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ABSTRACT.

In this paper v/e give a n ’essentially self-contained 

account of some general structural properties of the dynamics 

of qusntusi open Markovian systems. V/e review Gone recent 

results regarding the problem of the classification of quantua 

Markovian master equations and the limiting conditions under 

which the dynanical evolution of a quantum open system obeys 

an exact semigroup law (weak coupling liait and singular 

coupling li/ait). vYe discuss a general form of quantum detailed 

balance and its relation to therraal relaxation and to 

nic ro reve rsib ility.



0. IKVaCJXiCTICH.

Rccctrrcly, rsuch work has be*on d * ; v o t o  the rigorous study 

of the conditions under which memory effects enn be negloctod 

in th3 dyn?rxicnl dc.'script.ion of quantum open systems, thus 

leading to a ti^e evolution obeying an exact scwi^roup law 

|>3# 24,70,25-*8,4S, 37, 34,jS f fl] . Thi3 has gone parallely with 

an extended investigation of the problem of the classification 

of quantum Markovian master equations £33,58,60,2$].

In this paper we present a short, organic and essentially self- 

contained review of those results in the field, of which v/e are 

aware and which we deem to be most representative. Vfe make no 

claim to completeness, since the literature on the subject is 

growing very rapidly, and in writing the paper we have essen

tially confined ourselves to a discussion of those features 

of tho theory which deal with general structural properties 

rather than with specific physical applications. For the lat

ter, we refer to the review articles of Haake f4i] and Agar-

s* 1 [ 5 J  •
The unified starting point for the rigorous study of the 

limiting conditions which lead to a Markovian reduced dynamics 

is the wall known generalized master eauation, which gives a 

formally exact description of the irreversible dynamical evo

lution of a quantun open system coupled to its surroundings. 

Therefore, we give in Section 1 a short review of this technique. 

In Section 2, v/e recall the property of complete positivity 

of a reduced dynamics and briefly touch upon the problem of 

autonorphic extensions of families of completely positive maps.

In Section discuss qualitatively the conditions under

which e generalized master equation con be approximated by a 

»;arkovian master equation (weak coupling or van Hove limit and 

singular coupling limit) and we review the results obtained



so far conccrains the structure of the generators of quart tun 

dynamical 8er.ii£roup3. In Section t,t we discuss the restrictions 

i:.r>lied by complete positivity on the Markovian dynasties of a 

2-level system, this bein^, to our .knowledge, the only case 

so far in which such restrictions have been given an explicit 

fora in terns of observable parameters of the dynamical evol

ution. In Section 5, vve give a short s ug a r y  of the rigorous 

theory of the weak coupling limit, in the form which has 

recently been given by Davies. Section 6 is devoted to an 

exposition of a simple but fairly general model of singular 

coupling. In Section 7, we study & quantum form of detailed 

balance for a foarkovian master equation, which turns out to 

be characteristic* of dynamical semigroups describing relax

ation to thermal equilibrium, thus providing yet another 

characterization of KKS states. Finally, vve derive in Section 

8 the implications of microreversibility (time reversal 

invariance) on the generators of quantum dynamical semigroups 

ftnd we discuss their relation to analogous conditions which 

have recently been proposed ir* the literature, and to detailed 

balance.

The results of Sections 7 and 8 are mostly new, and will 

be treated extensively In future publications.

I. GB»*SE?.LI2SD KASTER EQUATION.

The generalized master equation (GME) is a tool for 

extracting the dynamics of a subsystem of a larger system, 

by the use of projection techniques on BanacL spaces £85,86,

I I , 3*,66,67,41,8,57,64,5|5<$, Although this technique is well



3.

known, we shall briefly recall it, mostly in order to introduce 

the notations needed in the following.

We are interested in a spatially confined quantum system S, with 

underlying Hilbert space £> and algebra of observables 

the algebra of bounced operators on .

The "reservoir” R will be taken as an infinite quantum system,

with algebra of observables SOL^end Hilbert space 

determined by the GNS representation induced by a suitable

reference state afion 2L , which we will assume to be stationary 

under the free evolution of R. We assume to be faithful and 

in our notation we will not distinguish between an element A of

and its representative n^(A).

S + R is considered to be isolated, b o  that its tiae evol

ution is determined by a selfadjoint, Hamiltonian H acting on .

£ s®  £ £ «

(1.1) H = HS®  ± li + 'JS®  HR + X  HSR *= H° + A H SR
g

where H is the free Hamiltonian of S,
R

H i3 the free Hamiltonian of ii in the representation 

induced by the stationary state 10R,
c t > V  ’ o

H = V .0V is the interaction Haailtonian,
3 3 3

selfadjoint on (q*5 and VR aelfadjoint on
3 3

v/ith V^ selfadjoint on <q  and aelfadjoint on .

We denote by the Banach space of trace-class

operators on K  <£ , which is homoaorphic to the space of
W  e  a

norraal functionals on 2 3 O p  )<S )" according to the nap
♦ *

¥ > X  <f$s6> -------->[!8(̂ s)«rr-(2XR)"]#»
(1 .2 ) ■ “

?(»)[a] . Irs+E[va] , V A 6 ! B ( 6 s)®7rja?)".

In the following, we shall use the eaae notation for W and VjK’.Y),



We use capital scripts, and occasionally capital greek letters, 

to denote operators acting on the spaces ®

We denote the identity maps acting on these Spaces by , D *  and 

^  respectively. The dynamics on ©  S?w ) is induced by

(1.3) T i = % S« 3 R  + 3 s® 3 & a + X » ” = ‘36° + V 3 & SS 

with % .S = [hS, J  , "XR = [hR, .] , ,% SR = [ HSI1, .1 . We
C5 t %

define two one-parameter groups of automorphisms of )!

(1.4) t — : *3/°̂  = exp[-i^0tjv ,

(1.5) t I = exp[-i%t]w , V/£ £((~>S®  Jp®)

describing the uncoupled and coupled global tine evolutions; 

respectively.

V/e are interested in the reduced dynamics of S, under the 

assumption that the initial state of S+R is of the foxm ^

V/(0 ) = ̂ ®  00^ where ^ is any normalized positive element of 2 *C$? ),

The operation of partial trace with respect to R  is defined

as

irs  * x  — * 2 r (<? S ) /

(1. 6) 
T r S [ l r B [v(]Aj «  I r S+R [w (A ® lH)] V  A fe23(5p S ) .

4.

The "amplification" (91/ JpsJ is the linear operator

&  = X  « p S ) ------> X  < 6 S®

(1.7)

(SLo = o » w H .

Then



( 1 . 8 ) ( P  = 6 l T r R

5

q  n

is a bounded iderripotent (a projection) on ^  ( (3  <S>5p  )*
S D

which projects onto the subspace ((^ )®<j0 , isomorphic
to X (vp°)-

The reduced dynamics t — ^ A ^  of' S in the Schitfdinger 

picture is defined as follows:

( 1 . 9 )  TrS [ ( A t f)A] = T rS+R[ U .( f® W R)(A ® £ E ^  y ? £ & f ? S ) , ^A «2?(5?S >

m

namely

(1 .1 0) = - s f V % ]  °r  < 9 a ?  = G X & ?  .

The dual Heisenberg dynamics t —> A*^ is given by-

(1.11) TrSJy(/VtA)j = TrS+Hf(y®tOR )et 4 ( A ® l B )j,^f<2:(^S), ^ A € 3 g ( ^ S )

that is

(1.12) A*tA - $ BU£(A®4H), V  A € # U p S)

where % is defined a9

i  < 2 3  - ^ 2 3  « p s >

T rS+R[((S lj)A j = T rS [j> ( % A)] , 

ar.d can be shown to be a conditional expectation. [58,81,62}onto

• B ( i p s ).

Starting from the Liouville-von Neumann equation for the 

density operator of the global system S+R
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Cu:u) w(t) = -i^S,.v(t)

one can formally derive an exact equation for the reduced 

density operator ^(t) = Tr^’.V(t) .of S, called the generalised 

master equation, which, under our assumption on the initial 

condition, has the fora (̂4-1 * 33^

(1.15) + £(♦-».)

where

(1.16)

H ,„  = k s - a 2 1 o jR (v® )vS

and

(1.17) f t ( . )  * - T r E [36SH( ' ] - ? ) < T ( ; ( 3 - e ) ^ SH(5Q 

where

(1.18) = exp[-i%'t] ; 36’ = (0 - P )56(3 - ^ )

By setting

(1.19) % SR(t) [ e ^ V V ^ ^ .] =[HSR(t),

we see that the integral k e m v l  \ (j (e) admits a formal power 
series expansion in the'coupling constant X  of the fora

1 ’ ••dtn ^ 4 ''a lt1 ..

o £ t  £ . . . £ t _ 4 s 
n 1

where

(1.20) (s )= e“i^  S [ X b ^ s^+ ^ T ^ “i n̂^n Idt



7.

(1 .2 1 ) 3 4 ('J) = “ Tri! [^•SB<°)t3 ,

.»tQ ) ~

< 1 " i 2 )  =  -  Tr n [<Ksl,(3 )(g - ( ? ) % SH(t1.)(0 - S’) . . . ( 0 - f j ^ H (tn ) ( a . f t 3 ^ .

. ..t ) depends on the nulti-tlme correlation 
It R R

functions CO (V .(t ).. .V (t. )) of the reservoir operators
h  1 h  *

appearing in the interaction Hamiltonian, up to order &=n+2, the

relevant ti:aes being t =s, t_,...,t , t _= 0 .
o x  n n+i • •

Tho B o m  approximation of the GI3 (1.15) amounts to keeping

only the terr. e~ 3t^(s) in the expansion (1 .20) of t£(e).

•The t e n  A 2 w R(vf)V:* is a aodification to the free Hamil-
i *  *

ton ion duo to the interaction with the reservoir.. It vanishes 
it R

when U3A (V\) = 0 V  j , which is the case in several applications 

^5,33/4lJancl will he assumed for simplicity in the following.

2. COMPLETE POSIT IVITY OP THE REEUCED DYNAMICS.

Before talcing up the problem of the conditions undei' which 

the G-LIE (1.15) can be well approximated by a Markovian master 

equation and studying rigorous models thereof, we discuss a 

special feature displayed by the reduced dynamics, independently 

of the nature of the systems tinder consideration and of their 

interaction.

To this end, v/c first 'recall a definition, let and 

be 0*-alsebras, and denote by M(n) (n integer >  1 ) the algebra 

of n x n complex matrices. A  linear map <j> : 4 £ - * 9 3  is called 

n--positive if the nap



0 .

9 n : 3£<S>r.;(n) ---- * 3 3 ® K ( n ) ,

<pn (A®r.i) » <j>(A)©M, a ^ S I ,  r.;6 i.:(n)f

i f ;  positive. cj> is called completely positive if it is n-positive 

for all integers n. Two important classes of completely positive
'& S ' r

maps artF * -automorphisms and the conditional expectations [77, 

o'. J . Also, if and/or H0) is corvautative, every positive nap 

of £ &  into is completely positive [l2,19,77,78] . On the

othsr hand, there exist positive aap3 which are i:ot 2-positive; 

an example is provided by the * -antiautomorphisms and more gen

erally by the Jordan automorphisms which are not reduced to 

* -automorphisms .

There is an extensive mathematical literature on positive and 

completely positive maps £ 12,19,20,77-73J .

The reduced dynamics in the Heisenberg picture t-— > /r* 

of a system S coupled to a reservoir R has the remarkable prop

erty that / £  is completely positive for all t, since it is the 

co?.ipcsition of a * -automorphism and a conditional expectation.

To our knowledge, the complete positivity of a reduced dynamics 

was first pointed out by Kraus Jj>4,55] in the context of state 

changes produced by quantum measurements, and has been subsequen

tly discussed by several authors jj?8,38,2j from different; 

standpoints.

Conversely, Evans £31J has recently shown by construction 

that if t — xj)^, t:£ (R.J. > is a family of completely positive 

. naps o f a (concrete) C*-algebra into itse?.f with

V t and <f>Q= $ f then there exist a larger (concrete) C*-algebra 

S 3 ,  a group K L of *  -automo rphisms of 0 3  and a. condit- 

ional expectation %  from 23 onto 3% such that

<j)t (A) = V'A e $ t  .
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In this ssnse, all fanilies of completely positive identity 

preserving naps of a C*-algebra are similar to reduced dynamics. 

Ho wove r this construction hsrs no direct physical interpretation. 

In the particularly interesting case when Q L = 23(JpS) and
. -noTmalj t

t is a n02a~ continous fseinigroup, there is an entirely

different construction ĵ 22, 32J of 2 3  » ^  for v/hich.

W  is implemented by a strongly continous group of unitary
I w J
operators on the Hilbert space on v/hich 33 acts. This cons

truction suggests an interpretation of 23 as the algebra of 

observables of a larger system whose global dynamics 

induces the reduced dynamics on 2 t  . Remark however that 

t -—>» o( is weakly*-continous, but not strongly continous, 

unless the generator of t —> c|>̂  is a derivation. Indeed, 

suppose that ^j is strongly continous v/ith generator 

and that the generator L of is the closure of its res

triction to S ) ( % ) n  Ot , then L = , which, is again

a derivation

Y/e suspect that the construction of Refs. 22,32 corresponds 

to a singular coupling of the system 2X to a boson or fe mi on  

reservoir, in the sense of the models to be discassed in Sec

tion 6. However, we have not been able so far to give a proof 

of this statement.

' 3. MARKOV APPROXIMATION AND CLASSIFICATION OP 

DYNAMICAL SEMIGROUPS.

An evolution equation for the density operator of a subsystem 

S of a eloaed system S+R is said to be a Markovian master eo_uat- 

ion (1.2*13) if it has the form



(3.1) at ? (t) = + ^ D ? (t)

v/he ra % e t t  is as in (1.16), and where the operator d£jj 

contains all dissipative effects. Equations of the form (3.1) 

imply a semigroup law of evolution for the state of S, and are 

of common use in the phenomenological treatment of open systems 

(relaxation processes [1,11,13,14] , quantum theory of damping 

[3], Brownian motion j V J ,  optical pumping £43], superradiance

[16,17], theory of lasers [42J ; for extensive lists of refer

ences, see [41] and [5]. Por- applications to the quantum theory ■ 

of measurement and to the decay of unstable systems, see res

pectively [36] and [SO, 56] ). However, it is in general impos

sible to derive an MME as an exact consequence of (1.15). Indeed, 

if iS such that: 3^(s) are well defined operators,

and if (1.15) can be put in the fozm (3.1), it follows that; <£ 
is trivially given by (see [29J )

=  a - f c S ^ | t = 0  =  ~ i ‘ ^ e f f

Hence we do not expect (1.15) to reduce to the form (3.1) 

unless the global dynamics ‘XL. of S+R has some "singular" 

character, corresponding to a limiting situation in which, the 

memory effects which are present: in (1.15) become negligible. 

Prom the structure of the kernel J t o .  in (1.15), one expects 

that a situation of this kind will take place if the typical 

variation time eC s of ^(t) is much longer than the decay time 

of the correlation functions of the reservoir. Then (1.15) 

should be well approximated by anMME (3.1) with.

r
(3.2, *^ J0 ds

for tii'ies larger than T̂ĵ * A similar argument, applies to other

10.



types of master equations, such as those satisfied by the 

coarse-grained density operator v/hich describes the dynamics 

of the macroscopic: observabl*e3 of a large system{£5,8667,7̂ 57,6£,82,83], 

3ven though the importance of the separation of two tine 

scales for the validity of the Markovian approximation to the 

GivIS has been recognized long ago [l5,83,65j and made object, of 

extensive studies [83 ,11, 33J » rigorous treatments of the 

Uniting procedure 'C'g/*2̂ — * °o are rather recent.

Two possible limits can be taken:

1) the weak coupling limit A — ** 0, v/ith rescaled time = A  tO*2, 

In this case 77 R remains constant, while ‘tTg tends to infinity. 

Vigorous models thereof were studied by Davies £23,24! and Pul& 

C?o]] and a general rigorous treatment has been recently given

by Davies [25-27j , and will be discussed in Section 5. Eoughly’ 

speaking, it; turns out; that in the limit \ - * 0  the expansion

(1.20) reduces to the B o m  approximation and the integral ex

tends to infinity due to the change in the time scale. In par

ticular, this situation is approximately- verified for a system 

v/hich is not completely isolated from its surroundings and 

relaxes to thermal equilibrium with it;

2) the singular reservoir limit, in which *^T^-»*0. As an exam

ple, this could be regarded as a drastic simplification of a 

situation like the one which takes place in a laser, where the 

system of interest is driven by the various pump and loss 

mechanises, To our knowledge, it: 

was first explicit ly recognized by Hepp and Lieb.: JjLS] that the 

condition *£1= 0 requires a singular coupling. In Hof s. 37, 34,

35 , to be discussed in-Section 6, we have shown on explicit 

models that this kind of limiting procedure allows one to derive 

all completely positive trace preserving semigroups of an 

N-level system. Briefly speaking, the Markovian behaviour is
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achieved in the limit 'U-,—>0 since ^  (s) tends to itl 0(s)
JLl o  o

nnd the higher order corrections vanish.

Since the completely positive maps of a C*-algebra form a 

convex cone which is closed in the bounded-weak topology [58] ,
the property of complete positivity of the Heisenberg reduced 

dynamics is not destroyed by any of the limiting procedures 

which are employed to obtain a Markovian master equation.

Prom the above discussion, we conclude that the operator e£ 

in the I.2.EE (3.1) can be regarded as the generator of a strongly-- 

continous one-parameter' semigroup of positive and trace pres-
s

erving maps of ^  {9$ ) whose dual maps are completely positive 

(and automatically ultraweakly continous and identity preser

ving): such semigroups are referred to as dynamical semigroups 

[+9, 38, 5 8 , 4 7 , 2 8 ] .
A classification of norm continous (or, equivalently, with 

a bounded generator) dynamical semigroups of 3^(Sp)» ip 

separable, has been recently given by Lindblad [58] . The 

general form of the generator of such a semigroup is the 

foliowing:

where H is a bounded selfadjoin ce

(3.3)

of bounded operators, ^*V*V.
'  t) J J

r.h.s. converges in the trace norm.

The generator of the dual semigroup 

Heisenberg picture is given by

in the

(3.4)



13.

whore bho convergence is ultrawoak, and v/hore

r(3.5) ^ V ) ( A ) = ^ V * A V
J

is the general form of a completely .positive ultraweskly 

continous nap of 0 3  ((p ) into itself j54,5?J. This result
x

has been successively extended to more general W -algebras 

under certain conditions on their cohomology groups [&oJ .
Tiie problem of the classification of unbounded generators 

is vezy difficult. A particularly simple case is obtained by- 

allowing for the selfadjoint operator H in (3.3) to be 

unbounded. Some physically more meaningful classes of unbounded 

generators are discussed in £28,59].

In the case of an U-level system (dimjp = K), (3.3) and (3.4) 

can be given the form !>]

II2 -1

(3.6) i y  = -i[M ] ♦ 1  2 Z  otj j[ilf f Ij] + [rl f  .J*]}

(3.7) - ifci] + |  c j f c *  A > .  + P * f A , p j }  .

where K = K* , 'Jr(H) = 0, Tr(F.)= 0, Tr(l\F.) = %... , and (c. .\ 
is any positive matrix. For a given , H is uniquely 

determined by the condition Tr(H)= 0, and is uniquely

determined by the choice of the F.'s. The conditions Tr(H)=0, 

Tr(F.)=0 provide a canonical separation of the generator into 

a Hamiltonian plus a dissipative part. There is no general 

immediate criterion for an analogous separation when dim 0 0 . 

If the condition of complete positivity is replaces by the 

weaker requirement of simple po3itivity, the generator for 

an N-level system can again be written in the form (3.6), where 

the matrices belong to a strictly larger convex cone



th-.-.n ulie yooitivo ony.

?or tho proof.. of (3. 0  nnd (3.6), wc refer to [ 5 8 , 3 6,53]. 

Still in caoo of an 1i-level systere, the knowledge of tho 

Ccnoral forra of the generator hr*.s ctllo.ved Snohn to derive
• *

sufficient conditions i'or the existence of a unicue stationary 

st.’te [75,76]. Y/ifch the generator,^ written in the form (3.3) 

(respectively,(3.6)) a sufficient condition for tho unioueness 

of the stationary state and for all states to relax to it in 

tho limit t — ► is given by

(3.8) top (v. | ,j 6 l) is selfadjoint and {v.| jGl}' - i ,
3 J

where lsp denotes the linear span and

{ }f denotes the conmutant in 23 « ? >  (respectively,

by the requirement that the multiplicity of the eigenvalue

zero of the natrix fc. . ̂ be less than N/2). Also the irredu.ci-
1 J * _ t

oility condition given by I21J ensures the existence of a 

unique faithful stationary state. There ie no apparent straight

forward extension of the above results to the infinite-dimen

sional case. An example thereof where the stationary state ic 

unique and approached by all states for long times is provided 

by the Brownian motion of a quantum harsonic oscillator [59] •

i:.

4. IMPLICATIONS OF COMPLETE POSIT IVITY (2-LEVEL SY3TZLIS).

In the case of an N-level system, the condition {c^ j ] ^ 0  

Implicitly expresses inequalities to. be satisfied nnons tho 

physical parameters characterizing the dynamical evolution 

(such as relaxation times and components of equilibrium states), 

which would be weaker or even non-existing if just positivity
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wcre required.

So f.nr, v;e have only been ablo to wake such inequalities

explicit Tor a 2-level r.ystcp [38,5tJ. In this case, let

bo a positive trace preserving; sc*ai«;roup

of r.(n), and let{£}u{? j be ‘a complete ojrthoijonal sot

of sclfcdjoint matrices, v/ith F F =* 7  6 . .il + £  <£-*, 6 . ?, . Then
j- J 4 j. l j  2  <C— jl i j k  k

the polarization components K^t)** Tr [(/V^ j? JP^j satisfy the 

Bloch eou;vfcionr?:

( M ) c l

dt

J

Ki (t) = j fS l  £iikhi (Mk(t) •" llk)_

wnere

cmd

inf

» Y 2 * t

h. real.

2  2  2 ,  

Xl+X2+X3

7/°

M is a stationary state for the evolution (4,1.) and it io 

the only stationary state iff ^  *hi8 ca8e every

state approaches U° as t -*,oo .

The condition of complete positivity, expressed by the pos- 

itivity of the matrix j C . , imposes further restrictions on 
the range of va u:\tion of M and implies the inequalities

(4.2)

Since the ^ ' s  are essentially inverse relaxation times,

(4.2) shows that no two relaxation tines can be much longer 

than the third. In particular, a completely positive non-Haiail_
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vonian evolution of a 2-levcl sysitea odnits at raost a one- 

dir.or.sionril uanifold of stationary states.

Aa a spccial oxauple, take h^= 0 and the system to be 

axially oymetric about the direction of the "external magnetic 

field*'. In this case = 0, l / f a  » l / t f  = 5?x

(transverse relaxation time), 1/ t f - f  ~ (longitudinal 

relaxation tine). The necessary and sufficient condition for 

the dynamics to be completely positive is

(4.3) E„ >/ \ Tx  •

To our knowledge, this relation is satisfied experimentally 

in all known cases [l,13» M  and references quoted therein].

A further insight into the strong geometrical restrictions 

imposed by complete positivity on the reduced dynamics of a 

2-level system is provided by a comparison of the structures 

of the extreme points of the convcx sets P(2) and CP(2) 

respectively of the positive and the completely positive trace 

preserving linear maps of M(2). Writing a density matrix as 

f  = -|(-i + 'x*c?)f(|x){£l» where 2 3 are the Pauli matrices,

the extreme points of P(2) (respectively, of CP(2)) are the 

following [39] =

x£= cos(** ) V
,, /.V > up to 0(3)

X'a C03(ot -/S ) I* c ' J transformations
x̂ = x^cos(ot -^J)cos(ot +|3)+ain(oi -^i)sin(ot +^S)/‘*

(respectively,

x£= xx cos(«( -[i ) 1

x2“ x 2 cos(<* + (^) | U? t 0 S° ^' j transformations)
x^= x^cos(«f - p  )cos( ̂  +^3 )+sin( oi )sin(oi )/



whore ^(il i- 3c,»(T)=^£ , I 6  P(2) (respectively, V £CP(2))

anti Che ran,<;e of varia fc.ion of o£ and p  is given by

17.

j O  4 / S ^ 4  TT/4 , .

( k TT/Z , O'-fit: fr/2 - o( .

5. V/3AX CC'UPL II'iG LIMIT.

A rigorous justification of the reduction of the GME (1.15) 

to the MME (3.1) in the weak coupling limit has been given by 

Davies in a saries of papers £25,26,27]. Here we present; a short 

sketch of the simplest version of this method.

Assume that is bounded and Trp 0 so that

%  . In order to avoid domain problems, it is conven: ent 

to work with an integrated form of the GME. An elementary change 

of variables in the double integration yields

(5.x) f ( t ) = <U ? <]<.o)*\2 jo'a*}*  “ax ? (u'>
w h e r e  * 1 ^  =  Cxpjj-1^6 *kJ.

"tie pass to the interaction picture and v/e rescale the time,
2 2 r, _r 

setting X  t=7T and X u = 7 ,  with the purpose of letting

X  go to zero. The use of the interaction picture can be inter

preted as an averaging over "fast microscopic oscillations".

We define 7

(5.2) yi('C ) = iia 5 ( \ _a,C)

and find



-2
1 8 .

fl(r>- Pl(o>* ^ o / V ^ v f/;X K (X) ] % X  y l(«r,.

«•

V/e expect that in the liwit X — C only the term ^  in the 

expansion (1.20) of t t  will give ft nonvani3hing contribution, 

so that

(5.3) ? I ( W -  f t(0 )+ 1 *  J \ «  r t J v f !(«*>

who re

(5.4) K-a I dx fc0 <x >-

Davies shows that this is indeed the case under the following

conditions on 3dL* (n= 1,2,...) :
o n

(5.5)

I at llfc0 (t)||<°°,
Jo

dtQ ...dtn |j <S i n (t0 112 .. .th )| L  an (t) 7

'bit it £t,^t 4t
n n-1 1 o

with

(5.6) an (t) {z cn t3̂ 2 for all t > 0 ,

where 2  c zn has infinite radius of convergence, and •• 
n n

(5.7) a ( t ) ^ d  th^2“̂ for some£>0, d . and all t > 0 .
n n n

Since v/e are dealing v/ith a spatially confined system S, the 

spectrum of is purely discrete and the limit 0 in-
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(5.3) can "bo easily performed, to yield

f't

(5.8) ?i(Cr:) = + K J d0-
o

• «

where

(5.9) K** = Z q m
^  o* c<

the ’s "being the spectral projections of corresponding

to distinct eigenvalues . Hence equivalently

(5.9') K % = lin ^  / ad x U ^  K U 5 .
a — >oo S-a. ~ X

The differential form of (5.8) is the I«1ME

(5 .8 -) f g  fjtTT) = K* J j C C )

(now no doraein. problem arises, since K Is "bounded, as a
i p SR

consequence of the boundedness of p o )•

The rigorous result in [25] is

lim || TrR1A/X)d^j? - ejq)(K^r<C )J> O

A2t = t
uniformly on each interval O^TT ̂  x 4 . ^  ^
I.:ore generally, one can release the assumption that QW-+4r t W>

—  2  '* ® 3T i w  *1

and that the spectrum of is purely discrete, and find [ 26J

(5.10) lim J  sup - exp (-it 7 £ c pj. + Aa K)i j * ®.»

A ^° [oit^x'V '



However, as I£ ia nuch simpler to use in place of K  because

it manifestly commutes with -She free evolution, vve shall restrict

ourselves in the following to the case in which %  and
S i Gif

the spectrum of %  is purely discrete.

Vte write the coupling between S and R as

(5.11) \ H S R = A 2 v^ ® V R
^  <  ol

with V* selfadjoint, selfadjoint, and • Cc?R (V^)= 0; If 

conditions (5*5)-(5*7) are satisfied, the reduced dynamics is 

a semigroup whose generator is given by ([25]» with

minor generalization and notational modifications)

k ’o = - 5 Z ,  2 T | _ i  3 (c»>),p]
5  w t S p X  * / ! >  1  ■ * / *  L "  • *  I J

(5 .1 2 )

+ ([^CcoJy.v^Cu*)-•]+[▼,(“ »). J ^(U>)*J ) J ,

where (2TT )~1̂ h rf̂ ( w) is the Fourier transform of h ^ (t)=

= w V ^ V ) )  = 00*(v“ v*

s  ( w )  = i  /  «  « ' tU rt 1U ( t )  “

(5.13) * 0

an- J x * «  '

( j  d en otin g  th e  p r in c ip a l  p a r t ,  and

V  J "

V w )  ■ t ^ T Z >  Sm A »  “ < V n a Pne= V - * *•m n a

( Pm  = |n><m|, HS |n> = £ „ !* > , ( V ^ .  <n | V®lra> ) .
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Sufficient conditions for (5.5)-(5.7) to be satisfied are:

(i) H 2 < co ;
•V«o . g 

(ii) ^  Jh (t)J (1+t) dt <a, with a independent of ,^3 ;

(iii) the reseivoir is cuasi-free, i.e. all truncated correl

ation functions Ca>R(V5 (t )...V? (t.))^ of order
*1 1 k 

greater than tv;o vanish.

u?ho dual generator, written explicit ly in terns of the

operators P , is given by 
m i

K ' A = i

< 5 ' 1 " ) V v  v % ^ > 4 ]
V/e renark that t ---* 2  x, h. (t)xA is a function of positive

<  «/p p

type for all sequences [x ^  for v/hich the expression conver

ges, hence j *s a positive matrix for all co , end

its Hilbert transform {s (u>)[ is selfadjoint.Therefore v/e
k *  - P

recognize that K is of the general fora (3.5)

K ^ A  = i[H,A] + ^ ( A )  - | { Y « D , a }

where H = H* and "W* is an ultraweakly continous conpletely 

positive nap of D 3  (Ip). Moreover H and "Vpr( H ) corir.iute 

with the free Haniltonian.
.. *

If the reference state of the reservoir is KKS at inverse 

tocperature , then the canonical state *exp(-fiHS)/Tr[exp(-fiHS)] 

is a stationary state for the reduced dynamics, as follows 

fron the KMS condition on Fourier transforms
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. A  _ A (jj A
(5.15) h (~ l o ) = e 1 h ( co).

*<[> f3t£

'i'his ic a rc fleet ion of the stability property of KI.;S states, 

in the sense that for each perturbed evolution there exists a 

ctationExry state which is KMS with respect to the perturbed 

fi;/r_r:nics anci approaches the KMS state for the unperturbod 

u;,r.:.;;'ics \;lien tlie perturbation is removed }10, 721.

'.7e shall see in Section 7 that the reduced dynamics (5.12) 

satisfies a quantum detailed balance condition as a consequence 

of (5.15).

o. LIONELS OP SINGULAR RESERVOIRS.

The singular reservoir limit corresponds to a limiting 

situation in which the correlation functions

( 5 . 1 )

of the operators appearing in the interaction tend to

V (t)‘
Before entering the djlscussion of specific models, we note

that a correlation function (6.1) cannot tend to a (T-function

if ia KKS at some £ 0. In fact, by the continuity

of the Fourier transform, h ,n tends to a ^-function if and
a

only if its Fourier transform h - tends to a constant
n

almost everywhere. On the other hand, the KLiS conditVm. on
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A
Fourier tranofoms (5.15) forbids h to approach a constant

r
l u i l c s s  ^2> = 0 .

For a similar reason, if the reservoir i3 chosen to be a
H

ouasi-frec Bose or Fermi gas and CO is the vacuum state, the 

lir.it of singular reservoir can only be performed if the one- 

particlc energy spectrum is the whole real line. This is rather 

unphysical, but is necessary if one wants to reconstruct any 

dynamical semigroup as a reduced dynamics in the singular 

reservoir limit [37] . This feature is also shared by the nodels 

of Hopp and Lisb £45] •

in [37] and [34J we have studied models which can account 

for all dynamical semigroups of an N-level system. The system 

S of interest is coupled to a quasi-free boson or feimipn reser

voir in the vacuum state or in the infinite temperature limit, 

by a linear coupling of the form

N 2

(6 .2 ) H »  = - 2 1  V ® ® v ®  ,

where

|v^Jc< = 1, ...,N2 j can be conveniently chosen as a 

complete ortho norma], set in M(N),with V~2= ^Wn*»

1,2 r —  i

$
where the a^(f ) are independent Bose or Fermi creation and 

annihilation operators, and 

I;2

(6.4) i

(6.5) f*(*>) »  (2'ir)"'1^2ex p [^ £ 2u>2/8j j
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(6.6) ± (co) = TT *̂( oo) c xp [- c02/bJ or

(6.7) f C'A (c^) = (2'rr)"1/'2 3‘(oo)(pco)1/2expj^ £2^2/8J

according to whether the reference state of the reservoir is 

the Fock vacuum, the infinite temperature fermion state, or 

a I0.1S boson state to be considered in the limit ^-*-0.

The coirresponding Fourier transforms of the correlation 

functions h^*^(t) are respectively given by £37,34J

(5.8) h5p)(w)= C ^ U - r r ^ e x p f -  £2i o 2a J ,

C6 -9) & ^ )(t->)=[cfk9'(-w)+0(5_(9'(oj)J<2!r)":l/2exp ^ l 2u 2/l] , 

(6.10) ( w)j  (2TT)'1/2- ^ -  exp[-£2co2/4X

where

N 2

J2
is the general form of a positive N2x W  matrix.

As £->0, (6.8) tends to the Fourier transform of C S ' 0 0 .
f t 7

Thi3 is also the case for (6.9 ) and (6.10), provided 

is chosen to be real and symmetric. As regards (6.10), one has 

to take at the same time the limit

The generator of the reduced dynaaical semigroup is given by

(6.12) jfy = -i[HS *H\y] ♦ |  g ,  o±J Jfv® j y t » ] J ,

Ii2 - 1

v/horo HX= -ir1/2 Im <3 ^ 2 Vk* 1x1 [37»34] » (6.12) was proved

using the Dyson scries expansion of (x ® Q .l2 L ° *  2X* (A ®  3lR)  *t, &  0 . )



= (iX i .Jfl). The same result has been obtained

in using the master equation approach. \7e give a short
•w

account of tho latter technique.
OT>

From the expansion (1.20) of the integral kernel and with H‘ 

given by (6.2), we have

f c 0 (s)= - T r H [ % SR(s) % SE(Hj

<6-13) = -j- • $ } •  

Hence, in the linit h ^ \ s )  —> C ^T(s), the Bora approximation
«<p

yields

(6 . k )  £ ^ 0 0 - -i[hs, ?<*)] + j f e  ? ( * > . $ + [vf, ? < * > $ ]

which is (6.12).

As regards the higher order terms, they give no contribution 

in the limit. Indeed, the series (1.20) is uniformly convergent 

on bounded £ -intervals, and all terms containing 

n= 1,2,..., vanish as £ — *0. We refer to [ 35J  for the detailed 

proof of this statement, and confine ourselves here to the 

obse 3-vat ion that in the expansion of the multitime correlation 

functions U>R (V** (t )...V? (■fei )) appearing in • •‘O
Os _ O H  O J* XX

0  K

one is left only with those products in which some time 

arguments appear in. “overlapping order", such as

>. *

(W 'hS)(W -
In the lirait t - > 0 , such products do not yield any contribu

tion under integration as in (1.20).



In the v.'icuua state ease,, (6.12) is the general form (3.6) 

of the generator for an K-level system. The restriction to 

rsc.l oyrv'.otric in •‘tire infinite temperature case implies

that the centrrrl state is a stationary state for the

reduced dynamics. This state is in thermal equilibrium with 

the infinite temperature reservoir, and the structure of the 

resulting semigroup is very sinilar to the one obtained in the ' 

weak coupling limit. Indeed, if v/e 3et H^=-ln j?°= (inll)'JL in

(5.12), in the limit of weak coupling to an infinite temperature 

reservoir we obtain just (6.12) with -real and symmetric.

In particular, (6.12) satisfies the detailed balance condition 

to be discussed in Section 7*

V/e remark that the singular reservoir limit-at infinite
g

temperature is equivalent to adding to H a purely random 

stochastic Gaussian Hamiltonian j^37t69j .

The foregoing models of singular coupling can be extended 

to system whose underlying Hilbert space is infinite-dimensional. 

However, in this case one needs some technical conditions 

which restrict the class of dynamical semigroups with bounded 

generators which can be obtained in the limit; £ — *-0 (*34̂ .

V7e have just received a paper by Palmer £63^, in which, the 

author points out the mathematical similarity of the weak 
coupling and singular coupling limits, the distinction of the 
two limits depending on which of two possible time scales is 
regarded as natural.

7. DETAILED BALANCE.

In this and the following Section, which contain results 

fro.-n [9] and from a work of ours in preparation [52] , we
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diccuaa a quantum condition of detailed balance for a Markovian 

reduced dynamics, and its relation v/ith the assumed invariance 

of the global dynamics under an operation of time reversal 

(n i o .ro r o ve r o ib il i t y ).

Since quantum dynamical semigroups are the analogues of clas

sical discrete liarlcov processes j[47,5oJ, a detailed balance 

condition for a Markovian master equation suggests itself as 

a natural, generalisation of the corresponding definition in 

the classical case. The Chapnan-Kolmogorov equation for a 

discrete Harkov process on 1,...,N

(T.D ^ p ( t )  , 4* = ^  - Z  Dni

satisfies detailed balance with respect to a stationary state

P°= l5i l i = l , pt > 0 > ■?p i= 1 > lf

(7.2) Dij P° = P° .

The algebra of observables is the set of sequences

"? = Jf. \ . , „ and the state p° defines on an inner
X' i — 1 |  « • t y II

product as

(7.3) < f , g > =  ^  PifiSi*

It is straightforward to check that (7.2) is equivalent to

(7.4) <f,l3> = <Lf,g> /f,g £  3 X
0

v;h«rc = £ V is the generator of the dual "Heisenberg"

dynamics.
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Consider a strongly continous dynamical semigroup [A*|t6(R+ j 

of £  ($p) v/ith a densely defined generator ^  t admitting 

a faithful stationary state , Wo can define, in analogy to

(7.3), an inner product in D 3  ) ,as

(7.5) < A , B >  = Tr [y°A*b ]

and denote by J^2 ^ *  f°  ̂ (seParato:I-e ) Hilbert space

v/hich is the completion of ^S(Sp) with respect to (7.5) The 

elements of £ 2 ({?t f°) are of the form X = B( ̂ °)“1^2, B 

a Hilbert-Schmidt operator.
A *

The Heisonberg semigroup t is not, in general,

strongly continous on IS (£> )» but it can be extended to a 

strongly continous contraction semigroup on P°)»

Indeed, using Kadison's inequality- [48,2o]and the invariance of 

jj>°, v/e have

< A* A, A* A> o Tr [j°( A‘tA)* (A* A)]

4  lr[j>° A*(A*A)]= ?r{j>°A*A] = <A,A> .

The functions t —*- <A, A * B > = Trj^A.^ ^°A*)bJ , A,BC5B($>), 

are continous. Therefore, since 25 ($?) is dense in j32 ($» f°), 

t — + A^. is weakly measurable on f ° ) *  hence stron

gly measurable and strongly continous Cw] .

We denote by L the densely defined generator of the extension 

of {A\\ to « C 2 (0» f>°)» In general 2) (L)a23(£3 ) is not 

donse in © ( I p )  unless t — ** is strongly continous on

33 (S>-

It would not do to generalize Definition (7.4) by asking 

L to be selfadjoint with respect to the inner product (7.S)

( -sefc fad joint) , since this would rule out the case of Handl-



tonian dynamics. Indeed, if H is a selfadjoint operator on S6 

commuting with f°, then LM« i[lf, J is skewadjoint with respect 
to (7.5} ( <£°~skewadjoint). Hence we propose the following

u.t 71:: 11;ion [52] : A cuantun d;/n~:-.icnl seni*xtrAp satisfios the 

Oov illod balance condition with respect to a faithful stationary 

r;t*'J;c if L can bo written as a sum

(7.6) L a L «*■ L
a a

v.T.fire

(i) L » ifn, .1, H self ad joint, fH»P°J=s 0 (then I* ie 
» j a.
J -skewadjoint and ganerates a group of unitaries

on £ 2<S?. P°))i 
(ii) Lg is ^°-selfad joint

Since j*° is a faithful nor.'Gl stnte on Q 3 < 6 ) .  the set of 

fur.ctionslo J'ft * j?°)}tw 'nere

X <A) *<iClA > *  2r[( J°X*)a] j

its dense in the spaco of n o m a l  functionals on » « 5 )  M -  

Therefore “1J1 and f”\ defined as
w V

5 r [ t (  p V ) a ]  * < X ,  03cp(L t)A>,

x € £ ?( %° ) ,  a € ! 5 ( Q )

Tr [rt( f 0X*)Aj *• < X, cxp(Lct)A>

cm» bo extended to dynsnical eewicroups of 3T 

Ijeneratorn -i["n» •} £*nd such that



T r [ < S ? „ (  =  <  - L ^ . A  > ,

T r ^  ? V ) a] = < ISX,A>
A€53(fp)» X £ ^ ( I j 5

end
t

(7.7) = d  + ̂  .
a a

I f  a deco .‘.position of the f o m  (7.7) exists, it is clearly 

unique, end it coincides in the finite-dimensional case with 

th e  one Given by formula (3*6) £52]. TherefoTe it can be as suae d 

in general as a criterion for the decomposition of generators 

satisfying detailed balance into a Haniltonian plus a dissipative 

part.

f  ° is an * r  ̂-invariant and it can be shown [ 46,
74,52_ that and n *  commute separately v/ith the modular

automorphism group 2 ^  defined by

Z t. A = ( f W  p°)“i1; A G  23(g).

This implies that ^  (fp) A 1 is stable under 

In particular, when the spectrum of ^ is nondegenerate, all 

elements o f  X  ( S ) n  if0}' can be diagonalized simultaneously, 

and the restriction of ̂ A ^  't0  3T determines a

classical Markov process satisfying the detailed balance 

condition (7.2).

V/e note *ln passing that the foregoing definitions and results 

can all be easily extended to v/eakly -continous semigroups of
n o r m a l  „

completely positive identity preserving^maps of a \Y -algebra, 

adnitting a faithful norual stationary state. However,we have 

restricted oui3elveo to 23 (fp)» since we are primarily



ir.toraoted in dynr.nical semigroups of a spatially confined

c y s t  o n .  k o i ’-.1 over, v/e shall roouirc in t h e  following t 1~\
t

uo ’oo noit.i continous, in  oruer to be able to use the f o m

( 3 . 0  of  the generator.
V/.lth the restriction that the disoipntive part t — * F  is

*c

norra continous, it is possible to give the general form of 

the genorn i;or L, of a dynr.mical semigroup satisfying detailed 
balance. This is provided by the following

Theorem. [52]: In order for ( A ^ )  to be a dynamical semigroup 

of T ( %  ) satisfying detailed balance with respect to a faith

ful stationary state p° and having a norm continous dissipative 

part, it is necessary and sufficient that its Heisenberg gener

ator I can be w r it t e n  in  the form (7.6) v/ith

(7.8) L A = i[H,A] and

5 M

(7.9) L A = w*~lim ^ T ~ ,‘ , C . . fp ,AP , - M p  ,P , ,a] 
N ' s rr'ss'=l rr'ss' *- t t ' s's 2L rr* s’s* J

li

v:ne re

(7.10) H is selfadjoint and comnutes with £°;

(7.11) P = |r><s|, where { |r>) is a c.o-n.s. of eigenvectors
rs ft

of f  , namely f  j r> = jr> ;

(7.12) {c . .) is positive in the sense, that 
' i r r 1ss I

, > 0  for all {a } ;> - a a 0 t a a
rr 'ss' rr' rr'ss'

0
ss 1 ?s

- C P° 
s'sr'r > s'

0 0
ss' fp s'sr'r >r'

If 9? is H-clinensional, Alicki [9] has proved that can be
< O
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r ;iv cn  o 3ir.j-.lo d ia g o n a l form r\s fo llo w s

N

v  -  i f r = i  ^ < j [ A - * i j M x i > k j } >

v m c to

(7.15)

( 7 . 1 5 )

(7.17)

(7.18)

Trkf.X. J =  S., S -0 ;
I 13 icej ik 34

o,, _o —1 o O -1 
? *15 ? ■ ?i ?J xii

xid ■ x io for ?i= f°j« x i* ■ x oi for i l *  15 *

B > 0  for all i, i ,  D f  .  V f  for ?° f «

The profound meaning of the foregoing condition of detailed

ell dynamical semigroups obtained in the weak coupling limit 

for a system coupled to a reservoir in a KI.IS state at inverse

temperature (3 , and that this is, in a sense, characteristic

of this sitviation. Indeed, if the reference state of the reservoir

is KEiS at inverse temperature [3 , it is immediately seen by

virtue of the KKS condition (5.15) that the dissipative part

of (5.14) is of the form (7.9),(7.11)-(7.13), with .
On the other hand, let a given reservoir H be in a reference

state and let S be a spatially confined system with free
n "Si? ■ T* <! T?

Hamiltonian H interacting with E by a coupling H = 2l* ®

and assune that
S SR

i) for all choices of S, H and H for which Davies' con

ditions (5.5)-(5.7) are satisfied, there exists a faithful
o S SR

stationary state ^ , depending a priori on H and H and



co.’.-.utinf; with 11°, v.ith respect to v/hich the* roduc'.ul dynamics 

of S in the* v/ook coupling limit satisfies detailed balance;

ii) is the closure of the vector span of the union of

the icentity with the operators VR for v/hich (5.r>)-(5.7)

?re sat iof ied,

Then there exists a (3 > 0 for v/hich (5.15) lioldo. Konce

is Kj.IS for such and >̂°= exp(-(3 HS)/Tr(exp(-pH3 )) [52J.

In the case of an U-levol system, it is also possible to

write all matrices (c , ,) satisfying the conditions
*■ rr'ss'J ^

(7.12 )-(7.13) in the form (!„. ss,,= Z  ) (Vp )„. (▼„),,

for example, this can be done by applying the weal: coupling 

lin.it to c. fermion model like the one in Section 6 [|52J .

Finally, v/e renark that the semigroups satisfying detailed 

balance with respect to the central state are precisely those 

whose generator admits a diagonal expression in terr.s of 

selfadjoint operators. Such semigroups are exactly the ones 

which can be obtained by a singular coupling to a reservoir 

at infinite tempsiv.ture.

8. KICEORSVERSIBIL IT Y.

Recently, sons interest has been devoted to the study of 

the conditions implied by tine reversal invariance- on the 

reduced dynamics of an open qupntum system in the Markovian 

a op.ro-citation and of their relations to detailed balance £6, 

7,18]. In this Section, we dex’ive a condition on th» g^nerrtor 
of c dynamic:! cenigroup which follows from the invariance



unc’or tir.e reversal of the global dynamics of S4R nnd

which holds in the weak coupling as well in the singular coup

ling linit. This condition Ikis a clear interpretation in terms 

of ..-.icro reversibility, but it does not depend on and nukes no 

reference to any particular stationary state, and therefore 

it be?.i-3 no relation in general to detailed, balance. On the 

othar hand, the condition introduced by Agarwal in Ref. 6 

(for later developments aUft applications, see [7,18] ) in for

mulated in terms of n tine reversal invariant stationary state 

(assumed to exist) of the reduced d^*namics of S and cons

titutes actually a form of detailed balance.

V/e* show that in the weak coupling limit Agarwal*s condition

is a consequence of microreversibility if the reference
R

state u> of the reservoir is invariant under time reversal 

and if y°®toR is stationary under the global dynamics in 

the limit 0. This can be ensured if has a

stability property which seems to be characteristic of KLIS 

states. However, in this case detailed balance is already im

plied by weak coupling indipendently of time reversal invar

iance. Similar conclusions have been drawn by Hepp in 

connection with the derivation of the Onsager relations.

V/e define a time reversal operation on S+R as the tensor 

product of the corresponding operations on S and R

Z  (AS® A H ) = ‘S V ®  W  = A5® ] ?

where 7*

%  SAS = T SAS*TS*-= A S, with T S an antilinear 

unitary operator on jp ;
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v: 1 1  a linear^ar.tioutonorpliisa of

..'e rofu^r-t further that (Tu)^-  "il ,

•Vo acnuraa the. 'u the global and respectively tho free evolution

^U/j. and , bg v.all as the re feren ce  s ta te  o f  the
11 V  *

tt<?sqi’voiTf £'.re Ẑi - in v a r ia n t ,  naiaely

a) th ere  e x i s t s  a c . o . n . s .  (|n>| in  fp  S v/ith 

TSj n ?  =|n> and H^|n> = £ ln<> Vn;

b)

c)

d)

U ^ ^ C A )  = Z n% **(A ) Vk g 2£R , <U*=e.<P[-i'3e'!t];

H S H =  7 *  ,

CO R

Write the form (5.14) of the generator of a (Heisenberg) 

dynamical semigroup in the weak coupling limit as

LA

( 8. 1 )

"  1  B i k P i k ’ A

vine r e

( 8 . a)

(8.3)

Noting that

(8.4)

'0 il£= ^  ^  V  * i_ V (W V i *  ’

°ijke“

t o o

C ijka
dt * TrS+R[(Pki©<»E )HSR(P;.2© 4 a 5HSR(1?)]

0 3

anu us ins the ti;ne reversal invariance of the trs.ee and the
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Cijk2
(8.5)

assumption c ), we have
t o e

dt TrS+R ^ ( ( P ki®c^R )HSR(Pjjl® i Il)HSIi(t))]

tOO

= J at TrS+E[HSH(-t)(P(1.®iR)HSV ik®̂ R)J= 0Mi3 .

Similarly, using (5.13)» we find

( 8 . 6 )  B  =  B  .
lk ki

For the singular reservoir limit, the Heisenberg generator

(6.12) can be given a form similar to (8.1)

(8.7) LA= i ^  [BikP ik,A]+ §

where

( 8 . 8 )  B l k =  i . S . k ,

( 8 - 9 )  °1 J W

(8.4) and (8.5) still hold true, once the singular coupling 

lirait is taken, and (8.6) is trivially satisfied, flien, in both 

c a s e s ,  i f  we define the time reversed generator

(8 .1 0 ) ^  = “G ^ L 0̂ 3,

(8.5) and (8.6) can be equivalently written as

(8 .1 1 ) %  = -Lh + I>D

where
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(O.iy) l = in + l d

is respectively decomposition (o.l) or (8.7). Hence, ns expected, 

tins reversal invariance tells us that the time reversed gener

ator identifies v.'ith the generator o.f the reduced dync-mics 

for negative times.

If a dynamics satisfying (8.11) admits a stationary state 

j?0 which. is <t> ̂ -invariant , we can rewrite the condition

(8.13) <eL~ A , B >  = < e L r B *k*>  

of Ref. 6 as

(8.13*) <LA,B> = <A,LB>

whore the inner product is defined by (7*5). It i3 then easy

to see that (8.11) implies the equivalence of (8.13’) to

detailed balance (7.6), with L = L„ and L = I_ .
a n  8 1)

However, if one tries to derive (8.13) in the weak coupling 

limit from microrcversibility, a further condition is needed 

which seems to be already an independent statement of detailed 

balance. To see this, note first that can be chosen to be 

invariant under the free dynamics of S. Then, if we rewrite

(8.13) as

T *** ‘t 7?
(8.13") <e A,B> = <A, e B >

v/a observe that it is equivalent to

1) Kota that this is by no means the case in general, as can 

bo sho\’in by cxplicib counterexamples.
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(8.14) lira |< U S * eL~ A,B> - < A , U S^  B> I = 0
X-t-0 ' ~/A _r//V /

s ̂
since the g poet nun of U -  is purely discrete and since 

K  .*] = 0. rorcovor, by fchms. 1.2 and 1.4 of Ref. 26, v/e have

(8.15) lira 
A ~ * 0

-  T r S + R | ( y ° © (A * ® 1 R )] ( B ®  1 R )J| =0

and similarly, using time reversal invariance,

(8.16) lira 
A - * 0

eLTB > - T r S+R|(f°®WR)(A^iR ) ^ i ^ ^  (B®-fRJ||=0,
‘W  t 1 L -VX

By (8.15) and (8.16), (8.14) is equivalent to

(8.17) lira 
K ~ f  0

TrS+R {(j>°®WR ) [ % ^ f  (A*® 4fR )J (B ®  4LR )}

- TrS+R|(̂ °®tA>R )(A^«>£R ) [ % ^ i (B®*1R )]JJ =0

which is satisfied if y°(s)U>R is invariant under the

linit This can be ensured if for each A > 0  there

exists a state v|\ which is stationary for and

approaches p ° 0 U p  uniformly as A-#-0. Such a stability 

propei’ty is possessed by KKS states [10,72] and seems to be 

characteristic thereof Ĵ 4oj , and we know from the previous 

Section that the KMS condition already implies detailed balance, 

regardless of any property of invariance under time reversal.

2) Even though it is not entirely clear from the context of 

their paper, it seems that this fact was also recognized by 

Camichael and V/alls in lief. 18.
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