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Electromodulat ion spectroscopy o f  sc and 

* 
fee phase T lCl '  and T lBr  

John Freder ick McClelland 

Under the supervis ion o f  David W. Lynch 
From the Department o f  Physics 

Iowa State  Un ive rs i t y  

Electromodulat ion measurements have been made on normal (sc) phase, 

CsCl structure,  TlCl  and T lBr  and the spectra have been reduced t o  the 

e l e c t r i c  f i e l d  induced changes i n  the d i e l e c t r i c  func t ion  which are shown 

t o  be i n  'reasonably good agreement w i t h  the ca lcu la t ions  o f  Blossey. 

A sample preparat ion technique was developed which,allowed the measure- 

ments t o  be made near l i q u i d  hel ium temperature w i t h  a low l eve l  o f  s t a t i c  

s t r a i n  i n  the sample and w i t h  no observed dynamic s t r a i n  due t o . t h e  
. . .  

e l e c t r i c  f i e l d '  modulati6n. ' Photoconductivi ty e f f e c t s  were con t ro l led  t o  

the extent  tha t  the electromodulat ion spectrum could be 'measured' over the . 

exc i ton  and interband region w i t h  subs tan t i a l l y  lower d i s t o r t i o n  than has 
. . 

been reported i n  e lec t ro re f lec tance  measurements where s t r uc tu re  i s  

near ly  absent for  the n=l exc i  ton state.  Electromodulat ion features were 

observed which are t e n t a t i v e l y  assigned t o  i n t r i n s i c  exc i ton  s t a t e  

s p l i t t i n g  and t o  an exciton-phonon bound s ta te .  

Absorption and EA measurements were made on abnormal ( fcc)  phase, 

NaCl s t ruc ture ,  TlCl  and T lBr  wh'ich. located the n=% T I B ~  exc i ton s ta te  
. . 

, . * 
USERDA Report IS-T-721. This work was performed under contract  

W-7405-eng-82 w i t h  the Energy Research and Development Administrat ion.  



energy and showed unusual EA lineshapes f o r  two features i n  each compound 

t h a t  have no establis'hed assignment. Sample preparat ion  s e n s i t i v i t y  was 

observed f o r  these fea tures  i n  the  absorpt ion spectra.  The T l  Br exci  ton 

binding energy, band gap, and stat ic  d i e l e c t r i c  constant were obtained 

from the €A measurement . 



I 

CHAPTER I. INTRODUCTION 

Background 

Studies o f  processes I n v o l v i n g  the  i n t e r a c t i o n  o f  l i g h t  w i t h  mat ter  

h i s t o r i c a l l y  have con t r i bu ted  a g rea t  deal o f  s t imu lus  t o  experimental 

and t h e o r e t i c a l  physics. The i n t e r a c t i o n  o f  l i g h t  w i t h  ma t te r  i n  the  

e a r l y  1900's provided the  experim&n,tal bas is  f o r  understanding the  

quantum nature  o f  l i g h t .  Approximately 50 years l a t e r , a c t i . v i t y  began 

on the  study o f  the  o p t i c a l  p r o p e r t i e s  o f  so l i ds ,  which .has l ed  t o  a 

considerably more d e t a i l e d  understanding o f  s o l i d s  than had been obta ined 

from previous e f f o r t s  i n  t h i s  f i e l d .  Much o f  t h e  experimental work has 

centered around the  measurement o f  o p t i c a l  spectra o f  c rys ta l s ,p rov id ing  

in format ion  on e l e c t r o n i c  t r a n s i t i o n  energies and s t rengths .  Comple- 

mentary developments i n  theory have al lowed the  comparison o f  spectra 

w i t h  ca l cu la ted  one-electron energy band st ructures,  from which spectra 

can be ca lcu la ted,  w i t h  s t rengths  determined by e l e c t r i c  d i p o l e  m a t r i x  

elements. When wavefunctions could be obtai,ned, m a t r i x  element 

c a l c u l a t i o n s  have determined a c t u a l '  t r a n s i t  ion s t rengths .  More.of ten,  

t he  al luwed ur forbfdden nature o f  t r a n s i t i o n s  has been inves t iga ted  

by symmetry a t-yu~r~en t s  . 

The Reso lu t ion  Problem 

D i f f i c u l t i e s  have e x i s t e d  i n  determining accurate t r a n s i t i o n  ener- 

y i e s  From experlmenral spectra f o r  f i t t i n g  t o  band s t r u c t u r e  because o f  

' the usual 'broad :a id  over lapping nature  o f  so1 Id. s t a t e  spectra, . . due t o  

l i f e t i m e ;  thermal and s t r a i n .  broadening e f f e c t s ,  and the  .close' spacing 



of s ta tes .  B e t t e r  resolved spectra, however, can be observed due t o  

both  i n t r i n s i c  and e x t r i n s i c  o r i g i n s .  For the  case o f  semiconductors 

and insulators,intrinsically narrow l i n e s  a re  observed f o r  t r a n s i t i o n s  

i n v o l v i n g  bound exc i  ton  states1- '  which a re  discussed i n  more d e t a i  1 

i n  the  next  chapter .  For these t rans i t i ons ,an  e l e c t r o n  i s  e x c i t e d  by 

a photon from the valence band t o  an e x c i t o n  s t a t e  below the  conduct ion . 

band. The f i n a l  s t a t e  i s  a bound s t a t e  a r i s i n g  from the  coulomb poten- 

t i a l  between the  ho le  i n  the  valence band and the  e x c i t e d  e lec t ron .  The 

bound s ta tes  o f  the  coulomb - p o t e n t i a l  a r e  less  crowded, r e s u l t i n g  i n  

s u b s t a n t i a l l y  more resolved features.  

More h i g h l y  resolved fea tures  can be obta ined e x t r i , n s i c a l l y  by 

measuring a modulat ion ~ ~ e c t r u r n ~ ' ~  which i s  a d i f f e r e n t i a l  o f  the  usual 

spectrum w i t h  respect t o  an ex te rna l  p e r t u r b a t i o n  such as an e l e c t r i c  

f i e l d .  The spectra o f  t h i s  study a r e  enhanced by both  bound e x c i t o n  

s ta tes  and e l e c t r i c  f i e l d  modulation.. The l a t t e r  i s  discussed i n  

Appendix A. 

T lB r  and T lC l  

T lB r  and T l C l ,  t he  t w o  i n s u l a t o r s , s e l e c t e d  f o r  e lec t romodula t ion  

(EM) measurements,were chosen i n i t i a l l y  w i t h  i n t e r e s t  i n  c l a r i f y i n g  

aspects o f  bo th  band s t r u c t u r e s  and exc i  t o n  s ta tes .  Vkiy e a r l y  i n  t h i s  . 

p r o j e c t  t he  p r i n c i p a l  quest ions were answered by s t r u c t u r e  assignments 

899 t o  improved band c a l c u l a t i o n s  and by magneto-opt ical measurements 
10 

which resolved the  e x c i t o n  s ta tes  i n  remarkable d e t a l l .  A lso  du r ing  

t h i s  t i m e s d e t a i l e d  t h e o r e t i c a l  c a l c u l a t i c ~ s " ~ ~ ~  were pub1 ished f o r  the  



e lec t roabsorp t i on  (€A) of  exc i  tons and t h i s  prompted the  c o n t i n u a t i o n  o f  

the  p r o j e c t  because o f  the  fundamental i n t e r e s t  ' i n  exc i tons which, do no t  

f i t '  i n t o  the  one e l e c t r o n  theory  o f  s o l i d s .  

La ter  i n  the  course o f  the  experiment i n t e r e s t  developed i n  an 

abnormal face centered cubic ( f c c )  c r y s t a l  phase o f  T l B r  and T lC l ,  which 

normal ly  c r y s t a l l i z e  i n  a  simple cub ic  (sc)' phase. 

Resul ts  o f  t he  experiments o n , t h e  sc phase have n o t  al lowed a  quan- 

t i  t a t  i v e  t e s t  o f  the  theory, f o r  reasons discussed la ' te r ,  bu t  usefu l  

in fo rmat ion  has been obta ined on var ious  p r o p e r t i e s  i nc lud ing  photocon- 

d u c t i v i t , ~ ,  e l e c t r o r e f l e c t i v i t y ,  phonon sidebands, and the  doublet  s t r u c -  

t u r e  of the  exc i ton .  The f c c  data have enabled t h e  e x c i t o n  b ind ing  

energy, band gap, and s t a t i c  d i e l e c t r i c  constant  t o  be ca l cu la ted  f o r  

T1Br. An unusual EA s t r u c t u r e  has been observed i n  T lB r  and T lC l  f o r  

features p rev ious l y  assigned t o  s p l i t t i n g  o f , t h e  e x c i t o n  ground s t a t e  o r  

t o  exc i ted  exc i ton  s ta tes .  



CHAPTER I I. EXC ITON ENERGY STATES 

The ground s ta te  of  an insu la to r  cons is ts  o f  a  set  o f  f u l l y  occupied 

e l  ectron i c  energy 1 eve1 s  separated by' an energy gap f rm unoccupied 

higher energy leve ls .  E lec t ron ic  e x c i t a t i o n  occurs when absorpt ion o f  

a  photon .causes an e lec t ron  i n  the occupied l eve l s  t o  be t ransfer red t o  

one o f  the higher' l eve ls  o r  when photons, not  energet ic enough f o r  i n t e r -  

band exc i ta t ions ,  e x c i t e  s ta tes which are not  included I n  the one elec- 

t ron  p i c t u r e  o f  the c r ys ta l .  This l a t t e r  e x c i t a t i o n  i s  ca l l ed  an exc i -  

ton. An exc i ton comprises a  problem invo lv ing  the exc i ted e lec t ron,  

the prev ious ly  occupied leve l ,  which i s  ca l l ed  a  hole, and the po lar ized 

c r ys ta l .  The so lu t i on  o f  t h i s  problem requires s imp l i f y i ng  assumptions 

and, depending on which are appropria'te, exci tons are usua l l y  described 

as Frenkell o r  wannie.i2 1 i ke. Frenkel exci  tons occur when the exci  ta-  . . 

t i o n  i s  loca l i zed  a t  o r  near a  p a r t i c u l a r  atom o r  molecule i n  mate r ia l s  

where atoms do not i n t e rac t  s t rong ly .  

Wann i e r  Exc i.totis 

Wann i e r  exci tons, which are appropr iate f o r  descr ib ing e l ec t ron i c  

exc l t a t l ons  I n  the t ha l l i um  hal ides,  are not  loca l ized on atoms o r  mole- 

cules. . I n  the band p i c t u r e  for  these mater.ia1 s, when exci,tons a re  created 

by photon absorption, an  e lec t ron  makes a  t r a n s i t  ion from an energy s ta te  

i n  the valence band t o  a  bound' .s tate w i t h  an energy below a  conduct ion 

band. The e lec t ron i s  bound t o . t h e  ho le  l e f t  i n  the valence band by a  

Coulomb po ten t ia l .  The hole may be thought o f  as having a  p o s i t i v e  

charge and the bound electron-hole system as analogous t o  a.hydrogen 

atom immersed i n  a  d i e l e c t r i c  medium. These exc i ted f i n a l  s ta tes have 



hydrogenic r a d i i  which extend over a d is tance o f  a number o f  l a t t i c e  , 

. . 
constants. The p o t e n t i a l  b ind ing  t h e  e l e c t r o n  and ho le  i d e a l . 1 ~  has the  

coulomb form, mod i f i ed  by the  s t a t i c  d i e l e c t r i c  constant  o f  t h e  c r y s t a l .  

Usua l ly  t h i s  i s  o n l y  approximately achieved and i n  m a t e r i a l s  w i t h  more 

l o c a l i z e d  e x c i t a t i o n s  t h e  o p t i c a l  d i e l e c t r i c  constant  becomes more appro-.  

pr iate,due t o  the  h igher  frequency motion o f  t he  e l e c t r o n  and hole.  I n  

the  t h a l l  ium ha l i des  s tud ied,agood f i t  t o  hydrogenic energy leve ls1 '  i s  

obta ined w i t h  t h e  l / r  Coulomb potent ia1 ,d iv ided by a d i e l e c t r i c  constant  

equal t o  approximately h a l f  . ' the s t a t i c  va lue  o r  about th ree  times t h e  

o p t i c a l  value. I n  ve.ry l o c a l i z e d  m a t e r i a l s  a p o t e n t i a l  w i t h  a d i f f e r e n t  

r a d i a l  depe"d,encel2 must be used,.result ing i n  a d i f f i c u l t  Harni l tonian t o  
' 

so lve.  

E l e c t r i c  F i e l d  ~ f f e c t s  on Exc i ton  States 
l l a , b '  ' 

The t h e o r e t i c a l  d e s c r i p t i o n  f o r  t h i s ,  experinient invo lves  the  absorp- 

t i o n  of l i g h t  due t o  t r a n s i t i o n s  t o  bo th  bound and continuum Wannier 

e x c i t o n  s ta tes  and t h e  e f f e c t  o f  an e l e c t r i c  f i e l d  on these t r a n s i t i o n s .  

The measurements a re  analogous t o  t h e  s t a r k '  e f f e c t  f o r  t h e  hydrogen atom 

b u t  two d i f f e r e n c e s  prevent the  development o f  t he  theory i n  t h e  f rame- 

work o f  p e r t u r b a t i o n  theory used in. the  case o f  t he  Star,k e f f e c t .  F i r s t -  

l y ,  the  e l e c t r i c  f i e l d s  which can b e . a p p l i e d  t o  the  e x c i t o n  'system can 

e a s i l y  exceed t h e  i o n i z a t i o n  f i e l d  o f  t h e ' e x c i t o n  w h i l e  i n  the  Stark  

e f f e c t  the, field i s  a  . f r a c t i o n  . o f  t he  i o n i z a t i o n  f i e l d .  Secondly, t he  

e x c i t o n  spectra f o r  zero f i e l d  a r e  substant ia1l .y  broadened by -thermal and 

o the r  mechanisms causing e l e c t r i c  f i e l d  e f f e c t s  t o  be very  small .  ' I n  

o rder  t o  de tec t  exper imenta l ly  the  small e l e c t r i c  f i e ld - i nduced  changes, 



. . 

a d i f fe rence spectrum i s  measured, which cons is ts  o f  the change i n  the 

transmission due t o  the e l e c t r i c  f i e l d .  Hence the theory ca lcu la tes 

both a zero and nonzero appl ied e l e c t r i c  f i e l d  spectrum f o r  c2, the 

imaginary p a r t  o f  the d i e l e c t r i c  funct ion,  which i s  propor t iona l  t o  the 

absorption c o e f f i c i e n t ,  a. Since small d i f fe rences i n  ra ther  la rge 

quan t i t i e s  a re  being determined considerable demands are placed on both 

experiment and theory i f  resu l t s  are  t o  he compared quan t i t a t i ve l y .  

The beginning po in t  f o r  the theory i s  the one-electron energy band 

+ 
p ic ture13 o f  t h e c r y s t a l  w i t h  a d i r e c t  band gap a t  k = 0, nondegenerate 

bands and i so t rop i c  e f f e c t i v e  e lec t ron  and ho le  band masses. An exci.- , . 

t on ic  theory l1 a"b w i l l  be out1 ined i n  cont rast  t o  the ea r l y  one e lec t ron  

thedry o f  ~ r a n z ' ~  and ~ e l d ~ s h ' '  and ea r l y  electromodulat ion ca lcu la t ions  

made i n  the weak binding 1 i m i t . 1 6 ' . 1 7  The theory i s  oversimpl i f  ied f o r  

the tha l  1 i urn ha1 ides due t o  photoconduct i v i ty, band degeneracy, phonon 

coupl ing and anisotropy but, nevertheles's, i s  usefu l .  
. . 

As discussed ea r l i e r , t he  one e lec t ron  ground s ta te  cons is ts  o f  a 

f u l l  valence band and empty conduction band. A photo-excited s ta te  
, , . . 

breaks the per iod ic  l a t t i c e  t r ans la t i ona l  symmetry due t o  the coulomb 

i n te rac t i on  between the e lec t ron  and. ho le  and hence must be approximated 

as a l i n e a r  combination o f  the one e lec t ron  band e lec t ron and ho le  

Bloch funct ions given by 
18 

-k -k -+ 
where n and k(= ke + kh) denote the exc i ton s ta te  and, Y -k and Y + 

C, ke v,kh 



are Bloch functions of the electron and valence bands, respectively. 

-f -b 
The coordinate vectors, r, and wave vectors, .k, are subscripted to 

designate association with electrons (e) or holes (h). 

18 Neglecting a small exchange term the energy difference, E, 

between the excited and ground states.can be determined from the fol- 

18 
lowing set of equations. 

where ~ ~ 6 ~ )  and ~ ~ 6 ~ )  are the conduction and valence band energies 

and the potential is given by lld,b 
, , 

+. + + where E~ is the static dielectric constant of the crystal, r = re - rh, 
+ 

andE is the applied electric field. 

If v(?) varies slowly on the scale of a unit cell, the effective ' 

. mass equation1' can be derived from Eq.  (2) to be 18 

where 



-+ -% 

which i s  the Four ie r  transform of ~ " : ( k ~ , k ~ ) .  Assuming t h a t  the  con- 
n.k 

-+ 
duc t i on  and valence band energies.near k  = 0 can be w r i t t e n  as 

2  2  2  Ec = Eg + ( h2k /2m*) and E = - A  k  /2mc, Eq. (4) becomes 18 
e  v  

where E m* and m* a re  the  band gap and e l e c t r o n  and ho le  band masses, 
g '  e' h 

respect  i ve 1 y, and 

A f t e r  a  center  o f  mass t rans format ion  fo l lowed by s u b s t i t u t i o n  o f  

the  wavefunction, : 

18 
i n  Eq. (5) , the  hydrogen i c  exc i ton  Ham i 1 ton  i an  emerges as 

where 

and the  center  o f  mass t rans format ion  i s  de f ined by M = m* + m i ,  e  
-+ -+ -+ -+ -% 

L1 = mgmff/(m* + mff), r = r - rh, and i t =  (m:re + m f f r h ) / ~ .  e  e  

-+ 
For E = 0, t'he bound s t a t e  energies f o r  Eq. (8) a r e  g iven by 

as i n  the  hydrogen atom w i t h  the  exc i ton  b ind ing  energy o r  e f f e c t i v e  



Rydbe r g  g i ven by 

where e  and m a r e  the  e l e c t r o n i c  charge and mass. The e x c i t o n  Bohr 

rad ius  i s  expressed as 

and the  i o n i z a t i o n  f i e l d ,  EI, i s  de f ined as I 1  a,b 

L i g h t  absorp t ion  by exc i tons  can be c a l c u l a t e d  by time-dependent 

p e r t u r b a t i o n  theory.20 The imaginary p a r t  o f  t he  d i e l e c t r i c  func t i on ,  

E which i s  p ropor t i ona l  t o  the  absorp t ion  c o e f f i c i e n t ,  can be w r i t t e n  2 ' 
11a,b . ' .  f o r  a l lowed t r a n s i t i o n s  as 

where hv i s  the  photon energy and i s  the  interband d i p o l e  moment 
' cv 

1 la ,b  g iven by 

-f e  
lJ cv = -  imv I d;vf.+Ov 

c,k v,'x ' ,  . 
u n i t  
c e l l  , 

2 and 4 (0) i s  expressed as llEi,b 



Equation (12) i s  f o r  unpolar ized l i g h t  subjec't t o  the  c o n d i t i o n  

+ + 
t h a t  the  p e r i o d i c  p a r t  o f  the  B loch . func t i ons ,  v ( r , k )  .var,ies' s l o w l y ' w i t h  
-+ 
k. I t  can be seen from Eq. (14) t h a t  t he  absorp t ion  i s  p ropor t i ona l  t o  

the  r a t i o  sqliared o f  the  interband t o  e x c i t o n  d i p o l e  moments,multi- 

2  p l  ied  by .the term 9 (0), which conta ins  the  sharp bound s t a t e  and con- ' 

tinuurn e x c i t o n  spectra.  When an e l e c t r i c  . f i e l d  i s . a p p l i e d  t o  the  

crysta1, the s h i f t i n g ,  s p l i t t i n g ,  and broadening o f  bound s t a t e s  i s  

2 r e f l e c t e d  i n  4 (0). as w e l l  as f i e ld - i nduced  o s c i l l a t i o n s  o f  c2 i n  the  

exc i ton  continuum region.  

-+ -+ + 
Since the  t r a n s i t i o n s  a r e  d i r e c t ,  k  = ke + kh = 0, and Eq. (7) 

becomes 

Equation. (17) was solved by E l l  i o t t 2 0  f o r e =  0 and Blossey 
1 la ,b  

obta ined s o l u t i o n s  when€?.# 0 through t h e  use o f  pa rabo l i c  coord inates  

and numerical i n t e g r a t i o n  o f  t he  r e s u l t i n g  d i f f e r e n t i a l  equations. 

Blossey ca l cu la ted  t h e  s h i f t  o f  t he  e x c i t o n  ground s t a t e  as a f u n c t i o n  

o f  e l e c t r i c  f i e l d  and h i s  r e s u l t  i s  shown i n  F igure  1. The p l o t  shows 

t h a t  t he  p e r t u r b a t i o n  ca lc .u la t ion  begins t o  break down a t E /  = 0.4, 
EI , 

which would cor'respond t o  a f i e l d  d i f f i c u l t  t o  reach i n  the  case o f  the 

hydrogen atom but  e a s i l y  obta ined fo r  exc i tons .  He a l s o  c a l c u l a t e d  the  

electromodulated imaginary p a r t  o f  t he  d i e l e c t r i c  func t ion ,  Ae2, f o r  an 

21,22 M c r i t i c a l  p o i n t  . and, using the  Kramers-Kronig. r e l a t i o n s h i p s ,  2 3 
0 

obta ined the  r e a l  component f o r  a range o f  e l e c t r i c  f i e l d  and 

broadening parameters. H is  r e s u l t s  f o r  Ac2 appear i n  F igure  2 .  The 



Figure  1 .  F i e l d  dependence o f  the  exc i ton  ground s t a t e  pred ic ted  by pe r tu rba t i on  and 
nonperturbat ion c a l c u l a t i o n s  



Figure  2 . .  E l e c t r i c  f i e l d  induced changes i n  t he  imaginary 
p a r t ' o f  the d i e l e c t r i c  f unc t i on  versus  (hv-Eg)/R 
f o r  broadening parameter .va lues from 0.1 t o  1.0 R 
and appl l ed  f i e l d  values from 0.2 t o  5.0 g1 



values of the electric modulation field,%, and broadening parameter, 

r 2 kT, used in the calculations are given for the spectra in Figure 2 

as fractions o f E  and R, respectively, withE ranging from 0;2 - 5.0EI 
I. 

and r from 0.1 to 1.0 R. The large negative peak at hv/R = - 1  is due 

to the field broadening and shifting of the n = 1 state. Structure can 

be secn for the n = 2 state for r/R = 0.1 '(a negative peak) and J'/R = 

0.2 (a negative shoulder), but not for larger broadening. Above hv/R = 0 

the continuum oscillations ca"sed by the electric field are seen. 



CHAPTER I l l .  THALLIUM CHLORIDE AND BROMIDE 

T lC l  and TlBr  are  insu la tors ,  as mentioned e a r l i e r ,  which normal ly  

c r y s t a l  1 i z e  i n  a  sc phase w i t h  a  CsCl but  which may form i n  

amorphous phases 25'26 on low temperature substrates o r  i n  a  f c c  phase 

NaCl s t ruc tu re ,  2 4 9 2 7  usuhl l y  by e p i t a x i a l  growth on cleaved a1 ka l  i 

h a l i d e  substrates. The sc phase i s  an i o n i c  s t r u c t u r e  w i t h  l a t t i c e  

cons tan tz4  values o f  2.84 8 (TLCl) and 3.97 8 (T lBr )  w h i l e  the fcc phase 

has a  less  dense con f igu ra t i on  w i t h  l a t t i c e  constant24 values o f  6.30 8 
( T l ~ l )  and 6.56 8 ( T l B r ) .  

8  
R e l a t i v i s t i c  KKR band s t r u c t u r e  ca l cu la t i ons ,  as w e l l  as o ther  

band c a l c u l a t i o n ~ , 9 ' 2 8 - 3 0  i n d i c a t e  t h a t  the sc phase band gap i s  i n d i r e c t  

( the  valence and conduct ion band edges a r e  not  a t  the same p o i n t  o f  

-b 
k-space.) w i t h  the d i r e c t  gap a t  X w h i l e  f o r  the  f c c  phase 279 30 the .  band 

gap i s  d i r e c t  a t  L. The band s t r u c t u r e s  f o r  the compounds a re  shown i n  

Figures 3 - 6 . f o r  both phases. The sc band s t ruc tu res  a r e  from Ref. 8  and . . 

the f c c  from Ref. 27. For sc and f c c  phases, adjacent t o  the  d i r e c t  gap, 
, . 

there is. a doubly-degenerate mixed s-p valence band and a  p  type ca t i .on ic  

conduct ion band, which i s  a l s o  doubly degenerate. The sc upper valence 

band cons is t s  o f  halogen p  s ta tes  w i t h  an admixture o f  t h a l l i u m  6s s ta tes  

a t  X, The upper valence band a l s o  receives a  small (%lo%) c o n t r i b u t i o n  

from 5d t h a l l i u m  l e v e l s  10 eV below the band. The lowest conduct ion band 

i s  made up o f  t h a l l i u m  p states.  Although the sc phase i s  s t r o n g l y  

i on i c ,  the band s t ruc tu res  of t h i s  phase and the  f c c  phase appear t o  be 

c lose r  t o  the  lead chalogenides than t o  i o n i c  c r y s t a l s  such as the  

a l k a l i  ha l ides .  Th is  has been a t t r i b u t e d  t o  the  two c a t i o n i c  s  valence 

e lec t rons  ou ts ide  the.  f i l l e d  r a r e  qas she l l ,  8,30 



F i g u r e  3. Band s t r u c t u r e  o f  sc T l C l  



F i g u r e  4. Band s t r u c t u r e  of sc T l B r  



F igu re  5. Band s t r u c t u r e  o f  f c c  TlCl 



F igu re  6. Band s t r u c t u r e  o f  f cc  T l B r  



The band .s t ruc tures  i n  F igures 3-6 a re  i n  good agreement w i t h  the  

optica.1 spectra fo r  the  t h a l l i u m  compounds. Band assignments f o r  these 

s a l t s  t y p i c a l l y  f i t  the  experimental  t r a n s i t i o n  energies w i t h  an accuracy 

b e t t e r  than 0.3 eV and o f t e n  cons iderab ly  b e t t e r .  

Simple Cubic (SC) Phase 

A number o f  s tud ies  o f  t he  more s t a b l e  sc phase t h a l l i u m  h a l i d e s  

have prov ided in fo rmat ion  t h a t  has been very  use fu l  e i t h e r  d i r e c t l y  o r  

f o r  perspect ive  i n  t h i s  i n v e s t i g a t i o n .  The emphasis o f  the  f o l l o w i n g  i s  

d i r e c t e d  i n  t h i s  sense and i s  no t  i n d i c a t i v e  o f  a l l  areas o f  research 

a c t i v i t y  concerning the  t h a l l i u m  ha l i des .  

E a r l y  ' t h i n  f i l m  absorp t ion  measurements 3 1 9 3 2  on T lC l  and ~ l ~ r  su f -  

fered from s t r a i n  e f f e c t s  due t o  the  mismatch o f  the  sample and subs t ra te  
. . 

thermal expansions when samples were cooled t o  reduce the  thermal broad- 

ening o f  the spectra. I n  the  l a t e  1960's a method. o f  sample p repa ra t i on  

was developed33 which minimizes the low temperature s t r a i n  problem th rough  

a subs t ra te  made by suppor t ing  a very t h i n  t ransparent  o rgan ic  membrane 

on a frame c u t  from a c r y s t a l  o f  the  ma te r ia l  t o  be evaporated. When 

f i l m s  evaporated on such subs t ra tes  a re  cooled, s t r a i n  i s  minimized 

because the t h i n  f i l m  and frame have i d e n t i c a l  expansion c o e f f i c i e n t s  
, . 

and the  f i l m  th ickness exceeds t h a t  o f  t he  membrane. 

Th i s  subs t ra te  and. f i l m  system y i e l d s  absorp t ion  spec t ra  which 

reveal  features no t  observed i n  e a r l  i e r  absorp t ion  o r  r e f l e c -  

t i v i  t y   measurement^^^ and t h e i r  i n t r i n s i c  na ture  has been supported by 

r e f l e c t i v i t y 3 6  measurements on s i n g l e  c r y s t a l s .  The more h i g h l y  resolved 

spectra,have absorp t ion  ' c o e f f i c i e n t  magnitudes cons i s ten t  w i t h  ' the 



d i r e c t  t r a n s i t  ions p red ic ted  by the  band s t r u c t u r e s  and sharp exc i  ton  

and. phonon fea tures .  

The n = 1 e x c i t o n  peaks i n  T lC l  and T lBr  a r e  s p l i t  i n  absorp t ion  

measurements. 10 '33 '34 The spl  i t t i n g  was i n i t i a l l y  a t t r i b u t e d  t o  s t r a i n  

but  l a t e r  an i n t r i n s i c  o r i g i n  was based on the  l i f t i n g  o f  

degenerate exc i ton  s ta tes .  The exc i ton  wavefunct ions a re  composed of 

the  e l e c t r o n  wavefunct ions from the  bottom o f  t h e  conduct ion band and 

the  hole wavefunct ions from the  top  o f  the  valence 'band. The wavefunc- 

t i o n  o f  a g iven s t a t e  comes from the  bands a t  t h e  same X p o i n t .  There 

a r e  s i x  equ iva lent  X-points i n  t h e  B r i l l o u i n  zone.; adding t o  the  t o t a l  

e x c i t o n  degeneracy. 

The s p 1 i t t i n g . h ~ ~  been ca lcu la ted  37'38 us ing the  e lec t ron -ho le  

coulomb i n t e r a c t i o n  between exc i tons  i n  d i f f e r e n t  v a l l e y s  and the  e lec -  

t ron-ho le  exchange i n t e r a c t i o n  w i t h i n  one v a l l e y  and between v a l l e y s .  

The wavefunctions f o r  the  per turbed Hami l tonian were const ruc ted from 

l i n e a r  combinations o f  e x c i t o n  wavefunct ions o f  t h ree  d i f f e r e n t  X p o i n t s  

o r  va l l eys .  Two o f  t he  r e s u l t i n g  wavefunct ions have terms from d i f f e r -  

e n t  v a l l e y s  w h i l e  one i s  constructed from wavefunct ions o f  t he  same 

v a l l e y .  The above exp lanat ion  i s  o f t e n  termed i n t e r -  and i n t r a v a l l e y  

s c a t t e r i n g  o f  exc i tons .  ~ e c e n t l y  i t  has been shown t h a t  t h e  s p l i t t i n g  

can be expla ined w i t h  o n l y  the  exchange.per turbat ion  and wavefunct ions 

const ruc ted from j u s t  one va l  1 ey. 39   he spl  i tt i ng phenomena have been 

Invest iga ted e x p r r i r t ~ r n f a l l y  by s t a t i c  stress!' and p i e i d '  r c f l e c t i o n ,  

and k r e  recent 1 y, by magnetoabsorpt i measurements. ~ t '  photgn 

energies above the  f i r s t  e x c i t o n  s t a t e  absorpt ion,  features due t o  



phonon c r e a t i o n  (phonon sidebands) and, over lapp ing h igher  exc i  ton  s ta tes  

appear . 0933 '34  The f i r s t  phonon sideband s t r u c t u r e  has been expla ined 

as due t o  the  c r e a t i o n  o f  an exciton-phonon bound state, w h i l e  h igher  

energy phonon sidebands a re  due t o  t h e  c r e a t i o n  o f  f r e e  phonons. 
42-44 

E lec t roabsorp t ion  measurements45 have been made on T lBr  us ing  Sam- ' 

' 

p les  w i t h  subs tan t ia l  s t r a i n  and thermal broadening,which prevented the  

r e s o l u t i o n  o f  d e t a i l e d  s t ruc ture ,but  a l lowed t h e  f i e l d  dependence o f  the 

n  = 1 s t a t e  t o  be observed. E l e c t r o r e f  lectance  measurement^^^ r e c e n t l y  

publ ished appear t o  be dominated by pho toconduc t i v i t y  e f f e c t s .  

~ a ~ n e t o a b s o r p t  i on  measurements1' have resolved h i g h e r  exc i  t on  s ta tes  

which determined the  e x c i t o n  b ind ing  energies. These measurements have 

a l s o  provided evidence o f  an exc i ton  po laron ( p o l a r i z a t i o n  o f  t he  c r y s t a l  

47 Other po laron aspects, by the  e l e c t r i c  f i e l d  o f  t he  exc i ton )  e f fec t . .  

which have been inves t iga ted  t h e o r e t i c a l l y  w i t h i n  the  in termedia te  coup- 

4  8 
l i n g  regime. inc lude a n i s o t r o p i c  po laron masses,49 exci,fon b ind ing  

energ i es  ,50-53 and exc i ted s ta tes .  54 Cyc lo t ron  resonance measurements 55-57 

i n d i c a t e  t h a t  t he  masses a re  no t  .h igh l y  a n i s o t r o p i c .  
, . 

Two-photon absorp t ion  measurements 
58-60 

have g iven p a r t i c u l a r l y  w e l l -  

resolved spectra o f  l o n g i t u d i n a l  o p t i c a l  (LO) phonon absorp t ion  and emi s- 

s ion  processes a t  the  band edge. The LO phonon can couple s t r o n g l y  t o  
. . . . 

the e l e c t r i c  f i e l d  of an e l e c t r o n . o r  hole:  These measurements have . ,  

expla ined the  temperature dependence o f  t he  band gap which increases 

w i t h  temperature i n  agreement w i t h  o the r  CsCl s t r u c t u r e  c r y s t a l s .  . T h e  

h y d r o s t a t i c  pressure dependence o f  t he  band gap , 29'6 '62 has a 1 so been 

s tud ied and a  negat ive  c o e f f i c i e n t  has been determined. . . Other important 



in format ion associated w i t h  the  l a t t i c e  inc ludes experimental  i n v e s t i -  

gat ion 's  which have prov ided thermal expansion  coefficient^,^^ l a t t i c e  24 

and d i e l e c t r  ic64'65 constants,  and LO phonon energies. 64,66 

I n  concluding t h i s  chapter experiments on samples of  very h igh  

p u r i t y  w i l l  be o u t l i n e d  b r i e f l y .  Th is  l e v e l  o f  sample p u r i t y  i s  unique 

t o  the  ~apanese  workers and has been especia l  l y  important i n  1 uminescence 

and photoconduct i v  i t y  measurements. The 1 uminescence experiments 67-71 b 

have prov ided evidence o f  t r a n s i t  ions a t  t he  i n d i r e c t  edge w i t h  pure 

and mixed c r y s t a l s  and these r e s u l t s  have been supported by absorp t ion  

data 72-75 on the  same samples. . The pho toconduc t i v i t y  work has supp l ied  

in format ion on the temperature dependence o f  c a r r i e r  t rapp ing  and m o b i l i -  

t i e s  i n  sur face and b u l k  regions. Evidence o f  c a r r i e r  e f fec ts  on app l i ed  

e l e c t r i c  f i e l d s  has been obta.ined from e l  e c t r o r e f  1 e ~ t a n c e 4 ~  and e l  e c t r o -  

modulated l u m i n e ~ c e n c e ~ ~  measurements i n v o l v i n g  sur face and bu l  k  reg ions. 

Table I summarizes some o f  the  p r o p e r t i e s  o f  sc T lC l  and TlBr.  from 

the  l i t e r a t u r e  which w i l l  be use fu l  i n  d iscuss ing  the  experimental  

r e s u l t s ,  



Table 1 .  Propert ies o f  sc TlCl  and TlBr 

- 

a Ref.  10. 

b ~ s t  irnates. 

C Ref.  64. 

d ~ e f .  66.  

e Ref. 65. 



CHAPTER I V ,  SAMPLES 

simple Cubic samples 

Developing samples which would a l l o w  e l e c t r i c  f i e l d  e f fec ts  t o  be 

measured qn w e l l  resolved i n t r i n s i c  sc exc i ton  s ta tes  was the  most d i f -  

f i c u l t  aspect o f  t h i s  i n v e s t i g a t i o n .  E a r l y  samples w e r e . i n  t h e  form o f  

T lC l  t h i n  f i l m s  evaporated on quar tz  substrates.  The spectra o f  these 

, samples were d i s t o r t e d  by s t a t i c  s t r a i t v a t  low temperature, p revent ing  

the  observat ion  o f  i n t r i n s i c  e x c i t o n  s t ruc tu re .  

To improve resolut ion,samples were prepared, as described e a r l i e r ,  

by evaporat ing f i l m s  on very t h i n  t ransparent  o rgan ic  membranes sup- .  

por ted  by frames c u t  from c r y s t a l s  o f  t he  ma te r ia l  being evapora- 

ted. Th is  method had been h i g h l y  successful  f o r  absarp t ibn  and 
. . 

magnetoabsorption measurements bu t  proved d i f f i c u l t  t o  adapt t o  

e lec t romodula t ion  measurement,s due t o  t h e  tendency o f  t he  f i l m  and mem- 
. . 

brane t o  couple and o s c i l l a t e  w i t h  the  modulat ing e l e c t r i c  f i e l d .  The 

coup l ing  i s  due t o  e l e c t r i c .  f i e l d  inhomogeneities i n  the  sample region,  

t o , s m a l l  w r i n k l e s  which o f t e n  occur i n  the  f i l m  when i t  i s  cooled t o  

low temperature,. and poss ib l y  t o  pho toca r r i e rs  i n  the  f i l m .  I n  t h e  f i r s t  

two instances the  coup l ing  mechanism i s  analogous t o  the  f o r c e  which 

draws a d i e l e c t r . 1 ~  i n t o  a h i g h  f i e l d  region.  

When the  sample couples t o  the  f i e l d ,  t he  t ransmi t ted  1 i g h t . i ~  
. . 

modulated due t o  the  s t r a i n  s h i f t i n g  and broadening o f  absorp t ion  fea- 

tures.  Th is  AC s igna l  i s  superimposed on the  e lec t romodula t ion  s igna l ,  
. . 

w i t h  a,phase s h i f t  due t o  mechani-cal damping, a t  t he  mod'ulation f r e -  

quency. I t  cannot be separated from t h e  electromodulat ' ion s igna l  and 
. . . . 



pi-events the u n d i s t o r t e d  de tec t i on '  o f  t h a t  s igna l .  The spur ious s igna l  

could no t  be s u b s t a n t i a l l y  reduced by modulat ing a t  h igher  f requencies 

w i t h i n  the  l i m i t a t i o n s  o f  the  e l e c t r o n i c s .  The s t r a i n  coup l ing  cou ld  

be d i r e c t l y  observed w i t h  a microscope when the  modulat ion frequency was 

swept through resonant v i b r a t i o n s  o f  t he  membrane which corresponded 

w i t h  peaks i n  the  mod'ulated t ransmission as a f u n c t i o n  o f  modulat ing 

frequency . 
The l a c k  o f  success by numerous e f f o r t s ,  t o .  c o n t r o l  the '  f i e l d  coup- 

1 ing  e f f e c t  delayed progress i n  the  experiment f o r  several years. 

E f f o r t s  invo lved var ious  methods t o  reduce sample w r i n k l i n g  a t  low tem- 

perature,  t o  generate a homogeneous.or a s t a b i l i z i n g  e l e c t r i c  f i e l d  ' in  

the sample region,  and t o  p h y s i c a l l y  support t h e  f i l m  t o  r e s t r i c t  the  

motion o f  t he  sample. S t a b i l i z e d  T lB r  samples were f i n a l l y  developed 

us ing membranes supported by so l  i d  T lC l  s i n g l e  c r y s t a l  frames. The 

T lC l  c r y s t a l  has a very  s i n l i l a r  thermal expansion c o e f f i c i e n t  and . i s  

' t ransparent  i n  the  spec t ra l  reg ion  o f ' t h e  T lB r  exc i ton  s t r u c t u r e ,  hence 

p rov id ing  an idea l  support., . E a r l i e r  e f f o r t s  t o  evaporate T l B r  on T lC l  

had proven unsuccessful due t o  d i f f u s i o n 7 6  between the  f i l m  and substrate,  

which was recognized l a t e r .  The organ ic  membrane between the  T lC l  c ry -  

s t a l  and the  T lBr  f i l m  prevents d i f f u s i o n  a t  t h e  i n t e r f a c e .  I n  a d d i t i o n  

i t  provides a s l i p  p lane t o  reduce s t r a i n  i n  the  f i l m .  The s l i p  p lane 

f u n c t i o n  o f  t he  membrane was observed i n  the  e lectromodulated spectra 

o f  a sample when the  membrane o n l y  p a r t i a l l y  released. The spectra 

showed the  usual s t r u c t u r e  bu t  w i t h  a r e p l i c a  s t r u c t u r e  s h i f t e d  by s t r a i n  

t o  h igher  energy. 



I n  t h e  f i n a l  measurements Csl was s u b s t i t u t e d  f o r  T lC l  because i t  

i s  t ransparent  f o r  t he  e x c i t o n  reg ion o f  bo th  T lB r  and T lC l  and has a 

very  s i m i l a r  thermal expansion ~ o e f f i c i e n t ~ ~  t o  the  t h a l l i u m  corn- 

pounds. 63 

The sc sample prepara t ion  procedure, f o r  t h e  f i n a l  measurements, 

was as fo l l ows .  Substrates t o  support 'and s t a b i l i z e  the  membrane were 

cu t  from s i n g l e  c r y s t a l s  o f ~ s l  from t h e  Harshaw chemical company. The 

subst ra te  b lanks were c u t  i n  t h e  form o f  rec tangu lar  so l  i d s  0.19 cm 

x 0.33 cm x 1.17 cm and dressed w i t h  500 grade emery paper before being 

glued together  f o r  po l i sh ing .  S i x  blanks were glued together  t o  reduce 

the  rounding o f '  edges on the  inner  b lanks dur i r ig po l  i s h i n g  ( the  outer  

blanks were d iscarded).  Since Csl i s  hygroscopic, p o l i s h i n g  was done 

under wa te r - f ree  e t h y l  a lcoho l  usin,g 1.0, 0.5, and 0.03 micron a1,umina 

(Linde, Union Carbide),  'in t h a t  sequence, on AB M ic roc lo th  (Buehler L t d . ) .  

A f t e r  po l i sh ing , the  g lue  was, d isso lved,a l lowing the  subst ra tes  t o  be 

separated. ~ a c h  received a f i n a l  e t ch -po l i sh  w i t h  0.03 micron alumina 

under methyl a l coho l ,  which conta ins  some water,  was f lushed w i t h  e t h y l  

a l coho l ,  and blown d r y  w i t h  a dual j e t  o f  d r y  n i t r o g e n  which c leared both 

o p t i c a l  sur faces s imul taneously.  , Residues were prevented, i n  t h i s  way, 

which i n t e r f e r e  w i t h  f i l m  format ion and s c a t t e r  l i g h t .  The f i n a l  c r y -  
, , 

s t a l  dimensions were approximately, 0.16 cm x 0.30 cm x 1.14 cm. . 
' 

The membranes placed on the  Csl c r y s t a l s  were prepared from P l e x i -  

g las  (Rohm and Hass, v/811 UVT) d i sso lved  i n  e t h y l e n e ' d i c h l o r i d e  w i t h  a 

t race  o f  Formvar (Monsanto, 15/95 E) added.   he concentrat  i o n  was 8 gm 
. . 

o f  P l e x i g l a s  per l i t e r  o f  ethy lene d i c h l o r i d e .  The membrane was 



f a b r i c a t e d  by a l l o w i n g  a 5-6 ~1 d r o p . o f  the  s o l u t i o n  t o  d r i p  from a micro  

sy r inge  on to  a sur face o f  d i s t i l l e d  water from a he igh t  o f  1-2 cm. The 

Formvar promotes w e t t i n g  o f  t he  drop by the  water, r e s u l t i n g  i n  a r a p i d  

spreading o f  the  drop. over the  water surfa.ce,somewhat 1 i k e  an o i l  s l i c k .  

The membrane, which had a diameter o f  approximately 6.4 cm, was l i f t e d  

o f f  t he  water by a l l o w i n g  an edge t o  drape over a 0.020 cm t h i c k  smooth 

metal p l a t e  (4.3 cm x 6.4 cm) w i t h  a centered 2.2 cm round ho le .  An 

extension o f  t he  p l a t e  on one side, p a r a l l e l  t o  the  4.3 cm dimension, 

served as a handle f o r  r a i s i n g  t h e  p l a t e  v e r t i c e l l y  when l i f t i n g  t h e  

membrane o f f  the  water. The unsupported area o f  t he  membrane, over the  

hole,  was t o  be used on the  c r y s t a l  and care  was requ i red  t o  avo id  

breakage. I t  i n i t i a l l y  was necessary t o  l i f t  t h e  unsupported area very  

s low ly  u n t i l  the  f i l m  o f  water, which adhered t o  the  membrane, released. 

The 0.02 cm p l a t e  th ickness was usefu l  i n  reducing t h e  th ickness o f  

t he  water f i l m  and a l lowed membranes as t h i n  as 200 8 t o  be successfu l ly  

1 i f ted .  The membrane th ickness was found t o  be approximately 250 8,  f o r  

t h e  s o l u t i o n  concent ra t ion  and drop s i z e  spec i f i ed ,  from measurements 
. . , . 

. . 

w i t h  an in te r fe romete r  ( ~ a r i a n ,  model 980-4000). 

A f t e r  t he  membrane w a s f r e e  o f  t he  water,  i t  was inspected f o r  

de fec ts  under a microscope be fo re  mounting on t h e  Csl c r y s t a l .  A . j i g  
. . 

was used t o  mount the  membrane. I t  a l lowed t h e  membrane and subs t ra te  
. . . . 

t o  e s t a b l i s h  contac t  smoothly w i thou t  causing w r i n k l e s  o r  r i p s .  The 

mounting was completed by smoothing the  membrane t o  t h e  sur face o f  t he  

Csl c r y s t a l  w i t h  a s o f t  j e t  o f  d r y  n i t r o g e n  gas through a hypodermic 

needle before c u t t i n g  away ' t h e  unused membrane w i t h  a razor  blade. 



The substrates were secured between the  p l a t e s  (separa t ion  1.8 mm) 

o f  the  sample ho lder  w i t h  t e f l o n  pads c u t  from t e f l o n  tape. The t e f l o n  

served as i n s u l a t i o n  t o  b lock  e l e c t r o n  i n j e c t i o n  luminescence, when the  

e l e c t r i c  f i e l d  was a p p l i e d  between the  p la tes ,  and padded the  subst ra te  

du r ing  cool-down. A small g lass  p la . te  was placed adjacent  t o  the  sample 

f o r  i n t e r f e r o m e t r i c  f i l m  th ickness determinat ion.  The sample,holder 

appears i n  F igure  7,  which shows' the  sample subsrate and g lass  p l a t e  

w i thou t  the t h i n  t e f l o n  pads. 

A t  t h i s  p o i n t  t he  c ryos ta t ,  w i t h  t h e  sample ho lder  and subs t ra te  

attached, was placed i n  i t s  p o s i t i o n  above the  sample chamber w i t h  t h e  

co ld  f i n g e r  extending i n t o  the  sample chamber so t h a t  the subs t ra te  was 

pos i t i oned  f o r  t he  evaporat ion and l i g h t  beams. 

The quar tz  evaporat ion boat was.charged w i t h  ch ips  o f  s i n g l e  c r y s t a l  

~ 1 ~ 1  o r  T lB r  o f  nominal p u r i t y  from the Harshaw Chemical Company. . . The 

chips were etched before  loading w i t h  b o i l i n g  d i s t i l l e d  water, t o  remove 

any i m p u r i t i e s  which might have become imbedded du r ing  chipping,and 

d r i e d  under vacuum. The quar tz  boat was heated by a  tanta lum heater  and 

the  evaporat i'on beam was emi t ted  by a  secondary sub1 imat ion  from the 

thal ' l ium h a l i d e d e p o s i t e d o n  . . -the w a l l  o f  the  boat oppos i te  t h e  beam 

opening by the  i n i t i a l  c r y s t a l  sub l imat ion  i n  the  bottom of  t h e  boat.  

-6 ' When a  vacuum i n  the  h igh  t o  low 10 . . To r r  range was obta ined 

i n  the  sample chamber, t he  evaporat ion boat was pos i t i oned  d i r e c t l y  i n  

f r o n t  o f  the  th ickness moni tor  head  loan, 103-758) as shown i n  F igure  8. 
' . 

An evaporat ion r a t e  between 40 and 60 8 / m i n  was es tab l  ished by v a r y i n g  

the  cu r ren t  through the  tanta lum heater  by a d j u s t i n g  the  res i s tance  



SAMPLE HOLDER - 

Direction of light 
and evaporation beams 

w L ~ e f  lon 

View in direction of incident 
light and evaporation beams 

Figure 7.  Two views o f  the capaci tor  sample holder 



1 Woter Cooling 

Electric Power for - 
Resistance Heoting of 
Evoporotion Boot. 

Woter Cooled 

Resistonce Heoted 
Evoporotion Boot 

Thickness Monitor, ot Monitor Positior~ 
Instrumentotion 

Thermocouple Feed 

High Voltage Squore 
Wove Feed Thru 

obove 8 below somple 

From Ground 

Flectrit Pnwer for 
' Resistonce Heoting of 

Evoporolion Boot 

Servo Sampling Beam 

Measuring System Schematic 

F igure  8. The experimental  apparatus 



evaporat ion power supply ( ~ l  tek,  60-300) output .  The r a t e  was determined . 

by p l o t t i n g  the  output  s igna l  o f  t he  th ickness moni tor  (Sloan, DTM 3) 

as a f u n c t i o n  o f  t ime w i t h  the  c h a r t  recorder (Hewlett-Packard, 71008) 

and c a l c u l a t i n g  t h e . r a t e  from the s lope of t h i s  p l o t .  The e l e c t r i c  power 

was conducted,as shown i n  F igure  8 , to  the  tanta lum heater  by i t s  support 

frame and by the l i n e a r ' t r a n s l a t i o n  rods which a l l o w  t h e  evaporat ion 

source t o  be pos i t i oned  a t  t he  moni tor  o r  subst ra te  l oca t ions .  The 

l i n e a r  t r a n s l a t i o n  vacuum seals were Cenco seals, mod i f ied  t o  have two 

O-rings, and.pro tec ted from heat ing  by coax ia l  water c o o l i n g  o f  t h e  t rans-  

l a t i o n  rods. Water coo l i ng  was a l s o  suppl ied t o  the  th ickness moni tor  

head and vacuum j a c k e t  reg ion adjacent  t o  t h e  evaporat ion source pos i -  

t ions. 

A f t e r  a s t a b l e  evaporat ion r a t e  between 40 and 60 8/min had been 

obtained,,the source was t r a n s l a t e d  t o  the  p o s i t i o n  d i r e c t l y  i n  f r o n t  o f  

t he  subs t ra te  .and l e f t  there  f o r  t h e  t ime pe r iod  necessary t o  depos i t  

the  thickness' des i red  i n  a range between 500-700 8. A f i l m w a s  s imul -  

taneously deposited dur ing  t h i s  t ime on t h e  g lass  p l a t e  which was pos i -  

t ioned adjacent t o  the  subst ra te  f o r  ' i n te r fe romet r i c  thickn'ess determina- 

t i o n .  The low l i m i t  on f i l m  th ickness was imposed by a problem o f  d i s -  

o rder  o f t d n ' f o u n d  i n  t h a l l i u m  h a l i d e  f i l m s  below 500 8 th ickness.  The 

upper l i m i t  was se t  by a need t o  c o n t r o l  pho toca r r i e r  e f f e c t s  i n  the  

e lec t romodula t ion  measurements r a t h e r  than by the  l a r g e  o p t i c a l  dens i t y  

a t  the  n = I exc i ton  peak. 

A f t e r  evaporat ion the  sarnple.'was l e f t  a t  room temperature f o r  

several  hours before  being s l o w l y ~ c o o l e d  t o  l i q u i d  n i t r o g e n  temperature 



t o  avo id  thermal s t r a i n .  It was then cooled more r a p i d l y  t o  the  5 - 6 ' ~  

range where the  spectra were measured as descr ibed i n  t h e  next  chapter .  

Face Centered Cubic Samples 

The abnormal f c c  phase samples were evaporated i n  the  system j u s t  

described a t  very  low ra tes  o f  1-5 8/min, as i nd i ca ted  by the  th ickness 
. . 

moni tor ,  and formed e p i t a x i a l l y  on KBr subst ra tes  f r e s h l y  cleaved from 

Harshaw s i n g l e  c r y s t a l s .  . The evaporat ion r a t e  was detected , f o r  sc phase 

format ion on the  f i l m  th ickness moni tor  c r y s t a l .  F i lms were evaporated 

t o  moni tor  thicknesses less than 100 8 because the  f c c  i s  s t a b l e  o n l y  

f o r  thicknesses below 200 8. The evaporat ion was done a t  a pressure i n  

the  To r r  range t o  promote e p i t i x i a l  f i l'in growth. ~ f t e r  evaporat ion 

- 6 t h e  vacuum was q u i c k l y  pumped t o  t h e  low 10 Tor r  range and the  sample 

was r a p i d l y  cooled t o  l i q u i d  n i t r o g e n  temperature where t h e  f c c  phase i s  

more s t a b l e  . Measurements were made o f t e n  a t  bo th  7 7 ' ~  and i n  t h e  5 - 6 ' ~  
. . 

range,althougti very  l i t t l e  reduc t ion . . i n  broadenjng occurs a t  t h e  lower 

. , 

temperature due t o  the  h igher  Debye temperature o f  t h e  f c c  phase r e l a t i v e  

t o  the  sc phase. To o b t a i n  h igher  f ie. lds f o r  t he  f c c  samples the  sample 

capac i to r  p l a t e  separa t ion  was reduced. to  1.4 mm. 



CHAPTER V. EXPERIMENTAL MEASUREMENT SYSTEM 

The experimental measurement system enabled the determination of  

the transmission, T, and electromodulated transmission, AT/T, spectra of 

samples a t  low temperature. . A  schematic view, from above, o f  the measuring 

system appears i n  .Figure 8. It includes the o p t i c a l  arrangement, sample 
. . 

chamber w i t h ' .  holder, and the evaporation system. The vacuum pumping and 

cryogenic systems and e lec t ron ics  are  not  shown. 

Transmi ss.ion ~easurements 

The operat ion of  the system i n  the transmission mode i s  shown i n  

the block diagram o f  Figure 9. Sta r t i ng  i n  the upper r ight-hand corner 

a t  the bight  source ( ~ e n e r a l  ~ l e c t r i c  Quar tz l i ne  500 wat t  tungsten f i l a -  

ment lamp) the o p t i c a l  path can be f o l  lowed t o  the tuning fork chopper 

(Bulova-~mer ican Time Products L40' dr iven by osc i  1 l a t o r '  AME-5A) which 

gives the beam an AC component for csmpat i b i  1 i t y  w i t h  the detect  ion 

e lec t ron ics .  The beam reaches i t s  f i r s t  focus a t  the entrance s'l i t  of  

the monochromator (McPherson 218, 1200 grooves/mm 5000 8 blaze g ra t  i ng) 

and passes through the monochromator,refocusing a t  the e x i t  s l i t  i n  a 
, 

wavelength band o f  26.58/mm o f  s l i t  width. S l i t  w idths ranged between 

30 and 60 microns corresponding t o  band passes from 0.8 t o  1 .6 .8  o r  

approximately 0.7 t o  1.4 meV. The .beam i s  focused from the e x i t  s l i t  t o  

the sample and the f r a c t i o n  t h a t  i s  t ransmi t ted f a l l s  on the photocathode 

o f  photomul t i p 1  i e r  1 (RCA, 1 P28), which i s  powered by a constant h igh 

voltage supply (Ke i th ley  244). A small f r a c t i o n  o f  the beam i s  re-  

f lected,  before the sample, from a quartz p l a t e  t o  pho tomu l t ip l i e r  
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2 (RcA 1P28), which i s  pa r t  o f  .a servo loop for  maintain ing a  near ly  

constant inc ident  beam i n t e n s i t y  on the sample'. The h igh vol tage suppry 

(Power Designs 2 ~ - 1 0 )  f o r  pho tomu l t ip l i e r  2  i s  a lso  he ld  a t  constant out-  

put. The servo loop can be traced i n  Figure 9 t o  the lamp servo c i r c u i t  

and power supply ( Instrumentat ion Group, Ames Laboratory .MF211) before 

re turn ing t o . t h e  lamp. The servo loop removes spurious spectra from the 

incident  beam due t o  the lamp spectrum an'd opti ,cs by adjust i ,ng the power 

t o  the lamp a f t e r  automat ica l ly  comparing a  feedback s ignal  from photo- 

m u l t i p l i e r  2  w i t h  a  reference s ignal  from a mercury ba t te ry .  The servo 

system enables the absorption spectra t o  be d i r e c t l y  observed wi thout  the 

superpos i t ' ion o f  the h i gh l y  wavelength dependent unservoed inc ident  beam 
- - 

va r i a t i on  which d i s t o r t s  the spectra. The AC s igna l  from pho tomu l t ip l i e r  

1, which i s  propor t iona l  t o  the t ransmit ted beam in tens i t y ,  i s  measured 

by a  lock- i n  amp1 i f i e r  ( I thaco 353) wh i ch rece i ves a synchron i z i ng 

reference s  ignal  from the chopper d r i v e  c i  r cu i  t. The synchronous lock- i n 

detect ion al lows the detector  t o  have a narrow band w id th  response, thus 

improving the s ignal- to-noise ra t i o .  The DC lock - in  output  s igna l  i s  

recorded as a  func t ion  o f  wavelength by the char t  recorder (~ew1,et t -  

Packard 7100 B) a f t e r  having wavelength reference pips added by the wave- 

length encoder which was ca l  i brated w i t h  Osram spectral  1 ine source lamps. 

F i na l l y ,  the sample and substrate transmission a re  obtained by tak ing a  

r a t i o  of  t h i s  p l o t  t o  a  s i m i l a r  p l o t  taken w i t h  the sample and substrate 

removed from the beam. 



Electromodulated Transmission, AT/T, Measurements 

The AT/T measuring system mode is.shown i n  Figure 10. Again t h e :  

1 i gh t  path can be f o l  lowed from the lamp th'ro,ugh the monochromator t o  the 

sample, where the transmission i s  modulated by the app l ied e l e c t r i c  f i e l d .  

I n  t h i s  mode the AC signal  i s  developed a t  the sample ra ther  than a t  the 

tuning f o r k  chopper. The modulating. f i e l d  i s  appl ied between the p la tes 

o f  the sample mount capaci tor  ( ~ i g u r e  7) by means o f  a vol tage appl ied 

across the capaci tor  p la tes  from the h igh voltage' square wave, generator, 

which i s  discussed l a t e r  i n  the chapter. The transmission modulation 

occurs a t  .photon energies where f i e l d - sens i t i ve  absorpt ion features 

ex i s t ,  such as the n = . l  exc i ton  l i n e ,  which i s  broadened and sh i f t ed  . 

by the f i e l d .  This causes the superposi t ion o f  a small AC.signa1, which 

i s  propor t iona l  t o  AT/T, on the DC transmission s igna l .  Both o f  these 

s igna ls  go t o  the constant DC s ignal  servo system which i s  described be- 
. . 

low. The servo system maintains a constant DC transmission s ignal  leve l  

by vary ing the pho tomu l t ip l i e r  h igh voltage and hence.automat ical ly  causes 

the AC s igna l  t o  be propor t iona l  t o  AT/T. I t  a l so  separates the AC and 

DC s ignal  components. The former i s  measured by the lock-.in and the out-  

put, SAC, i s  recorded w i t h  the DC s igna l ,  
'DC ' on the char t  recorder a f t e r  

the wavelength has been encoded. 1.n terms o f  S A C  and SDC, AT/T i s  

obtained from AT/?,= 2 SAC/(SDC - SAC).  The servo system feedback loop 

which holds SDC constant i s  shown i n  Figure 11. The . s igna l  , i s  generated 

when the modulated beam causes e lec t rons t o  be emit ted a t  the photo- 

m u l t i p l i e r  cathode. Secondary e lec t ron  emission occurs a t  each of  the 9 

dynodes which e l ec t ros ta t  i c a l  1 y accelerate the e lec t rons to. the anode, 
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producing a mul t i .p ly ing e f f ec t .  Electrons are conducted from the anode 

t o  ground through the 100 K Q r es i s t o r .  'The AC component o f  the voltage 

.s ignal  developed across. the res i sto'r .i s conducted through the 0.22 p F  

capaci tor  t o  the lock- in  input. The DC signal  appears a t  the input  o f  

. ' t he  741 operat ional  ampl i f  i e r  a f t e r .  the AC has been f i 1 tered by the 0.1 V F  

capaci tor .  The 741 operat ional  ampl i f  i e r  has un i t ,  gain and serves t o  

match impedence between the photomul t ip l ie r  and the Kepco operat ional  

power supply ( ~ e p c o  OPS 2000) and t o  supply the DC signal  l eve l  t o  the 

char t  recorder. The imput 'o f  the Kepco OPS 2000 i s  the nu1 1 po in t  o f  the 

servo system. It receives a constant vol tage from the 6.2 V supply which 

may be adjusted by the 10 and 100 K res is to rs .  Th is  constant vol tage 

leve l  dete'rmines the DC transmission s ignal  . . l eve l  which w i l l  be maintained 

by the servo system. The n u l l  poi.nt a l so  receives a vol tage from the 741 

operat ional  amp1 i f i e r .  I f  t h i s  i s  greater ( less) than 'the constant 

voltage from the 6.2 V source as the spectrum i s  scanned, the Kepco OPS 

2000 automat i c a l l  y reduces ( i ncreases) the h i  gh vol  tage across the ptioto- 

mu1 t i p 1  ie r ,  thus reducing (i,ncreasing) the gain o f  the tube and re-  
. , 

es tab l i sh ing  the n u l l .  The Kepco OPS 2000 a l so  has a d i r e c t  AC feedback 

through the 0.005 p  F capaci tor  t o  reduce. any AC noise t ha t  i s  picked by 

the cont ro l  c i  r cu i  t. Before the h igh vol tage reaches the photomul t i  p l  i e r  

i t  passes through a 170 KS2 pro tec t ion  r e s i s t o r  and i s  monitored by a 

0 - 2.5 kV meter. 

High Vol tage Square Wave Generator 78, 

The h igh vol tage square wave generator is,shown schematical ly . in ' :  

F igure 12'. The low vol tage square wave generator was constructed from 
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a sinewave osc i  1 l a t o r  (Hewlett Packard Model 200 CD) which turned a 

t r a n s i s t o r  a1 te ' r r ia te ly  on and o f f  t o  generate a square wave w i t h  a '  duty 

c y c l e  whlch could be adjusted by the sinewave ampli tude t o  a value o f  

50%. The o s c i l l a t o r  a l s o  provided a reference s igna l  t o  the  chopper. 

The square wave was coupled t o  the  g r i d  o f  a h i g h  vo l tage t r i o d e  w i t h  a 

capac i to r .  The t r i o d e  was turned on and o f f  by the  g r i d  causing the  

0 - 10 KV h igh  vo l tage power,supply (Sorensen 5010) connected across the 

sample capac i to r  t o  be shorted o u t  p e r i o d i c a l l y ,  generat ing a square wave 

e l e c t r i c  f i e l d  on the  sample. The h igh  vo l tage square wave was monitored 

by an o s c i  1 loscope (Text ron ix  531A) through a vo l tage d i v i d e r .  The h igh  

vol tage supply had a cu r ren t  c a p a b i l i t y  o f  8 ma which was pro tec ted by a 

cu r ren t  l i m i t i n g  r e s i s t o r .  The cu r ren t  l i m i t a t i o n  provided t h e  r e s t r a i n t  

on  the  'frequency response. o f  the, generator.  With' a low capacitance cab1 e 

t o  the  sample capac i to r ,  opera t ion  a t  200 Hz was poss ib le  w i t h  very l i t t l e  
. . 

d i s t o r t i o n  o f  t he  square wave. A 50 percent du ty  c y c l e  square wave 

modulat ion was requ i red  by both the  . l o c k - i n  amp1 i f  i e r  and the  model used 

i n  the  c a l c u l a t i o n .  The l o c k - i n  output  i s  s e n s i t i v e  t o  the  i npu t  du ty  

cyc le,  w h i l e  the  theory involves tak ing  the  d i f f e r e n c e  between spectra 

ca l cu la ted  f o r  two f i e l d s  (E= 0 and & #  0) ,  thus r e q u i r i n g  square wave 

modulation. 

Vacuum System 

The 'vacuum system provided a low pressure atmosphere i n  the  sample 

chamber which was necessary t o  enable .the sample t o  be i s o l a t e d  from 

thermal contac t  f o r  coo l i ng  t o  low temperature w i thou t  condensation and 



the -- i n  s i  t u  evaporat ion o f  t h i n  f i l m  samples. The 1 i g h t  beam inc iden t  

on t h e '  samples a f t e r  evaporat ion entered and e x i  ted  ' t he  evacuated chamber 

through Suprasi l  quar tz  windows sea'led w i t h  O-rings. 

' T ~ B  vacuum pumping system cons is ted o f  a 1 i q u i d  n i  t rpgen c o l d  trapped 

d i f f u s i o n  pump (T-M Vacuum Products TM 241 AC) mounted d i r e c t l y  below the 

sample chamber and roughed by a mechanical r o t a r y  pump (Welch 1405). A 

combination poppe t /bu t te r f l y  type va lve  between the  c o l d  t r a p  and sample 

chamber al lowed r a p i d  c y c l i n g  o f  t he  system when i t  was necessary ' to  open 

t h e  sample chamber. Cold cathode vacuum gauge i nstrumentat ion  (I ns t ru -  

mentat ion Group, Ames Laboratory MF-14-A) measured the  pressure i n  the  

sample chamber. The pressure could be  adjusted between lom5 and 5 : 

Tor r  by t h r o t t l i n g  the  d i f f u s i o n  pump w i t h  the  poppe t /bu t te r f l y  valve. 

Cryogenic System 

The.cryogenic system was necessary t o  reduce the  thermal broadening 

o f  t he  spectra. ' The system cons is ted o f  a l i q u i d  n i t rogen  sh ie lded 

1 iqu id .he l i um c r y o s t a t  which was mounted d i r e c t l y  above the  sample. The 

c r y o s t a t  had been used i n  the  group previous t o  t h i s  i n v e s t i g a t i o n .  The 

sample ho lder  (F igure  7) was b o l t e d  t o  t h e  copper c o l d  f i n g e r  which was 

i n  contac t  w i t h  the  l i q u i d  hel ium rese rv io r .  The 0.8 l i t e r  r e s e r v i o r  

capaci t .y 'a l lowed approximately 3 hours between f i l l s .  The c o l d  f i n g e r  

and,sample holder  were shie lded by a concent r ic  copper tube which was i n  

contac t  w i t h  the l i q u i d  n i t rogen  conta iner .  The tube had holes c u t  i n  

i t s  sides t o  a l l ow  the  passage o f  t h e  evaporat ion and l i g h t  beams. An 

Au + 0.03 a t  % Fe vs. Cu thermocouple was at tached t o  the  sample ho lder  



w i t h  General E l e c t r i c  7031 varnish. Thermocouple emfs were measured 

w i t h  a . ' d i g i  t a l  microvol tmeter ( ~ e w p o r t  2400) r e l a t i v e  t o  i c e .  Tempera- 

tures between 5 and 6 K were measured when 1 i q u i d  he1 i urn was i n  the 

cryostat, . '  Unfortunately  i t  was not possible  t o  control  the  temperature 

between t h i s  value and n i t rogen temperature. 



CHAPTER V I .  DATA REDUCTION AND INTERPRETATION METHODS 

The reduct ion and i n te rp re ta t i on  methods used f o r  the data f i t  i n t o  

two categories. I n  the f i r s t ,  the AT/T and T data obtained f o r  the normal 

(sc) phase samples were reduced, using the standard t h i n  f i  l m  formulas 79 

derived from Maxwell 's equations, t o  provide values o f  the complex index 

o f  r e f r a c t i o n  (N = n + i k )  and d i e l e c t r i c  constant (E = + 1 ~ ~ )  and 

the e l e c t r i c  f ie ld- induced changes i n  these quan t i t i es .  The r e f l e c t i v i t y  

and electromodulated . r e f l e c t i v i t y  were ca lcu la ted from the above resu l ts .  

The T lBr  abnormal ( fcc)  phase AT/T data were in terpreted i n  the second 

method using Wannier exc i ton theory w i t h  no cen t ra l  ' c e l l  co r rec t ion  t o  

ob ta in  the exci  ton binding energy and Bohr rad i  us, bandgap, and s t a t i c  

d i e l e c t r i c  constant. A lack o f  wel l-resolved. s t r uc tu re  prevented the 

normal (sc) phase data and the abnormal ( fcc)  TlCl  data from being \ 

in terpre ted by the second method and the lack o f  s u f f i c i e n t  data t o  y i e l d  

values o f  the complex index o f  t e f r a c t i o n  r e s t r i c t e d  the f i r s t  method 

from use w i t h  the abnormal ( f c c )  phase data. 
80 

Norma.1 Phase Data 

I n  the f i r s t  method, val.ues df  n and k were obtained as a funct ion 

o f  photon energy from data i n  the 1 i terature8'  and the experimental ly 

measured transmission. The 1 i t e r a t u r e  values had t o  be adjusted t o  

f i t  Lhe higher broadening associated w i t h  the spectra o f  t h i s  invest iga- 

t i on .  This was accompl ished . . by programming the-'computer t o  search over 

ranges, def ined by the 1 i te ra tu re  val'ues, o f  n and k t o  locate  val  ues , 

which pr0duced.a ca lcu la ted transmission w i t h i n  a spec i f i ed  to lerance of 



the experimental measurement. This procedure resu l ted i n  m u l t i p l e  

s o l u t i o n s  and the f i n a l  values o f  n and k were determined by s t a r t i n g  a t  
. - 

low photon energy where k = 0 and.n i s  known, and working g raph ica l l y  t o  

higher energy, using requirements o f  con t i nu i t y  o f  n and k pa i rs ,  the 

known general funct iona l  form f o r  n and k i n  t h i s  region, and numerous 

check p l o t s  t o  compare the ca lcu la ted and measured transmission. The 

values o f  n and k f i na , l y  obtained f o r  both T lC l  and T lBr 'gave ca lcu la ted 

transmission spectra which were co inc ident  w i t h  the experimental spectra 

w i t h i n  the  reso lu t ion  o f  the incremental p l o t t e r .  

The transmission was ca lcu la ted from the two-layer normal incidence 

7 9 t h i n  f i 1 . m .  formula , w i t h  boundary,media o f  vacuum on the inc ident  s ide 

and Cs l on the transmission side. The f i r s t  l ayer  was the evaporated 

t ha l l i um  ha l i de  f i l m  and the second,the p lex ig las  membrane. The neglected 

r e f l e c t i o n  a t  the Csl-vacuum in te r face  was corrected fo r  by a fac tor  

ca lcu la ted from the Csl index o f  re f rac t ion ,  which was near ly  constant 

i n  the range o f  i n te res t .  The indices o f  r e f r ac t i on  a t  l i q u i d  n i t rogen 

temperature f o r  the Csl c r y s t a l  and the p lex ig las  membrane were obtained 

i n  the former case from the l i t e r a t u r e 8 2  and i n  the l a r r e r  from . L ~ . ~ I I s -  

mission measurement on a spectrophotometer (Cary 14). The transmission 

data were reduced using the s ing le- layer  t h i n  f i l m  formula. 78 s ince i n  

t h i q  photon energy reqion no sharp s t r uc tu re  ex i s t s  ( k  = 0) the values 

o f  n a re  expected t o  be v a l i d  a l so  i n  the 5-6 K region f o r  both mater ia ls .  

The program ou t l i ned  above t o  ob ta in  the complex index o f  r e f r a c t i o n  

o f  TlCl  and T lBr  was used because the l i m i t e d  spectral  range o f  the data 

prevented a Kramers-Kronig analysis,  which would have provided two 



equations f o r  ,the determination o f  n 'and k. I n  e f fec t ,  t h i s  program 

obtained two unknowns (n,k) from one equation ( the sample transmission) 

and add i t i ona l  in format ion.not  i n  the form o f  an equation. For t h i s  

reason the accuracy o f  n and k i s  subject  t o  some question. I n  view of 

the uncerta in r e l i a b i l i t y  o f  some Kramers-Kronig analyses, which requ i re  

add i t i ona l  approximated data f o r  execution, the program does no t  seem un- 

reasonab 1 e. 

Kramers-Kronig analysis was used on the AT/T(~V,E) data t o  ob ta in  

the e l e c t r i c  f ie ld- induced change i n  the transmission phase s h i f t ,  

he(hv,E), o f  the electromagnetic wave associated w i t h  1 i gh t  t ransmit ted 

through the sample. The equations for AT/T and A 8  provided the two equa- . 
t.ions necessary t o  obta in  the f i e l d  induced changes i n  the complex index 

o f  re f rac t ion ,  An and Ak. ,The Kramers-Kronig in tegra l  could be evaluated, 

i n  t h i s  case, i n  the region o f  measu'rement because o ther  regions make a 

small con t r i bu t i on  t o  the in tegra l ,  since AT/T i n  those regions has a low 

amplitude which i s  not  enhanced by the funct iona l  form o f  the integrand 

when A8 i s  ca lcu la ted f o r  photon frequencies i n  the region o f  i n t e res t .  

This can be seen from the expression f o r  A 8  given by 

 where,.^ a n d c  denote the photon energy and e l e c t r i c  f i e l d .  The symbols 

" R and vh def ine the l i m i t s  o f  the measured region. Equation 18 was 

obtained from thc Kramcrs-Krenig phase shi f t  f o r r n l ~ l a ~ ~  due to  transmission 



by s i b i t i t u t i n g  the  expressions: T(vo,f,= 0) and T ( v o , 6 # 0 )  = 

T (v  ,e= 0) + AT(vo,G# 0) i n t o  the  formula and sub t rac t i ng  the  two 
. 0 

r e s u l t i n g  equations. The i n t e g r a t i o n  t o  o b t a i n  A€J(hv,E)'was done by 

computer; 

The values o f  An and Ak were der ived from the  f o l  lowing 

equations 

w i t h  the  p a r t i a l  d e r i v a t i v e  q u a n t i t i e s  obta ined from the two laye r  t h i n  

f i l m  formula78 and the  complex index o f  r e f r a c t  ion  resu l  t s  discussed 
. . . . 

e a r l  i e r .  A1 1 o f  the above r e s u l t s  were then used t o  c a l c u l a t e  t h e  complex 

d i e l e c t r i c  constant and the  e l e c t r i c  f i e l d  induced changes i n  t h a t  

q u a n t i t y  us ing the  f o l  lowing expressions, 

Ac2 = 2kAn + 2nAk . 

I n  add i t i on ,  R and AR/R were ca l cu la ted  from 





dominant i n  d e f i n i n g  EA s t ruc tu res  f o r  exc i tons .  The n=l  and 2 features 

a re  usua l l y  most c l e a r l y  resolved. Eg and R can be determined from the  

two equations obta ined f o r  (hv),  a n d  ( h ~ ) ~  from Equation (29). 
1 

The s t a t i c  d i e l e c t r i c  constant,  E ~ ,  and the  Bohr radius,  ao, can be 

ca l cu la ted  from Equations (11) and (12). us ing t h e  e l e c t r o n  and h o l e  

e f f e c t i v e  masses from the band s t r u c t u r e  c a l c u l a t i o n s .  Equation (13) 
I 

then a l lows the  i o n i z a t i o n  f i e l d , E , ,  t o  be calculated. , '  



CHAPTER V 1 1 .  RESULTS. 

Normal (sc). Phase ~ e s u l  t s  f o r  TlCl  and T lBr  

Normal phase resu l t s  f o r  both compounds a re  given i n  the form o f  the 

e_lectromodulatidn spectra, AT/T, Aol, Ao2 and - AR a t  two o f  the appl ied 
R 

voltages used i n  the measurements. The unmodulated spectra are  included 

i n  each p l o t  f o r  comparison. Addi t iona l  f i gu res  show AT/T and A r 2  on the 

same p l o t  t o  cont rast  the, input  andou tpu t  o f  the data reduct ion program. 

~ b s o r p t i o n  and EA spectra f o r  TIC1 and T lBr  are  shown from runs which 

were not reduced by the data program. F ina l l y ,  an i n te res t i ng  example 

o f  the e f f e c t  o f  photoconduct iv i ty  i s  shown i n  the electromodulat ion 

spectra o f  T lBr  measured over a range o f  sample temperatures. 

AT/T 'spectra 
. . 

F ig~ l r t l s  1 3  and 14 show the spectra f o r  TlCl  and TlBr,  respect ive ly .  

I n  the TlCl  transmission spectrum the shoulder marked 1 '  i s  due t o  the 

s p l i t t i n g  o f  the n=l, peak marked 1. S t r a i n  broadening prevents the 

observation o f  the actua l  doublet i n  Figure 13. The shol ldek i s  not  ob- 

served i n  the T l8 r  spectrum i n  Figure 14 due t o  a smal ler  s p l i t t i n g  and 

more thermal broadening caused by the lower Debye temperature f o r  t h i s  

compound. At  h igher photon energies, i n  both spectra, the higher s p l i t  

and u n s p l i t  exc i ton  s ta tes and phonon features a re  marked a t  locat ions 

designated by the spectra,. when possible,or a t  locat ions ca lcu la ted from 

the exc i ton b ind ing energies and LO phonon energ i es. ' The exc i ton- 
. . .  . . . . . .. . 

phonon quasibound s ta te  i s  designated by a and the f r ee  phonon sideband 
. .  , .  

by $ f o r  the normal. phase. 



PHOTON ENERGY (eV) 

Fi.gure 13. Transmission (dot ted  l i n e )  and AT/T spect ra  o f  
T l C l  (sc)  
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F i g u r e  14. Transmiss ion (dashed 1 i ne )  and AT/T ( d o t t e d  and s o l  i d  1 ine.s) spec t ra  o f  
T l B r  (sc )  



The AT/T spectra show more s t ruc tu re  than the T spectra, espec ia l l y  

i n  the case of  TlC1,because of  the higher exc i ton  b ind ing energy, la rger  

s p l i t t i n g ,  and lower thermal broadening,relat ive t o  TlBr. I n  the TlCl  

AT/T spectra f o r  1.5 kV, t h e . 1 '  feature  i s  posit ive,due t o  the s h i f t i n g  

and broaden ing o f  the s t a t e  by ' t he  e l e c t r i c  f i e l d ,  which causes enhanced 

transmission' a t  the 'photon energy region corresponding t o  1 ' . The pos i - 
t i v e  feature on the low energy s ide o f  1'  i s  thought t o  be due t o  

1 uminescence caused by photocarr i e r s  accelerated by the appl ied e l e c t r i c  

f ield,and no t  t o  exc i ton states.  The p o s i t i v e  AT/T feature on the h igh 

energy s ide of  l ', i n  the absence of the n=l s p l i t t i n g ,  would be expected 

'a t  t h e ' l o c a t i o n  des,ignated by 1. I t ' i s  a t  h igher energy due t o  super- 

' pos i t i on  o f  the n=l ' s t ruc tu re  i n  t h i s  region. Other features i n  the 

1.5 kV spectra are thought t o  correspond t o  the n=2', and 2 exc i ton  states.  
. . 

A t  photon energies above n = - the o s c i l l a t i o n s  i n  the modulated trans- 

mission a re  seen which are s i m i l a r  t o  the s t r uc tu re  seen i n  Blossey's 

ca lcu la ted AE spectra i n  Figure 2. The TlCl  AT/T spectra for  6.0 kV 
2 

show features a t  1 '  and 1 w i t h  the o s c i l l a t o r y  s t r uc tu re  above n = =. 

The 1' and 1 AT/T peaks co inc ide c lose ly  w i t h  the corresponding t rans- 

mission peaks, ind ica t ing  t ha t  the superposi t ion s h i f t i n g  e f f e c t  i s  less 

ac t i ve  a t  higher f i e l d s .  The n-2' and 2 features have disappeared due t o  

The s p e c t r i  f o r  ~ l ~ r  i n  F,igure 14 show the s e n s i t i v i t y  o f  the spectra 

t o  the l w e r  b ind ing energy and larger  thermal broadening o f  TIBr. The 

deta i  led s t r uc tu re  observed in  the T lCl  spectra i s  absent a t  the f i e l ds  

shown and a lso a t  lower and' intermediate f i e l d s .  
. . . 8 



Ae spectra 
-1 

I n  Figures 15 and 16 the ca lcu la ted and spectra appear for  

TlCl  and TlBr, respect ively.  The main e f f e c t  o f  the e l e c t r i c  f i e l d  i s  t o  

broaden and at tenuate the p o s i t i v e  and negative peak heights. This i s  

most c l e a r l y  seen i n  the T lBr  and h igh f i e l d  T lC l  spectra. 

A spectra -2 

Figures 17 and 18 show the c2, and Ac2 spectra ca lcu la ted f o r  TlCl  

and TlBr, respect ively.  The TlCl  n=l c2 peak i s  narrower than the trans-' 

mission feature w i t h  the shoulder (peak) corresponding t o  the 1 ' . (1) . .  
, .  . 

transmission feature sh i f ted  1 meV t o  higher (lower) photon energy. The 

electromodulated s t ruc tu re  shows t ha t  the c2' peak i s  broadened and 

reduced i n  he ight  by the f i e l d .  The TlBr E~ spectra a l so  e x h i b i t  a 

narrowing o f  c2 r e l a t i v e  t o  T w i t h  a 1 meV s h i f t  i n  the c2 peak t o  lower 

. , 

photon energy. The A E ~  spectra are s i m i l a r  t o  the TIC1 spectra but  less 

resolved, as were the TlBr AT/T. spectra. 

. . 
. - AR/R spectra 

. . 

~ i g u r e s  19 and 26 show the ca lcu la ted  R and AR/R spectra, which were 

calcu'lated f o r  T ~ C  1 and' ~ 1 B r  to  compare w i th .  recent ly  reported meaiure- 
, .  ' 

r n e n t ~ ~ ~  discussed i n  ft ie next  chapter. 
. . 

AT/T and AE spectra ----2. 
! ,  

I n  Figures 21 and 22 the AT/T and Ac2 spectra are  p l o t t e d  i n  the 

same f igu re  f o r  TlCl  and T lBr  t o  a l low comparison o f  the input  and out-  

put of the data reduct ion program. The spectra show some s h i f t i n g  o f  



PHOTON ENERGY (eV) 

Figure 15. 86 spectra (sol i d  1 ines) and spectrum (dotted 1 ine)  o f  TIC1 (sc) 1 
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Figure 16. AE spectra (sol id and dotted 1 ines) and spectrum (dashed 1 ine) of 
~ l b r  (st) 



~ i ~ u r e  17. B E  (sol i d  1 ines) and EZ (dotted 1 ine)  spectra 
cafcu la ted  f o r  T l  C l  ( s c ~  

. . 
I I 1 I I I I 1 I I I 1 I I - 

I ,  , ,  I -  - : : - 
- I 

2 

1.6 

1.2 

Y 0.8 
0 
x 0.4 
L 

0.0 

-0.4 

(U 

4 
0.4 

0.0 

-; -0.4 
0 

-0.8 
L 

- 1.2 

-1.6 

' 

PHOTON ENERGY (eV) 

' I  
# I 

- I 
- I I 

- 
- - I 
- - 
- - 
- - 
- - 
- 
- _ _ _ _ _ _ _ _ -  e-' 

- . - 
- - 
- - 
- - 

- - 
- - 
- - 
- - 

- 
- 

T - 
- '  

- 
- 
- 
- 
- 

- 
TIC1 (sc) - 

- 
- 
- 
- 

V - 
I 1 I I I I 1 I I 1 1 I I 1 I 

3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50' 



2.98. 3.00 3.0 2 3.04 3.06 
0.0 

PHOTON ENERGY (eV) 

Figur-3 18. (sol id and dotted 1 i ies) and c2 (dashed 1 ine) spectra calculated 

for TlBr (sc) 
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Figure 19. Calculated r e f l e c t i v i t y  (dotted 1 ine) and ARLR (sol i d  ! ines) spectra o f  T lCl  (sc) 
. . 
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Figure 20. ~alcul ated reflectivity (dished 1 ine) and AR/R (dotted and sol id 1 ines) 
spectra of TlBr (sc) 



PH3TON ENERGY (eV) 

Figure 2 1 .  Measured AT/T spectra (sol  i d  1 ines) and ca lcu la ted  Ac2 spectra 
(dotted l  ines) o f  T l C l  (sc) 
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F igure  22. Measured AT/T spectrum (sol  i d  1 ine) and ca l cu la ted  . ' 

A ~ ~ s p e c t r u m  (dot ted  1 ine) o f  T l  B r  (sc) 



Peak pos i t ions and zero crossing po in ts  s i m i l a r  t o  the unmodulated spectra, 

but  the r e l a t i v e  peak heights are q u i t e  s i m i l a r  espec ia l ly  i n  the T lBr  

.spectra. 

. E lectroabsorpt ion (EA) - .spectra 

I n  Figures 23 and 24 the absorpt ion and EA spectra a re  p l o t t e d  fo r  

TlCl  and T lBr  f o r  runs which were no t  reduced w i t h  the data reduct ion 

program. I n  the T lCl  E'A spectra o f  Figure 23, the l', 1, 2', and 2 

features are'resolved,as they were i n  the e a r l i e r  AT/T spectra a t  1..5 kV. 

The 1 '  and 1 EA features are  shi , f ted not iceably  t o  lower energy from the 
. . 

estimated energy o f  the 1 '  and 1 absorption peaks. This spectrum i s  not 

as broad as the e a r l  i e r  TIC1 spectra and t h e '  1 ' and 1 EA features may be 

more sens i t i ve  t o  s h i f t i n g  due t o  photocarr ier  e f f ec t s  and t o  super- 

pos i t i on  when the peaks are broadened by the e l e c t r i c  f i e l d .  The T lBr  

spectra i n  Figure 24 are s i m i l a r  t o  the e a r l i e r  spectra bu t  less h igh ly  

broadened 'and sh i f t e d  by. s t r a i n .  A h igher 1 eve1 o f  photoconduct . . i v i  t y  i s  

thought t o  be present i n  t h i s  sample because o f  the negat ive lumlniscence 

peak a t  3.0 eV. The 1.5 kV spectrum.shows a s t r uc tu re  between the a and 

6 pos i t ions which i s  not  pred ic ted by the theory discussed i n  Chapter II. 

Figure 25 shows the behavior o f  t h e  feature, labeled a2,  as a func t ion  o f  

appl ied f i e l d  from another TlBr run. The.f. i ,eld dependence o f  the 

luminescence and the 1 '  feature a re  a l so  shown i n . t h i s  f igure.  

Electromodulat ion s ignal  as 2 funct ion of - temperature 

Figure 26 shows the electromodulat ion s igna l  as the sample tempera- 

t u r e  d r i f t e d  from 5-6 K t o  above l i q u i d  n i t rogen temperature. The 
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F i g u r e  24.  Absorption ( d o t t e d  1 i n e )  and EA ( s o l  i d  1 i nes )  
spec t ra  o f  .TlBr (sc)  
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Figure  25. Absorption (dot ted  1 ine )  and EA (sol  i d  1 ines)  f o r  vol tages from 2 .0  t o  9.0 .kV 



Figure  26. E igh t  scans o f  the e lect romodulat ion s igna l  ( a r b i t r a r y  u n i t s )  vs. 
photon energy as the sample temperature d r i f t e d  from near l i q u i d  
hel ium temperature i n  the  upper l e f t  hand corner t o  above l i q u i d  
n i t rogen  temperature i n  the  lower r i g h t  hand corner  
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spectrum i n  the upper lef t -hand corner was measured a t  5-6 , K  before the 

1 i qu id  he1 i um i n  the cryosta t  had evaporated. The spectrum was rescanned 

as the sample warmed and the r e s u l t i n g  spectra are  shown w i t h  sample 

temperature increasing f o r  the spectra shown across the top o f  the 

f i gu re  from l e f t  t o  r i g h t  and cont inuing i n  the same d i r e c t i o n  across 

the bottom. The two spectra ( top and bottom) shown on the l e f t  s ide o f  

the f i gu re  have an opposite po la r i t y ,  which indicates a '  180' phase s h i f t  

i n  the s igna l .  An explanat ion o f  t h i s  e f f e c t  w i l l  be given i n  the next  

chapter i n  terms o f  photocarr iers.  

Abnormal ( fcc)  Phase Results f o r  TlCl  and T lBr  

The abnormal ( f c c )  phase resu l t s  cons is t  o f  absorption and EA spectra 

f o r  both compounds and ca lcu la ted quan t i t i e s  obtained from the T lBr  data, 

using the Wannier exc i ton mode1,as discussed i n  Chapter V I .  The spectra 

o f  a T lBr  double t (sc  and fcc)  phase sample a re  included i n  t h i s  section. 

Figures 27 and 28 show the absorpt ion and EA spectra o f  T lC l  and 

TlBr,  respect ive ly .  The s o l i d ' v e r t i c a l  l i n e s  designate t h e  pos i t i ons  of  

s t ruc tu re  i d e n t i f i e d  i n  the absorption measurements o f  reference 27. 

. The'dot ted v e r t i c a l  Tines mark the locat ions o f  s t ruc tu re  obtained from 

t h i s  invest igat ion.  The n=l pos i t ions o f  reference 27 are  not  shown,due 

t o  the near-coincidence w i t h  the locat ions determined by t h i s  study for  

both TlCl  and TlBr. The n=l TlCl  absorpt ion peak i s  seen i n  Figure 27 

to  be narrower than the T lBr  peak,which has a more prominent wing on the 

h igh energy s ide due . to  the t i igher ,exc i ton states.  Above the n=l peaks 
, . . .  - .  . . .  . . . . . 

the a and 6 (not  tq  be confused. wi t h  the a and p phonon features i n  sc- 
, , 
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Figure 2'7. Absorption and EA spectra o f  .TIC1 ( f c c )  
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Figure 28. Absorption and EA spectra  o f  T lBr  ( f cc )  



spectra) loca t  ions o f  reference 27 are shown. The corresponding features 

i n  t h i s  study are marked a '  and 8 '  fo r  T lC l  and a re  s h i f t e d  t o  lower 

energy. I n  TlBr they are i n  c lose agreement w i t h  the e a r l i e r  measurement, 

as are the a and b features, which were ou t  o f  the range o f  measurement 

for  TICI. . S t ruc ture  which .may be analogous t o  the a and f3 features was 

observed i n  the spectra of .  the T lBr  samble a f t e r  i t s  thickness had been 

increased t o  700 8. This caused a phase t rans i t ion t o  the n o r m  1 phase 

and broad,overlapping absorption peaks were observed above the n=l  exci-  

ton peak (3.02 eV) and the band gap (3.03 e ~ )  a t  3.04 and 3.06 eV. 

The n=l EA features i n  Figures 27 and 28 co inc ide w i t h  the ene,rgy 

pos i t ions o f  the absorption peaks, as expected f o r  bound exc i ton states.  

I n  the T lBr  spectra the f e a t u r e . a t  3.321 e~ has been assigned t o  the n=2 

exc i ton s t a t e .  I t  was not  possib le t o  resolve a s i m i l a r  feature  i n . t h e  

TlCl  spectra due probably t o  the s igna l - to-no ise r a t i o .  A t  h igher energy 

the negative EA features corresponding t o  the a and f3 absorption peaks 

are s h i f t e d  to . lower  energy . . and have an unusual l i n e  shape. I n  the 

TlCl  spectra the absorption peaks are a t  3.812 and 4.000 eV w i t h  the EA 

features a t  3.803 and 3.975 eV. S im i la r l y ,  in' the T lBr  spectra the 

absorption peaks are a t  3.458 and 3.550 eV and' the EA a t  3.447 and 3.525 

eV. .The TlBr 'EA feature corresponding t o  a has the expected lineshape 

and pos i t i on  w h i l e , t h e  b feature  i s  s i m i l a r  t o  the a and B st ruc tures.  

Table 2 contains the quan t i t i e s  ca lcu la ted from the n=l and 2 photon 

energies obtained from the EA spec:tra"and the band masses o f  reference 27, 

using the Wannier model w i t h  an uncorrected Coulomb po ten t i a l  as discussed 

i n  Chapter V I  . 



Table 2. Proper t ies  o f  fcc T lB r  

. , .. 
f c c  T lB r  

F igure  29 shows the-absorp t ion  and EA spect ra  o f  a double- layer  sc 

and fcc sample a t  77 and 5 K. The spectra a r e  broadened more than the  

s ing le-1ayer .spect ra  due t o  a h igher  l e v e l  o f  s t r a i n  bu t  several  i n t e r -  

e s t i n g  observat ions can s t i  1 1  be made. The oppos i te  s i g n  f o r  t h e  tempera- 

t u r e  s h i f t  o f  the  sc and f c c  n=l  peak can be seen. The sc p e a k ' s h i f t s  

approximately 12 meV t o  h igher  energy w h i l e  t h e  f c c  peak s h i f t s  approx i -  

mately 6 meV t o  lower energy when t h e  sample temperature i s  ra i sed  from 

5 t o  77 K. The most s i g n i f i c a n t  aspect o f  t h e  spectra,  i n  terms of 

exc i ton  e f f e c t s ,  i s  t he  swi tch  i n  the  r e l a t i , v e  n=l  peak s t rengths  o f  t h e  

two phases between the  absorp t ion  and EA spectra. I n  absorp t ion  the  

fcc n=l absorp t ion  i s  s t ronger  b u t ' i n  EA t h e  sc n= l  f e a t u r e  has the  



Figure 29. Absorption and EA of a two layer sc and fcc TlBr sample 
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higher amplitude. Th is  w i l l  be explained, i n  terms of  the  exc i ton  

parameters involved, i n  the  next  chapter.  



CHAPTER V I I I .  . D ISCUSSION 

Normal (SC) Phase Data 

One o f  the primary' ob ject ives of t h i s  inves t iga t ion  was t o  compare 

measured e l e c t r i c  f ie ld- induced changes i n  the complex d i e l e c t r i c  funct ion 

w i t h  the de ta i led  pred ic t ions o f  Blossey's ca lcu la t ions.  This has 

not been possible i n  the most ideal  sense but some progress has been made 

i n  t h i s  d i rec t ion .  An ideal  comparison has been hindered by aspects o f  

t h e  t ha l l i um  hal ides which do not f i t  the Wannier exc i ton model used i n  

Blossey's calcu1,ations (n=l doublet structure, 'and phonon sidebands), by 

photocarr ier  e f f e c t s  which prevent a wel l -def ined e l e c t r i c  f i e l d  modula- 

t ion,  and by s t r a i n  and thermal e f f e c t  s e n s i t i v i t y  which d i s t o r t  measure- 

ments due t o  unwanted perturbat ions on the exc i ton states.  I n  addi t ion,  

the reduct ion o f  the ATIT data t o  obta in  Acl and Ac2 may have been in-  

fluenced by the suspected inaccuracy o f  the values o f  c and c2 deter- 
1 

mined from the transmission measurements. The c and c2 values obtained 
1 

from t h i s  study are not i n  c lose agreement w i t h  an e a r l i e r  determination, 

since the ear l  i e r  E valuese1 f o r  the n=l peak are approximately h a l f  
2 

the values shown i n  ~ i ~ u r e ' s  12 and 13. However, i t  i s  not  c l ea r  tha t  

the values o f  t h i s  study are i n  e r r o r  t o  t h i s  extent  s ince recent measure- 

&nts3' i nd ica te  t ha t  the e a r l i e r v a l u e s  are too low for  T lCl .  Obvious 

s t ruc tu re  a r t i f a c t s  due t o  t h i s  inaccuracy appear t o  be minor i n  the 

de r i va t i ve  spectra, as i n  the case o f  the small shoulder seen i n  the 

6.0 kV Ac2 T l ~ l  spectra i n  F igure '  . . 17 between the pos i t ions marked 2 '  

and 2. . . 



Figure 30 shows the f ield-induced changes i n  E and r2 as a funct ion 
1 

o f  photon energy f o r  the Wannier exc i ton model w i t h  peak heights and zero- 

*cross ing widths designated. Blossey' ca lcu la ted the dependence o f  these 

quan t i t i e s  on the appl ied f i e l d  and these p red ic t ions  w i l l  be compared 

w i t h  the measured f i e l d  dependence. Before the comparisons could be made, 

'an est imate o f  the leve l  o f  spect ra l  broadening involved was needed. The 

kT fac to r  f o r  the experimental spectra i s  approximately equal t o  0.05 R, 

which i s  lower than the broadening o f  r = kT ='0.2R used i n  Blossey's 

calculat ions,which gives an r2 lineshape and n=l h a l f  w id th  i n  best agree- 

ment w i t h  the experimental l ineshape and E~ h a l f  w id th  value o f  approxi- 

mately 0.5 R f o r  both compounds. . A  large6 broadening i n  the experimental 

spectra, than would be expected from the thermal mechanism, i s  not  un- 

expected, s ince a c e r t a i n  amount o f '  i nhornogeneous s t r a i n  broadening was 

an'unavoidable s ide e f f e c t  o f  s t a b i l i z i n g  the sample so t ha t  i t  would 

not  be dr iven by the e l e c t r i c  f i e ld ,as  discussed e a r l i e r .  Table 3 gives 

a perspective on the compromise tha t .had  t o  be made t o  s t a b i l i z e ' t h e  
.. . , 

sample i n  terms o f  the n=l s t r a i n  s h i f t .  The membrane/thallium ha l ide  

frame sample y i e l ds  a nea r l y - i n t r i n ' s i c  spectrum and i s  a good reference 

f o r  both the s h i f t i n g  due t o  s t r a i n  and the h a l f  width. An increase i n  

the h a l f  w id th  o f  the n=l peak s t rong ly  degrades the reso lu t ion  of  

higher states, s incq the exc i  ton b ind ing energy i s  on ly  approximately 

10 meV. The s h i f t i n g  due t o  the rnembrane/~sl substrate i s  subs tan t i a l l y  

less than f o r  the K B r  and quartz substrates. ~ a i f  widths f o r  the l a t t e r  

substrates are  not  useful f o r  comparison due t o  the large d i s t o r t i o n  i n  

the spectra. 



Figure 30. Designations for peak heights and zero crossing 
separations of the electromodulated complex 
dielectric function, AE + iAE2, as a function 
of photon energy 1 
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Table 3. St ra i n  s h i f t s  near l i q u i d  hel ium temperature i n  the n=l  peak 
pos i t i on  f o r  TlCl  and TlBr evaporated on various substrates 
r e l a t i v e  t o  the peak pos i t i on  f o r  a membrane/thallium ha l i de  
frame substrate. The n=l transmission h a l f  widths a re  given 
f o r  the membrane substrates. Uni ts  are meV 

Substrate T I  Cl TlCl  T l  B r  T l B r '  . 

S h i f t  Ha l f  Width s h i f t  Ha l f  Width 

C Quartz 3 1 

a 
Reference 10. 

. b ~ h i s  study. 

c 
Reference 81. 

I t  was decided t o  use the resu l t s  o f  Blossey f o r  the AE, and Ac2 

spectra,calculated w i t h  the I' = 0.2 R broadening value,for comparison 

w i t h  the measurements even though the experimental broadening i s '  main .1~ 

due . t o  s t r a i n  ra ther  than thermal mechanisms. The' f i r s t  comparison i s  o f  

AE2 forb?,  i d e n t i f i e d i n  Figure 30, as a f u n c t i o n o f  app l ied f i e l d , & .  



The dependence i s  shown i n  Figure 31,plotted as A E  /R vs f o r  TlCl  
2 

and TlBr,wi th the e l e c t r i c  f i e l d  determined from the voltage across the 

p la tes and t h e i r  separations,without a loca l  f i e l d  co r rec t ion  f o r  po lar iza-  

t i on ,  since the Bohr radius o f  the exc i ton i s  a fac to r  o f  ten  la rger  than 

the l a t t i c e  constant. Above 6.0 kV the experimental l i n e s  ( s o l i d  l i nes )  

have slopes c lose t o  the ca lcu la ted 1 ine (dashed 1 ine) . A t  voltages be- 

low'6.0 kV the slope o f  the experimental l i n e s  i s  approximately h a l f  o f  

what i s  expected from theory. This p l o t  indicates from the viewpoint o f  

the theory t h a t  e i ' ther ' (1)  the f i e l d  seen by the exc i ton i s  considerably 

less than t ha t  ca lcu la ted from the vol tage and t ha t  the f i e l d  increases 

too s lowly w i t h  appl ied voltage below 6.0 kV o r  (2) the Ac2 values 

are d is to r ted .  

The disagreement between the ca l cu la t i on  and the measurements seen 

i n  Figure 31 i s  thought t o  be p r i m a r i l y  due t o  photocarr ier  e f f ec t s .  

Several o ther  observations suggest t ha t  the f i e l d  seen by the exc i ton  i s  

due t o  the superposi t ion o f  the appl ied f i e l d  and the f i e l d  o f  the photo- 

c a r r i e r  charge d i s t r i b u t i o n .  Hence argument (1) i s  favored. Since the 

electromodulat ion measurements o f  t h i s  study were not  designed t o  measure 

the very sample-dependent photocarr ier  and t rapp ing e f f e c t s  i n  the t h i n  

f i l m  samples, some aspects, such as the o r i g i n  o f  the photocarr iers,  

can on ly  be t e n t a t i v e l y  suggested. The photocarr iers i n  the exc i ton  

region are thought t o  be generated b ~ t h  by i n d i r e c t  band t o  band 

t r ans i t i ons  and by t rapping o f  e i t h e r  the e lec t rons o r  holes of excitons, 

thus f ree ing the opposite charges f o r  conduction. Car r ie r  m u l t i p l i c a -  

t i o n  may occur due t o  impact ion iza t ion  by f ie ld-acce lera ted photocarr iers.  



Figure  31. P l o t  o f  AEZ/R  vs.-E/eI w i t h  the  dashed 1 i n e  f i t  

t o  theory ( 0 )  and the  s o l i d  l i n e s  t o  experiment 
. 
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The f i r s t  evidence o f  photocar r ie rs  t o  be discussed supports the  

.suggest ion t h a t  they a re  mobi le and hence could d i s t r i b u t e  t o  form a 

f i e l d  opposing the  appl ied  f i e l d .  The p o s i t i v e  (negative) peak on the 

low energy s ide  o f  t he  AT/T (EA) spectra i s  thought t o  be due t o  impact 

luminescence caused by r a d i a t i v e  de-exc i ta t ion  o f  e lec t rons  o r  holes ex- 

c i t e d  by c o l l i s i o n s  w i t h  f i e l d  accelerated photocar r ie rs  and no t  by 

e lectromodulat ion o f  the luminescence from' the  de -exc i ta t i on  o f  s ta tes  

e x c i t e d  by photon absorpt ion due t o  the  s ign  o f  t he  peak. 75 Hence t h i s  

feature i s  no t  due t o  modulation o f  the  beam transmission but  t o  l i g h t  

generat ion w i t h i n  the  sample, which i s  i n  phase w i t h  the  modulat ion 

f i e l d  and detected by the pho tomu l t i p l i e r .  The impact luminescence 

appears ' i n  the  AT/T (EA) spectra as a spurious, enhanced t ransmission 

(at tenuated absorpt ion) as i nd i cated by the  pos i t i ve (negat i ve) peak. 

The t ransmi ss ion (absorpt ion) i s  known t o  be at tenuated (enhanced.) 

i n  t h i s  .region by the  app l ied  f i e l d  because the  f i e l d  broadening o f  the  

n=l peak has the  r e s u l t  o f  increas ing the  absorpt ion.  The impact 

1 uminescence peak i s  sample- .and f ield-dependent and can be seen c l e a r l y  

a t  low f i e l d s  i n  Figures 13, 24 and 25. w i t h  . t h e  l a t t e r  showing t h e  f i e l d  

dependence o f  the  fea tu re  ( the  negat ive  peak a t  41 30 8) .  The disappear- 

ance o f  the  feature a t  h igh  f i e l d s  may i n d i c a t e  t h a t  the  impact lumines- 

cence i s  no t  exc i ted  as e f f i c i e n t l y  by more h i g h l y  accelerated c a r r i e r s  

o r  t h a t . t h e  luminescence s igna l  does not  grow w i t h  f i e l d  as f a s t  as the  

EA s igna l .  I n  F igure 25, the  9 .0  kV spectrum ampli tude i s  at tenuated by 

approximately a fac to r  o f  30 r e l a t i v e  t o  the  2.0 kV spectrum i n  Figure 

25 and the  intermediate spectra amplitudes a re  reduced by smal ler  amounts 



. . 

t o  f i t .  i n t o  the f igu re .  . 

I f  the negative n=l peak o f . t h e  9.0 kV EA spectrum o f  Figure 25 i s  

compared w i t h  the corresponding feature i n  the 9.6 kV spectrum o f  Figure 

24 the former peak appears s t rong ly  attenuated r e l a t i v e  t o  the l a t t e r .  

This , i s  thought t o  be due t o  a la rge reduct ion i n  the f i e l d  due t o  a very 

high photoconduct i v i  t y  f o r  the n=l photon energy region i n  the former 

sample. I n  th i cker  samples, the n=l peak ac tua l l y  was cut  o f f  completely, 

although the sample transmission had not  cu t  o f f  and modulation could 

occur i f  a s u f f i c i e n t l y  strong f i e l d  was present. The bet ter-ordered 

c r y s t a l  1 ine s t ruc tu re  o f  the t h i cke r  f i lms may a1 low substant ia l  c a r r i e r  

m u l t i p l i c a t i o n  by impact i on i za t i on  o f  the large dens i ty  o f  n=l exci tons 

.being created i n  t h i s  photon region, thus supplying s u f f i c i e n t  c a r r i e r s  . 

f o r  a dynamic screening e f f e c t .  Samples used i n  the measurements were 
. . 

made w i t h  thicknesses below approximately 700 8 t o  reduce the d i s t o r t i o n  

o f '  the appl ied f i e l d  by photocarr iers.  

A s i m i l a r  strong photocarr ier  e f fec t .has been i d e n t i f i e d ,  but  per- 

haps not  f u l l y  recognized, by o ther  workers i n  e lec t ro re f lec tance  measure- 

m e n t ~ ~ ~  on TlCl  and T lBr  s i ng le  c rys ta ls .  These workers have discussed 

a severe photocarr ier  e f f e c t  which, a t  very low temperatures (1.8 K), has 

prevented detect ion o f  any s igna l  throughout the exc i ton region I n  TICI. 

By increas,ing the temperature (20 K) and reducing the inc ident  beam in-  

tens i ty ,  they have obtg ined a spectrum above the n=l region, but  do no t  

observe the expected strong negat ive peak i n  the n=l region. Examination 

o f  my ca lcu la ted e lec t rore f lec tance,  AR/R, f o r  TlCl  exp la ins  the probable 

cause of  the missing s t ruc ture .  I n  Figure 19, a t  a low f i e l d  (1.5 kV 



spectrum), the negat ive peak near the pos i t i on  marked 1 i s  jus t 'beg inn ing  

t o  form. A t  6.0 kV i n  .Figure 19 and 6.0 and 9.5 kV i n  Figure 20, the peak 

i s  seen eas i l y .  On t h i s  basi's i t  seems very l i k e l y  t ha t  the absence o f  ' . '  

the  expected n=l s t ruc tu re  i n  the e lec t ro re f lec tance  measurements i s  due 

t o  a strong reduct ion by photocarr iers i n  the f i e l d  seen by the exci tons 

i n  t h i s  photon energy region and t o  the la rger  f i e l d  required t o  modulate 

the n=l s t a te  r e l a t i v e  t o  the less c lose ly  bound higher energy states.  

Before leaving the spectra o f  ~ i g u r e s  . . 19 and 20 i t  should be pointed. ou t  

tha t  wh i le  the ca lcu la ted r e f l e c t i v i t i e s  have an unusual s t r uc tu re  i n  

4 6 
comparison w i t h  experimental measurements, they are  q u a l i t a t i v e l y  

s im i l a r  t o  r e f l e c t i v i t y  ca lcu la ted from transmission data on T lBr  by 

o ther  workers.81 The general form o f  the AR/R spectra i's s i m i l a r  t o  data 

84 
on ZnO which has an absorption spectrum85 1 i ke  those o f  the t h a l l  ium 

hal ides.  For t h i s  reason i t  i s  not  unreasonable t o  assume.that the 

spectra are  q u a l i t a t i v e l y  v a l i d  even w i t h  some d i s t o r t i o n  introduced by 

the r e f l e c t i v i t y .  

The behavior o f  photodarr iers i n  modifying the appl ied f i e l d  i n  the 

s i ng le  c r ys ta l  and t h i c k  f i l m  samples i s  thought t o  be d i f f e r e n t  from the 

th inner  f i lms  o f  t h i s  study. I n  the more disordered t h i n  f i l m s  the 

photocarr ier  response i s  inf luenced by the lower c a r r i e r  m o b i l i t y  and a 

higher densi ty o f  traps, a l lowing less c a r r i e r  m u l t i p l i c a t i o n  by impact 

ion izat ion.  These propert ies,and the l i m i t a t i o n  on photocarr ier  genera- 

t i o n  due t o  the inc ident  beam in tens i ty ,  i nd ica te  t ha t  photocarr iers  may 

con t r ibu te  an essen t i a l l y  s t a t i c  f i e l d  which i s  superimposed on the 
, . 

appl ied f i e l d .  Evidence o f  such a s t a t i c  f i e l d ,  which i s  a l so  not  



st rong ly  photon ene,rgy dependent, i s  given i n  Figure 26. The f i gu re .  

consists o f  e igh t  scans o f  the.exc i ton region as the sample warmed from 

5-6 K t o  above l i q u i d  n i t rogen temperature w i t h  the spectra undergoing a 

180' phase shi f t  before.  being washed ou t  by thermal broadening i.n the 

lower . r ight-hand . corner. ' The upper and lower spectra on the l e f t  s ide o f  

the f i gu re  show l i t t l e  d i s t o r t i o n  but  a re  s h i f t e d  i n  phase by 180 degrees 

and t h e  s h i f t  can be explained i n  .terms o f  the photocarr ier  f i e l d  which 

i s  la rger  f o r  the lower spectrum due t o  an increase i n  the photocarr ier  

response w i t h  temperature i n  t h i s  region.86 The phase s h i f t  i s  explained 

by the waveforms i n  Figure 32 which are f o r  three leve ls  o f  photocarr ier  

response. The response i s  dependent on .various factors,, inc lud ing 

sample temperature, sample depth, i.ncident photon energy, and f i l m  

s t ruc tu re  which,are important i n  terms o f  t rapping centers tha t  may them- 
. . 

selves be modulated by the high e l e c t r i c  f i e l d s  appl ied. The appl ied 

f i e l d  waveform i s  shown a t  the top o f  the f i g u r e  w i t h  the photocarr ier  

f i e l d  waveform below which i s  caused by photocarr iers  generated i n  the 

i l luminated region , o f  the sample being swept by the appl ied f i e l d  i n t o  

, . the dark region where they are trapped. The d i s t r i b u t i o n  o f  p o s i t i v e  

(holes) and negat ive (electrons) charges t ha t  r esu l t s  provides a f i e l d  

tha t  opposes the appl ied f i e l d .  It i s  thought t o  be p r ima r i l y  a s t a t l c  

f i e l d  w i t h  a small AC component due t o  new charges being swept up by 

the f i e l d  and the.decay o f  the f i e l d  by recombination and the co l laps ing . . 
. . 

separat ion o f  the . . p o s i t i v e  and negat ive cha,rges when the appl i ed f i e l d  

i s  o f f .  It i s  i n t e res t i ng  t o  note that ,  i n  terms o f  t h i s  p i c t u r e  o f  
. . 

the f i e l d ,  the photocarr ier  f i e l d  would appear t o  have saturated i n  



. . ~ i g u r e  32. Schematic o f  waveforms which contr ibute  t o  the electromodulation o f  excitons 
i n  the presence o f  photocarr iers i n  t h i n  f i l m  samples. The exc i ton  i s  
not  s e n s i t i v e  t o  the d i r e c t i o n  o f  the f i e l d  and hence senses the absolute 
value o f  the t o t a l  f i e l d  waveform function 







Figure 31 a t  the pos i t i ons  marked by 6.0 k\i f o r  both ~ 1 ~ 1  and Tl'Br a t  the 

temperature o f  5-6 K. ' 

The t o t a l  f i e l d  waveforms shown i n  Figure 32 are the sum o f  the two ' 

waveforms above and d i f f e r  on ly  i n  DC components f o r  d i f f e r e n t  responses. 

The exciton-sensed waveform funct ions are  the absolute value o f  the t o t a l  

waveform funct ions because the exci  ton . i s  not  sens i t i ve  t o  the d i r e c t  ion 

o f  the f i e l d .  The low response exc i ton waveform ampli,tude i s  attenuated 

r e l a t i v e  t o  the appl ied f i e l d  a n d  s h i f t e d  i n  phase ( less than go0) when 

detected by the lock - in  due t o  the square wave d i s t o r t  ion, and both o f  

these aspects have been observed i n  the measurements. The waveform.in- 

d icates t h a t  the l i g h t  transmission i s  being modulated between two non- 

zero values o f  appl i ed  f i e l d .  This explains why some o f  the e l ec t ro -  

modulation spectra have s l i g h t  s h i f t s  i,n t h e i r  peak pos i t i ons  r e l a t i v e  t o  
. . 

t ransmission and AT/T spectra a t  d i f f e r e n t  f ie,lds as f o r  example . in Fig- 

ure  23 f o r  the n=l ' and 1 peaks. 

The medium response.waveform shows how the AC modulation f i e l d  can 

be near ly  cancel led by photocarriecs, even though the, c a r r i e r s  do not. 

screen i n  a dynamic sense. This condit ion, i s  approximately shown by the 
. . .  

h i gh l y  attenuated spectrum i n  the middle o f  the upper p a r t  o f  Figure 26. 

The h igh photocarr ier  response exc i ton waveform,shown i n  Figure 32, 

has 180' phase shi  f t r e 1  a t  i ve . t o  the appl i ed waveform and i s  proposed 
. . 

as the mechanism t o  exp la in  the 180 degree s h i f t  i n  the electromodulat ion 

s ignal  shown i n  F igure26.  When photocarr ier  f i e l d s  o f  t h i s  magnitude 

ex i s t ,  some f i e l d  inhomogeneity i s  expected across the i l l umina ted  

region o f  the sample due t'o the approximate 1,ine charge d i s t r i b u t i o n  o f  
. . .  . . I 

a ' . ,  



photocarr iers.  I f the 1 ine charges form i n  t h e  dark region, we l l  separa- 

ted from the i 1 luminattid region, the inhomogeneity w i  1 1  n o t -  be as serious 

i n  modulating the transmission and t h i s  may be the case i n  the lower 
. . 

spectra on the lef t -hand s ide o f  Figure 26 which shows l i t t l e  d i s t o r t i o n .  

' I n  v i ew ,o f  the d i f f i c u l t y  i n  determining the f i e l d  on the exc i ton  
. , 

from the voltage and p l a t e  separation, i t  was decided t o  c a l i b r a t e  the 

f i e l d  f o r  each spectrum from the theore t i ca l  curve o f  AE2/R f o r  Ac2 shown 

i n  Figure 33 thus a l lowing a t e s t  o f  the in te rna l  consistency o f  the ca l -  

cu l a t  ion.   his curve was chosen, because i t  i s  independent o f  broadening 

and the AE2 separation i s  less sens i t i ve  t o  aspects o f  the t ha l l i um  

ha l ides no t  consistent  w i t h  the model used .in the ca lcu la t ion .  The 

method o f  c a l i b r a t i o n  has the added bene f i t  o f  g i v i ng  the f i e l d  i n  terms 

ofEI which i s  needed t o  compare the other peak heights and zero-crossing 

sepa'rat ions t o  the ca lcu la t ion .  Had i t been necessary to ca lcu la te  CI 

from Equation i 3 ,  another source o f  e r r o r  would have,been introduced be- 
. . 

cause acc'urate values, o f  a do not  ex is t .  
0 . . 

The experimental zero-cross ing separations f o r  A € 2  and A r l  are 

shown i n  Figures 34, 35 and 36 f o r  TlCl  and T lBr  w i t h  the s o l i d  l i nes  

ca lcu la ted by Blossey. Unfortunately,  the ca lcu la t ions  d i d  no t  go t o  as 

low f i e l d s  as the measurements,but could be extended w i t h  some confidence 

t o  lower f i e lds ,s ince  they appea.r t o  be near ly  l i n e a r  i n  t h i s  range, 

a1 though the 1 ines have I .  not  bee" ,extended i n  the f igures.  Figure 34 
. . .  

shows t ha t  the Aa2 h,igh f i e l d  TlBr experimental values f o r  AE are  i n  
. .  . 1 

good agreement w i t h  theory w h i l e , t h e  TlCl  values a re  somewhat low, 

poss ib ly  due t o  a decrease i n  the A r l  separat ion by the la rger  s p l i t t i n g  
. . 



, 1 

. . 

~ i g u r e  33.  heo ore tical AE2 /R  v e r s u , s E / .  p l o t  used t o  c a l  i b r a t e  
t h e  modulat ion f i e l d  from th&  T lC l  and TlBr experimental  
AE values f o r  var ious  vo l tages  a p p l i e d  t o  sample 2 
capac i to r .  The t h e o r e t i c a l  l i n e  and p o i n t s  shown a re  
from ~ i g u r e  31 



Figure 34. Experimental values o f  BE1 comparedto theory . 
(so l  i d  1 inc )  for  A E  a f t e r  f , i e l d  c a l i b r a t i o n  
f o r  T lC l  and T lBr  

2 
. . 



Figure 35. Experimental values of AE compared to theory (sol i d  1 
line) for Arlafter field calibration for TlCl and TlBr 



Figure 36. Experimental values o f  AE compared t o  theory ( s o l i d  
l i n e )  f o r  Ac a f t e r  f i e l d  S a l i b r a t i o n  for  T l C l  and T lBr  

1 



of the exc i  ton as seen i n  the 1 and 2 '  features o f  Figures 1 3  and 17. 

As the f i e l d  decreases, the AEl/R, values are increas ing ly  low and t h i s  , 

may be due t o  a growing s e n s i t i v i t y  o f  the A E  ' separation t o  the s p l i t t i n g ,  
1 

which i s  apparent i n  the low f i e l d  spectra o f  Figure. 17 when compared t o  

the higher f i e l d  structur'e. The BE, and BE2 values o f  Acl, shown i n  

Figures 35 and 36,show a s i m i l a r  t rend when compared t o  theory, i n  tha t  

agreement i s  ra ther  good a t  h igh  f i e l d s  but  de te r io ra tes  a t  lower f i e lds .  

The sca t te r  o f  the h igh  f i e l d  experimental zero crossing values for  both 

and Act can be compared t o  the sca t te r  o f  the AE2/R o f  BE theore t i -  
2 

ca l  va1:ues shown i n  ~ i ~ u r e s  31 and 33 and appears t o  be f a i r l y  s im i l a r .  

Before comparing the' experimen,tal peak heights t o  theory i t  was 

necessary t o  scale the experimental values. The ca lcu la ted h o f  Ac2 3 
,peak . heights . were used, since they a re  most c lose ly  associated w i t h  the 

. .  . , . 

A E  o f  AE separation which was used f o r  the f i e l d  ca l i b ra t i on .  Figure 
.2 2 

37 shows the ca l  i b ra t  ion curve which was extended. from E = 0.5 GI t o  

lower f i e l d s  using a d r a f t i n g  curve so t ha t  the lower f i e l d  peak heights 

could be scaled.. Figures . . 38 and 39 show the hl: and h2 o f  A E ~  peak heights 

compared t o  theory. The experimental po in ts  a re  h igh  f o r  h poss ib ly  
1 

due t o  a lower photocarr ier  response i n  t h i s  region where the absorption 

i s  low. It i s  i n t e res t i ng  t o  note t ha t  the expected reductions i n  the 

h height  due t o  the n=l s p l i t t i n g  and t o  luminescence are not  dominant 1 

i n  determining the peak height. The h experimental po in ts  a re  i n  good 
2 r 

agreement a t  h igh f i e l d s  but  on ly  f a i r  a t  lower f i e l d s  due probably t o  

both photon energy.dependent photoconduct iv i ty  and t o  s t a t i c  s t r a i n  

broadening which i s  o f  less s i g n i f i c a n c e  a t  h i g h e r  f i e lds .  
. .. . , 



Figure 37.   he ore tical durve used f o r  scal ing t.he peak 
hei,g,hts for  A E ~  and Asl from the TlCl and 

' . TlBr  h experimental  d c 2  peak heights ' 3 . . .  
. . 



Figure 38. Experimental values o f  hl compared t o  theory 
( s o l i d  ' l ine '  for  a f t e r  f i e , l d  c a l i b r a t i o n  f and peak h e i g h t  sca ing f o r  T l C l  and T l B r  
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;F igure 39. Experimental values o f  h compared t o  theory ( s o l i d  2 
l i n e )  f o r  a f t e r  f i e l d  c a l i b r a t i o n  and peak 
he ight  s c a l i n g  f o r  T lC l  and T lBr  



Figures 40-42 show the experimental values hl , h2, and h o f  AE , ' 

. . 3 
compared t o  the ca lcu la t ions ,  fo r  these quant i t ies .  Figure 40 shows tha t  ' 

the h val ues are t o o  high as was the case f o r  the A E ~  hl val ues. The 
1 .  . 

experimental points f o r  h2 and h are. scat tered more about the theore t i ca l  
3 

l i nes  than the Ac2 values o f  h2 but do not show the trend t o  diverge from 

theory a t  low f i e l d s .  

The dev ia t ion from theory o f  the f ie ld- induced changes i n  the d i -  

e l e c t r i c  funct ion i s  not  i nd i ca t i ve  o f  defects i n  Blossey's calculat ion,  

which assumes no modi f icat ion o f  the appl ied f i e l d  by photocarr iers o r  

spectral  d i s t o r t i o n  due t o  s t a t i c  s t r a i n .  It appears t ha t  photocarr ier  

e f f ec t s  and s t a t i c  s t ra in ,  espec ia l ly  a t  low f i e l d s ,  are the p r i nc ipa l  

causes f o r  the deviat ion.  S t a t i c  s t r a i n  i s  thought t o  play a more impor- 

tan t  r o l e  a t  low f i e l d s  through inhomogeneous s t r a i n  broadening because, 
. ' .  

the e l e c t r i c  f i e l d  broadening is, not  as dominant as a t  h,igh f i e l d s .  Only 

a small p a r t  o f  the dev ia t ion i s  bel ieved t o  be due t o  d i s t o r t i o n  o f  the 

spectra by the i n t r i n s i c  exci ton s p l i t t i n g  and phonon sideband e f f ec t s ,  

and t o  inaccuracy i n  the d i e l e c t r i c  funct ion values used i n  the data 

reduction. 

The electromodu1,ation spectra .show two . i n te res t i ng  features which 

are not  i n  ' the . .  .scope . , o f  . . Blossey's' . .  , A calcu la t ion.  The assignments . . ' f o r .  these 

features are tentat ive,  s ince they have not been invest igated i n  d e t a i  1. 
I 

Fiqures 13 and. 23 show a feature marked 2'. i n  the. .1.5 kV spectra of TI C i ,  

which i s  .thought t o  be poss ib .1~ due . t o  the spl i t t i n g  o f  the n=2'.exci ton 

state.  Bot'h the n=l and n=2 s ta tes appear i n  the spectra t o  be spl  i.t 

by approximately 5 meV.  I f  the s p l i t t i n g  i s  p r ima r i l y  due t o  the 
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A TIC1 

' F.igure 40. Exper imenta l  v a i  ues o f  h compared .to theory  (sol i d  ' 
1 1 i n e )  f o r  Acl a f t e r  f ie1.d c a l  i b r a t  ion  and peak 

h e i g h t  s c a l i n g  f o r  T l C l  and T l B r  



Figure  41. Experimental values o f  h  2 compared t o  theory ( s o l i d  
l i n e )  for A t l  a f t e r  f i e l d  c a l i b r a t i o n  and peak 
he ight  s c a l i n g  f o r  T l C l  and T lBr  



' F i g u r e  42. Experimental values o f  h 3 cdmpared t b  theory (solid . 
line) for A r l  aft& field calibration and p e a k  
height scaling for T l C l  and Tl'Br 



exchange in te rac t ion ,  the equal . s p l i t t i n g  would not  be expected because 

the n=2 exc i ton radius i s  a f ac to r  o f  4 la rger  than the n=l radius. The 

equal spl  i . t t i n g  would a lso not. be expected f o r  the Coulomb in te rac t ion ,  

hence the assignment o f  t h i s  feature  should be subjected t o  f u r t h e r  in -  

ves t i  gat  ion. 

The second feature i s  marked a2 i n  Figure 25 and coincides w i t h  the 

expected energy pos i t i on  f o r  the n"2 exciton-phonon quasibound s ta te  i n  

TIBr. Again the assignment o f  t h i s  feature  i s  no t  wel l ,  establ ished,but 

i t  i s  i n t e res t i ng  t o  note the d i f fe rence  i n  the f i e l d - s e n s i t i v i t y  o f  t h i s  

feature r e l a t i v e  t o  t ha t  o f  the exci ton.  The n=2 exc i ton feature,  i f  
. . 

i t  were resolved, would be expected t o  wash ou t  due t o ' i o n i z a t i o n  a t  

approximately 2.0 kV, but  the a2 feature  i s  seen t o  p e r s i s t  u n t i l  8.0 kV. 

Abnormal ( f c c )  Phase Data 

The f cc  T lBr  band gap energy, E and exc i ton  b ind ing energy, R, i n  
g ' 

Table 2 were ca lcu la ted from the n=l and n=2 exc i ton  EA peak energies 

using the Wannier model, w i t h  no cor rec t ion  t o  the Coulomb po ten t i a l ,  as 

discussed i n  Chapter"V1. The value obtained f o r  R and the ca lcu la ted 

band masses27 were then used t o  ob ta in  a 0'  E 0' andcI. The fcc phase 

exc i ton i s  expected t o  be less Wannier l i k e  than the sc phase exc i ton  

due t o  a smaller predicted Bohr radius and l a r g e r l a t t i c e  constant. 27 

The sc phase i s  useful  f o r  comparison w i t h  the f cc  phase, s ince energies 

have been determined f o r  the sc n=l , 2, and 3 levels10 and an approxlmafe 

onset o f  Wann i e r  behavior (energy leve ls  f i t a hydrogenic ser ies)  happens 

t o  occur w i t h  the n,=2 energy i n  the normal phase. Such an onset o f  



Wannier behavior is 'expected w i t h  increasing n ,s ince ' the  o r b i t  o f  the 

n t h  s ta te  i s  propor t iona l  t o  n2 and the Wannier model becomes va l  i d  when 

the inequa l i t y ,  exc i ton:  radius >> l a t t i c e  constant;, i s  sa t i s f i ed .  Often 

t h i s  occurs a t  a value o f  n where s ta tes  cannot be resolved bu t  i n  sc 

T lBr  i t  was possib le t o  resolve n=l,  2, and 3 q u i t e  accurately w i t h  a , 

magnetic f i e l d  perturbat ion.10 Hence the normal phase suppl ies s ta tes 

which can be used t o  ca lcu la te  quan t i t i e s  s i m i l a r  t o  the f c c  r esu l t s  

t ha t  w i  11 have e r ro r s  due .to dev ia t ion froni the Wannier model (using n=l 

and 2 energies) and quan t i t i e s  t h a t  w i l l  be c l o s e r . t o  what would be ex- 

pected w i  t'h a better: f i t  o f  the model t o  rea l  i t y  which the Wannier model 

does i n  t h i s  case f o r  n=2 and 3. 

Table 4 i s  useful f o r  d iscussing the f c c  T lBr  resu l t s .  The f i r s t  

two columns contain quan t i t i es  ca lcu la ted from the n=l and n=2 energies 
. . 

for  both phases using band masses from Reference 27. The fcc r e s u l t s  

are  from Table 2. The t h i r d  column contains the Wannier l i m i t  values 

for  the sc quan t i t i e s  and the f ou r t h  and f i f t h  columns are ca lcu la ted 

estimates using a corrected po ten t i a l .  27,50 

The fcc E value determined w i t h  the n=l and 2 energies i s  an upper 
9 

bound for  the actual  band gap due t o  dev ia t ion from the Wannier model. 

Val ues o f  E ca lcu la ted from s imul taneous equat ions generated from 
9 

Equation (29) w i  11 approach the actua l  value i n  the 1 i m i  t o f  t h e '  ideal  

Wannier model. The upper bound aspect can be demonstrated w i t h  the n=l,  

, 2, and 3 energies o f  the normal phase data which g ive band, gaps of  

3.0203 eV and 3.0198 eV using the n=l and 2, and n=2. and 3 ene,rgies, 

respect ively,  i n  Equation (29) .  The 3.0198 eV value i s  usua l l y  taken as 



. . 

Table 4. Proper t ies  o f  T l B r  obtained by var ious methods. The f i r s t  tw'o columns a re  ca l cu la ted  
from the n=l and n=2 energies and the  band masses w i t h  n o - c o r r e c t i o n  t o , t h e  Coulomb 
p o t e n t i a l . '  T h e : t h i r d  column. i s  ca l cu la ted  i n  the Wannier l i m i t  and the  f o u r t h  and f i f t h  
a re  est imates made using a cor rec ted p o t e n t i a l .  The band masses a re  from Reference 27 

. . . . -. 

T l  B r  . . Wannier Estimates 
f c c  s c L i m i t  sc f c c  sc 

a 
Reference 10. 

C Reference 50. 



the actual  band gap energy f o r  sc T l B r  s ince the' "=2 s t a t e  marks t h e  

approximate onset o f  Wannier behavior. 

The TlBr f cc  exc i ton b ind ing energy i n  Table 4 ob ta i ned f rom the n=l 

and  n=2 energies i s  a lso  an upper bound w i t h  the actua l  value given by 

the d i f fe rence  between the 'n= l  energy and the Wannier 1 i m i t  band gap 

energy. Again the normal phase T lBr  values are i l l u s t r a t i v e .  The,sc 

b ind ing .energies 'are 10.3 and 9.8 i n  meV when ca lcu la ted .  f rom - the band gap 

obtained w i t h  the n=l and 2', and n=2. and 3 energies, respect ive ly ,  w i t h  

the . l a t t e r  Lalue usual l y  considered the actual  bindir ig energy. 

Since Wannier behavior essen t i a l l y  b,egins f o r  sc TlBr w i t h  the 

n=2 state,  the simultaneous equations generated from ion (29) w i  t h  

the n=2 and n=3 ene,rgies provide a b ind ing energy R '  = -6.5 meV which i s  

v a l i d  f o r  ca l cu la t i ng  the b ind ing energy o f  higher-hydrogenic s t a t e s . w i t h  

2: 

n 2 2, the ' i r  r a d i i ,  and the e f f e c t i v e  s t a t i c  d i e l e c t r i c  constant, E ~ . ,  

* 
f o r  the exciton.. I n  the sc phase case, a va lue ' o f  E = 16.1 i s  ca lcu la-  

0 

ted .from Equation (1 1) which .can be compared w i t h  values obtained from 

64 
the n=l and n=2 energi'es, E = 13.3,' and from the 1 i terature ,  E~ = 35.1, 

0 

where the band masses f o r  the reduced mass were taken from ~e fe rence  27. 

. Hence the f cc  E value obtained from the n=l  and n=2 energies and.band 
0 .  

masses a 1 so from Reference 27 can be expected t o  be low w i  t h  respect .  t o  

both the exc i ton  e f f e c t i v e  and actua l  s t a t i c  d i e l e c t r i c  con,stants. 

The Bohr radius i n  Table 4 f o r  the f cc  phase can be expected t o  be 

low r e l a t i v e  t o  i t s  Wannier l i m i t  from the sc values given. Since the 

Wannier l i m i t  value f o r  the actual  n=l radius i s  usual ly  considered t o  

be high, the i on i za t i on  f i e l d s  i n  Table 4 ca lcu la ted w i t h  the f c c  value 



may be qu i t e  good for  f i e l d  i on i za t i on  o f  the n=l exc i ton  s ta te  as de- 

f ined by Equation ll. 

The f cc  es t  imates2' o f  Table 4 can be compared w i  t h  fcc expe r im~n ta l  

values i n  view o f  the trends indicated by sc values s ince the Wannier 

l i m i t  and the cen t ra l  c e l l  corrected estimates should b r i ng  the quan t i t i e s  

o f  both methods t o  the same place, namely the rea l  c r ys ta l  proper t ies .  

On t h i s  basis the f cc  estimated s t a t i c  d i e l e c t r i c  constant and radius 

appear t o  be somewhat low and the b ind ing energy high. .The t ab le  a lso 

indicates t ha t  the onset o f  f c c  Wannier behav.ior should be expected a f t e r  

the n=2 exc i ton s ta te  i n  cont rast  t o  the sc case. 

Figure 29 provides add i t i ona l  evidence o f  the la rger  i on i za t i on  

f i e l d  f o r  the f c c  phase r e l a t i v e  t o  the SC phase due t o  the greater f i e l d  

s e n s i t i v i t y  o f  the sc n=l feature  which has a .sma l le r  absorpt ion peak 

height  but  a la rger  EA negat ive peak a t  n=l.  
. . 

The assignment o f  the a and B features which do no t  have a place i n  

the band s t ruc tures has not  been established, although ~ e i d r i c h  e t  a l .  27 

suggested t ha t  they might . . be due t o  e i the.r  the n=2 exc i ton  s t a t e  o r  

in te rva l  l ey  sca t t e r i ng  o f  n=l excitons. The n=2 assignment would not  be 

consistent  w i t h  the n=2 loca t ion  from the T lBr  EA measurement o f  t h i s  

study. The electromodulat ion s t r uc tu re  associated w i t h  the 1 '  s p l i t '  

peak i n  the normal phase, i f  applicab,le t o  the abnormal phase, would not  

support the i n t e r v a l l e y  sca t te r ing  o r i g i n  f o r  a and B since the unusual 

lineshape associated w i t h  a and 6 i s  not  observed. Two cha rac te r i s t i c s  

of  a and B have been observed which b r i ng  i n t o  question the i n t r i n s i c  

nature o f  these features inc lud ing t h e i r  s e n s i t i v i t y  t o  sample preparat ion 



. . 

and the occurrence o f  the two n o n i n t r i n s i c  peaks above the n=l energy 

i n  the-normal phase when the fcc sample thickness has increased t o  700 8. 

I n  view o f  these facts,  more i n v e s t i g a t i o n  i s  needed o f  a and B and an 

explanat ion o f  the unusual EA l ineshape may he lp  t o  c l a r i f y  the  o r , i g in  

o f  these features. 



CHAPTER I X .  CONCLUSION 

The electromodulat ion spectra o f  t he  normal (sc) phase T lC l  and 

T lBr  samples have been reduced t o  values o f  e l e c t r i c  f i e l d  induced changes 

i n  the  d i e l e c t r i c  func t i on  t h a t  a r e  i n  reasonably good agreement w i t h  the  

c a l c u l a t i o n s  o f  ~ l o s s e y '  la consider ing the,  experimental problems involved 

w i t h  the measurement 'and the scope o f  the  c a l c u l a t i o n  which d i d  no t  i n -  

c lude photoconduct i 'v i ty e f f e c t s .  A sample prepara t ion  technique was 

developed which al lowed the  measurements t o  be made near l i q u i d  hel ium 

temperature w i t h  a low l e v e l  o f  s t a t i c  s t r a i n  i n  the  sample and w i t h  no 

observed dynamic s t r a i n  due t o  the  e l e c t r i c  f i e l d  modulation. Photo- 

c o n d u c t i v i t y  ef fe.cts  were con t ro l  l ed  t o  t h e  ex tent  t h a t  t he  e l e c t r o -  

modulat i'on, spectrum could be measured over the  exc i  ton  and interband 

region w i t h  s u b s t a n t i a l l y  lower d i s t o r t i o n  than has been reported i n  e- 

l e c t r o r e f l e c t i v e  m e a ~ u r e r n e n t s ~ ~  where s t r u c t u r e  i s  nea r l y  abgent f o r  the 

n=l  exc i ton  s ta te .  Electromodulat ion features were observed which a re  

t e n t a t i v e l y  assigned t o  i n t r i n s i c  exc i ton  s t a t e  s p l i t t i n g  and t o  an 

exciton-phonon quasibound s ta te .  These fea tures  should be s tud ied i n  ' 

more d e t a i l  w i t h  e f f o r t s  d i r e c t e d  a t  improving r e p r o d u c i b i l i t y  and 

reso lu t ion .  

The r e s u l t s  i n d i c a t e  the importance o f  pho toca r r i e r  e f f e c t s  i n  both 

theory and experiment i'n the  e lectromodulat ion o f  exc i ton  s ta tes .  I n  the 

future,  c a l c u l a t i o n s  should inc lude the  e f f e c t  o f  pho toca r r i e rs  on the  

f i e l d  seen by t h e  exc i ton  and exper imental ly  samples should be developed 

w i t h  known and reproducib le p h o t ~ c a r r i e ~ r  p roper t i es  w i th ;  temperature 



con t ro l  between l i q u i d  hel ium and n i t rogen temperatures and b i po la r  ' . 
. . 

modulation f i e l d s .  

The abnormal ( f c c )  phase. EA measurements have demonstrated the use- 

, fulness o f  the modulation method i n  reso lv ing exc i ton  s ta tes by deter -  

mining the n=2 energy i n  TlBr.  This has enabled a number o f  quan t i t i e s  

t o  be ca lcu la ted from the Wannier exc i ton model. The reso lu t ion  o f  the 

n=2 energy i n  TlCl  i s  probably a lso  possib le w i t h  an €A measurement and 

patience w i t h  the s igna l  t o  noise problem. The a and B features a re  

s t i l l  unassigned but  the unusual €A l ineshape and sample preparat ion 

sensi t . i v i t y  found i n  t h i s  inves t iga t ion  may prove usefu.1 i n  making . . 

d e f i n i t i v e  ass ignments i n  conjunct ion w i t h  f u tu re  work. 



APPEND I X: ELECTROMODULAT l ON MEASUREMENT 
. . 

' 8 

The electromodu'lation' method used i n  t h i s  inves t iga t ion  involves 

modulating the 1 i gh t  transmission through the sample by 'applying a 

square wave e l e c t r i c .  f i e l d  t o  the sample perpendicular t o  the 1,ight path. 

The AC f i e l d  i s  used ra ther  than a DC f i e l d  t o  avoid problems inherent 

i n  low leve l  DC measurements such.as time s t a b i l i t y .  

The square wave e l e c t r i c  f i e l d  causes the . t ransmi t ted 1 i gh t  inten- . ' 

s i t y  t o  have an AC component which depends on the incident photon energy. 

I f  the photon'ene,rgy corresponds t o  the maxima o f  an absorption peak, 

which i s  broadened, sh i f t ed  and possibly spl  i t  by the '  f i e l d ,  the trans- 

mission w i l l  be enhanced a t  t h i s  energy and w i l l  have an AC component 

which i s  i n  phase w i t h  the appl ied f i e l d .  A pho tomul t ip l ie r  converts 

the modulated l i g h t  i n tens i t y  i n t o  a voltage s ignal ,  across a r e s i s t o r  t o  

ground, which i s  ampl i f ied by a phase sens i t i ve  ( lock- in)  amp l i f i e r .  

Since the ,signal i s  i n  phase w i t h  the appl ied f i e l d ,  which provides a 

frequency and phase reference t o  the lock-in, the lock - in  output i s  

p o s i t i v e  ind ica t ing  t ha t  the f i e l d  has caused an increase i n  the trans- 

mission o f  the sample. A f ie ld- induced 'decrease. . . i n  the t ransmission 

occurs whenthe inc ident  photon energy corresponds t o  a loca t ion  , in  a 
. . . , . . .  

spectrum where the absorption. i s  increased by the f ie ld ,as  occurs i n  the 

wing ' o f  the absorption peak discussed above. . The decreased transmission 
. . . . 

when the f i e l d  i s  on causes, an AC s ignal  component which i s  ou t  o f  phase' 
, . 

180' w i t h  t h e  appl ied f ie ld ,  r esu l t i ng  i n  a negative amp l i f i e r  output which 

corresponds w'i t h  the reduced transmi ss ion. The broadening o f  bound 



exc i ton s ta te  absorption peaks i s  due t o  a  reduct ion i n  the l i f e t i m e  of  

the s ta te  by the e l e c t r i c  f i e l d  and the s h i f t i n g  and s p l i t t i n g  o f  peaks 
. . . . . . . . 1 la,b . . 

i s  due to 'm ix in&of  states b y t h e  f i e l d  perturbat ion.  

. . ~ b o v e t h e  band, gap, 'where the continuum sta tes ex i  s t ,  rounded 

. . ' '  . o s c i l l ~ t o r y  s t r uc tu re  i s  seen i n  electromodulat ion spectra as i s  shown 

i n  Figure 2. This s t r uc tu re  does not  have a simple physical  explanat ion 

s im i l a r  t o  the bound s ta te  case but  each peak has been recognized from 

the ca l cu la t i on  as due t o  a  term i n . a  se r ies  which i s  summed. 1 la,b 
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