz

, 342 szﬂ sn u} du oA

ab® cn?uldi o”y

Z{2k'2 snudnu}[a’u) A A
en"u jJ\dA) dydZ

asn’ul(du A A du 5%
+Z3k +—
enul||di? 8y 8Z  dA 8ydzZ

@=8AZ[_(1_2 >{k,2 s u}du 2

dx  ab? cn?ul| dA ox
+Z{2k'2 snudnu (du) A A
) endu J\d1) 0x5Z

asn’ulld>udd A  du 5%
+7Zk +
- en?ulldi? ox 8z  di éxoZ

ow 8AZ|: (-2 >{ L2 50 u}du AN

é’y ab® cnu| dA dy
z{zkvzw (d) A
cn“u J\dA) 8Z 3y

L zhe sn?u||d*u a4 A L du CRy)
enu|ldi? 8Z 3y dA 9Zdy
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To calculate these derivatives, some additional partial derivatives of A need to be calculated.

These are given by

A xZ 11 +1 x? y? +Z_2
0x0Z 4niAla® +4)| A aP+i 2m (@*+4) ( wa) 2|
2r 1 x?

32 Z2
ox’ —2(‘72"‘/1)}‘12 _1—(a +}L) hl a ’*"1)’11 {a -i-/'L)3 +/1)3 A? } ,

-—

r_ 1 Y

2 ZZ
o”y2“2(b2+,1)h12_ ( +/1)2;,2 +,1)hl{a +,1)3 +,1)3 lz}’,

and

a1 z? 72 x? y? z?
imrwery Lt mr ey + T2
oz* 2ht | Ah} 4Ak! (a2 + ,1)3 (bz )

For vertical fractures that are taller than they are long, the normal tilt is given by
interchanging a and b (essentially switching the length and the height) and using dw/éx. The
parallel tilt is given by 6v/ox.

For fractures with dip, it is necessary to rotate the displacement gradients into the correct
orientation and it is necessary to find the correct spatial parameters. Considering the
transformation first, Figure 4 again shows the fracture with dip and the observation well and then
the rotated view of this geometry. As in the 2D case, it is again observed that the two
displacements of interest, the one normal to the fracture (u,) and the one parallel to the fracture
(up) are given by

u, =wcosy +vsiny

u, =i,

4
3
b




where 7is the angle of the fracture plane references to the vertical (e.g., zero is a vertical

fracture). The tiltmeter array measures the variation of these displacement derivatives along the

s direction,

ou, ou, ii_Z__*_ﬁun dy
s OZ ds Jy ds

~

and

o"up ='0”up gz_l_o"up Q
ds O0Z ds Jy ds

Since the two spatial derivatives are given by

dz . dy
— e — d —_—
= siny an s cosy

the tilt derivatives can be reduced to

du, . dw dv| ., v 0 . OW
=sinycosy| ———+—|—sin” y——+cos” A —
os oz oy

oz Jdy
and
ou,, . Ou 0
—= =—siny—+cosy—.
s oz dy

If the fracture is taller than it is long, the a and b should be switched and the appropriate

derivatives are

Ouy =gsinycosy —Z‘V—V-+—az —sin2}/—z+cos2 v
2z Von

0Z Ox

and

ou .
ds oz dx
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The final task is to determine fhe corréct geometric parameters to characterize the distance
from. the fracture to the tiltmeters. Referring to the unrotated schematic in Figure 6, it can be
found from geometry considerations that

X=x
y=Z,siny +y,cosy
and
7= Z,cosy—y,siny ,
where the variables with hats are the correct distances to use in the analysis. Of coﬁrse, if the

fracture is taller than it is long, then the x and y variable need to be reversed so that
¥=Z,siny+x,cosy
y=y,
where the vertical distance from the crack centerline to the tiltmeter of interest is now x,. These

equations complete the analysis of downhole tilt data for any elliptic fracture of any geometry, as

long as it is far from the free surface.

2.4 2D Fracture With Internal Pressure Distribution

England and Green [1963] have solved the problem of a 2D fracture with variable pressure
distribution in the crack, which is equivalent to the case of constant internal pressure with an
arbitrary number of layers having variable stress, as shown in Figure 6. This problem is of
interest when the crack is large and crosses into several layers with different stresses. Since
higher stress layers will clamp the ﬁacture width and reduce the magnitude of the tilts, analyses
that use a homogeneous medium could be significantly in error. However, this solution can only

be used for a fracture that is normal to the bedding (e.g., a vertical fracture with horizontal beds).
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Figure 6. Geometry for crack with layered stress distribution.

As with the previous 2D solution, there is only one tilt component developed by such a crack,
the one normal to the fracture plane. The solution to the problem follows the development of

‘crack problems by Green and Zerna [1968] in which the displacements and their derivative with

respect to x are

D=u, +iu, 2(“") )6 4)06)- @)+ E-2)0E)
and

ZC) 2(1;"){(3 W) (2)- 2 (E)+(EF-2)Q"E)}

The England and Green [1963] solution for the function £2is of the form

1:F(z‘ +2G(, t)

where the functions F(#) and G(¥) are given by

F(l‘) o ﬂM

l‘u2

and
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where f{u) and g(u) are even and odd functions, respectively, that make up the internal pressure,

p(u), in the fracture,

p()=f(u)+g(u).
For example, a constant pressure, P, would result in f{) =P and g(u) = 0. A pressure of P; on
the top half of the fracture and P, on the bottom half would reéult in f(u) = (P; + P2)/2 and
g(w)=(P; — P2)/2, so that g(u) = (Py — P2)/2 for x > 0 and g(u) = -(P; — P,)/2 for x <0.
Using the imaginary part of the x derivative of the c‘iisplacement function, D, and taking the

necessary derivatives, the iriclination of a downhole tiltmeter can be found as
Ou
2y ) ¢ _4(1_%&4%,,14_;}” .5l 6.6
x E & & ¢ 2 B U

4, = G(t)siny

where

4 = F(fycos(3n) - xsin(37)]

4 = G{0)2xy cos(3n)~ (2 - y* sin(3n)
B, = Flt)cos(31)

B, =36{)zcos(3n)+ ysin(3r)]

€, =3F ()< - y* Jeos(sm) + 2z sin(sn)]

C, = 3G(t)[(x3 ~3xp? )cos(Sn)— (y3 —3x2 y)sin(Sn)]

and
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§=[(x2 +y2 +z‘2)2 +4x2y2:l%

1 -1 2xy
=—tan”'| —F——
72 [xz +? +t2]

Integration of the tilt equation is handled numerically. To get ‘physically reasonable tilts, the
pressure must be large enough to support a fracture of the specified height. In actual practice,
this tilt calculation is.combined with the corresponding calculation of the fracture height and |
width for a given internal pressure and layered-stress medium [Warpinski, 1989]. This
calculation assures that the fracture does not close back on itself.

3.0 Model Results

The models can be.used to help understand how the tilt field is affected by the important
parameters and to determine optimum locations for downhole tilt monitoring. Each model may
be more useful for examining a specific parameter, so each of the four models is used here in
some capacity. For all cases studied here, Young’s modulus has been kept at 27.6 GPa and
Poisson’s ratio is 0.2. The internal fracture pressure is usually 6.89 Mpa and most other
parameters have been varied.

The 2D model is very useful for examining the effect of fracture height and mohitoring
distance on the amplitude decay and tilt radiation. The effect of fracture height at a prescribed
monitoring distance (152 m) is shown in Figures 7 and 8. Figure 7 shows crack heights of 15.2,
30.5, 61 and 122 m while Figure 8 has an expanded scale to show 7.6, 15.2, and 30.4 m cracks.
In all cases, the tilt distribution follows the classic S-shaped curve observed in field data [e.g.,
Branagan et al., 1996; Warpinski et al., 1997a & 1997b; Wright, 1998; Wright et al., 1998]. The
obvious effect of crack height is on the amplitude of the tilt field, which ranges from less than a

microradian for the small fracture heights to as much as 50 microradians for the 122 m height
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fracture. Compared to surface tilts that usually aré a few tens to a few hundreds of nanoradians,
the response of a downhole tiltmeter can be extremely large. Nevertheless, the smaller fractures
will be difficult to image if the tiltmeters are‘ﬁot well coupled to the formation or if wellbore or

electronic noise is large.

One important obseﬁation that can be made of these comparisons concerns the locations of
the peak tilt values as a function of fracturé height. For large fracture heights relative to the
distance to the tiltmeters, the locations of the amplitude peaks are a clear function of the fracture
height. However, for small fracture heights as in Figure 8, the locations of the peaks are only
slightly changed with fracture height. This behavior shows that there is a limit to how far away

the tiltmeters can be to image the fracture accurately and that limit depends on the height of the

fracture.
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Figure 7. Efféct of fracture height at 152 m monitoring distance, 2D crack.
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Figure 8. Effect of crack height at 152 m monitoring distance, 2D crack.

| The effect of monitoring distance for a given fracture height is shown in Figure 9 for short
monitoring distances and in Figure 10 for greater distances. When the monitoring distance is on
the order of the crack height, the peaks in the tilt distribution are nearly aligned with the top and
bottom of the fracture. However, for greater monitoring distances the peak locations quickly
spread out and cannot be used as a reliable indicator of fracture height. The data in Figure 10
show that the tilts can be measured a loﬁg distance from a large fracture, but that the deformation
exhibits considerable vertical expansion with monitoring distance and an _extremf,ly large tilt
array would be required. Assuming that a 300 m long tilt array is a reasonable maximum for an
array, these results suggests that quantitative tilt measurements can be made for distance-to-

height ratios of approximately 7-10 for a long fracture (e.g., 2D case).
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Figure 9. Effect of monitoring distance for a 30.5 m height fracture, 2D case.
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Figure 10. Effect of monitoring distance for a 30.5 m height fracture, 2D case.

The effect of the fracture dip on the downhole tilt field for a fracture of 30.5 m height at a

monitoring distance of 152 m is shown in Figure 11. However, the number given in the legend

e -



box is the deviation of the fracture from vertical, rather than the fracture dip (0 = a vertical
fracture) since hydraulic fractures are generally vertical. For small deviations from vertical
(inclinations), the effect of the inclination is to cause the tilts to increase in magnitude on the side
where thé fracture approaches the monitoring array and decrease on the other side. In addition,
the locations’ of the peaks are forced outward and are no longer connected to the fracture height
in a clear way. For larger inclinations, the double peak becomes essentially a single peak in the
center of the array, while a horizontal fracture looks like a vertical fracture of smaller height.
Thus, it can be seen that fracture dip can cause some confusing results unless some other ‘
independent information about the fracture geometry is available.
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Figure 11. Effect of dip for a 30.5 m height fracture, 152 m distant, 2D cased.

The penny-shaped, or radial, fracture model is useful for examining the effects of short
fracture lengths on the measured tilt field. Figures 12 and 13 show the ability of a tiltmeter array
to measure fractures of various radii from a distance of 152 m, with the downhqle tiltmeter array

’

placed directly on the fracture-center orthogonal line (the line orthogonal to the fracture passing
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through the center of the fracture). At this distance, the tiltmeters are able to resolve fractures of

greater than 30 m radius, but may have difficulty with smaller fractures.
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Figure 12. Effect of fracture radius for a monitoring distance of 152 m, penny-shaped fracture.
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Figure 13. Effect of fracture radius for a monitoring distance of 152 m, penny-shaped fracture.
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Figures 14 and 15 show the effect of monitoring distance on the tilt fields for a 61 m f:racture
height. For radial fractures, the location of the peaks does not match well with the top and
bottom of the fracture, even for fractures that have a large radius comparéd to the distance to the
monitoring array. As would be expected, the effect of distance on amplitude reduction is greater
for the penny-shaped case than it is for the 2D case
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Figure 14. Effect of monitoring distance for a 61 m radius fracture, penny-shaped case.
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Figure 15. Effect of monitoring distance for a 61 m radius fracture, penny-shaped case.
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The previous calculations for a penny-shaped crack have been on the centerline of the fractufe '
so that the response is a maximum and there is no parallel tilt. The effect of the offset distance-
for a 61 m radius crack at a monitoring distance of 152 m is shown in Figure 16 for the normal
tilt distribution. As can be seen, the normal tilt decreases as the monitoring array is moved
farther away from the centerline of the fracture.
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Figure 16. Effect of offset distance on normal tilt distribution for 61 m radius fracture at 152 m

distance, penny-shape case.

In addition to the changes in the normal tilt, moving the monitoring array to an offset position
also induces a tilt field parallel to the crack strike. The parallel tilt distribution for this same case
is shown in Figure 17. For no offset, the par-allel tilt is zero everywhere due to symmetry. For
increasing offset, the parallel tilt increases until it reaches a maximum at a location about 1.25

radii from the center, after which it begins to decrease.
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Figure 17. Effect of offset distance on parallel tilt distribution for 61 m radius fracture at 152 m

distance, penny-shape case.

The total tilt distribution (the vector sum) for this case, is shown in Figure 18. This plot is not

much different than Figure 16 because the majority of the tilt is due to the normal tilt component.
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Figure 18. Effect of offset distance on tilt vector-sum distribution for 61 m radius fracture at

152 m distance, penny-shape case.
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The elliptic model can be use to assess the effects of fracture length and other parameters.
Figure 19 shows the calculated normal tilt distribution for several fracture lengths with the
fracture height kept constant at 30.5 m and the monitoring distance at 152 m. The monitoring
array is centered about the fracture so that symmetry causes the parallel component of tilt to be
zero. For comparison, the 2D calculation for a 30.5 m height fracture at a monitoring distance of
152 m is also shown. The tilt increases considerably as the fracture grows, giving some
possibility to extract length as well as height from tiltmeter data. The comparison of the 2D and
305 m length cases show that when the ratio of the length to monitoring distance exceeds 2 the
2D calculation provides acceptable accuracy. The 15.2 m height case is a radial (or penny-
shaped) fracture and shows the other limiting case.
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Figure 19. Effect of Fracture Length for a 30.5 m height fracture at a distance of 152 m.

As would be expected, offsetting the monitoring location away from the centerline results in a
reduced normal tilt distribution. Figure 20 shows the normal tilt distribution for a 30.5 m height

fracture at a monitoring distance of 152 m and an offset of 152 m for several different crack
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lengths. When the monitoring distance is considerably greater than the fracture height, the effect
of offset is difficult to discern from the effect of fracture length (e.g., Figure 19).
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Figure 20. Effect of fracture length on the normal tilt distribution of a 152 m offset monitoring

location for a 30.5 m height fracture at a monitoring distance of 152 m.

The parallel tilts show a considerably different behavior, with the tilt amplitudes increasing up
to a point and then beginning to decrease after the fracture is well past (the parallel tilts must

eventually decrease as the fracture approaches a 2D condition with increasing length).
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Figure 21. Effect of fracture length on the parallel tilt distribution of a 152 m offset monitoring

location for a 30.5 m height fracture at a monitoring distance of 152 m.

If the monitoring location is offset from the center, as in the previous case, but is close to the
fracture (small monitoring distance), the ability to resolve fracture attributes increases. Figure 22
shows results for a 30.5 m height fracture of various lengths with a monitoring array offset by
152 m from the centerline, but a monitoring distance of only 30.5 m. For fractures shorter than
the monitoring array offset, the normal tilts are small. As the fracture approaches the monitoring
location, the normal tilts increase rapidly. For longer fractures, the normal tilts continue to
increase, but at a much slower rate. In addition, being close to the fracture allows for the héight

of the fracture to be accurately determined by the locations of the peak amplitudes.
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Figure 22. Effect of fracture length on the normal tilt distribution of 2 152 m offset monitoring

location for a 30.5 m height fracture at a monitoring distance of 30.5 m.

The parallel tilt distributions for the same case are shown in Figure 23. The parallel tilts also
show a large change as the fracture passes, with increasing amplitude for shorter fractures and
decreasing amplitude for larger fractures. The maximum point provides for a very useful
calibration point, as the length is known quite accurately at this one point and the height is fixed
by the locations of the peaks. Thus the relationship between amplitude and pressure can be

accurately determined for later calculations.
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Figure 23. Effect of fracture length on the parallel tilt distribution of a 152 m offset monitoring

location for a 30.5 m height fracture at a monitoring distance of 30.5 m.

The effect of fracture azimuth on the tilt distribution can also be investigated using the ellipti

o

model. Figure 24 shows the geometry of a fracture at some angle, , with respect to the line
normal to the treatment and monitoring wells. For a zero degree azimuth, the monitoring
distance, z,, is equal to the distance between the monitoring well and the treatment well, z,,, and

the offset, xois zero. As the azimuth deviates from 0, the monitoring distance decreases as

Zy = Zp, COSQL

-t

and the offset distance increases as

Xof = ZmoSINCL.
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Figure 24. Schematic of monitoring distance and offset as a function of azimuth.

Figure 25 shows the effect of azimuth on the normal tilt distribution for a 30.5 m height and
305 m length fracture at z,,, = 152 m for several different azimuths in degrees. These results
show that the tilt distribution hardly changes for azimuths less than 30°. This is both good and
bad for tilt monito‘ring. It is good because the effect of an unknown azimuth is small for +30°
angles about the normal position, but it also makes it next to impossible to distinguish the
azimuth with a single downhole array. In addition, the effect of azimuth for any angle is also
indistinguishable from other combinations of length, height and pressure. Thus, the fracture

azimuth must be known in order to accurately determine other fracture attributes with a single

downhole tiltmeter array.
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Figure 25. Effect of azimuth on normal tilt distribution for a 30.5 m height, 305 m length

fracture at a monitor well separation distance of 152 m.

Figure 26 shows the parallel tilt distributions for the same azimuth cases. As in most of the
other results, the parallel tilt magnitudes are relatively small (unless the monitoring well is very
close to the fracture) and contribute little to the total tilt magnitude. The parallel tilts are also not

very helpful in determining the azimuth of the fracture.
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Figure 26. Effect of azimuth on parallel tilt distribution for a 30.5 m height, 305 m length

fracture at a monitor-well separation distance of 152 m.
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The effect of the crack shape, as a result of a variable stress distribution over the crack height,
can be investigated using the layered-stress model based on England and Green’s [1963]
solution. The calculations were performed using the geometry of Figure 6 with dp =30.5 m and
d; =d; = 15.2 m. For a uniform stress distribution across the fracture, oop = Opotom = 0. For a
symmetric case, Oiop = Oportom % 0.

The cases considered here are a symmetric case where a 61 m height fracture is given various
stress contrasts while the tilts are calculated at a monitoring distance of 152 m, and the non-
symmetric case where the bottom stress is kept at 3.45 MPa while the top stress is varied from
3.45 to 10.3 MPa. The symmetric results are shown in Figure 27 for stress contrasts of 0, 3.45,
6.89 and 10.3 MPa. The high stress layers have the effect of; reducing the crack width and
therefore reducing the induced deformation and tilt. The case for 10.3 MPa is the maximum
stress contrast that can be applied tc; a 61 m height fracture and still have it open over its entire
length. For the other cases, the fracture height was artificially restricted to the 61 m height. The
interesting feature of the high stress contrasts is they do not significantly change the location of

the peaks (thus making the height estimate relatively reliable), but the large change in amplitude

would give erroneous fracture lengths for a given pressure.
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Figure 27. Effect of high stress layers on the normal tilt distribution due to reduced fracture

width for a 61 m height fracture monitored 152 m away, 2D layered-stress case.

The non-symmetric case is shown in Figure 28 and is similar in many ways to the symmetric
results in Figure 27. The cases shown are for a uniform stress (no contrasts), a symmetric
contrast of 3.45 MPa, and hon-symmetric contrasts of (a) 3.45 MPa below and 6.89 MPa above
and (b) 3.45 MPa below and 10.3 MPa above. Even though the fracture shape is highly
asymmetric, the tilt distribution is almost symmetric about the peaks and only shows a
significant difference in the decay at the top and bottom. This is probably because the tilt peaks
are most affected by the total width of the fractﬁre, which ai;fects B;th peaks in similar ways.
Note that the symmetric case with 6.89 MPa above and below is nearly the same as the non-

symmetric case with 3.45 MPa below and 10.3 MPa above (same net force on the fracture, just in

different locations).
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Figure 28. Effect of high stress layers on the normal tilt distribution due to reduced fracture
width for a 61 m height fracture monitored 152 m away, 2D layered-stress case with asymmetric

stresses.

4.0 Comparison with Dislocation Solution

The solution for a tensile dislocation of any size and orientation in a senﬁ~inﬁnite medium is
given by Okada [1992]. This expression is very useful, but it is relatively lengthy and
complicated. A simple expression for use with downhole tiltmeters can be developed by
considering an infinitely long dislocation in an infinite medium. This solution will be accurate
whenever the depth to the vfracture is considerably larger than the height of the fracture and the
depth to the shallowest monitoring station is relatively large. The expression for a tensile
dislocation in an infinite medium can be extracted fairly easily using Maruyama’s [1964]

expressions as follows.




The displacement due to any appropriate dislocation in an infinite medium is given by

1, (Q) = [[Au,(PYTi (P,Q)my(P)dE.
z

where u,,(Q) is the displacement of the i direction at the monitoring point O, Aug(P) is the

opening (or other movement) of the dislocation at some point P on the boundary %, T}7 (P,Q) is

the kI component of stress at P due to a unit body force in the m direction located at 0, and ny(P)

is the outward normal of the dislocation surface at the point P. Maruyama [1964] gives

7

m 1 1,
n,uzg)=zz{0—a{ Sy 3+5 +5@ ]+3aJL%—},

where J'is the Kronecker delta,

“=2@£ﬁ’
n=x-&,
and
r=y0n &) + (-85 + (- &)
for

P=P(£,65,83), Q=0(x,%,%3) .
For the simple case of a vertical dislocation of constant width, b, in the x, direction, then
Ay, =(0,6,0) and », =(0,1,0) .
For downhole tiltmeters monitoring a 2D vertical fracture, only the vertical derivative of the

normal displacement is needed and T is simplified as
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7

1 r I
T =—{(l-a)2+3a2%
‘ 22 47?{( )r3 5}

Inserting all of these parameters into the displacement integral, the displacement normal to the

fracture is given by

@)= [\ dé f[@ @)% +3a ]d@

Performing the integrations and simpiifying in the limit as L—>o, the normal displacement at

some distance, x,, for a 2D vertical fracture is given by

| H H
1,0) = an [/ ]+tmTéﬁq
2

b (/“xl)" . (I%“fxl)";
"2 (I‘y xl)z-!-xz (%+x,)2+x§

- with H being the fracture height, x, being the normal distance (horizontally) to the monitoring

station, and x; being the vertical location of the monitoring station relative to the center of the

fracture. Taking the derivative, the tilt at some position (x1,x2) is

% oyt
ox, @=

N7 A
ba 2x2([1%—x1)2 _ 2x2(1r1%+x1)Z
o [x§+(%——xl)z] [x§+(%+xl)z]

This equation is a relatively simple expression that can easily be used to check results with the

cracks equations.




47

In comparing dislocation and crack models, one needs to find some basis to associate the
crack pressure with the dislocation width. The most obvious solution is to equate the average
displacement for both cases or, equivalently, the integrated displacement for both cases,

assuming equal heights. Doing so for a 2D fracture results in a crack pressure given by

AP = 4Eb .
2’ JH
If, for example, the dislocation width is 2.13 cm, the equivalent pressure for a 61 m height
fracture having the same material properties as the previous example would be 6.4 MPa. These
values are used in the subsequgnt comparisons.
Figure 29 shows a comparison of the tilts from the dislocation model and the 2D crack model
for a 61 m height fracture at a monitoring distance of 152 m. At large distances, the dislocation
and crack model are indistinguishable, as has been recognized previously [Davis, 1983].
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Figure 29. Comparison of crack and dislocation tilt magnitudes for a 61 m height fracture

monitored at distance of 152 m.
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If the monitoring distance is 61 m, on the order of the crack height, the differences in the two
models become apparent, as shown in Figure 30. The difference in the two models is about 6%,
but the shapes of the two curves are very similar and deductions about fracture height would be
similar regardless of which model was used. For closer monitoring stations, as shown at 30.5 m
in Figure 31, the discrepancy becomes greater and the location of the peak values for the two
models begins to shift apart. The discrepancy in amplitude is about 10% and the shiﬁ in peak
values is about 5 m, which might lead one to deduce that the fracture height is 10 m less (15%)
than it actually is.
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Figure 30. Comparison of crack and dislocation tilt magnitudes for a 61 m height fracture

monitored at distance of 61 m.
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Figure 31. Comparison of crack and dislocation tilt magnitudes for a 61 m height fracture

monitored at distance of 30.5 m.

5.0 Discussion and Conclusions

The modeling results show that downhole tiltmeter arrays can provide data sufficiently
accurate to estimate fracture height at distances up to 7-10 fracture heights for long fractures and
5 fracture radii for nearly circular fractures. This distance effect is due largely to the expanding
tilt field with increasing distance from the fracture, the need for more extensive tiltmeter arrays,
and the diminishing amplitude with distance.

The effect of dip on the tiltmeter results is somewhat complicated. A vertical fracture and a
horizontal fracture produce the same shape of tilt field, but with different amplitudes. Fractures
that are inclined only slightly from either the vertical or the horizontal have the effect of creating
an asymmetry in amplitude and a shifting of the center of the fracture, but such effects could be

masked by moduli changes in the various beds or various fracture irregularities. As a result, it is
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likely that small fracture dips could easily be interpreted as vertical offsets in the fracture
locations. On the other hand, fractures inclined between 30° and 60° are quite easy to
distinguish because of the single large amplitude peak.

In practice, the locations of the tilt peaks are often used as indicators of fracture height, but
these resu}ts show that such an estimate can be seriously in error for situations where the
monitoring distance is greater than the fracture height. In addition, this technique is not very
accurate for penny;shaped fractures even if the fracture is close to the monitoring well.

Having a monitor array that is offset from the center of the fracture does not significantly
erode the capabilities of the tilt measurement system. There is a loss in amplitude, but as long as,
the monitoring position is not offset by more than 1.5 times the radiqs of the fracture (penny-
shaped case), at least one-half the amplitude of the tilt remains.

The tilt comp’onent parallel to the fracture is generally a small percentage of the normal tilt
unless the monitoring location is close to the fracture and offset from the center. The parallel
component does provide additional information on fracture length and symmetry, but it can only
be used if the tiltmeters are oriented [e.g.; Branagan et al., 1996].

The 3D-elliptic-crack calculations show that the 2D calculation is applicable when the length
of the fracture is at least twice the monitoring distance. In general, it ,is difficult to extract
accurate length information from a single tiltmeter array. The length and the offset position
(equivalent of varying the fracture azimuth) both have similar effects and it is difficult to
distinguish between the two under most situations. Also, the effect of increasing the fracture
pressure is the same as increasing the length, at least on the normal tilt. To be able to extract
accurate information, it would be helpful to use the parallel tilt component, but even this

component would add limited information. One reasonable strategy for determining fracture




T T N R AT T T N T

51
length is to plaée the monitoring array close to the fracture but offset from the center by sizable
percentage of the final fracture length. In such cases, it will be much easier to extract reliable
information on fracture length on the wing by wﬁich the array is located. However, this strategy
requires that the fracture azimuth and final length are known a priori.

The effect of azimuth is relatively small for azimuths less than 30° from the plane normal to
the fracture-well/monitor-well line. This behavior simplifies analysis since small ﬁncertainties in
the azimuth will not cause large errors, but it also makes it impossible to extract accurate
azimuth information from the tiltmeter data. As noted earlier, the effect of azimuth is very
similar to that of length and pressure.

High stress layers above and below the fracture squeeze the width and reduce the tilt
amplitudes, but they have only a small effect on the locations of the amplitude peaks. Asa
result, height can probably be accurately estimated in such circumstances, but the lower
amplitude may lead to the conclusion that the length is shorter, the pressure is lower, or the
fracture is closer (error in azimuth). Non-symmetric layers do not significantly change the
amplitudes of the peaks and are difficult to distinguish relative to symmetric layers or other
competing effects.

The dislocation calculation, which is widely used in tiltmeter analyses, is accurate if the
distance to the monitoring well is at least 1.5 times the height for the 2D case. For closer
monitoring stations, the dislocation analysis would result in an error in the fracture height and the
difference in amplitude would suggest that the fracture is longer, wider, or closer.

In summary, these results show that a downhole tiltmeter array can be used to extract
considerable useful information about hydraulic fractures and their growth processes.

Nevertheless, there are so many variable parameters that any additional information provided by

TSI T AT A A = > = ST - = N ~ v i v
BB S A S W )~ I AN R S /RN SRR 003725 - 0 ARG s ORI v o RO N <A Tat At



other diagnostics improves the accuracy of the tilt analysis. Perhaps the most effective way to
improve the accuracy would be to use tiltmeter arrays in multiple wells and the development of
oriented tiltmeters (;vould serve to improve the analysis by allowing the independent use of both
components of the tilt. Further work is needed to develop a better understanding of the effects of
layering (both stress and modulus) on the resultant tilt field. Layering effects are likely to be the
largest single source of error since the tilts are directly proportional to the modulus (pressurized
crack solution) and the closure stress, and modulus variations of factors of 2-3 are common in

sedimentary basins.
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