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ANALYTIC CRACK SOLUTIONS FOR TIJ-JTFIELDS AROUND HYDRAULIC FRACTURES

N. R. Warpinski

Sandia National Laboratories, Albuquerque,M’vI

Abstract. The recent development of downhole tiltmeter arrays for monitoring hydraulic

fractures has provided new Mormation on fracture growth and geometry. These downhole

arrays offer the significant advantages of being close to the fracture (large signal) and being

unaffected by the free surface. As with surface tiltrneter dataj analysis of these measurements

requires the inversion of a crack or dislocation model. To supplement the dislocation models of

Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to

provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-

elliptic cracks and a 2D-v@able-pressure crack. Equations are developed for an arbitrary

inclined fracture @an infiite elastic space. Effects of fracture height, fi-acture length, fracture

dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as

well as comparisons with the dislocation model. The results show that the tilt measurements are

very sensitive to the fracture dimensions, but also that it is difficult to separate the competing

effects of the various parameters.
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1. Introduction

Surface tiltmeter arrays have been used extensively for monitoring the azimuth and dip of

hydraulic fractures and the overall inflation of magmatic channels around volcanoes. Recently,

however, testing at the Gas Research Institute/Department Of Energy (GKVDOE) Multi-Site

facility near Rifle Colorado has shown that downhole tikrneters could provide usefid information

about other fracture’parameters [Warpinski, 1994 & 1996, Peterson et al., 1996, Branagan et al.,

1996, Warpinski et al., 1997a& 1997b] and such”monitoring is now available as a service

[Wright, 1998; Wright et al., 1998]. In both cases – surface and downhole – it is necessary to

invert the measured tilt dati to extract metingfil information about the fracture. The inversion

process requires a model of the tilt field induced by a presyrized fracture.

Models for evaluating surface tilts have generally been obtained from either elastic crack

solutions [e.g., Sun, 1969; Pollard and Holzhausen, 1979] or dislocation solutions [e.g., Davis,

1983; Okuda, 1992]. The Davis [1983] formulation is particularly attractive for surface tilts

because of its simplicity, but the Okada [1992] results are more complete and provide both

surface and internal deformations and tilts. Both of these models apply a rectangular dislocation

of uniform width to produce the deformation associated with a dilated fracture. Davis [1983]

notes that the rectangular dislocation is an approximation of a true tensile fracture, but the

deformation fm from the fracture should be accurate. The deformation close to the fracture,

however, is likely to be considerably in error. Furthermore, there is no direct tie to the internal

pressure within the hydraulic fracture, which is usually the only parameter measured. .

The purpose of this study was to develop exact analytical solutions of the tilt fields around

pressurized cracks in elastic bodies that could be used as an alternate to the dislocation solution.

These new results can be used to assess the applicability of the dislocation model as a function of
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distance from the fiactire and assess the coupling of the pressure to the dislocation inversion.

No new crack models have been formulated, but rather classical solutions to constant-pressure

2D, penny-shaped, and 3D elliptical cracks and a non-constant-pressure 2D crack have been

reworked to obtain tilt equations in addition to the stress and displacement equations.

These results also provide new tools that can be used to evaluate the sensitivity of the tilt

measurements to the various parameters and the ability of an inversion procedure to adequately

distinguish between competing parameters. Any of these models can be used dkectly in an

inversion algorithm, although the 3D elliptic crack is the most versatile and would probably be

most usefi.d for practical applications.

2. Models .

Solutions for four crack models are applied to the problem of the downhole tilt field generated

by the presence of a pressurized crack. These models include a plane 2D crack, an axisy&netric

radial crack (penny-shaped), and a 3D flat elliptical crack for the constant-pressure case and a 2D

plane crack for anon-constant-pressure solution. In all these cases it will be assumed that the

rock mass is homogeneous, isotropic and elastic.

2.1 2-D Model

The simplest analytic solution for the tilt field around a fracture is that of an infinitely long

2-D crack, a solution that was developed by Westergaard [1939], Sneddon and Elliot [1946], and

Sneddon [1946]. The geometry for this crack is shown in Figure 1, which follows directly from

Sne~don and Elliot [1946] and Sneddon’s [1946] nomenclature and orientation. The geometry is

rotated fi-omSneddon’s [1946] sothat the crack height is 2c, and all locations are measured by

.“. . . .
—.-—. . . .
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the three distance parameters, r, rl, and rz, and the three angles& 01, and&. The crack is

uniformly pressurized at a level P in a material having a Young’s modulus, E, and Poisson’s

ratio, v. Note that Sneddon’s [1946] original coordinates having the x direction aligned with the

crack height and the y direction normal to the crack is somewhat contrary to the normal

geometry of a vertical slice of a 2D vertical fracture. However, those coordinates are kept here

to facilitate references to the original work.

,

E, V

*

x (vertical)

Figure 1. Geometry of a 2-D crack

.

The basic solution is due to Westergaard [1939] in terms of a stress fbnction, Z, given as

[1“p J2%-1‘
where z is the complex variable, z = x + i’. Sneddon [1946] gives equations for the stress field

around the crack, but only the displacements ( Ux, Uy) are of interest here and these are given by
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2E
—.x = (1-2v)R@]- ~Im[z]
(1+ v)

and

&uy = 2(1– v) Im[~]– yRe[Z],

where the overbar represents the integral of the stress fiction Z with respect to z. The tilt vector

can be separated into two components, one orthogonal to the face of the fracture and one parallel

to the face. Upon differentiation, the tilt field orthogonal to the fracture can be deduced as

3UY
— ~{2(1-v)Im[Z]-y Re[2’},
dx=E

while other derivatives that will be useful for inclined fractures are given by

% _ (l+v){(~-2v)R.[Z] -y Im[z’},—_—
3X E

au. (l+v){-2(1-v)Im[Z] -y Re[z’],——
@=E

and

i?uy
— =@#{(l-2v)Re[Z] +yIm[Z’~.
dy

When Z is replaced, the derivatives can be written as

2UY = 2(1+ V)P .

8X E

-- ‘%-.::. . . .... . . . . . .. . . . . . . . . .. ... .,. , .. .,:---—. —.—- -–
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and

The first of these four equations can be used directly to give the tilt component orthogonal to a

vertical fracture that is monitored in an offset well using a vertical tilt array. The tilt component

parallel to the fracture (out of the plane) is zero since the crack is infkitely long.

For fractures with dip, it is necessary to rotate the displacement gradients into the correct

orientation and it is necessary to find the correct spatial parameters. Considering the

transformation fust, Figure 2 shows the fracture with dip and the observation well and then a

separate rotated view of this system. It is observed that the displacement of interest, the one

normal to the borehole (u.), is given by

Un =uYcosy+uXsiny ,

where yis the angle of the fracture plane referenced to the vertical (e.g., zero is a vertical

.
fracture). The tiltmeter array measures the variation of the derivatives of this displacement along

thes direction,

- -?.,- - -,-.n. T-.—
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Figure 2. Geometry for 2D fracture with dip.

Since the two spatial derivatives are given by

dy
—=–siny and ~=cosy ,
ds

the tilt can be reduced to

~=sh’cos’[-%+a-sh’

.-= -- . ~=-. ,.?r,—-m-- .,, .,. . .. . . ....- =>-+rnrr , - ‘,. --
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The final step is to determine the correct geometric parameters to characterize the distance

from the fracture to the tiltmeters. Referring to the unrotated coordinate system in Figure 2, it

can be found from geometry considerations that

f= Yo@’+~ow’

and

j=yOcosy–xosiny ,

where the variables with hats are the dktances to use in the analysis. These equations complete

the analysis of downhole tilt data for any 2D fracture, as long as it is fiwfrom the free stiace.

2.2 Penny-Shaped Model

For a penny-shaped crack, as shown in Figure 3, the problem is tractable because .of the

axisyrnmetry, but is considerably more complicated than the 2-D crack. Sneddon [1946] found

solutions for stresses and displacements in terms of Bessel-fiction arguments, although only

displacements are needed here.

Figure 3. Geometry of a penny-shaped crack
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By adopting the following notation,

g=zlc

p=rlc

r2 =1+<2

R2=(p2+<2-1~ +4~2

(tano=l

2<cotp=p2+g2–1

Sneddon [1946] showed that the displacements are given as the following integrals,

and

u= .*
ZE

By rearranging and defining the functions Cf. and S: as

C; (p,<)= ~#’-le-CvJm (pq)cosq dq

and

S;(p,<) = ~#’-%-cqJm ~~)Sinq dq ,

the integrations can be performed and the displacements can be written in terms of elementary
..

fimctions given by
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c;=J- ()co, =8
R& 2

and

[-1&sin E +rsin6
2

[) I

,p#o
&cos g +rcosQ

s;S;(c;-@;)

2

. .

10 “

To find the tilts around a vertical fracture, the displacement and the gradients of the

displacements are needed and these are given by

6’24=– u{4P1– V2 C;–s;+ G
dr = ZE []c; –s;

2(1- v)

From these terms, the components of tilt normal and parallel to the fracture face can be found as

-— --------- . . .
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a= 6’UZ
—=sin~—
5’y 67

al/j

{}

dur
—=cos~sin~ —–~
5’y 6% r

where ~ is the angle from the center of the crack to the x,y position of the measurement station

and r is the distance from the center of the crack to the measurement station.

For a fracture with dip, additional derivatives are needed and are found as

a, _ – 2M + 4 {q! _&j – ([c; –s:]– (1– 2v)[fq– s;
z– ZJ5 1

and

For fractures with dip, it is necessary to rotate the displacement gradients into the correct

orientation and it is necessary to fmd the correct spatial parameters. Figure 4 shows the fracture

with dip and the observation well and then the rotated view of this geometry. It is observed that

the two displacements of interest, the one normal to the fracture (uJ and the one parallel to the

fracture (up) are given by

Un = u= cos y + (u, sin ~)sin y

‘P =Urcosp ,

where yis the angle of the fracture plane referenced to the vertical (e.g., zero is a vertical

fracture) and ~ is the reference angle to the measurement station (e.g., Figure 3). The tihrneter

array measures the variation of the derivatives of these displacements along thes direction,

dun dun dz ~ aundy—— ——
3s = dZ ds ~y ds
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and

. 5’UP _ ~up dz + ~up dy— _—— ——
8s dZ ds dy ds”

n

7 m

Y.: m

;*.---------------------------------
G ~ u“

m

Y
m

m

Figure4. Geometry forpenny-shaped fracture withdip.
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Since the two spatial derivatives are given by

dy
~=–siny and

Z=cosy

the tilt derivatives can be reduced to

dun

[

a= C%r

1

a, 324=
—=sinycosy –—+sin2~ —–coszp~
as dz dr

–sin2ysinp— +cos2ysin&—
r dz dr

and

alp au, [1au,u
—=–sinycosp —+cosycosflsin/3 —–~ .
5’s dz &r

The final task is to determine the correct geometric parameters to characterize the distance

from the fi-acture to the tiltrneters. Referring to the unrotated schematic in Figure 4, it can be

found from geometry considerations that .

j= Zosiny+yOcosy =ZOsiny+rO cosysin/3

and

2=zOcosy–y0 siny=zO cosy-rosinysin~ ,

so that ~

where the variables with hats are the correct distance and angle to use in the analysis. These

equations complete the analysis of downhole tilt data for any penny-shaped fracture, as long as it

is fir from the free surface.

—.-. .,--r--c.? —. . . .. ., ,.-Yz,7m.s. ,:.,.., ,. m.. . . . . . -m ., . . . . . . .. .>’,
Jr:.— . ,..-—.-=-,.- -e-. ------- -
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2.3 Flat Elliptic Crack Model

The case of a 3D flat elliptic crack will be developed in more detail here because it is the most

general model, it is considerably more complex, and it was not as well developed in the original

papers. Considering a 3-dimensional flat elliptic crack opened by internal pressure and having

the geometry shown in Figure 5, Green and Sneddon [1950] found an analytical solution for the

following assumptions:

● inhite medium

. homogeneous isotropic material

. linear elastic behavior

● uniform pressure

. length> height (a > b).

{Y
A

2b

1
z’

z
+.+

Figwe 5. Geometry of fracture for tilt and stress calculations

Given these restrictions, the displacements and stresses can be given by

{

(54“}D=85 (l+2?7)4+z~ ,
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with

“D=i7+iv ,

@= Gx+oy,

@ = OX–oY +2i~XY ,and

In these equations, @isthe solution stress fimction, G is the shear modulus of the material and q

a is Poisson’s ratio. AdditionallyJZ is the third coordinate while z is the complex variable given

by z= x +& and z is its complex conjugate. Green and Sneddon [1950] found a solution of the

problem by converting to an ellipsoidal coordinate system, 2, A v, given by

+’-~’)~’‘(a2++2++2+4
~2(~2-a2)J’2‘(~’+4(~2+W’+v)
a2b2Z2 = l.pv

where
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m> A> O>p>–b22v>–a2 .

In this coordinate system, the solution can be found as an integration of combined coordinate:

as

4
ab2p

f’{
X2 Y2— — . .

‘32GE(k) 1 a2+s+b2+s }
‘: ‘J&%7

where E@) is a complete elliptic integral of the second kind of modulus k, with

2.3.1 Application to a Vertical Fracture (Length> HeigI@

The tilts normal to the face of the fracture can be found as

;=~[-(1-+’2-}%+
‘z-Fk’2s:Y}

.{}[

2
U d2u 3A 3A ~ du 323 )1+Z k’2~ ——— ——

cn2 u dA2 dy dZ dA dydZ ‘

where sn, dn and cn are Jacobian elliptic functions, A is given by

ab2p
A=–

16G E(k) ‘

and u is defined as

●

1 cnu
A=a —

snu “

The derivatives in the tilt equation are found from

..—,-,.~LT.,. .“—. - ~~,-., ~ ~. , > .. . . . ., , ~.,., .
. -.., e...! 3.,... , ..?. !- ,-.. . . . .<. .-L,<,! ~,.,. -. , ,-.. . . . : .s . ., , . .—. —. .. —-..”.-. . . .
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du – sn3 u=

d2u – sn2 u
d~z = ~a2

2a2 cnudnu ‘

2

3+
z sn2 u

~+k —
cn u dn2 u

2yA(a2 +2)

z=(&/f)(a-v) ‘

~~ 2Z(a2 +2)(b2 + A)
—=
dz (A-A)(2- v) ‘

17

du

z’

-1-

and

./2 (a-/u)(A-v)

1 = 42(a2 + A)(b2 +1) .

More information about these derivatives and other characteristics of the ellipsoidal confocal

coordinate system can be found in Khittaker and Watson [1927]. This same reference has

extensive itiorrnation about the Jacobian elliptic functions, as does Abramowitz and Stegun

[1970]. In addition, Sih andLiebowitz [1968] provide some discussion on the 3D-elliptic-crack

solution that is useful.

The tilts parallel to the fracture face are found from

{ }{

sn2u d2u 82 8A + du 32A
-i- }1k’2—_—_

cn2 u dA2 2X b’y dA dxdy

I

I_.. ._, mr— T-- . . . ..---mr-. .7. . w..,,_ .,. . . /, . . . . . .. . . . . . . . . .. ., .> - . . . ., ... — ----------- . . .
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where the additional derivatives are given by

82 2xa(b2 + 2)

z= (a-p)(A-v)

and

The calculation of the 2, A v coordinates requires the solution of the cubic equation

23 +A2(a2 +b2 –X2 -y2 –Z2)+A(a2b2 –b2x2 –a2y2 –a2Z2 –b2Z2)–a2b2Z2 = O

for A,followed by solution of the quadratic equation

p2(a2A +A)+p(a2b2Z2 +b22Z2 + a4A + a2A2 –a22x2 +b22x2)+ a4b2Z2 +a2b2A.Z2 = O”

for /, and then

a2b2Z2

‘= A/u

The procedure for using these equations is as follows:

1.

2.

3.
e

4.

Select point XJ,Z for which the calculation is to be made

Determine the appropriate @ vfor this point’

Determine the value of u

Obtain tilts.

One confbsing point is that Green and Sneddon [1950] used u for both the displacement in the x

direction as well as for a transformed fbnction. To help eliminate confhsion in this paper, Z has

been used to denote the displacement. The only place the displacement enters is through the

original complex equations and in the deftition of the tilt.

.. ..-— ..-.-,
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2.3.2 Non-Vertical Fracture or Height Greater than Length

The previous solution is for a vertical fiactie whose height is greater than its length, which is

a quite limiting constraint. However, this model can be used to also extract the tilts for a fracture

with dip and for one whose height is greater than its length. To obtain the tilts for these cases, it

is necessary to obtain the displacement derivatives for the seven other components. These are

given as:

(%7= 8(1- 2q)A

% a3k2
{U-E(U)}

+ 8(1– 2q)Ax n2u “du3A
k}

——
a3 dA 6’X

8C = 8(1– 2r&Lx n2u du c%
H

——
5’Z a3 dl d.Z

-[{ }

+ 8AZ Zk,z sn2 u d. 3A— —.
ab2 cn2 u d~ 8X

19

I

‘Z-P’2S%I(3%%
{ }{

d2u dl d? du 82A }1+Z -k’2~ ~---+ ---

{}

~v = 8(1– 27)Ay sn2 u du d?

z a3 — ‘—dn2u dA 3X

.- ----- .,.--=-d. , ..,. . . . ...). ,. ., . . . . . . .- -’. .< - 7:--?.’,, . .. .s ,. .7-Ts-’=-,.- ...”.. . . . . . . . . . . . . . . . .
>. ~,. .,,-,. ~ ,,
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{

8V = 8(1– 27)A E(u)_ k’2~ –

}

k2snucnu du 2A.—
~ a3k2k’2 dnu dA 3Z

-[{ }.

+ 8AZ Zk,z sn2 u du 8A— ——
ab2 cn2 u dA ~y

‘.+”2s:tu}[%%
{ }{

2U d2u (% dA + du 32A }1+Z k’2~ ——— ——4 ‘cn2 u dA2 dx 5’Z d~ 5’x6’Z

‘zPk’2s::u
{ }{,2 sn2 u d2u d? 82 + du 32A }1+Z”k — ——— ——

cn2 u dA2 dZ dy dA dZay

~,- -—.. - ..-,
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To calculate these derivatives, some additional partial derivatives of 2 need to be calculated.

These are given by

32A

[ {

X2

}1Z7=’* ‘-(a2:yh:+& (.2+J ‘(b<.y+% ‘
#

[ {
X2

}1%=* ‘-(bly,:+% (az+.y+(b<.~+; ~

and

For vertical fractures that are taller than they are long, the normal tilt is given by

interchanging a and b (essentially switching the length and the height) and using Wdx. The

parallel tilt is given by Wtlr.

For fractures with dip, it is necessary to rotate the displacement gradients into the correct

orientation and it is necessary to fmd the correct spatial parameters. Considering the

transformation first, Figure 4 again shows the fracture with dip and the observation well and then

the rotated vipw of this geometry. As in the 2D case, it is again observed that the two

displacements of interest, the one normal to the fracture (u.) and the one parallel to the fracture

(UP)are given by

Un= Wcosy+vsiny

--?77 -r- 7; y ~...~ ----
,- — —- ..- -.
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where yis the angle of the fracture plane references to the vertical (e.g., zero is a vertical

fracture). The tiltmeter array measures the variation of these displacement derivatives along the

s direction,

an = % d-z+% @—. ——
8s b’Z ds dy ds

1’

and

aup dUP dz + 6’UP dy
—— —— ,

(5’Z ds dy ds

Since the two spatial derivatives are given by

dZ dy
—=–SiIly and —= COS~
ds ds

the tilt derivatives can be reduced to

aun .

[1

dw ● (5’V .2 ~v ; cos2~z-——

6’s ‘slnycOsy dz dy ‘sin ‘dz dy

and

ap _ . ail a—_
6’s –slnyE+cOsyz”

If the fracture is taller than it is long, the a and b should be switched and the appropriate

derivatives are

dun _

[1

aw + al .23; ~ dw
—–sinycosy -— —
3s 13z 3X ‘sin ‘Z+cos ‘z

and

du p – shy 8V dv—_ — —+cosy—
as 6’Z ax “
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The final task is to determine the correct geometric parameters to characterize the distance

horn the fracture to the tiltmeters. Referring to the Wotated schematic in Figure 6, it can be

found from geometry considerations that

f=x

j= ZOsin~+yOcosy

and

i=zocosy–yosiny ,

where the variables with hats are the correct distances to use in the analysis. Of course, if the

fracture is taller than it is long, then the x and y variable need to be reversed so that

+=zosiny+xocosy

j=y,

where the vertical distance from the crack centerline to the tihrneter of interest is now XO.These

equations complete the analysis of downhole tilt data for any elliptic fracture of any geometry, as

long as it is fiir from the free surface.

2.4 2D Fracture With Internal Pressure Distribution

England and Green [1963] have solved the problem of a 2D fracture with variable pressure

distribution in the crack, which is equivalent to the case”of constant internal pressure with an

arbitrary number of layers having variable stress, as shown in Figure 6. This problem is of

interest when the crack is large and crosses into several layers with different stresses. Since

higher stress layers will clamp the fracture width and reduce the magnitude of the tilts, analyses

I

that use a homogeneous medium could be significantly in error. However, this solution can only

be used for a fracture that is normal to the bedding (e.g., a vertical fracture with ho~zontal beds].

--.%-7 .-..-,< . . . L-. . . . . -., <.. ” ., .=,<-.,... , . . . .. ..- . . -.>) -. ,.. .- --.—- --r,mr-- .. ..- ——— ——-— I
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I
a

I
A

CYc

Figure 6. Geometry for crack with layered stress distribution.

As with the previous 2D solution, there is only one tilt component developed by such a crack,

the one normal to the fracture plane. The solution to the problem follows the development of

“crackproblems by Green and Zerna [1968] in which the displacements and their derivative with

respect to x are

2(1 + ‘) {(3 -4V)Q(Z)-Q’(Z)+ (z- z)Q’(~)1D=uX+iuY=
E

and

9= 2(1+ V){(3 -4V)Q’(Z)-Q’(Z)+ (z-z)s2”(~)}
t3x E

The England and Green [1963] solution for the function Q is of the form

~(Z)= ~F(t)+zG&,
07

where the functions F(O and G(O are given by

and

—— ——
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wherej@) and g(u) are even and odd fimctions, respectively, that make

p(u), in the fracture,

p(u) = f (u)+ g(u).

For example, a constant pressure, P, would result inf(u) = P and g(u) =

up

o.

the internal pressure,

A pressure of P1 on

the top half of the fracture and Pz on the bottom half would result in f(u) = (Pl + P2)/2 and

g(u)=(l?l – P2)/2, so that g(u) = (PI – Pz)/2 for x >0 and g(u) = -(PI – Pz)/2 for x <0.

Using the imaginary part of tie x derivative of the displacement function, D, and taking the

necessary derivatives, the iriclination of a down-holetiltmeter can be found as

_. 1[-4(1-.$$+$+$}+2,{:+3}-{>+3}1auy 2(1-1-v)

dxE

where

and

Al = G(t)sinq

A2 = @ficos(3q)-xsin(3q)]

As= G(t)[2xycos(3q)- (X2-y2)sin(377)]

““ l?~= F(t)cos(377)

B2 = 3G(t)[xcos(3q)+ ysin(3n)]

Cl= 3F(t)[(x2 -y2)cos(5q)+2xy sin(5q)]

C,= 3G(t)[(x3-3xy2)cos(5q)- (y’ -3x2y)sin(577)]

.
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[12xy
q =+1 z

x +y2+t2 .,

Integration of the tilt equation is handled numerically. To get physically reasonable tilts, the

pressure must be large enough to support a fi-actureof the specified height. In actual practice,

this tilt calculation is combined with the corresponding calculation of the fracture height and

width for a given internal pressure and layered-stress medium [Wiv@&i, 1989]. This

calculation assures that the fracture does not close back on itself.

3.0 Model Results

The models can be used to help understand how the tilt field is affected by the important

parameters and to determine optimum locations for downhole tilt monitoring. Each model may

be more useful for examining a specific parameter, so each of the four models is used herein

some capacity. For all cases studied here, Young’s modulus has been kept at 27.6 GPa and

Poisson’s ratio is 0.2. The internal fracture pressure is usually 6.89 Mpa and most other

parameters have been varied.

The 2D model is very useful for examinin g the effect of fracture height and mo~toring

, distance on the amplitude decay and tilt radiation. The effect of fracture height at a prescribed

monitoring distance (152 m) is shown in Figures 7 and 8. Figure 7 shows crack heights of 15.2,

30.5,61 and 122 m while Figure 8 has an expanded scale to show 7.6, 15.2, and 30.4 m cracks.

In all cases, the tilt distribution follows the classic S-shaped curve observed in field data [e.g.,

Branagan et al., 1996; Wai-pinski et al., 1997a& 1997b; Wright, 1998; Wright et al., 1998]. The

obvious effect of crack height is on the amplitude of the tilt field, which ranges from less than a

microradian for the small fracture heights to as much as 50 microradians for the 122 m height

. .-— ..--, n--,r .- ,?..v- .. —.r. . ,-T’ ., ------ . . . . . . -. ~
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fracture. Compared to surface tilts that usually area few tens to a few hundreds of nanoradians,

the response of a downhole tiltrneter can be extremely large. Nevertheless, the smaller fractures

will be difficult to image if the tiltrneters are not well coupled to the formation or if wellbore or

electronic noise is large.

One important observation that can be made of these comparisons concerns the locations of

the peak tilt values as a function of fracture height. For large fracture heights relative to the

distance to the tiltmeters, the locations of the amplitude peaks area clear fimction of the fracture

height. However, for small fracture heights as in Figure 8, the locations of the peaks are only

slightly changed with fracture height. This behavior shows that there is a limit to how far away

the tiltrneters can be to image the fracture accurately and that limit depends on the height of the

fracture.
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Figure 7. Effect of fracture height at 152 m monitoring distance, 2D crack.
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Figure 8. Effect of crack height at 152 m monitoring distance, 2D crack.

The effect of monitoring distance for a given fracture height is shown in Figure 9 for short

monitoring distances and in Figure 10 for greater distances. When the monitoring distance is on

the order of the crack height, the peaks in the tilt distribution are nearly aligned with the top and

bottom of the fi-acture. However, for greater monitoring distances the peak locations quickly

spread out and cannot be used as a reliable indicator of fracture height. The data in Figure 10

show that the tilts can be measured along distance from a large fracture, but that the deformation

exhibits considerable vertical expansion with monitoring distance and.an extremely large tilt
4

array would be required. Assuming that a 300 m long tilt array is a reasonable maximum for an

array, these results suggests that quantitative tilt meastiements can be made for distance-to-

height ratios of approximately 7-10 for a long fracture (e.g., 2D case).
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Figure 9. Effect of monitoring distance for a 30.5 m height fracture, 2D case.
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Figure 10. Effect of monitoring distance for a 30.5 m height fracture, 2D case.

The effect of the fracture dip on the downhole tilt field for a fracture of 30.5 m height at a

monitoring distance of 152 m is shown in Figure 11. However, the number given in the legend
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box is the deviation of the fracture from vertical, rather than the fracture dip (O= a vertical

fracture) since hydraulic fractures are generally vertical. For small deviations from vertical

(inclinations), the effect of the inclination is to cause the tilts to increase in magnitude on the side

where the fracture approaches the monitoring array and decrease on the other side. In addition,

the locations of the peaks are forced outward and are no longer connected to the fracture height

in a clear way. For larger inclinations, the double peak becomes essentially a single peak in the

center of the array, while a horizontal fracture looks like a vertical fracture of smaller height.

Thus, it can be seen that fracture dip can cause some confusing results unless some other “

independent information about the fracture geometry is available.
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Figure 11. Effect of dip for a 30.5 m height iiacture, 152 m distant, 2D cased.

The penny-shaped, or radial, fracture model is usefid for examining the effects of short

fracture lengths on the measured tilt field. Figures 12 and 13 show the ability of a tiltmeter array

to measure fractures of various radii from a distance of 152 m, with the downhole tiltmeter array

placed directly on the fracture-center orthogonal line (the line orthogonal to the fracture passing
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through the center of the fractme). At MS dist~ce, the tikrneters are able to resolve fractures of

greater than 30 m radius, but may have dil%culty with smaller fractures.
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Figure 12. Effect of fracture radius for a monitoring distance of 152 m, penny-shaped fracture.\
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Figure 13. Effect ‘offracture radius for a monitoring distance of 152 m, penny-shaped fracture.
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Figures 14 and 15 show the effect of monitoring distance on the tilt fields for a 61 m fracture

height. For radial fiacties, the location of the peaks does not match well with the top and

bottom of the fi-acture, even for fractures that have a large radius compared to the distance to the

monitoring array. As would be expected, the effect of distance on amplitude reduction is greater

for the penny-shaped case than it is for the 2D case
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Figure 14. Effect of monitoring distance for a 61 m radius fkacture, penny-shaped case.
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Figure 15. Effect of monitoring distance for a 61 m radius fracture, penny-shaped case.
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The previous calculations for a penny-shaped crack have been on the centerline of the fracture

so that the response is a muimw and there is no parallel tilt. The effect of the offset distance

for a 61 m radius crack at a monitoring distance of 152 m is shown in Figure 16 for the normal

tilt distribution. As can be seen, the normal tilt decreases as the monitoring array is moved

farther away from the centerline of the fracture.
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Figure 16. Effect of offset distance on normal tilt distribution for 61 m radius fracture at 152 m

distance, penny-shape case.

In addition to the changes in the normal tilt, moving the monitoring arra~to an offset position

also induces a tilt field parallel to the crack strike. The parallel tilt distribution for this same case

is shown in Figure 17. For no offset, the parallel tilt is zero everywhere due to symmetry. For

increasing offset, the parallel tilt increases until it reaches a maximum at a location about 1.25

radii from the center, after which it begins to decrease.
I
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Figure 17. Effect of offset distance on pmallel tilt distribution for 61 m radius fracture at 152 m

distance, penny-shape case.

The total tilt distribution (the vector sum) for this case, is shown in Figure 18. This plot is not
.

much different than Figure 16 because the majority of the tilt is due to the normal tilt component.
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Figure 18. Effect of offset distance on tilt vector-sum distribution for 61 m radius fracture at

152 m distance, penny-shape case.
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The elliptic model can be use to assess the effects of fracture length and other parameters.

Figure 19 shows the calculated normal tilt distribution for several fracture lengths with the

fracture height kept constant at 30.5 rn and the monitoring distance at 152 m. The monitoring

array is centered about the fracture so that symmetry causes the parallel component of tilt to be

zero. For comparison, the 2D calculation for a 30.5 m height fracture at a monitoring distance of

152 m is also shown. The tilt increases”considerably as the fracture grows, giving some

possibility to extract length as well as height from tiltmeter data. The comparison of the 2D and

305 m length cases show that when the ratio of the length to monitoring distance exceeds 2’the

2D calculation provides acceptable accuracy. The 15.2 m height case is a radial (or penny-

shaped) fracture and shows the other limiting case.
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Figure 19. Effect of Fracture Length for a 30.5 m height fracture at a distance of 152 m.

As would be expected, offsetting the monitoring location away fi-omthe centerline results in a

reduced normal tilt distribution. Figure 20 shows the normal tilt distribution for a 30.5 m height

fracture at a monitoring distance of 152 m and an offset of 152 m for several different crack
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lengths. When the monitoring distance is considerably greater than the fracture height, the effect

of offset is difilcult to discern from the effect of fracture length (e.g., Figure 19).
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Figure 20. Effect of fracture length on the normal tilt distribution of a 152 m offset monitoring

location for a 30.5 m height fracture at a monitoring distance of 152 m.

The parallel tilts show a considerably different behavior, with the tilt amplitudes increasing up

to a point and then beginning to decrease after the fracture is well past (the parallel tilts must

eventually decrease as the fracture approaches a 2D condition with increasing length).
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Figure 21. Effect of fiactu.re length on the parallel tilt distribution of a 152 m offset monitoring

location for a 30.5 m height fracture at a monitoring distance of 152 m.

If the monitoring location is offset from the center, as in the previous case, but is close to the

fracture (small monitoring distance), the ability to resolve .fiacture attributes increases. Figure 22

shows results for a 30.5 m height fracture of various lengths with a monitoring array offset by

152 m from the centerline, but a monitoring distance of only 30.5 m. For fractures shorter than

the monitoring array offset, the normal tilts are small. As the fracture approaches the monitoring

location, the normal tilts increase rapidly. For longer fractures, the normal tilts continue to

increase, but at a much slower rate. In addition, being close to the fracture allows for the height

of the fracture to be accurately determined by the locations of the peak amplitudes.
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Effect of fracture length on the normal tilt distribution of a 152 m offset monitoring

location for a 30.5 m height fracture at a monitoring distance of 30.5 m.

The parallel tilt distributions for the same case are shown in Figure 23. The parallel tilts also

show a large change as the fracture passes, with increasing amplitpde for shorter fractures and

decreasing amplitude for larger fractures. The maximum point provides for a very usefi.d

calibration point, as the length is known quite accurately at this one point and the height is fixed

by the locations of the peaks. Thus the relationship between amplitude and pressure can be

accurately determined for later calculations. .
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Figure 23. Effect of fracture length on the parallel tilt distribution of a 152 m offset monitoring

location for a 30.5 m height fracture at a monitoring distance of 30.5 m.

The effect of fracture azimuth on the tilt distribution can also be investigated using the elliptic

model. Figure 24 shows the geometry of a fracture at some angle, ~ with respect to the line

normal to the treatment and monitoring wells. For a zero degree azimuth, the monitoring

distance, z. is equal to the distance between the monitoring well and the treatment well, Z.Oand

the offset, xOfliszero. As the azimuth deviates from O,the monitoring distance decreases as

z~ = z~Ocosa-+

and the offset distance increases as

xOff= z~o sin a.
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Figure 24. Schematic of monitoring distance and offset as a fiction of azimuth.

Figure 25 shows the effect of azimuth on the normal tilt distribution for a 30.5 m height and

305 m length fracture at zmO= 152 m for several different azimuths in degrees. These results

show that the tilt distribution hardly changes for azimuths less than 30°. This is both good and

bad for tilt monitoring. It is good because the effect of an unknown azimuth is small for &300

angles about the normal position, but it also makes it next to impossible to distinguish the

azimuth with a single downhole array. In addition, the effect of azimuth for any angle is also

indistinguishable from other combinations of length, height and pressure. Thus, the fracture

azimuth must be known in order to accurately determine other fracture attributes with a single

1+ downhole tiltmeter array.
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Figure 25. Effect of azimuth on normal tilt distribution for a 30.5 m height, 305 m length

fracture at a monitor well separation distance of 152 m.

Figure 26 shows the parallel tilt distributions for the same azimuth cases. As in most of the

other results, the parallel tilt magnitudes are:relatively small (unless the monitoring well is very

close to the fracture) and contribute little to the total tilt magnitude. The parallel tilts are also not

very helpful in determining the azimuth of the fracture.
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Figure 26. Effect of azimuth on parallel tilt distribution for a 30.5 m height, 305 m length

fracture at a monitor-well separation distance of 152 m.



The effect of the crack shape, as a result of a variable stress distribution over the crack height,

can be investigated using the layered-stress model based on England and Green’s [1963]

solution. The calculations were performed using the geometry of Figure 6 with do= 30.5 m and

dl = d2= 15.2 m. For a uniform stress distribution across the fiac~e, %P = %ff~~ = 0. For a

symmetric case, atop = aboffom*0.

The cases considered here are asymmetric case where a 61 m height fracture is given various

stress contrasts while the tilts are calculated at a monitoring distance of 152 m, and the non-

symmetric case where the bottom stress is kept at 3.45 MPa while the top stress is varied from

3.45 to 10.3 MPa. The symmetric results are shown in Figure 27 for stress contrasts of 0,3.45,

6.89 and 10.3 MPa. The high stress layers have the effect of reducing the crack width and

therefore reducing the induced deformation and tilt. The case for 10.3 MPa is the maximum

stress contrast that can be applied to a 61 m height fracture and still have it open over its entire

length. For the other cases, the fracture height was artificially restricted to the 61 m height. The

interesting feature of the high stress contrasts is they do not significantly change the location of

the peaks (thus making the height estimate relatively reliable), but the large change in amplitude

would give erroneous fracture lengths for a given pressure.
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Figure 27. Effect of high stress layers on the normal tilt distribution due to reduced fracture

width for a 61 m height fiactu.re monitored 152 m away, 2D layered-stress case.

The non-symmetric case is shown in Figure 28 and is similar in many ways to the symmetric

results in Figure 27. The cases shown are for a uniform stress (no contrasts), a symmetric -

contrast of 3.45 Ml@ and non-symmetric contrasts of(a) 3.45 MPa below and 6.89 MPa above

and (b) 3.45 MPa below and 10.3 MPa above. Even though the fracture shape is highly

asymmetric, the tilt distribution is almost symmetric about the peaks and only shows a

significant difference in the decay at the top and bottom. This is probably because the tilt peaks
.+

are most affected by the total width of the fracture, which tiects both peaks in similar ways.

Note that the symmetric case with 6.89 MPa above and below is nearly the same as the non-

symmetric case with 3.45 MPa below and 10.3 MPa above (same net force on the fracture, just in

different locations).
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l?igure 28. Effect of high stress layers on the normal tilt distribution due to reduced fracture

width for a 61 m height fracture monitored 152 m away, 2D layered-stress case with asymmetric

stresses.

4.0 Comparison with Dislocation Solution

The solution for a tensile dislocation of any size and orientation in a semi-itilnite medium is

given by Oh?ada[1992]. This expression is very usefbl, but it is relatively lengthy and

complicated. A simple expression for use with downhole tiltmeters can be developed by

considering an infinitely long dislocation in an infinite medium. This solution will be accurate..+

whenever the depth to the fracture is considerably larger than the height of the fracture and the

depth to the shallowest monitoring station is relatively large. The expression for a tensile

dislocation in an inilnite medium can be extracted fairly easily using Maruyama’s [1964]

expressions as follows.
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The displacement due to any appropriate dislocation in an infinite medium is given by

where u~(Q) is the displacement of the iti direction at the monitoring point Q, zlu~(~) is the

opening (or other movement) of the dislocation at some point P on the boundary X, Tk~(P, Q) is

the kl component of stress at P due to a unit body force in the m direction located at Q, and nl(P)

is the outward normal of the dislocation surface at the point P. Maruyama [1964] gives
. I

where dis the Kronecker delta,

1

a=2(l-v) ‘

ri = Xi ‘Ci 2

and

for

p=p(&,g2>g3)> Q= Q(X1>X2>X3) “

For the simple case of a vertical dislocation of constant width, b, in the X2direction, then

Auk = (O,b,O) and nl = (0,1,0) .

For downhole tiltmeters monitoring a 2D vertical fracture, only the vertical derivative of the

normal displacement is needed and T is simplified as
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{ }

22 & (1-a)~+sa$T2 =
r

Inserting all of these parameters into the displacement integral, the displacement normal to the

fracture is given by

-&c:2~~1fL[(l-a)3+3a$]~<3U2(Q) –

Performing the integrations and simplifying in the limit as L+m, the normal displacement at

some distance, X2,for a 2D vertical ~acture is given by

with H being the fi-actureheight, X2being the normal distance (horizontally) to the monitoring

station, and xl being the vertical location of the monitoring station relative to @e center of the

Iiacture. Taking the derivative, the tilt at some position (X1,X2)is

– X2

x;+(~-.,y + X;+(;+X*Y

(-

This equation is a relatively simple expression that can easily be used to check results with the

cracks equations.



. . .
, 47

In comparing dislocation and crack models, one needs to find some basis to associate the

crack pressure with the dislocation width. The most obvious solution is to equate the average

displacement for both cases or, equivalently, the integrated displacement for both cases,

assuming equal heights. Doing so for a 2D fracture results in a crack pressure given by

“=*”

If, for example, the dislocation width is 2.13 cm, the equivalent pressure for a 61 m height

fracture having the same material properties as the previous example would be 6.4 IW?a. These

values are used in the subsequent comparisons.

Figure 29 shows a comparison of the tilts from the dislocation model and the 2D crack model

for a 61 m height fracture at a monitoring distance of 152 m. At large distances, the dislocation

and crack model are indistinguishable, as has been recognized previously [Davis, 1983].
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Figure 29. Comparison of crack and dislocation tilt magnitudes for a 61 m height fracture .

monitored at distance of 152 m. ,

4

—~ —,--.y~,r, ,, ,- . . . . . . .. . . mm -.. -, .,, .,,,,
.,. . . . . . . . . . . ..”. . . . ...”. ..-— -- —.-. -.. — ----- . . .



. . . .
48

If the monitoring distanceis61 m, on the order of the crack height, the differences in the two

models become apparent, as shown in Figure 30. The difference in the two models is about 6°/0,

but the shapes of the two curves are very similar and deductions about fracture height would be

similar regardless of which model was used. For closer monitoring stations, as shown at 30.5 m

in Figure 31, the discrepancy becomes greater and the location of the peak values for the two

models begins to shift apart. The discrepancy in amplitude is about 10’XOand the shift in peak

values is about 5 m, which might lead one to deduce that the fracture height is 10 m less (15%)

than it actually is.

150

100

50

-50

-1oo

-150

Diafance=61 m

=

-75 -50 -25 ‘O 25 50 75

TILT (microradians)

Figure 30. Comparison of crack and dislocation tilt magnitudes for a 61 m height fracture

monitored at distance of 61 m.
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Figure 31. Comparison of crack and dislocation tilt magnitudes for a 61 m height fiactul-e -

monitored at distance of 30.5 m.

5.0 Discussion and Conclusions

The modeling results show that downhole tiltmeter arrays can provide data sufficiently

accurate to estimate fracture height at distances up to 7-10 fracture heights for long fractures and

5 &acture radii for nearly circular fractures. This dMance effect is due largely to the expanding

tilt field with increasing distance from the fracture, the need for more extensive tiltmeter arrays,
4

and the diminishing amplitude with dM.a.nce.

The effectof dip on the tiltmeter results is somewhat complicated. A vertical fracture and a

horizontal fracture produce the same shape of tilt field, but with different amplitudes. Fractures

that are inclined only slightly from either the vertical or the horizontal have the effect of creating

an asymmetry in amplitude and a shifting of the center of the fracture, but such effects could be

masked by moduli changes in the various beds or various fracture irregularities. As a result, it is
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likely that small fracture dips could easily be interpreted as vertical offsets in the fracture

locations. On the other hand, fractures inclined between 30° and 60° ate quite easy to

distinguish because of the single large amplitude peak.

In practice, the locations of the tilt peaks are often used as indicators of fracture height, but

these results show that such an estimate can be seriously in error for situations where the

monitoring distance is greater than the fracture height. In addition, this technique is not very

accurate for pepny-shaped fractures even if the fracture is close to the monitoring well.

Having a monitor acray that is offset from the center of the fi-acture does not significantly

erode the capabilities of the tilt measurement system. There is a loss in amplitude, but as long as.

the monitoring position is not offset by more than 1.5 times the radius of the fracture (penny-

shaped c&e), at least one-half the amplitude of the tilt remains.

The tilt component parallel to the fracture is generally a small percentage of the normal tilt

unless the monitoring location is close to the fracture and offset from the center. The parallel

component does provide additional tiormation on fracture length and symmetry, but it can only

be used if the tiltmeters me oriented [e.g.; Branagan et al., 1996].

The 3D-elliptic-crack calculations show that the 2D calculation is applicable when the length

of the fi-acture is at least twice the monitoring distance. In general, it is difficult to extract

accurate length tiormation from a single tiltmeter array. The length and the offset position

(equivalent of varying the fracture azimuth) both have similar effects and it is difficult to

distinguish between the two under most situations. Also, the effect of increasing the fracture

pressure is the same as increasing the length, at least on the normal tilt. To be able to extract

accurate information, it would lie helpful to use the parallel tilt component, but even this

component would add limited information. One reasonable strategy for determiningg fracture

—-- —7.-. .) .=
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length is to place the monitoring array close to the fracture but offset from the center by sizable

percentage of the final fracture length. In such cases, it will be much easier to extract reliable

information on fracture length on the wing by which the array is located. However, this strategy

requires that the fi-actureazimuth and final length are known apriori.

The effect of azimuth is relatively small for azimuths less than 30° from the plane normal to

the fracture-well/monitor-well line. This behavior simplifies analysis since small uncertainties in

the azimuth will not cause large errors, but it also makes it impossible to extract accurate

azimuth itiormation from the tiltrneter data. As noted earlier, the effect of azimuth is very

similar to that of length and pressure.

High stress layers above and below the fractnre squeeze the width and reduce the tilt

amplitudes, but they have only a small effect on the locations of the amplitude peaks. As a .

result, height can probably be accurately estimated in such circumstances, but the lower

amplitude may lead to the conclusion that the length is shorter, the pressure is lower, or the

fracture is closer (error in azimuth). Non-symmetric layers do not significantly change the

amplitudes of the peaks and are difficult to distinguish relative to symmetric layers or other

competing effects.

The dislocation calculation, which is widely used in tiltmeter analyses, is accurate if the

distance to the monitoring well is at least 1.5 times the height for the 2D case. For closer

monitoring stations, the dislocation analysis would result in an error in the fracture height and the

difference in amplitude would suggest that the fracture is longer, wider, or closer.

In summary, these results show that a downhole tiltmeter array can be used to extract

considerable usefid information about hydraulic fractures and their growth processes.

Nevertheless, there are so many variable parameters that any additional tiormation provided by

I
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other diagnostics improves the accuracy of the tilt analysis. Perhaps the most effective way to

improve the accuracy would be to use tiltmeter arrays in multiple wells and the development of

oriented tiltmeters would serve to improve the analysis by allowing the independent use of both

components of the tilt. Further work is needed to develop abetter understanding of the effects of

layering (both stre& and modulus) on the resultant tilt field. Layering effects are likely to be the

largest single source of error since the tilts are directly proportional to the modulus (pressurized

crack solution) and the closure stress, and modulus variations of factors of 2-3 are common in

sedimentary basins.
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