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ABSTRACT 

EQUILIBRIUM, CONFINEMENT, AND STABILITY 

OF RUNAWAY ELECTRONS IN TOKAMAKS 

by 

Donald Atchison Spong 

When an electric field is applied to a plasma, a certain fraction of 

electrons in the high energy tail of the distribution may be freely 

accelerated. These are normally known as runaway electrons and their 

presence has been well-documented in various plasma devices. In this 

work, some of the ramifications of the runaway population in tokamak experi-

ments will be investigated. Consideration is given both to the normal 

operating regime of tokamaks where only a small fraction of high energy 

runaways are present and to the strong runaway regime where runaways are 

thought to carry a significant portion of the toroidal current. In 

particular, the areas to be examined are the modeling of strong runaway 

discharges, single particle orbit characteristics of runaways, macroscopic 

beam-plasma equilibria, 'and stability against kink modes. 

A simple! one-dimensional, time-dependent model has been constructed 

in relation to strong runaway discharges. This assumes that a negligible 

plasma conduction current is present and that an accelerating beam of 

runaways carries most of the current. A parameter study is made of 

several of the earlY ORMAK strong runaway discharges using this model. 

Reasonable fits to the experimental data are obtained. 

Single particle orbits are analyzed in relation to both the strong 
7-+ 

runaway regime and the weak regime. The effects of ExB drifts are first 

xiii 
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considered in strong runaway discharges and are found to lead to a 

slow inward shrinkage of the beam -- which is quite small for present-

day experiments. Orbits are next treated for high energy electrons in the 

weak regime both analytically and numerically; cases are examined 

where the runaways are just beginning to intersect the plasma limiter. 

This is of relevance to the hard X-ray dumps which have been seen on 

tokamaks and quantitative agreement is obtained with ORMAK data. The 

transformation of the final runaway orbit (as it is lost from the discharge) 

back to its position at an earlier time is also treated. Understanding 

this effect is of importance in possible diagnostic uses of hard X-ray 

dumps (e.g. for examining the initial plasma breakdown, subsequent 

electric field profile, etc.) 

Macroscopic beam-plasma equilibria are treated assuming a 

pressureless relativistic beam with inertia and using an ideal MHD 

approximation for the plasma. This area is of importance to strong 

runaway discharges where anomalous outward shifts have been seen in the 

beam-plasma column position. It may also be of significance to high 

power neutral injection and alpha particle production in tokamaks where 

large momentum flows can be present. The basic equilibrium equation is 

derived and mathematical limitations on its solution are given. Some 

sample numerical calculations are presented and compared with the existing 

analytic theories. The beam-plasma column shift is found to be somewhat 

less in the numerical solutions than is predicted by the analytic expres-

sions. Beta poloidal limitations are treated by use of a simple 

toroidal force balance. 

• 
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The stability of a toroidal relativistic beam against kink 

perturbations is examined using several models. First, a sheared 

velocity, two region beam is considered using an ideal, pressureless 

MHD model for the background plasma. The beam is assumed to be rigid, 

i.e. it displaces without distortion. Then, the plasma model is extended 

so that its range of validity includes frequencies which are not 

small relative to the ion gyrofrequency and the beam is treated using 

both fluid and the Vlasov-kinetic models. Growth rates are numerically 

calculated for a fixed boundary beam-plasma model • 

XV 
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CHAPTER I 

INTRODUCTION 

I.l Introductory Comments and Classification of Tokamak Runaway 

Regimes 

The production of superthermal electrons when an electric field 

is applied to an ionized gas has been the subject of numerous investi­

gations, both theoretical and experimental, since the beginning of 

controlled nuclear fusion and plasma physics research. Starting with the 

early work on plasma betatrons nearly seventeen years ago and continuing 

up to the present series of tokamak experiments, runaways have been a 

recurrent and familiar phenomenon. Their presence has been received 

both with welcome -- as in the plasma betatron -- due to their sug­

gested potential use for plasma heating and confinement (as well as 

accelerator applications), and with foreboding-- as in the tokamak and 

stellarator due to the, at times, substantial amount of energy which 

they can carry out of the plasma region and onto the walls and limiter 

of the device. Even in the presently projected reactor tokamaks, 

runaways continue to be a source of some concern due to the longer 

discharge pulse lengths and better confinement of high energy particles. 

Their presence could have some distinct and unanticipated consequences 

on the operation of these devices. 

The fundamental reason for the existence of runaway electrons is 

related to the decrease in the Coulomb collision frequency with 

increasing energy; thus, for any value of applied electric field there 

is a certain energy above which electrons will be freely accelerated. 

1 
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This effect was first identified in 1925 by Wilson [l] (inventor of the 

cloud chamber) and subsequently examined by Eddington [2] in 1926 and 

Giovanelli [3] in 1949. 

In the tokamak device [4,5], the initial plasma breakdown and Joule 

heating are achieved by an induced electric field; this field is fur­

ther necessary to maintain a toroidal plasma current which is required 

for overall equilibrium and particle confinement. The production of 

runaway electrons may occur throughout the discharge, but is expected to 

be enhanced when the electric field is large and the plasma density low, 

i.e. in the early phase of the discharge. The existing evidence on 

tokamaks, and in particular on the ORMAK device [6,7,8], tends to 

indicate that the most persistent and energetic component of runaways 

are, in fact, born during the initial plasma breakdown. However, a 

lower energy epithermal component of runaways have also been observed 

[9,10,11]; these are thought to be continuously generated and lost 

throughout the discharge [9]. The loss mechanisms are not yet quanti­

tatively well understo?d, but have been attributed to magnetic island 

formation due to helical current perturbations of MHD instabilities 

[11,12] and diffusion in toroidal field ripples. 

The motivations for examining runaways in tokamaks are various. 

Perhaps the most basic is related to a concern over whether they will 

be of importance in larger fusion-grade tokamaks. At present, the 

exact conditions which lead to enhanced runaway production are only 

empirically known and useful theoretical predictions are not available. 

Secondly, runaways can provide a sensitive probe of field perturbations, 

MHD instabilities, and the confinement quality of high energy particles 

• 
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in tokamak discharges. It is of particular interest to note that the 

momentum of a runaway with energy in the MeV range is of the same order as 

that of typical fast ions which are produced via neutral injection. Thus, 

the runaway single particle confinement characteristics (to be examined 

in Chapter III) reflect those of the fast ions. In the same vein, the 

equilibrium properties of runaway-dominated discharges (covered in Chapter 

IV) may have certain parallels with those of tokamak discharges heated 

by energetic neutral injection where toroidal momentum flows may be built 

up. A final motivation for examining runaways in tokamaks is related to 

the concept of forming an intense toroidal relativistic beam to provide 

confinement and/or plasma heating. In the author's opinion, there are 

a number of possible difficulties with this scheme such as: synchrotron 

radiation losses, S limits, poorly-confined orbits at the edge of the 

current channel, micro and macro-instabilities (examined in Chapter V). 

Runaway-dominated discharges in tokamaks appear to provide an attainable 

means of testing such a concept to determine its advantages and disad­

vantages. The work to follow has been motivated by the above considera­

tions and specifically by the experimental measurements which have been 

reported. A classification and review of this experimental work will be 

given next. 

Several distinct runaway regimes on tokamaks may be identified 

depending on the extent to which runaways are present, their energy, and 

confinement quality. These will be described below and in this work will 

be categorized as the weak, continuous, and strong runaway regimes. 

The weak runaway regime is present during a normal, stable tokamak 

discharge and is characterized by a very low density of runaways 
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(~107 cm-3), most of which are produced during the first 5-10 msec. 

fi1ey can, however, attain high energies -- in the 7-12 MeV range in 

ORMAK type B discharges [8] -- due to the fact that they seem to occur 

near the outside of the plasma region where the maximum volt-seconds 

of acceleration are experienced. In the type B discharges, these part­

icles are observed to remain well-confined up to the end (lifetimes 

are of the order of 50-80 msec) when their drift orbits begin inter­

secting the limiter. filis subject will be covered in more detail in 

Chapter III. In ORMAK type A discharges, runaways are dumped near the 

beginning due to the early large inward displacement of the plasma 

column and the relatively higher MHD activity. 

file continuous runaway regime has perhaps been studied the most 

on the Princeton ST device [9] where runaway conditions were not as 

favorable during the initial discharge breakdown as on ORMAK. In this 

case runaways are generated within the central region of plasma, but 

are rapidly lost before they can attain high energies. Their energies 

typically range from 50 keV to 1 MeV. This runaway population can 

have very adverse effects on the energy confinement properties of 

tokamaks; their loss prevents the full Ohmic field energy from usefully 

heating the plasma. The mechanism for loss of these runaways, as 

mentioned above, is thought to be related to the large magnetic island 

structures and ergodic field lines which result from the presence of 

magnetic shear and deviations from axisymmetry (e.g., due to helical 

MHD perturbations, field ripples, shell cuts, field errors, etc.). 

X-ray measurements on ORMAK which show strong correlations between 50 

keV X-ray bursts and MHD activity are particularly suggestive of 

• 
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this mechanism [13]. 

It may be noted that the presence of an epithermal continuous 

runaway component during the weak regime cannot, at present, necessarily 

be ruled out. The hard X-ray diagnostics which have been used onORMAK 

to examine the high energy (8-12 MeV) runaways are insensitive to the 

lower energy component (:::.._ 2 MeV). It may well be that an epithermal 

population of runaways exists in the central plasma region where island 

widths are large and Joss rates high while runaways near the outer edge 

of the plasma have longer confinement tirr.es and thus greater energies 

(due to the lower poloidal field perturbations at the higher q surfaces). 

The strong runaway regime is characterized by much higher runaway 

densities (109-1011 cm-3 ) and by a substantial fraction of the total 

current being carried by runaways. There is at present no good means 

of measuring how much current is carried by high energy electrons in 

this regime, but rough estimates may be made from the intensity of 

hard bremsstrahlung produced when the runaways intersect the limiter and 

by examining the equilibrium properties of the discharge. 

This regime is well known for its occurrence.during the initial 

start-up phase of most tokamak experiments; however, by properly choosing 

the impurity content and initial preionization, it can be intentionally 

produced in subsequent operation as well [14,15]. The energies of the 

runaways have been measured in the 1-7 MeV range on ORMAK. A parameter 

modeling [7] of a typical strong runaway discharge will be presented 

in Chapter II. It is assumed there that the bulk of runaways are 

created early in the discharge and that this occurs within a localized 

region which is determined by the topology of flux surfaces early in 
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the discharge. Strong runaway discharges have been observed on the 

ORMAK [7,14], T-6 [15], TM-3 [16], and TFR [17] devices. 

An interesting fusion application of runaway-dominated discharges 

has been suggested recently [18,19,20]. This concept involves genera­

tion of a runaway beam in an initially low density plasma followed by 

acceleration and partial decay into a higher density plasma. This is 

closely related to the earlier plasma betatron concept [21,22,23] and 

also to more recent research into injection of a diode-generated 

relativistic electron beam into a torus [24,25] or racetrack [26]. 

The runaway method has an advantage over the latter approach in that the 

relativistic beam is generated in situ, thus avoiding the difficult 

problems of injecting charged particles across magnetic field lines. 

Techniques which have been suggested for external injection involve 

either a momentary disruption of the magnetic surfaces at the instant of 

injection [26] or a reliance on single particle drifts to carry the beam 

into the plasma region [25,27]. Possible advantages of a toroidal relativ­

istic beam relative to Ohmic heating are: the long lifetimes of high 

energy electrons, leading to the potential of a steady-state toroidal 

current, somewhat more rapid heating rates and altered macroscopic sta­

bility properties. 

The heating rates associated with a toroidal relativistic beam have 

yet to be fully experimentally verified; however, due to the potentially 

long confinement times of relativistic electrons in toroidal plasmas 

(50-60 msec for well-confined runaways in ORMAK, corresponding to a total 

path length of about 107 meters for collisional interaction) even the 

energy transfer from classical Coulomb collisions [28] can give appreciable 

• 
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energy loss for certain ranges of energy and plasma density. Recent 

density puff experiments [29] on ORMAK indicate that with just a twofold 

plasma density increase, mechanisms are present for completely slowing 

down 10 MeV runaways within less than about 10 msec. A long series of 

experiments have been conducted [30-35] involving plasma heating in 

linear devices by relativistic beams. Nonclassical mechanisms such as 

return current heating and microscopic electron-electron two stream 

instabilities are thought to be of importance in the observed beam-

plasma interactions. The experimental results indicate that for 

1 t .. t" b f •t 1010 o11 - 3 .. t . 1 re a lVls lC earns o densl y nb = -1 em lnJec ed lnto p asmas 

with n in the range 1013-1014 cm-3 , energy is transferred from the beam 
p 

to plasma at efficiencies of about 1% to 4% per meter of path length [27]. 

The macroscopic stability properties of toroidal relativistic 

beams will be examined in some detail in Chapter V; interest in this area 

is motivated by the observed abnormally low amplitude of MHD activity in 

runaway-dominated discharges [14,15] as compared to normal tokamak dis-

charges. Also, the parameter study to be discussed in Chapter II indicates 

the possibility that q (the Kruskal-Shafranov stability factor) attained 

values less than unity internal to the plasma without noticeable insta-

bility for a typical ORMAK runaway-dominated discharge. Speculation on 

this possibility has also been made in regard to runaway-dominated 

discharges on the T-6 experiment [15]. 

I.2 Review of Experimental Results on Runaways and Relation to the 

Theory 

The theory to be developed in this work is primarily motivated in 
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relation to the weak and strong runaway discharge regimes. In both cases 

the presence of a runaway component has been associated with a number of 

characteristic and readily observable effects. Depending on the energy 

density of runaways, these indications vary over a wide spectrum ranging 

from a slight increase in hard X-ray level to the large-scale melting of 

limiters and burning of holes in vacuum vessel walls (as in the TFR 

device). In this section some of the features which distinguish the 

weak and strong runaway regimes will be reviewed. 

In the case of weak runaway discharges, the most direct indication 

of runaways is in the large intensities of hard (up to 12 MeV) bremsstrah­

lung X-rays which are produced. This factor has been utilized as a 

diagnostic tool particularly in the ORMAK runaway work and also in the 

Princeton STand TFR experiments. Both plasma (free-free) [9] and wall 

(thick target) [8] bremsstrahlung components have been identified; however, 

the wall bremsstrahlung is typically many orders of magnitude more intense 

than that from the plasma. Since runaways are essentially collisionless 

particles, their transport from plasma to wall can be explained largely 

on the basis of classical single particle orbits [9]; these will be 

examined for ORMAK parameters in Chapter III. For the weak runaway regime, 

it is expected that particle loss due to field ripples, magnetic islands, 

etc. plays a relatively minor role (as compared to the continuous run­

away regime); otherwise, the runaways which are produced early in the 

discharge would be lost much faster and at substantially lower energies 

than what is experimentally observed. 

About the only other indication of runaways which has been measured 

• 
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during the weak regime is enhanced microwave emission. This has been 

studied on the Cleo [36], TFR [17], and ATC [37] devices. The enhance-

ment over classical synchrotron radiation is attributed to the presence 

of an anisotropic superthermal electron population and the resulting 

velocity space instabilities. In the author's opinion, this diagnostic 

has not yet been developed +o the degree that the hard X-ray method has; 

however, it certainly has the potential of providing information on the 

runaway electron distribut:on functi·r:i and the nature of the beam-plasma 

interactions which may be r;resent. 

Strong runaway disch&~ges [7,14,15,16,17] are distinguished by 

such features as: intense hard X-ray fluxes, anomalous large outward 

equilibrium shifts, positive voltage spikes correlated with current 

dumps, enhanced microwave emission, and an abnormally low amplitude of 

MHD (Mirnov) signals which show no poloidal mode rotation. These dis-

charges have recently been observed on ORMAK [7,14], the T-6 [15], TM-3 

[16] and TFR [17] devices; discharges of a similar nature were also 

studied in early work in stellarators. 

On the T-6 device [15] strong runaway discharges exhibited insta-

bilities in the form of relaxation oscillations. These resulted in 

positive spikes in the toroidal loop voltage which correlated with 

similar discontinuities in nearly all of the other measured discharge 

characteristics. The instability occurred only when the mean electron 

12 -3 density was below a value of 2.5 -5 xlO em . Measurements of S 
1 

from diamagnetic loops indicated that at the moment the instability 

developed, energy was transferred from the longitudinal motion of the 
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runaway beam into transverse plasma energy. 

Measurements of the electron density profile on the T-6 runaway 

experiments indicated that early in time a hollowed-out profile was 

present which persisted 2-3 times longer than the hollow initial density 

profile in a normal, non-runaway discharge. At the point where the 

instability developed, the density profile flattened out and became 

bell-shaped. Also, the center of the electron density distribution was 

shifted further out from the torus axis than in a normal discharge. 

The latter fact was attributed to one of two possibilities; either the 

runaways formed a localized beam within the discharge, leading to a 

large internal inductance (which would increase the outward plasma shift) 

2 2 
or the s

11 
= 8nYnbm0c /B8 (a) of the runaways was substantial enough to 

contribute to the outward shift. The latter explanation was deemed to 

be the more reasonable since it resulted in a mean energy of 500-700 keV 

and density between 10
10 

and 1011 cm-3 whereas the former resulted in 

a beam radius of 5-6 em. If all the observed toroidal current were 

carried within a 5-6 em region, this would have resulted in a q value 

less than unity at the edge of the beam. 

Methods for converting runaway discharges into normal ones were 

investigated on the T-6 experiments. These included: adding inhomogeneity 

to the toroidal field, varying the preionization, and changing the filling 

pressure. A 20% 6B/B ripple in the toroidal field was found to substan-

tially reduce the hard X-rays and convert the discharge characteristics 

to those of the normal case. Better preionization and higher filling 

pressures also decreased the intensity of runaways. 

In experiments on the TM-3 device [16], the relation between 

• 

• 
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runaways and disruptive instabilities was examined. It was found that 

increases in hard X-rays could be correlated with disruptive events 

at low density and large values of q. Bolometric measurements made 

during the instabilities indicated that nearly all the plasma Ohmic energy 

was carried by a runaway component. Characteristic electromagnetic 

radiation was measured at the lower hybrid, ion plasma, and lower fre­

quencies with the onset of the instability. Diamagnetic signals also 

indicated that rapid transverse plasma heating occurred at the disruptive 

events; this was interpreted as being due to a slowing of the runaway 

component from either a lower hybrid beam-plasma interaction or Buneman 

instability. 

Strong runaway discharges on theORMAK device were quite common 

during the initial operation of the experiment [7]. These will be 

examined in some detail in Chapter II; they were characterized by much 

higher currents than the T-6 experiments - up to 140 kA. Positive voltage 

spikes were also observed which correlated with current dumps of up to 

20% of the total current and large outward shifts in the equilibrium 

position (7-8 em). Due to the higher current levels, the eq~ilibrium 

shifts could not be accounted for entirely by an enhancement in 811 due 

to the runaways. The remaining discrepancy was attributed to ~i' the 

internal inductance, which is large if the runaways form a beam within 

the plasma channel. Following these early runaway-dominated discharges, 

examination of the limiter revealed a melted area on the outside quadrant 

and fracture caused by uneven thermal expansion. 

A parameter study of some typical shots out of this series is given 
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in Chapter II. The conclusion is that a beam-like current distribution 

is required to fit the experimental data; this implies a q profile which 

goes substantially below unity near the center of the discharge. 

A more recent series of runaway discharges [14] were also con-

ducted on ORMAK at lower current levels (50-70 kA) in an attempt to 

avoid machine damage. These exhibited small voltage spikes and only 

slight dumps in toroidal current (~ 1 kA). A systematic attempt was 

made through adjustment of the vertical field to keep these discharges 

centered. Inferred values of S + ~./2 were quite large; values of p l 

2-3 were typical at the maximum current level, but as high as 6-8 

were attained during the current decay. When the vertical field was 

properly adjusted to maintain equilibrium, the current decay was 

quite slow, lasting up to 50-60 msec after the end of the voltage pulse 

in some cases. The maximum energy measured by bremsstrahlung was 5-6 

MeV. A very low amplitude was observed on the MHD probe signals and no 

poloidal mode rotation was seen. Also signals from the pin diode array 

indicated relatively little activity interior to the plasma except for 

periodic spikes at about every 3-5 msec which correlated with spikes 

in the MHD probe signal. The plasma thermal energy, as measured by a 

radiometer probe, was quite low. Electromagnetic emission was not studied 

on either these or the early series ofORMAK runaway discharges. 

Runaways on the TFR device [17] played a rather ominous role, 

leading to the piercing of holes in the vacumm liner. Runaway-dominated 

discharges were only obtained at low density operation (n ~ 1013 cm-3 ) 
e 

and had a characteristic energy of 6 MeV. Examination of the plasma 

• 
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electromagnetic emission revealed that radiation at the electron 

cyclotron harmonics was correlated with hard X-ray bursts from run-

aways. The interpretation given for the impact zones on the liner was 

that cold electrons trapped in the local magnetic mirrors (due to field 

ripples) were being heated near the electron cyclotron resonance by a 

beam-plasma interaction between the stream of runaways and the background 

plasma. These impacts were later verified to be in the direction of 

electron drifts by reversing the direction of the toroidal field. 

Electron cyclotron emission has also been studied in both normal 

and runaway-dominated discharges on the Cleo device [36]. A clear 

correlation was observed between the intensity and spectral distribution 

of the emission and the amount of high energy electrons present. Up to 

an order of magnitude more emitted power was measured in runaway dis-

charges than in normal discharges. In the former case, a broad peak 

in the intensity was found near w ~ 3.3W whereas in the latter a 
ce 

narrow peak occurred at w = 2w 
ce 

As can be seen from the previous review of runaway experiments 

on the various machines-, a wide variety of interesting experimental 

effects have been identified. To develop an adequate theoretical frame-

work which could be related in detail to all such observations is far 

beyond the scope of the present work. However, an attempt is made here 

to examine a few of the areas which are relevant to understanding the 

role of runaways in tokamaks - particularly in the weak and strong 

runaway regimes. 

The ensuing work will proceed along the following lines . 
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In Chapter II a one dimensional, time-dependent model is presented of a 

strong runaway discharge in which the toroidal current is carried by an 

accelerating beam of runaways and negligible plasma conduction current 

is present. Predictions of this calculation are then compared directly 

with several typical ORMAK runaway-dominated discharges from the early 

operation phase of this experiment. Chapter III deals with the single 

particle orbits of high energy runaways in tokamaks. Both numerical and 

analytic theory is presented for parameters characteristic of the ORMAK 

experiment. These calculations are particularly pertinent in interpret-

ing the gradual dumps of runaways for which detailed measurements have 

been made by Knoepfel and Zweben [42] during ORMAK type B discharges. 

Toroidal equilibrium is treated in Chapter IV for the case where a 

centrifugal force term is included in the plasma force balance, as would 

be appropriate for an energetic beam. This is of relevance to 

strong runaway discharges where anomalous outward equilibrium shifts and 

large values of S + £i/2 are observed. Finally, in Chapter V the sta­
p 

bility theory of a toroidal runaway beam-plasma configuration against 

helical modes is examined. The approach taken is to examine several 

physical mechanisms which might account for the peculiar stability pro-

perties of runaway-dominated discharges. As may be recalled from the 

preceding review of the experiments, there are some definite indications 

either of instabilities or loss of equilibrium (i.e. voltage spikes, 

current jumps, etc.); however, there have also been hints from such mea-

surements as MHD magnetic probes and from the parameter study of Chapter 

III that runaway discharges may be macroscopically somewhat more stable 

than conventional discharges. The mechanisms investigated here include: 

• 

• 
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velocity shear in the runaway beam, effects of the longitudinal dynamics 

of the relativistic electrons, influence of the high drift frequency of 

the runaways around flux surfaces (of the order of the ion cyclotron 

frequency), and introduction of toroidal drifts. As both the theory 

[43,44] and experiments [14,15,16] on the gross stability properties 

of runaway-dominated discharges are somewhat in their infancy, a serious 

quantitative comparison is, at present, not possible. However, 

certain qualitative features of the results of Chapter V may be of 

relevance; these include large growth rates near the rational magnetic 

surfaces (~vA/a) and regions of stability at q < l when the runaway 

electron drift frequency (= c/R0q) becomes large relative to frequencies 

characteristic of MHD (w <<D.). 
Cl 



CHAPTER II 

One-Dimensional 2 Time-Dependent Modeling of ORMAK Runaway-Dominated 

Discharges 

Large intensities of MeV range bremsstrahlung X-rays produced by 

relativistic electrons impacting the wall and limiter of the ORMAK device 

were observed in the early operation of this experiment. In the following, 

a model is presented and applied to typical data from several of these 

discharges. The classical production rate of runaways for typical 

ORMAK parameters is first examined as a function of the impurity content 

and degree of plasma ionization. Experimentally, it has been observed 

on a number of machines that runaways tend to be enhanced in discharges 

where poor vacuum, high impurity conditions are present. Next, the 

initial formation of the runaway beam is studied, taking into account the 

effect of magnetic field errors. The remaining part of the model is then 

the self-consistent acceleration of the runaway beam in an applied electric 

field. From this calculation, the toroidal current is obtained as a 

function of time and compared with experimental data. 

II .1. Runaway Production Rates 

The kinetic theory of runaway production in an ionized gas subject 

to an applied electric field has been examined by numerous authors 

including Giovanelli [3], Harrison [45,46], Dreicer [47], Kruskal and 

Bernstein [48-50], Gurevich [51-53], Lebedev [54], Kulsrud, et al. [55], 

and Connor and Hastie [56]. With the exception of Kulsrud, et al. (who 

numerically solve the Fokker-Planck equation), these calculations typically 

begin with the electron Fokker-Planck equation and then divide velocity 

16 
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space into various regions in order to obtain an analytic solution. In 

all cases, an infinite, homogeneous, quasi-steady-state plasma is assumed; 

collective effects are neglected; no magnetic field is present; and a 

nearly Maxwellian distribution (without trapped particles) is used. 

These calculations also apply only when the applied electric field 

is weak relative to the critical runaway field (E << E). This critical 
c 

field is usually defined as follows. When a field E is applied to an 

ionized gas, there will be a certain fraction of electrons in the tail 

of the distribution which, due to the inverse velocity squared dependence 

of the dynamic friction force, will be collisionally decoupled from the 

bulk of the plasma and can freely accelerate. The crossover point in the 

distribution function from collisional electrons to those which are 

freely accelerating occurs at a critical velocity, v , when the electric 
c 

field force just balances the dynamic friction force. The critical elec-

tric field is defined as that field for which the critical velocity equals 

the thermal velocity. 

The first extensive examination of runaway production was done by 

Dreicer [47] (1960) in a series of two papers. He first treated a fully 

ionized gas in static electric and magnetic fields using hydrodynamic 

equations. He found that the relative drift velocity between electrons 

and ions was not maintained at a steady-state value by collisions, but 

increased in time. At the critical field, the increase was rapid enough 

such that the drift velocity exceeded the thermal velocity within one mean 

free collision time. In a second paper the problem was treated using 

kinetic equations and dividing velocity space into two regions: one at 
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low velocities dominated by collisions, and a higher velocity runaway 

region where the electric field force predominates. It was assumed that 

electrons would be rapidly depleted out of the high velocity region by 

electric field acceleration. Runaway rates were calculated by examining 

the diffusion rate of electrons from the low velocity region to the higher 

velocity region. 

Kruskal and Bernstein [48-50] next treated the runaway problem and 

found it necessary to divide velocity space up into three and five regions 

for Lorentz and Maxwellian models, respectively, in order to obtain con-

vergent solutions of the Fokker-Planck equation. Theirs represents the 

most mathematically rigorous treatment and involves no ad hoc assumptions. 

However, the final result for runaway flux was obtained up to a function 

of the electric field strength times an undetermined constant which could 

pnly be evaluated by a numerical integration. 

Gurevich [51-53] and Lebedev [54] also examined the classical runaway 

flux for a weak electric field and were able to obtain closed-form answers. 

In similarity to Dreicer, they also divided velocity space into only two 

regions, but used an improved representation for the distribution function 

near the runaway regime. Gurevich pointed out that close to the critical 

velocity the distribution function deviates substantially from a Max-

wellian and becomes highly directional along the electric field. In this 

4 
regime, a series expansion in ~-1 (~ is the cosine of the angle between v 

and the electric field) was employed, i.e. 

4 2 
f (v,u) = @0 (v) + (~-1) ¢1 (v) + (~-1) ¢2 (v) + ... II-1 

Substituting this into the Fokker-Planck equation, the unknown coefficients 

• 
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up to ~l were determined iteratively. This was accomplished by first 

setting ~l to zero, solving for ~0 , then setting ~2 = O, solving for 

~l' etc. The distribution function was then matched onto a Maxwellian 

at the thermal velocity in order to determine the normalization factor. 

Runaway fluxes were determined by integrating over the right-half of 

velocity space (in the direction of runaway) resulting in the 

expression. 

where 
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The above equations are for the case of an arbitrary degree of plasma 
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ionization. The critical velocity is determined by balancing the electri~ 

field acceleration force and the retarding force due to collisions with 

neutrals and plasma electrons. It is given by 

F(v ) + mv v (v ) = eE. c c e c II-4 

where F(v ) = effective retarding force on an electron moving with c 

a velocity v in a gas of density N c n 

4 2 4rre N z mv = n ln c 
2 £ mv 

c 

collision frequency of an electron of velocity v with 
c 

= 

other plasma electrons 

4rre 
4 

N 
e 

m2v 3 
c 

ln 

2 mv D 
c 

2 
e 

Lebedev [54] followed a procedure similar to Gurevich's, but noted that 

Gurevich's distribution function was really only valid for velocities 

below v due to the iterative procedure employed in obtaining the functions 
c 

<P
0 

( v) and \ ( v). Lebedev employed an improved method and solved for 

by using an expansion in the small parameter E;E . 
c 

His 

expression for runaway flux is given by the following, and differs from 

Gurevich's by only the pre-exponential factor. 

rr V c exp S = 21/3 -l/2N (E )l/4 
e eo E II-5 

Kulsrud, et al. [55] numerically solved the Fokker-Planck equation 

for runaway rates and compared their results with previous calculations, 

They found that their work agreed most nearly with that of Kruskal and 
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Bernstein (provided the undetermined multiplicative constant was chosen 

to agree with the numerical result at a specific electr'ic field). 

Lebedev's calculation was also close; however, Dreicer's runaway rate 

was about two orders of magnitude higher than that of Kulsrud, et al. 

and Gurevich's was low by a factor of about 3-4. 

Conner and Hastie [56] have also recently considered relativistic 

corrections to runaway rates. They note that if the applied electric 

field is sufficiently weak, then the critical runaway velocity will 

become of the order of the speed of light. At this point, a relativis-

tically correct collision integral must be used; they use one given by 

Klimontovich [57]. The fact that v "t cannot exceed the speed of light crl 

results in a value of E/E .t = (kT /m c2 ) below which no runaways may crl e e 

be produced. They also found that significant corrections to the cal­

culation of Kruskal and Bernstein enter in when E/E •t < VkT /m c2 
crl e e 

For the parameter modeling of ORMAK discharges, the calculation of 

Lebedev has been found most appropriate. The corrections found by Connor 

and Hastie begin to be of importance during the steady-state phase of the 

ORMAK discharge and for reactor regime tokamaks; however, in the early 

part of the ORMAK discharge, when most of the runaways are thought to be 

produced, E/E > VkT /m c2 so that relativistic corrections to runaway 
crit e e 

rates are fairly minor. 

Since inORMAK, as in most tokamaks, the plasma parameters during 

the early breakdown of the discharge have not been well-diagnosed, several 

approximations had to be made in computing runaway rates. First, the 

resistivity was computed using the measured current and voltage; 
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• 
temperature was then obtained using Spitzer's formula with an anomaly 

factor of four (which was typical of the early ORMAK discharges). The 

neutral density was modeled by assuming an initial value and then depleting 

this in proportion to the rising plasma density such that total number 

of particles was conserved. Other parameters varied were the impurity 

content and the penetration time of the Ohmic heating field. 

A typical voltage, current, and density plot is given in Fig.II-1 

for a capacitor-driven runaway discharge and for a nonrunaway discharge 

in Fig. II-2. The major difference between these two shots was in the 

direction of the Ohmic heating field; reasons for this dependence will 

be examined in the next section. Substituting data from the runaway 

discharge into equation II-5 results in the fluxes which are seen in 

Figs .. II-3 and II-4. In Fig. II-3, the runaway rate is plotted 

against time for different values of z. For simplicity, it is assumed 

here that the average number of electrons per neutral atom and the 

effective ion charge of the plasma ions are the same number, z. Thus, 

the values of Z indicated in Fig. II-3 are used both in equations II-3 

and II-4 in calculating E and v and also in the Spitzer resistivity in 
c c 

calculating the plasma temperature using the measured. voltage and current. 

It is known thatthe ORV~ runaway discharges had a high level of impurity 

and thus a high Z; however, early in the discharge Z was probably at 

its lowest value. Treating Z as a parameter, it is noted that an increase 

tends to lower the initial peak in the runaway rate and to create a second 

peak later on in the discharge. The lowering of the initial peak can be 

readily explained by equation II-3 where increasing Z leads to an increase • 
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in E . Moreover, from equation II-4, the critical velocity v also 
c c 

depends on Z, but since it enters the calculation of E only through the 
c 

logarithmic terms, this dependence is relatively weak. The second peak 

which appears later on in the discharge is not related to the effect of Z 

on E . At the time when this occurs, the neutral density will have 
c 

dropped (according to the~model used here) to zero, thus removing completely 

the dependence of E on Z. The appearance of this peak has, however, 
c 

to do with the effect of Z on the plasma temperature. An increase in Z 

will result in an increase in the computed temperatures which, in turn, 

lowers E and causes the second peak in the runaway rate to appear. 
c 

In Fig. II-4, the runaway rate is plotted versus time for various 

values of another parameter which could not be measured, i.e. the neutral 

density. The values of this parameter which are shown represent the ini-

tial neutral density and it is assumed that the densities decrease as the 

plasma density increases. An estimate of ~1013 cm-3 for the initial 

neutral density is obtained from the pressure and temperature of the 

fill gas before the discharge. Increasing the neutral density results 

in a decrease in the runaway production since, according to equations II-3 

and II-4, this leads to an increase in both v and E • Physically, this 
c c 

reduction in runaway production occurs because inelastic collisions with 

neutrals provide an additional mechanism for electron energy loss. 

Another parameter which is introduced in the present calculation 

is the initial rise time of the induced electric field in the plasma. 

The voltage measured experimentally is the total external voltage around 

the torus and consists of resistive and inductive components. At early 

times in the discharge, the voltage applied to the plasma rises 
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rapidly; the time constant is a characteristic of the liner-plasma­

transformer circuit, i.e. the flux change which induces the Ohmic heating 

field must soak through the conducting liner and initially low tempera­

ture preionized plasma. Since the electrical characteristics of the 

liner-plasma-power supply circuit are not well known early in the dis­

charge, this time constant is treated as a parameter. For Figs. II-3 

and II-4, a value of 0.1 msec is used, and lowering this value results 

in more runaways. This is comparable to the time constant which is 

calculated by using the Spitzer resistivity and assuming that the 

initial preionized plasma in ORMAK has a temperature of 2 eV. 

II.2 Initial Formation of the Beam and Effect of Field Errors on Beam 

~ 

The early ORMAK discharges exhibited a striking dependence on the 

direction of the applied electric field. It was observed that a much 

lower level of runaway was present if the Ohmic heating field and toroidal 

magnetic field were parallel than if they were antiparallel. This 

effect was analyzed by Rome [6] who was able to relate it to the lack of 

closure of flux surfaces in the first few milliseconds of the discharge 

for the parallel case. When the two fields are antiparallel, flux sur­

faces can be closed within a certain volume in the discharge, but intersect 

the wall outside that volume. 

As was indicated in the previous section, runaway production is 

favored during the early part of the discharge. Since these runaways 

are at nonrelativistic energies for the first few milliseconds, they tend 

to be closely tied to the peloidal flux surfaces and any disruption in 

• 

• 
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these surfaces will lead to loss of the runaway population. At slightly 

later times the toroidal plasma current increases rapidly and closes 

the flux surfaces. However, by this time the plasma density has risen 

to a higher value while the Ohmic heating field has become lower; thus, 

runaway production is less favorable. 

As mentioned above, when the toroidal magnetic field and induced 

electric field are antiparallel, runaways are expected to have well-

confined orbits only within a certain volume of the discharge at early 

times. This consideration motivated the modeling of the runaways as a 

finite beam whose size was determined by the initial topology of the 

flux surfaces. In order to make a quantitative estimate of this size, 

the following expression for the flux function, as derived by Rome [6], 

was employed: 

NL~OIL b ln 1[(x-r1-a): + Y:Jr ~OIP 2 2 
~(x,y) II-6 = 2 (x + y ) 4TI R0 2 (x-r_+a) + y 4Tir 

L p 

where NL = number of toroidal field coils 

IL = current in the error coil 

Ro = major radius 

a,b = width and length of error coils 

= location of error coil loop centers 

The coordinate system is shown in Ref. 6. The beam size is 

obtained by first setting y=O (since ~ is symmetric in y)and x = -rp 

(limiter radius). Calculating~ at this point then gives the value 

of flux for which the outer edge of the plasma is just intersecting the 

limiter. Solving for a second value of x where the flux takes on the 
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same value gives the inside location of the flux surface - x axis 

intersection. The difference between these two locations then gives 

the size of the beam. In Fig. II-5, the radius of the closed flux 

surface region is plotted as a function of time for the discharge 

parameters of Fig. II-1. This shows that after about 0.5 millisecond 

the entire plasma volume (r = 23.5 em) should be well contained. p 

II.3 Acceleration of Runaways in Applied Ohn1ic Heating Field 

The free acceleration of runaways is now examined using the 

familiar relativistic equation of motion. Although the results of 

Fig, II-3 for Z > 1 indicate that the peak in the runaway rate may be 

shifted to a later time as Z increases, it will be assumed here for 

simplicity that all runaways are born at a single time, t 0 , early in 

the discharge with a negligible initial velocity. We shall also assume 

that the runaway current flows only in the ¢-direction and is localized 

inside a beam of radius a. The force equation then gives the following 

= 

+ 

+ 
-eE = 

+ 
e ()A 

-c-at II-7 

where A is the vector potential, m0 is the electron rest mass and y is 

the usual relativistic parameter. II-7 is readily integrated to yield 

the velocity given below. 

s v A II-8 = = c Vl+A'J.: 

_e_ + + 
where A =: [A¢(t,R) -A¢ (t

0
,R) 

m0c 

Note that A¢ consists of two parts: one from the flux change in the trans­

former core and the other from the beam-induced flux change. 

• 

• 



• 

-E 
(.) -

30 

1-

2 0 

10 

~ 

0 
0 

I I I -- TORUS WALL ' ,--- ....... \ 
/ ' \ 

~ 
R _, ' 

/ \ ' I 
~ 

·l 
\ \ / I I _.,., I 
' ./ 

...... __ 
,:: FLUX SURFACE WHICH 

- JUST INTERSECTS WALL 

·-·-._... . .-... ~-..... 1...-' _.,. 
............ . / 

/ 
;• 

I I 
I I I 
I 

:_!__ FOR TIMES IN THIS REGION, ALL 
1/ FLUX SURFACES ARE PREDICTED 
~ TO RUN INTO THE WALL 
• I I I 

0.1 

I 

0.2 

TIME ( msec) 

FIGURE II-5 

ORNL DWG. 73-3701 

- ··--·-·-·· ~--·- -

0.3 0.4 

Radius of Flux Surface which Intersects Torus Wall vs. Time. 

• 



32 

-+ -+ 
A~(t,R) = A~(t0 ,R) -2~;~R- J E:(t' )dt' -J B -+ 

E (t' R)dt' 
~ ' 

where e(t) = emf produced by the transformer core flux change 

B -+ 
E~ (t,R) = beam induced field 

II-9 

Since A~ at t=t0 is solely due to the transformer flux change~ the spatial 

dependence of A~(t0 ,R) is proportional to R-1 • 

The ~-component of Ampere's law may be written as follows in terms 

of the dimensionless vector potential A. 

+ a 1 a } aR R" aR (RA) = II-10 

Here axisymmetry has been assumed so that all derivatives with respect to 

~ are zero. The R,~,Z coordinate system is illustrated in Fig. II-6. 

The toroidal current density carried by the runaways is simply enRvR 

(nR =runaway density, vR =runaway velocity). 

II-11 

Substituting II-11 into II-10 and defining wPR as the plasma frequency 

for the runaway component results in the partial differential equation 

given below 

a 1 a 
aR 'R aR (RA) 

II-12 

To order the above equation with respect to inverse aspect ratio, it is 

convenient to use a new coordinate system defined by the following. 

R = R + r cos 8 
0 II-13 

• 

• 
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Z = r sin 8 

This r,8,¢ .coordinate system is also indicated in Fig. II-6 and its 

metric is (l,r,R). Transforming equation II-12 into this system 

results in the equation below. 

1 {' rR 'dA a R aA} A k2A 
rR 'dr a; + aer-ae + - = 0 II-14 

R2 yl+A2 

where k2 2 I 2 = w c pr 

Expanding II-14 in powers of s = r/R
0 

gives: 

l 
8) { ~r r (l+s cos 8) 'dA 1 a aA} - (1-s cos 

'dr 
+ rae (l+s cos 8) r a8 

A k2A 
-2 (l-2 € cos 8) = 0 

Ro Yl +A2 

Keeping only terms to zero order in s and assuming symmetry in the 

poloidal direction equation II-15 reduces to: 

A 

R 2 
0 

0 

II-15 

II-16 

This nonlinear equation can be readily solved in the two limits A>>l and 

A<<l. In view of equation II-8, these regions correspond to v~c and 

v<<c, respectively. It is expected that the limit A<<l would hold dur-

ing the early stages of acceleration while the opposite limit would 

apply at later times. In addition to these temporal variations, there 

are spatial variations in the speed of the electrons. Since the runaway 

beam is highly conductive, electrons near the center will be relatively 

well shielde·d from the electric field while those on the outer flux sur-

faces will feel the full force of acceleration. 

• 
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In view of this, the M. <l limit will be applicable near the center 

while the outside of the beam will approach the A>>l limit after 

enough time has elapsed to bring these outer electrons to relativistic 

energies. The solutions of equation II-16 may be written as given below. 

C 
0 

( t ) I 
0 

( kr) A(r,t) = M.<l 
II-17 

A(r,t) = -(kR
0

)2 + c
1 

(t) I
0

(r/R
0

) A»l 

where I
0 

is the modified Bessel function of zero order. The time 

dependent constants c
0 

and c
1 

are determined by the boundary value of 

the external field (i.e. the measured minus the beam and plasma inductive 

components) at the beam radius. This is given as follows: 

aAcp _ 
at -

l II-18 

Integrating II-18, the boundary conditions may be expressed as follows: 

AI -r=a 2mn
0

cR
0 

e II-19 

The second condition used in determining c0 and c
1 

comes from the 

assumption that the solutions II-17 must match at some radial position 

r* inside the beam where A ~ 1. The result is two transcendental 

equations for r*: one that applies to those early times before the 

outer electrons in the beam have reached relativistic energies (the 

M.< l limit) and another that applies to those later times when the outer 

electrons have already attained relativistic energies. The time t* at 

which this transition occurs is determined by the equation given below • 



b t* 
kai1 (ka) ln - I dt I )dt 1 + 1 0 II-20 a e = 

r 0(ka) 2mn0cR0 to 

The quantity t* is defined to be the time at which r*=a, i.e. for 

t:: t* the A« 1 solution applies inside the beam while for t>t* the 

A« 1 solution is used for et< r< r* and the A>>l solution for r*< r< a. 

The two transcendental equations for r* referred to earlier are given by 

the following: 

r*k 

= 

e 
t* 

r 0 (kr*) J dt' )dt' 

to 

Jj_ (kr*) 
b 

r
0

(a/R0 ) 
ln- + r

0
(r*/R

0
) a 

t* 
e J s(t')dt' + (kR0 )

2 

2TIR
0
m

0
c 

to 

+ kai ( ka ) ln E. 
1 a 

II-21 

(for t:: t*) 

[1 + (kR0)2] 

k2 2 2 b -- (a - r* )ln -
2 a 

II-22 

(for t>t*) 

Once the radius r* is determined as a function of time, then A(r,t) may 

be readily obtained from equation II-17 with the constants c
0 

andC
1 

given as below. 

c0 (t) = [r
0

(kr*)]-1 
II-23 

c ( t) = 1 + (kR0)2 
II-24 

1 r
0

(r*/R0 ) 

Using equation II-8 to relate A to the local electron velocity, the 

current density in the beam may be integrated over the cross-sectional 

area to obtain the total runaway current as a function of time. 
a 

I(t) = 27TnRecj S(r) r dr 

0 

II-25 

• 
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A r d r 

For :r< r* (the A<< l region), this integral can be calculated by using 

equation II-16 with the A/R~ term neglected. In the A>>l region, a 

convenient approximation is that A (l+A2)-l/2 ~ 1. These considera-

tions result in the toroidal current given below. 

I ( t) = 
{

r* 'dA 2 ,£. } 21TnRec 2 a; I + l/2 (a -r ) 
k r=r* 

II-26 

Using the solutions in equations II-17, II-23 and II-24 give the fol-

lowing currents, 

I(t) 
21TnRec ka r

1
(ka) 

= I
0

(kr*) k2 
t< t* II-27 

I(t) 
21TnRec 

[r*k 
r1 (kr*) 

= r
0

(kr*) k2 
+ 2 2 ] (a -r* ) t>t* II-28 

Besides total toroidal current3, a final quantity of interest in this 

model is the energy (or relativistic y) as a function of time. 

y = II-29 

Using equation II-8, this becomes the following: 

y = II-30 

II.4 Comparison of Theory with Experiment 

Comparison of the above theory with experiment can only be made 

through a parameter survey since no direct information is available on 

the size of the beam or the total runaway density. As was discussed in 
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Section II.l, calculations have been made of runaway density; however, 

this depends sensitively on factors such as the initial plasma impurity 

level, degree of ionization and penetration time of the Ohmic heating 

field. Estimates can also be made of the beam size based on the belief 

that the radius is determined from the effect of magnetic field errors 

on the early evolution of the flux surfaces. The runaway beam radius 

should, in principle, correspond to the radius of the flux surface 

which just intersects the torus wall at the time when the peak runaway 

production occurs. However, the effect of field errors on flux surfaces 

has been calculated only approximately by averaging over the flux sur­

faces. When beam sizes predicted by this approach are used in the runaway 

current calculation, the results only agreed with experimental values 

to within an order of magnitude. For the above reasons, the beam radius 

and runaway density were left as parameters in the calculation. 

Calculations of runaway beam currents have been performed using 

the methods developed in Section II.3 for a range of beam radii and run­

away densities. Data has been used from both the capacitor-driven case 

(Figs. II-1, II-2) and the battery-driven case (Fig. II-7). Runaways 

are all assumed to be produced at t 0=o. It is also assumed in these 

calculations that nearly all the observed current is carried by runaways. 

This assumption may be justified by the data presented in Figs. II-1 

and II-2. As mentioned above, Rome's analysis of field errors [6] 

indicates that for the electric field direction in the Fig. II-2 

discharge, the flux surfaces run into the wall early in the discharge, 

thus removing runaways. However, in Fig. II-1 the flux surfaces are 

closed and runaways may be freely accelerated. This led then to the 

• 

• 
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assumption that Fig. II-1 represents runaway current plus plasma current 

while Fig. II-2 represents the small amount of plasma current present 

in the discharge of Fig. II-1. Subtracting the current of Fig. II-2 from 

that of Fig. II-1 was thus assumed to give the runaway segment of the 

current. It was this current against which the above theory was compared. 

Figure II-8 shows results for the capacitor-driven case. It may 

be noted that various values of beam radius and runaway density can be 

chosen to give reasonable agreement with the experimental data. Lower 

densities with larger radii were found to result in a leveling-off in 

the current similar to that which is apparent in Figs. II-8a and II-8d. 

This occurs when all electrons across the beam reach relativistic ener-

gies so that further acceleration does not significantly increase the 

total current. At low densities, this occurs more rapidly because of 

the earlier penetration of the electric field into the beam. In Fig. 

II-9, the time evolution of the relativistic factor y is plotted as 

a function of the radial position in the beam. As pointed out earlier, 

the most energetic electrons are at the outer edges of the beam with the 

central electrons being least energetic since they receive less accelera­

tion. Figs. II-10 and II~l show results for the first 44 msec of the 

battery-driven case. It is found that only a relatively narrow range of 

radii and runaway densities would provide agreement with the experiment 

in this case (densities of 2-3xlo
11

cm-3 and radii of 5-6 em). Lower 

densities result in a leveling-off in current at too early a time in 

the discharge whereas with higher densities the leveling-off which occurs 

in the experimental data at about 3lf msec could not be obtained. 

• 
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The dip in the experimental data at - 15 msec is due to the fact that 

the voltage is driven negative when the capacitor banks are turned 

off and the batteries are connected; this was not included in the 

theoretical calculation, The time evolution of the relativistic factor 

y is presented in Fig. II-12 and shows a behavior similar to that of 

the capacitor-driven case. 

In addition to the above parameter study, another source of infor-

mation about the runaway beam radius is the horizontal plasma column dis-

placement. In ORMAK runaway-dominated discharges, large outward shifts were 

inferred from the magnetic loop measurements (-6 to 9 em). As was 

mentioned in Section I.2, similar observations were made on the Russian 

Tokamak-6 runaway experiments [15]. Vlasenkov, et al. [15] offered 

two possible explanations of this phenomenon -- one being that the major 

portion of the current is flowing within a 5-6 em radius beam and the 

other that the electron plasma pressure is highly anisotropic (p 11 >>p~ ). 

They found that if the runaway electrons are assumed to possess a 

longitudinal energy of 500-700 keV, then the large displacement can be 

explained without having to resort to the assumption of a small current 

channel (i.e. the internal inductance,~., is the same as for the normal 
1 

plasma regime). However, for ORMAK parameters, calculations based on the 

equilibrium theories of Mukhovatov and Shafranov [58], Ott and Sudan 

[59], and Mondelli and Ott [60] show that even with a highly anisotropic 

pressure (E - 1 MeV), it is necessary to choose a runaway beam radius 
II 

of the same magnitude as that obtained in the above parameter study 

(-6 em) in order to give agreement with the experimentally-observed 

shift. A further compelling reason for choosing a beam radius 
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significantly less than the plasma limiter radius is that a large beam 

subjected to an outward displacement (which is a large fraction of the 

limiter radius) would necessarily have to form a highly-distorted 

equilibrium and would probably hit the limiter early in the discharge. 

It may well be that the current dumps observed after ~44 msec in the 

battery-driven case (Fig. II-7) are due to a part of the runaway beam 

colliding with the limiter; however, if the beam radius were of the 

same order of magnitude as the limiter radius, these dumps would be 

expected to occur much earlier in the discharge. 

One further rough indication of the beam size comes from the 

damage pattern on the first ORMAK limiter. This also indicates that 

most of the energy was localized within a region of the same order as 

the beam sizes given above. 

In summary, the above considerations and parameter study lead to 

the conclusion that most of the runaway current is carried within a 

5-6 em region. If the runaways actually did carry most of the observed 

current and if the observed current dumps can be explained on the basis 

of the beam hitting the limiter (i.e. a loss of equilibrium rather than a 

loss of stability), then this would imply that low values of q (Kruskal­

Shafranov safety factor) near 1/4 are being attained in the runaway 

regime without macroscopic instabilities. This point will be returned 

to in Chapter V where a theoretical stability analysis will be presented 

in relation to the discharges considered in this Chapter . 



CHAPTER III 

Single Particle Drift Orbits of Runaways in Tokamaks 

An analysis of single particle orbits is the first step in con­

sidering a number of questions which regularly arise in plasma physics. 

Not only are orbit characteristics essential in relation to basic 

confinement, but they also are of importance in the areas of kinetic 

theory and stability analysis. 

The treatment given in the present chapter relies on the guiding 

center or drift approximation. This is obtained by averaging over the 

fast gyromotion and has been derived by various authors including 

Northrup [61], Bogolyubov and Mitropol'skii [62], and Bernstein [63]. 

Such a description of the single particle orbits is expected to be 

adequate for locating the spatial position of runaways in ORMAK due to 

the fact that the gyroradii are quite small. For example, in the 

extreme case of a relativistic electron which has a 90° pitch angle 

(the pitch angle is the angle between the direction of the particle 

velocity and the magnetic field), the gyroradius for a typical ORMAK 

toroidal field is~ y millimeters (where y = (l-v2/c 2 )-l/2 ). Thus, 

even at 10 MeV (y = 20.6), gyroradii are an order of magnitude smaller 

than the machine minor radius. 

In checking the validity of the drift approximation, one must also 

examine the conservation of the magnetic moment, ~. Since only static 

magnetic fields are assumed present, the conservation criterion is that 

the relative change in magnetic field strength seen by the particle 

over one gyroperiod is small; in a tokamak this change largely is due 

48 

• 

• 



• 

• 

to the 1/R falloff of the toroidal field. In the case of a runaway 

with a pitch angle near 90°, this criterion is readily satisfied because 

of the small size of the gyro-orbit relative to the scale length of the 

field gradient. In the other limit where v >> v~ , the change in field 
II 

strength over a gyro-orbit is given by the following. 

III-1 

6R is the distance the particle moves along the major radius direction 

(over one gyroperiod); this depends on the pitch of the field lines. 

If it is assumed that q=l, then 6R over one gyroperiod is given below: 

= 21TV 
__ 11 E_ 

Si R 
e 

where r =minor radius position of particle 

Si = cyclotron frequency 
e 

III-2 

For ~1 ~ c and ORMAK parameters, one finds that 6B/B ~ .2%. Thus, the 

conservation of ~ should be a reasonable assumption. 

In the following Chapter, an analysis is first made of the effect 

+ + 
of E x B drifts in strong runaway discharges. It would be expected 

that this drift would lead to an inward pinching of the runaway beam with 

time. This is shown to be relatively slow and thus the approximation 

made in Chapter II of a constant density, constant radius beam is valid. 

Next, effects of curvature and gradient drifts are considered in 

relation to the weak runaway regime. As was mentioned in Chapter I, 

this regime is characterized by a small population (~107 cm-3 ) of high 

energy (5-12 MeV) runaways. These occur both in the type A (high 
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• density, narrow current profile, high MHD activity) and type B (lower 

density, broad current profile, lower MHD activity) discharges. In 

type A discharges runaways leave the plasma region at early times 

whereas in type B discharges, these particles come out near the end. 

In both cases the loss occurs when the energy becomes too high for the 

orbits to be contained in the machine. This loss is in particular 

expected to be a smooth gradual process in the type B discharges 

where runaways begin intersecting the limiter during the flatop section of 

the current pulse when most of the discharge parameters are not changing 

rapidly with time. The situation in type A discharges is somewhat more 

complicated since runaways leave the plasma at early times when plasma 

parameters are changing rapidly. The analysis in Sections III.2-III.4 

will be in relation to type B discharges. 

+ + 
III.l E x B Shrinkage Effects on Beam Radius and Density in the 

Runaway-Dominated Regime 

The parameter study presented in Chapter II of the strong runaway 

regime made the simplifying assumption that the beam had a constant 

radius and constant density throughout its acceleration to relativistic 

energies. In the following, an analysis is undertaken of the approximate 

evolution of runaway electron drift surfaces in order to determine if the 

above assumption is a reasonable one. 

The model assumed is that of a toroidally-confined electron beam 

which is being accelerated by a longitudinal electric field. Since the 

electrons are sufficiently energetic that they suffer very infrequent 

collisions, it is assumed that no collisional particle transport out of • 
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the beam occurs, i.e. the electrons are perfectly contained. It is also 

assumed that the beam has been sufficiently accelerated so that the 

relativistic factor y = (l-v2/c 2 )-l/2 is large over the whole cross-

section. 

The basic equations involved in the analysis are the relativistic 

drift equation [61], the continuity equation, the conservation of 

canonical angular momentum, and Ampere's law (written in terms of the 

poloidal flux function~): 

A 2 A 

-+ el 
[-i +L 

-+ _ ~ ae1 ] A 

'VB v = v11 e1 
+- X B 

Ye Yem0 as 

III-3 · 

a~ + -+ -+ 

at 'il· (nRv) = 0 III-4 

III-5 

III-6 

where J¢ = -enRv¢ 

Ll*~ = R
2V· (R-2V~) 

~ = RA¢ 

A¢ = ¢ component of the vector potential 

-+ 

Here : 1 is a unit vector tangent to a field line (~=B/B), ~ = P~/2m 0B 
. . ( 2; 2)-l/2 
~s the magnet~c moment, m

0 
= electron rest mass, and y = l-v c • 

Both cylindrical and quasi-toroidal coordinates (r,8,¢) will be employed; 

A 

these are illustrated in Fig. II-6. e
1 

may be written in terms of the 
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poloidal flux function as: 
+ 

-~ 
A 

A 

A t~ X "J1j! III-7 
el t -- B cp RB 

In the following analysis, the drift velocity given by expression 

III-3 will first be written in terms of the surface quantity Y (1j! andy 

surfaces are related by equation III-5). This velocity is then sub-

stituted into the continuity equation III-4 which results in a form for 

the runaway density as a function of y. The field equation III-6 is 

then self-consistently solved to zeroth order in the inverse aspect 

ratio (cylindrical approximation). The requirement that the total 

number of runaways remain constant in time then gives an equation for 

shrinkage of the beam radius. 

In equation III-3 it is assumed that beam electrons have negligible 

perpendicular thermal velocity so that the magnetic moment is zero. 

+ + + + 
This leaves only Ex Band curvature drift terms. TheE x B drift is 

shown in the following analysis to result in a radial shrinkage of the 

electron density profile. The curvature drift term is in the Z-direction 

and produces a circulation of runaways around the minor cross-section 

of the torus; this is shown to distribute the runaways such that their 

density becomes a function only of the surface quantity y. Both of 

these drifts will be retained in the analysis and the above-mentioned 

effects will be treated by an ordering procedure. 

Substituting expression III-7 into equation III-3 and neglecting 

curvature in the poloidal magnetic 

+ 
+ B 
v==8c-+ 

B 

+ 2 2 
E¢'V1j! m0c 8 y + _..;:;_ __ _ 
RB2 eR 

¢ 

field results in: 
A A + 

[ 

1 z (tR • 'V1j!) 

- Bcp + RB2 
cp 

l~ ] 
III-8 
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where S = v/c 

-+ -+ 
Using equation III-5 to relate V~ and Vy, the above equation may 

be written in the following form. 

-+ 
v = 

2 2 
c (y -1) 

+ R 2w 2 
0 ce 

2 
c yh 

+ 2 
R

0
w 

ce 

III-9 
- 1. xVy _c_ A -+ h } 

¢ swce 

where w ce 

The second drift term in the 1. ¢ 
A 2 

third t¢ term is of 0 (p /aR0 ) where p 

h = 1 + r cos e 
Ro 

2 direction is of 0 (p/R0 ) and the 

= c/w and a is the beam radius. ce 

For typical ORMAKrunaway regime parameters [7] p/a ~ 3xl0-2 and 

p/R0 ~ 10-3 . Thus, the second and third t¢ terms may be neglected in 

comparison with unity. Writing the remaining terms in equation III-9 
A -+ A -+ 

in terms of an 1.¢' Vy, t¢ x Vy orthogonal coordinate system, the 

following equation is obtained. 

III-10 

+ 

-+ 
The Vy terms are, respectively, of O(vEp/ca) and O(vEp/cR

0
) whereas the 

A -+ 
t<PxVy terms 

0 
are of O(p/a) and O(vEp/cR0 ). Here vE = E¢/B¢ and vE/c-

4xl0-7 . 
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Neglecting small-order terms results in: 

+ ["' v = Sc 1.¢ + + (:t) h2 
'i/y 0 2 

B..~, w 13 
'+' ce 

II I-ll 

We now substitute this velocity into the continuity equation III-4, 

using E<P = (-1/R) (a~;at) and assuming axisymmetry (which implies that 
+ A 

'i/• (nv<Pl<P) = 0) to obtain the following equation: 

A + + 

l an* 2 [' 1.¢ X 'i/y) • Vn*] 2 
;r~ ;y £y_l = 0 c c III-12 

h2 at w h Wce2 Y 2_1 at ce 

where n* is the normalized density 2 (=nh /N) and N is the initial runaway 

density. 

The terms in III-12 are ordered by noting the existence of three 

time scales. These are defined as follows: 

= characteristic time for a change in runaway density to occur. 

= time for an electron with velocity near the speed of light 

to make one transit around the torus. 

TE = characteristic ~ime for a change to occur in particle 

energy as the electron accelerates in the applied electric 

field. 

-1) The first term in equation III-12 is of O(Td , the second of 0 

( -1 2) ( 2 -1 2) 2rrR0pTt /a and the third of 0 p TE /a , Equation III-12 may be 

simplified by observing that TE' Td >> Tt' i.e. electrons moving near the 

speed of light will make a large number of transits around the torus 

before significant changes occur in particle density or energy. Thus, 

• 

• 
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the second term in equation III-12 is much larger than the first or 

third terms. It may be noted that the second term came from the 
A -+ 

curvature drift and represents a flux of runaways in the l¢ x Vy 
-+ -+ 

(poloidal) direction whereas the third term came from the E x B drift and 

represents a flux of runaways in the Vy (radial) direction. Keeping 
-+ A -+ 

only the dominant term in equation III-12 requires that Vn*•(l¢ x Vy)=O; 

this implies n* is a function only of y, n*=n* (y). Substituting this 

result into equation III-12 and assuming that y is large enough so that 

all terms of O(y-2 ) and higher may be discarded, the equation given below 

is obtained. 
2 

c 
- n* 2 w ce 

III-13 

Using equations III-5 and III-6 to relate V2y to n* and keeping terms 

2 2 2 
only to zero order in the inverse aspect ratio results in V y~w n*/c . pe 

The terms in equation III-13 may then be ordered as: 

w ce 

(~ 
ce 

2 
c 

2 w 
ce 

n* ~ - 0 (pk) 2 -l 3t TE k = w /c pe 

For parameters typical of the ORMAK runaway regime [7] p/a - 3 x 10-2 

-1 
and pk - 10 • 



Neglecting all terms in equation III-13 which are down by an 

order of magnitude or more results in the following non-linear Ricatti 

equation: 

dn* *2 ---em =0 
dy 

which has the solution: 

III-14 

III-15 

The singularity in n* which occurs at y -1 = a represents an 

approximate limitation on y for a fixed w and w 
pe ce This may also be 

viewed as a limitation of the particle energy density obtainable in a 

runaway discharge; the inequality y ~ a-l may be written equivalently as 

2 0 2 
Nym0c ~ (B¢) /~0 , i.e., the runaway electron energy density must be 

kept less than twice the toroidal magnetic field energy density. Such 

a limitation comes about from an inward collapse of the runaway beam on 

-+ -+ 
itself due to the E x B drifts. The accumulated effects of these 

drifts are dependent on jE¢ dt (see equations III-19 and III-20 below), 

the total volt-seconds applied to the beam. The shrinkage also depends 

0 on the B¢ field strength since electrons must move perpendicularly to 

-+ -+ 
the field in their radialE x B drifts. A larger toroidal field energy 

density would be expected to require a larger jE¢dt (runaway energy 

density) for beam collapse to occur. It is interesting to note that 

the above limitation is identical to the firehose stability criterion 

which will be derived in Chapter IV; since the firehose limit does not 

directly depend on the presence of an applied electric field, this is 

apparently only coincidental. 

Using equation III-15 for the runaway density, it is possible 

to make an estimate of the radial shrinkage of the runaway beam. 

• 

• 



• 

• 

57 

-1 2 Since a - 10 and Y-6 to 8 for typical ORMAK runaway discharges, 

ay is a small quantity and n* may be adequately approximated by expanding 

to first order in powers of ay: 

n* ~ 1 + ay III-16 

The beam shrinkage as a function of time is then determined by requiring 

the total number of beam electrons to remain constant in time: 

27f 2n a 
f d¢ f d8 f drRrn*(y) 
0 0 0 

= 

where a0 is the initial beam radius. 

III-17 

To perform this integral, it is necessary to determine y as a 

function of rand t. This is found by substituting expression III-16 

into the field equation III-6 and using III-5 to relate y and~. The 

boundary condition on~ is given (as in ref. 7) by the measured voltage 

minus the inductive component of the beam. It shall be assumed, since the 

large y limit has been taken, that all runaways are moving near the speed 

of light and that the total beam current is constant in time. Performing 

these manipulations, the following transcendental equation for the beam 

radius, a, as a function of time is obtained: 

k ,;-;;- a 
I

1 
(k faa) 

r
0 

(k yaa) 
III-18 

Since equation III-18 cannot be directly solved for a, two limits will be 

examined: k yaa >> 1 and k Vaa << 1. The large k ¥aa limit gives 

the expression below. 

a ::: 
t 

f 
0 

E d t 1 
] 

-1 
III-19 
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while small k ~a limit gives the following. 

a = r~ + 

e t ] -l/2 
f € d t' 
0 

III-20 

It should be clear from both of these equations that the beam radius 

decreases with increasing volt-seconds in both limits. 

A rough estimate of the above shrinkage effect for the ORMAK run-

. 1011 - 3 6 J~ d t' = 0 3 lt o d away reglme, e.g. ~ = em , a = em, v • vo - sec n , 

-2 B¢ = 1.2 wb•m , indicates that the beam radius should shrink no more 

than 10% and that y - 140. Here y denotes the value of y where max max 

the beam collapse would be expected to occur. Thus, drift orbit effects 

are relatively minor and since a= 7xl0-3 , equation III-15 shows that the 

density is nearly constant over the beam cross-section. However, for 

higher energy density beams, more significant effects might be observed, 

e.g. if~= 2x1012 cm-3 , a= 10 em, fs d t' 0.6 volt- seconds, B¢ = 
-2 5 wb•m , then the beam radius should shrink by roughly 25%. In this case, 

120. 

III.2 Curvature Drift Effects 

Throughout the drift orbit analysis in the present section, the 
++ 
ExB term will be neglected since, as shown in the preceding section for 

runaway-dominated discharges, it has a relatively minor effect; this 

is also expected to be the case for high energy runaways in normal dis-

charges. This drift is then implicitly included again in Section III.3 

where the change in minor radius of a relativistic electron undergoing 

acceleration is examined; however, the effect found there is an expansion 

• 

• 
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of the orbit's minor radius which predominates over any gradual 
++ 

shrinkage due to ExB drifts. 

The remaining terms in the drift equation are then the gradient 

and curvature drifts. 
p2 A 

A 

[ ~e 
+ dell + el VB -

II 

vd = X yem
0 

as B 

1 2 2 III-21 

Rrt; ( Vj, + v..L 
= _,_ 

2 

These two drifts are both approximately in the vertical direction 

(along the Z-axis in Fig. II-6). When added onto the basic motion along 

field lines, they affect the orbits in various ways depending on which 

one predominates. Toroidal orbits have been discussed in some detail 

in references [4], [64], and [65]. In the case where the curvature 

drift is predominant, the orbits are displaced off-center from the 

centroid of the current distribution either inward or outward, depending 

on whether the particles are moving antiparallel or parallel with the 

toroidal current. Runaways, of course, are always antiparallel to the 

current and in ORMAK type B discharges are displaced outward. When the 

gradient drift is of importance, mirroring of particles can occur as they 

move into the toroidal field gradient leading to the well-known banana 

orbits. 

For runaways which are undergoing acceleration, the predominant 

drift is expected to be the curvature term (i.e. v1~/RrtT) since v
11

>>v.L. 

The gradient drift is only expected to possibly be of importance when the 

voltage is off and runaways begin slowing down; as long as they are under 

acceleration, energy is primarily going into ~I • Since the area of major 
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interest relative to the ORMAK type B discharges is the gradual loss of 

runaways during the steady-state portion of the discharge, the gradient 

drift will be neglected in the following section. It will be included, 

however, in Section III.4 where trapping boundaries will be examined 

for runaways which are just intersecting the limiter. It might be 

also noted that synchrotron radiation should strongly limit the amount 

of pitch angle scattering which could accumulate for high energy electrons. 

III.2.A. Runaway Orbits for Flat Current Profiles 

Orbits are first examined here for the case where the toroidal 

current distribution is flat. The reason for considering this case is 

because an exact analytic,treatment is possible. 

One method of determining particle trajectories is by using the 

canonical invariants of the motion. For the tokamak, a convenient 

invariant is the canonical angular momentum, P ¢ . The invariance of P ¢ 

depends on the axisymmetry of the device (i.e. the fact thatd/d¢ of 

all quantities equals zero) and is given below. 

p = 
¢ 

e 
c 

III-22 

For a flat current profile Be and~ may be written as follows [66]. 

Be (3 (r) 
Ro 2 I r Ro 

(r :_ ) = ~ 

cr 2 r 
R L R L 

2 
III-23 

fr 
R

0 
I r 

~ = Be R d r = (r ~ r1 ) 
0 2 

cr1 

where rL = radius of current carrying region 

Ro = major radius of torus 

• 

• 



• 

• 

61 

I = total toroidal current 

Using the poloidal flux as given above in equation III-22 results in the 

following: 

2 
eR0Ir III-24 

2 2 c r 
L 

Since r
2 = (R-R0 )2 

+ z2 (see Fig. II-6 for coordinate system) and P¢ 

is known to be a constant over the orbit, equation III-24 is simply the 

equation for a shifted circle, as may be se~n by completing the square. 

R0ei { 2 
p ¢ + constant terms = - 22 (R-R0-L\) + 

c rL 

-- ppol (rL) 
where L\ = outward orbit shift ~-~A-----

= poloidal gyroradius evaluated at r = r 
L 

= 

A = 

rG = p 

Ro 
aspect ratio = 

rL 

III-25 

The orbits then are circles which are shifted outward from the 

center of the current distribution by an amount pp01 (r1 )/A. By examining 

the drift velocity (equation II-21) and the motion along field lines, 

one may also show that the center of these orbits is the stagnation 

point. This is defined as the point at which the vertical drift cancels 

the vertical component of the motion along field lines, i.e. 

2 
v11 

= III-26 
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III-27 

For the current profile to be examined in Subsection III.2.B, the orbits 

are not exactly circles (although they are close) and the orbit center 

does not exactly coincide with the stagnation point. 

III.2.B. Runaway Orbits for ORMAK TyPe B Current Profiles 

The current profile for ORMAK type B discharges has been inferred 

from laser Thomson scattering measurements of the electron temperature 

~7] and assuming that current is proportional toT 3/ 2 . This class of 
e 

discharges is characterized by having much broader current profiles than 

those of the type A discharges. Various analytic fits have been made 

to the type B profiles, but the one used here will be the following: 

j(r) 
3 

= j [1 - (E-) ] 
0 r

1 

r
1 

= radius of current region (or limiter radius) 

III-28 

A plot of the above current profile along with B8(r) and q(r) is shown in 

Fig. III-1. As may be seen, B8(r) is larger over the entire radius in 

this case than for a flat current profile. This will allow higher energy 

orbits to be contained for the type B profile than would be the case 

in a flat current profile. 

First, an approximate analytic calculation will be made of the 

orbit shift using the same methods as in Subsection III.2.B (i.e. 

conservation of P~). Next, orbits will be presented which are obtained 

by a numerical integration along the trajectories for those orbits which 

are just intersecting the outside of the limiter. It is of particular 

interest, with regard to interpreting the experimental results, 

• 

• 
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B8 , J~, and q as a Function of Radius for an ORMAK Type B Current Profile . 
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to determine under what conditions of energy, current and orbit radius 

this intersection occurs. These numerical results will then be compared 

with the analytic estimate. 

For the current distribution of equation III-26, Be and the 

poloidal flux function are given as follows: 

Be (r) 
20IrR

0 [ ~ - t (~Ly] = 2 3r
1 

cR 

2 

[!- L(E-YJ ljJ(r) 
20Ir R

0 = 2 4 25 r 1 3r1 c 

Here I is the total toroidal current. 
rL 

I = 21T f r dr j ( r ) 
0 

= 

III-29 

III-30 

Substituting the above results into equation III-22 for P¢ gives the 

following: 

At this point, it is necessary to make an approximation in order to 

analytically obtain the orbit shift. The approach taken will be to 

neglect the (l/25) (r/r
1

)3 term in comparison with l/4. The neglected 

term is an order of magnitude less than the one retained for r /r 1 < 0. 85. 

This approximation should not be unreasonable except for orbits with 

large minor radii ~ r
1 

or which are shifted far out near the limiter 

so that they spend most of their trajectory near r ~ r
1

. The resulting 

equation for P¢ may then be written as follows: 

• 

• 
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+ z2 
+ constant terms ] III-32 

III-32 is the equation of a shifted circle with the shift, 6, given as: 

6 = III-33 

In order to more adequately examine drift orbits for the above 

current profile, a numerical drift orbit code developed by J. A. Rome 

and J. C. Twichell at Oak Ridge has been employed; this code integrates 

the drift equation (III-21) from a specified set of initial conditions 

using a Cauchy-Euler scheme. It assumes circular, centered flux surfaces. 

The step size for the integration method is automatically adjusted in 

order to maintain a certain prespecified accuracy; for the orbits 

calculated here the relative accuracy is set at 10-4 . In Figs. III-2 

and III-3 a series of cases are presented for a range of energies and 

toroidal currents. The orbits are projected back onto a minor cross 

section and the first orbit on the left is at l/2 MeV while the remaining 

ones go up in l/2 MeV steps to 15 MeV. All of these orbits are started 

out near the outside of the torus (r/r
1 

= .99) on the equatorial plane 

and thus represent the marginal condition for orbits to be just 

contained. It is assumed that the magnetic moment is zero (pitch 

angle = 0°) for all of these cases. 

The marginal condition for orbits to be just confined may be written 

as follows: 

6 + r . = r
1 Cl 

where 6 = shift of the orbit center away from center of torus 

III-34 
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FIGURE III-2 

Oroit Trajectories Projected onto a Minor Cross-Section for Relativistic 

Electrons of Energies Starting at 1/2 MeV and going up in 1/2 MeV 

Increments for 10, 20, 40, 60 kiloamps Toroidal Current. 
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FIGURE III-3 

Orbit Trajectories Projected onto a Minor Cross-Section for Relativistic 

Electrons of Energies Starting at 1/2 MeV and going up in 1/2 MeV 

Increments for 80, 100, 125, 150 kiloamps Toroidal Current . 
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r . = critical orbit radius where orbit just intersects the 
Cl 

limiter 

r 1 = limiter radius 

Using equation III-31 for 6 results in the equation given below: 

+ r . 
Cl 

= III-35 

This can also be written in the following manner: 

+ r . = III-36 
Cl 

where IA = (k Amps) 

is the Alf'ven current 

III-36 then defines a relation between the energy of the electron (or y), 

the toroidal current and the radius of the orbit which is just beginning 

to lose confinement. A similar relation may be found for the flat 

current profile. The two cases are given below. 

i-;!.l = I 

iy~l = I 

A r 
(1- ci) 

5.13 rL 
(Type B current distribution) 

A r 
(l - ci) 

17.1 rL 

(Flat current distribution) 

where A = aspect ratio = 
Ro 
rL 

III-37 

III-38 

In Fig. III-4 both of these are displayed along with a plot of 

• 

• 
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~Ygl /I vs. r ./r1 which is obtained from the numerical calculations. 
Cl 

The latter curve has been deduced from the orbits plotted in Figs. 

III-2 and III-3 as well as runs which are not shown in Figs. III-2 

and III-3 at 2kA, 4kA, 30kA, 50kA, .•• , 90 kA (the curve labeled 

orbit expansion will be discussed in the next section). The lines in 

Fig. III-4 define the transition region between confined and unconfined 

orbits; orbits corresponding to parameters above these lines are 

unconfined whereas orbits corresponding to points below the lines are 

confined. 

As may be seen, the line obtained from the numerical orbit 

integrations deviates from the analytic approximations for the type B 

profile at low values of r ./r
1 

(< .3) and also in the range .5 < r ./r
1 Cl Cl 

< l; the two calculations are always within .5 IA/I of each other. 

The deviation at the high values of r ./r
1 

might be expected since the 
Cl 

analytic calculation assumes (r/r
1

)3 << l. The deviation at the lower 

end of the curve has to do with the fact that the shape of these orbits 

deviates substantially from circular as may be seen from Figs. III-2 

and III-3. The elongation along the major radius which is present for 

the inner orbits in Fig. III-2 is caused when an orbit comes close to 

the maximum in Be (see Fig. III-1) such that one side of the orbit is 

just to the inside of Be and the other side is just to the outside max 

of Be . This results in a relatively larger rotational transform 
max 

over the top and bottom of the orbit than on the sides. Thus, the 

vertical drift term is more important on the sides and relatively less 

important on top and bottom. This, then leads to the observed elongation. 
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As may be seen from Fig. III-1, Be occurs at r/r
1 

~ 0.86 for ORMAK max 

type B profiles. 

Fig. III-4 demonstrates, as was mentioned earlier, that the flat 

current profile results in substantially poorer confinement properties 

for high energy runaways than the type B profile. This may be ex-

plained from Fig. III-1 where it is clear that the poloidal field Be, 

and thus the rotational transform, is larger over the discharge area 

for the type B profile than for the flat profile. 

III.3 Expansion of the Orbit Minor Radius with Applied Electric Field 

The orbits which were investigated in Section III.2 represent the 

final position of runaways just before they impact the limiter and 

produce bremsstrahlung which can be experimentally measured. It is 

also of interest to know how the orbits evolved to this position as 

they were accelerating. It would be expected that the center of the 

orbit will gradually displace further out from the center of the 

current distribution as the electron accelerates to relativistic 

energies; however, the question of whether the minor radius of the 

orbit, r . , as it is just intersecting the limiter is the same as at 
Cl 

earlier times needs further examination. This is treated in the pre-

sent section. 

The calculations to follow will demonstrate that as a runaway 

accelerates, the minor radius increases with time. On the surface, 

this may appear to be inconsistent with the results of Section III.l; 

there a slight shrinkage was found in the beam radius for the strong 

runaway regime. The reasons for the contrasting results of these two 
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sections arise from the differing physical models used. In the present 

section, single particle runaway orbits are analyzed assuming that the 

runaways carry a very negligible fraction of the total toroidal current 

(as is appropriate to the weak runaway regime); this allows one to 

decouple the single particle orbit problem from the self-consistent 

poloidal magnetic field problem. In Section III.l this simplification 

was not possible since runaways were assumed to carry all of the 

toroidal current. Thus, evolution of the orbits of Section III.l 

was self-consistently coupled with the poloidal magnetic field 

description. As a result, large changes in the minor radius of the 

orbits did not occur, as they were accelerated, since this would 

also have caused substantial changes in the toroidal current distri-

bution. However, for the weak runaway regime, sizeable changes in 

the minor radius of the accelerating orbits are possible since the 

runaway component accounts for only a negligible fraction of the 

toroidal current (< .1%). 
-

III.3.A. Flat Current Profile 

The flat current distribution will be treated first using the geo-

metry illustrated in Fig. II-6. The toroidal current, I, and electric 

field, E¢' are in the - ¢ direction; the runaway velocity, v¢, is 

in the + ¢ direction. Centered circular flux surfaces are assumed so 

that the flux function is given as in equation III-23. 

~(R,Z) = III-39 

This problem will be treated using the Lagrangian equations of • 
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motion. The Lagrangian for a relativistic electron in space-time form 

is given by the following: 

.I 2 2 
Yl- v /c 

c III-40 
e --

In the subsequent calculations, electric fields due to a potential 

(e.g., radial electric fields), will be neglected so that¢= 0. 

The equations of motion are then as indicated below. 

d (31) 31 - -- -- - Q = force in ith coordinate direction dt d. d q. - i 
qi l 

III-41 

Since the only force pres~nt is that due to the electric field E¢' 

only the ¢ component of III-41 will be considered. Axisymmetry is 

assumed so that d L/c) ¢ = 0, resulting in the following. 

where €¢ = toroidal voltage 

Integrating III-42 with respect to time and substituting the flux 

function as given in III-39 one obtains the equation given below. 

e J E (t')dt' + P0 
27f ¢ ¢ 

eR0I 
---2 2 

c r
1 

III-42 

III-43 

Here P¢
0 

is a constant of integration. Its significance is determined 

by setting t = 0, v¢ = 0, and r = r 0 , the initial radius before 

acceleration. One then obtains the following. 

0 eR0I 2 
p¢ - - 2 2 ro 

c r
1 

III-44 



Equation III- 43 may then be written in the form given below. 

III-45 

Completing the square on the right-hand side of equation III-45 

results in an equation for shifted circular orbits with a minor radius 

which depends on time. 

2 
r1 2 

+- p 
R2 pol 

0 
III-46 

In order to complete this description of orbits, it is necessary to 

determine the time dependence of p 
1 

in a constant applied electric po 

field. This may be obtained by again using the Lagrangian given in 

III-40. The total time derivative of 1 is given by the following: 

dL -= 
dt 

dqi + ~ ~ dqi 
dt i d cii dt 

III-47 

It has been assumed here, for the sake of simplicity, that 1 is not 

explicitly time-dependent - as it would be, for example, in the current 

build-up and decay phases of the discharge. These effects could be 

incorporated by adding a a 1/ a t term to III-47 Using equation III-41 

in the above, one obtains the result given below. 

d1 -= 
dt 

III-48 

. 
Here ~ is the angular frequency about the torus axis. Integrating III-48 

then gives the following. 

· a 1 e • 1 + constant = L: q. ,.......- -- fdt' ~ (t' )E (t') • ~ d q. 2'IT ~ 
~ ~ 

III-49 
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By setting t = 0 and y =l the left-hand side of this equation may be 

2 
identified as m0c , the rest mass energy. For a constant electric field 

III-49 results in the equation given below. 

In 

where ¢ = total angular distance traveled (radians) during 

acceleration 

t 
= J ~ dt' 

0 R 

calculating ppol' the 

m0c r
1 3 { 

ppol = 2ei [1 

approximation is made that v¢ ~ Sc. 

e¢cq, 12 t2 + 2 - l 
21Tm

0
c 

III-50 

III-51 

A reasonable approximation for runaways in ORMAK is that the total 

angular distance ¢ traveled around the torus by the end of the discharge 

should be adequately given by ¢ = cT/R0 where T is the time over which 

acceleration occurs. This may be justified by the fact that the run-

aways reach relativistic velocities early in the discharge. ppol 

under this approximation becomes the following. 

III-52 

Substituting this into equation III-46 results in the orbit locus given 

below. 

( r )2 + z2 R-R - L P o - pol 
Ro 

(y- l)] 

2 3 2 

( rRLO ) (meoic ) 2 2 (y - l) = r (t) III-53 



Plots of r/r0 and 6 for several different initial orbit radii, 

energies, and toroidal currents are given in Figs. III-5 and III-6. 

III.3.B. ORMAK Type B Profile 

The preceding calculations may be readily modified for the case of 

an ORMAK type B current profile by making similar approximations as 

those used in Section III.2.B. At present, the numerical orbit inte-

gration code used in III.2.B. is not capable of treating the orbit 

expansion effect which occurs in an accelerating runaway; thus, only 

an analytic calculation is presented. 

The flux function in this case was given by equation III-27 as the 

following: 

20IR0r 
2 

1}; (r) = 2 
3r1c 

III-54 

Again, as in Subsection III.2.B., the second term in brackets will be 

neglected since it is an order of magnitude less than the first for 

r/r
1 

< .85 The remaining derivation then proceeds in an analogous 

fashion as that of Subsection III.3.A. and the equation given below is 

obtained for the orbit locus as a function of energy and current. 

3 rL 2 2 2 
(R-R p ) + Z = r 0- 5 R pol 

0 III-55 

2 2 2 c3mo { _;j_ I -v y2 - 1] where r = r - rL -1 
0 -- 5 y 

ei 
3 

(r1 )2 2 -1)} moe 
- .09 ei 

- (y 
Ro 

Comparing III-55 and III-53 it may be seen that the minor radius of 

an orbit being accelerated in a type B current profile expands more 

• 
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slowly and shifts outward a smaller amount than for the flat current 

profile. For the case where y >> 1, the dependence of the radius is 

given as follows in terms of r
0

, the initial orbit radius before 

acceleration. 

2 2 l/2 

r [ 1 + 
ppol rL ] = 

ro R2 2 
0 ro 

III-56 

(flat current profile) 

2 2 ]1/2 
r [1 +.2_ ppol rL 
-= 2 ro 25 R2 

0 ro 
III-57 

(ORMAK type B profile) 

In Fig. III- 7 a plot of I A/I vs. r 0/r 
1 

is indicated for several 

energies using equation III-55. Here the radius plotted on the horizon-

tal scale is the initial radius r
0 

of the orbit before acceleration was 

applied. This line then represents the orbits with initial radius r 0 

which will just intersect the limiter by the time they reach an energy 

(y - l)m
0

c2 in a toroidal current I. The minor radius which they have 

as they intersect the limiter then may be obtained from the ORMAK type 

B curves plotted in Fig. 4. 

III.4 Effects of Finite Pitch Angle (Gradient Drifts) on Runaway Orbits 

The preceding analysis of Sections III.2 and III.3 has treated the 

case where the pitch angle is equal to zero. In the present section, 

this constraint will be relaxed and trapping boundaries are investigated 

for runaways which are just intersecting the limiter. The rationale for 

considering this problem is to determine the amount of pitch angle 
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• scattering which must take place before significant changes occur in the 

orbits away from the untrapped cases considered in Section III-2. 

This is of importance in interpreting the dumps of hard X-rays seen in 

ORMAK type B discharges since one would like to infer from these measure-

ments the radial location from which the runaways came. As was pointed 

out earlier, it is expected that vii >> vJ.. for runaways; however, they 

will always have a certain finite pitch angle. Measurements of enhanced 

microwave emission from runaways may eventually reveal information on 

the amount of transverse energy in this component. 

In a tokamak, mirroring of particles can occur as a result of 

moving into the region of higher toroidal field on the inside of the 

torus. If one gradually increases the pitch angle on a given orbit, 

then the point where vii = 0 will first appear on the equatorial plane. 

This first, barely-trapped orbit will be D-shaped; as the pitch angle is 

further increased, two vII = 0 points will be present and the orbit becomes 

banana-shaped. The transition point from an untrapped to a trapped orbit 

then occurs with the presence of the D-shaped orbit where vii = 0 on 

the equatorial plane. The onset of this particular orbit will be investi-

gated in the present section for high energy runaways. 

For a relativistic particle, v 11 may be written in the following form. 

2]1B III-58 

where E = energy = (y - 1) m
0

c2 

• 
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~ = magnetic moment 

Thus, the trapping boundary for the relativistic orbits is defined by: 

1 III-59 

At this point, it is convenient to define a pitch angle, x, with 

reference to the particle's velocity at the outermost edge of the 

torus (at R = R0 + r
1 

-1 

where it is just beginning to intersect the limiter) 

by X = tan (v.~../v 11 ) • The magnetic moment, ~' may then be written as: 

2 
Y mo(Ro 

2 + r ) v 
L 

. 2 
sln X 

III-60 

Here it has been assumed that the magnetic field is equal to the toroidal 

field, B = B0R0/R. The trapping condition may now be written in the 

following form. 

1 Ro + rL . 2 . 2 
0 1-- - S sln X = 

y2 Ro - r c 

or = ~ 
III-61 

sinx 
c 

Ro + rL 

where r = the minor radius to the position on the equatorial 
c 

plane where v
11 

= 0 

The position rc must now be determined from the conservation of P¢. 

It will be assumed that v 11 ~ v¢; P¢ is then given as below. 

P ¢ = ym0R c S cos X - ~ V; (r) 
c III-62 

• 
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For the orbit which is just intersecting the limiter, the position, r , 
c 

where trapping just begins, is found by setting P¢ at r = r 1 equal to 

r = r c (where v11 = 0). 

ym
0

(R
0 

+ r
1

) c 6 cos x - ~ ~(r ) = - ~ ~(r ) c L c c III-63 

Obtaining r for general current profiles is difficult due to the 
c 

complicated dependence of~ on r. However, for a flat current profile, 

or for the approximate ORMAK type B profile used in Section III-2, 

r may be readily obtained and is given below. c 

2 2 
[l 

IA Ro + rL 
cos x] r = rL c I Ro 

(flat profile) III-64 

cos X] 

(ORMAK type B profile) 
I 

where IA = Alfven current= 17.1 6Y KAMPS 

Now that solutions are obtained for r in terms of the pitch angle, 
c 

the trapping boundary is found by combining equations III-64 and III-61. 

(A + l) (cos x) 3 IA 
2 cos X + AI = 0 

(flat profile) 

(A+ l) (cos x) 3 - 2 cos X + ; :~ = 0 

(ORMAK type B profile) 

here A = aspect ratio = R0/r1 

III-65 

These two equations determine the pitch angle X where trapping begins for 

the runaway just intersecting the limiter. They have been solved for a 

range of the parameter IA/AI and the results are plotted in Fig. III-8. 
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For each of the two curves shown, electrons corresponding to points 

above the line are trapped while those below it are untrapped. As may 

be observed from the plot, higher energies and lower currents (i.e. 

higher values of IA/AI) reQuire larger pitch angles for trapping than 

at lower energies or higher currents. This may be explained by the 

fact that as IA/AI becomes large, the inside edge of the orbit is 

displaced farther out (i.e. r is smaller); thus the trajectory does 
c 

not move as far into the toroidal field gradient and a relatively 

larger pitch angle is reQuired for trapping. A similar explanation 

applies to the difference between the flat profile and type B profile 

curves. The type B orbits are better confined (more nearly centered) 

than those for the flat current profile. They therefore, in general, 

move farther into the toroidal field gradient and will become trapped 

at relatively lower pitch angles. 

All points to the right of the dashed lines in Fig. III-8 correspond 

to unconfined orbits. 

In addition to the above calculations, a number of cases have been 

run using the drift orbit code of Twichell and Rome for ORMAK type B 

current profiles; these are displayed in Fig. III-9. Energies of 

1 MeV, 2 MeV, 3 MeV, 5 MeV, 10 MeV are included with pitch angles 

(x = tan-l v~/vu) of 0°, 20°, 40°, 60°, and 80° at each energy (for 

100 kiloamps toroidal current). As may be seen, a significant devia-

tion from an untrapped orbit (x = 0°) does not occur until the 60° 

pitch angle case. The 60° and 80° orbits are trapped banana orbits 

which become fatter as the energy is increased; at 10 MeV the 60° orbit 

is no longer trapped, but has become barely untrapped. These trapping 
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boundaries are in agreement with the type B profile curve of Fig. III-8. 

The conclusion then is that for pitch angles of 40° or less, the pre­

dominant effect on the orbit is caused by the curvature drift (i.e. the 

orbits are reasonably well approximated by X= 0°). 

III.5 Relevance of Orbit Theory to Hard X-ray Dumps in ORMAK Type B 

Discharges 

The experimental results for weak amounts of runaway in ORMAK type B 

discharges were mentioned earlier in Section I.2. The typical signature 

left by runaways in these discharges is a gradual dump, beginning at 

around 35 msec. The energy and intensity then monotonically increase up 

until the beginning of the current decay (at about 60 msec) where the 

peak intensity and energy occur. The maximum energies are in the 10 - 12 

MeV range and the intensities indicate that roughly 1013 runaways were 

present in the discharge (corresponding to a density of around 107 cm-3). 

The single particle orbit theory presented in this chapter is thought 

to provide a valid explanation of the observed loss of runaways. The 

curves of Fig. III-4 indicate that there are a class of orbits which will 

become unconfined for runaway energies and toroidal currents characteristic 

of type B discharges. Certainly the final loss of these of the particles 

may be affected by such factors as interaction with image currents in the 

wall, toroidal field ripples, etc. However, the basic gradual outward 

displacement of the orbits with increasing energy should be adequately 

described by the drift orbit model developed here. 

There is no direct experimental means of measuring the minor radius 

of the orbit; this quantity must be deduced from the theoretical model 
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using the measured energy and toroidal current. The intensity at a given 

energy and current level then provides information on the density of 

runaways at that energy and radial position. The number of runaways 

liSR driven into the limiter per unit time by the orbit shift is given 

by the following equation [8]. 

2 = 47T Rr .nR 
c~ 

llr 
c 

lit 

where nR = density profile of the runaways 

R = major radius 

III-66 

r . = radius of runaway orbit as it is intersecting the 
c~ 

llr 
c = 

lit 

limiter 

rate at which the runaway orbit is being driven into 

the limiter. 

Since r .(t) can be obtained from the curves of Fig. III-4 as a function 
c~ 

of measurable quantities (y,I), the runaway density as a function of 

radius in the discharge may be unfolded. This can either be obtained 

at the moment when the dump occurs or at an earlier time in the discharge 

by use of the orbit expansion model. Such an analysis has been reported 

in ref. 8 for a typical ORMAK type B, low density, stable discharge. 

In Fig. 3 of ref. 8 the energy, intensity, and deduced runaway density 

profile is presented, indicating a maximum in density at r ~ 17 em. 

The location of this maximum in runaway density may possibly be related 

to the pronounced skin effect which is thought to occur early in a tokamak 

discharge when most of the runaways are formed. 

The above technique for obtaining nR(r) has interesting potential 

• 
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applications for accurately diagnosing the early breakdown and current 

penetration phase of a tokamak discharge -- an area which at present 

remains largely unexplored. Runaway production, as indicated in Chapter 

II, is a highly sensitive function of parameters such as electric field, 

plasma den~ity, neutral density, temperature, and impurity content. 

Thus, as the rate of runaway formation becomes better understood, an 

unfolding of the ~(r) profile which reveals information on these para­

meters can be considered. 

A further, more direct experimental application which is possible is 

the use of the inferred y(r) profile to diagnose the radial dependence 

of the Ohmic heating field. Since the final energy of the runaways is 

sensitive to the total volt-seconds they have been subjected to, the 

y(r) profile should accurately reflect the s¢(r) profile. Modifications 

to the shape of the Ohmic heating profile may be produced, for example, 

by neutral injection [68] and impurity transport . 



CHAPTER IV 

Macroscopic Relativistic Beam-Plasma Equilibria and B Limits 

Macroscopic beam-plasma equilibria and stability are primarily of 

relevance to the runaway-dominated regime in tokamaks and also may be 

of importance in considerations,of application of relativistic beams 

to toroidal plasma heating and confinement. The large toroidal 

momentum carried by high energy electrons can significantly modify 

tokamak equilibrium properties. A similar problem may arise from 

momentum flows induced by neutral injection; this process is presently 

under intense examination as a heating technique for tokamak plasmas. 

However, in the latter case, toroidal field ripples may be effective 

in preventing the build-up of large flows [69]. In the present chapter, 

a theory is developed in order to investigate the effects of the centri-

fugal force of a relativistic electron beam on the pressure balance in 

a toroidal plasma. Mathematically-imposed limitations on the solution 

of the resulting nonlinear partial differential equation are discussed 

and related to physical considerations. Several examples of numerical 

solutions to the equilibrium equation are given for a simple model of 

plasma pressure and beam flow velocity; these are then compared with 

the existing analytic equilibrium theories. Finally, an estimate is 

made of possible B limitations in toroidal relativistic beam-plasma 
p 

configurations. 

As was mentioned in Chapter I, large outward shifts in the 

equilibrium position have been observed in strong runaway discharges 

on the ORMAK and Russian T-6 devices. The cause of these anomalous 
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shifts has been attributed either to the effect of the large toroidal 

momentum carried by the runaways or to the increased internal inductance 

of the beam-plasma channel (i.e. if the runaways were initially formed 

as a beam). It is difficult at present to experimentally distinguish 

between these two possibilities since the measured magnetic probe 

signals are only sensitive to the composite quantity SL+ S
11 

+ ~i' One 

possible means for separating the poloidal betas from the internal 

inductance is to investigate the dependence of the shift signal on 

toroidal current. If other discharge parameters can be held constant, 

then the poloidal betas for both beam and plasma should increase with 

decreasing current whereas ~i will remain constant (since it only 

depends on the profile rather than on the magnitude of the toroidal 

current). Exploratory experiments have been performed on the ORMAK 

device [14] at lower current levels than the early runaway discharges 

[7] which are indicative of this effect. An example of this phenomenon 

is shown in Fig. IV-1 where the total current and inferred value of 

The values of S + ~i/2 have been calculated p 

using the measured in-out magnetic probe signals, toroidal current, and 

applied vertical field. This data is used in the equilibrium shift 

code [70] developed by R. J. Colchin of Oak Ridge; this code takes into 

account the time-dependent soakage of the fields into the aluminum shell 

surrounding the plasma. As may be seen, Bpol + ~i/2 rises to extremely 

high values near the end of the discharge. For the reasons mentioned 

above, most of the observed increase in these particular discharges comes 

from the poloidal beta of the runaway beam • 
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The presence of large values of the quantity Bpol + ~i/2 in 

runaway discharges, however, leads to significant problems of inter-

pretation since most of the existing analytic theories of toroidal 

equilibrium implicitly assume a low beta poloidal ordering [71,72,73]. 

In the following, a theory is developed which does not necessarily 

assume such an ordering for the beam or plasma. 

The equilibrium properties of a charge-neutralized toroidal 

relativistic beam have been examined by Ott and Sudan [59] and Mondelli 

and Ott [60]. In these papers, the beam was modeled by choosing a beam 

distribution function dependent on the constants of the motion: H, 

the energy, and P¢, the canonical angular momentum. Specifically, the 

distribution used was o(H-H0 ) o(P¢-PO ). In ref. [59], the plasma was 

included only to provide charge neutralization and did not carry any 

current or have pressure. However, in Ref. [60], the background plasma 

had finite pressure and carried current; this was included by means of 

the ideal MHD equations. The relativistic beam was introduced through 

adding its current to the toroidal plasma current and by including its 

centripetal force in the virial theorem. The effect of the beam on 

the equilibrium was to augment the outward displacement of the plasma 

column. It was also noted that for the particular beam distribution 

chosen, the beam current profile was quite nonuniform for large values 

of the ratio I/IA, the total current (beam plus plasma) to the Alf'ven 

current (IA = 17.1 Sy KAMPS). This nonuniformity decreased the internal 

inductance of the beam-plasma column and tended to decrease the outward 

shift. In both the treatments of Ott and Sudan and Mondelli and Ott, 

a low beta poloidal ordering is inherently assumed due to the 



• approximation of treating the asymmetry in the poloidal field only to 

first order in the inverse aspect ratio. 

Green and Zehrfeld [74-76] have investigated a related problem --

finite resistivity stationary states with poloidal and toroidal flows. 

They employ the MHD pressure balance equations with inertial flow, 

Ohm's law, Maxwell's equations, the mass continuity equation, and an 

equation of state. Three coupled equations are derived which describe 

the equilibrium; various limitations on the solvability of these 

equations are examined. A large aspect ratio limit is taken in order 

to obtain an analytic solution. Again, the asymmetry in the poloidal 

field is only treated to first order in the inverse aspect ratio; 

thus, the results obtained are limited to relatively small energy 

densities for the flows and plasma pressure relative to the poloidal field 

energy density. 

IV.l Basic Equations for Anisotropic Beam-Plasma Equilibria 

The following analysis is based on the static scalar pressure force 

balance relation fo~ the plasma, a zero pressure equation of motion for 

the beam, Maxwell's equations, and a mass continuity equation for the 

beam component. 

[d + +] 
+ 1 + + 

~m0 at+ v•V (yv) = - J xB IV-1 
c b 

+ 1 + + 
Vp = - J xB IV-2 

c p 
+ + + 

47T ; + _! oE IV-3 v X B = c c at 
-+ -+ 
V•B = 0 IV-4 

d~ + + 
IV-5 - + V·(~v) = 0 • at 
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+ 
where J = plasma current p 

+ ++ + 
Jb = beam current J=J + Jb p 

~ = beam density 

y = (l-v2/c2)-l/2 

+ 
v = beam velocity 

To obtain a stationary toroidal equilibrium, all explicit time 

derivatives are neglected. Combining equations IV-1 and IV-2 then 

results in the following force balance relation. 

+ 
+ 1++ 
Vp = - JxB c IV-6 

A vector identity is now used to combine the two terms on the left-hand 

side of IV-6. 

++ + 
= + ~(v•V )(yv) IV-7 

The first term on the right-hand side is identically equal to zero by 

virtue of the time independent continuity equation. Equation IV-6 may 

then be written as follows. 
+ ++ ++ 1++ 
V• [pi + y~m0v v] = ~ JxB IV-8 

++ 
where I = diagonal identity tensor 

It will be assumed that the predominant beam velocity is along field 
+ A A + 

lines, i.e. v ~ v1 1b where b = B/IBI (the beam is nearly force-free). 

This assumption results in a diagonal tensor on the left-hand side of IV-7. 

= [~ 
0 

p 

0 

IV-9 

In writing the tensor in equation IV-9, an orthogonal coordinate system 



A + 
has been chosen which has b = B/IBI as one of its directions; the other 

+ 
tvw are perpendicular to B. 

The form of the force balance relation in equation IV-8 is 

now the same as that for an anisotropic tensor pressure plasma model. 

Techniques for treating.this problem have been discussed in references 

[77-79]; similar procedures will be employed for reducing equations 

IV-3, IV-4, and IV-8 and will be discussed in the following. 

Substituting IV-9 into the force balance relation IV-8 gives the 

following equation. 

-++ 
.l JxB = 
c 

This may be written in a slightly different form by noting that 

IV-10 

A+.A + + 
(b•V)b = K, where K is the magnetic field line curvature. Also, the 

identity given below will be employed. 

+ 
+ + l 
B•V ( -) 

B 
l ClB = - B a£ 

Equation IV-10 may then be written in the following manner. 

IV-ll 

IV-12 

An equilibrium relation is obtained by examining the component 

of IV-12 perpendicular to the field lines. However, first an identity 

will be derived by taking the component of IV-12 parallel to field lines; 

this identity will determine the functional dependence of p and 

ym0~v11
2 which can be allowed. The parallel component is given below. 

_.££ 
o - a£ + IV-13 

• 

• 
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+ + A 

The field line curvature is always perpendicular to B so that K•b=o. 

Equation IV-13 thus reduces to the following identify. 

= 0 IV-14 

For the case of an axisymmetric tokamak equilibrium, equation IV-14 

may be satisfied by the following choices. 

IV-15 

B 'i3 p(1JJ) 
0 

where p (ljJ) and p (ljJ) are functions which depend only on ljJ, the 

peloidal flux function. B0 is the magnetic field at the center line of 
+ 

the torus and B = IBI . 

The component of IV-12 perpendicular to field lines will now be 

examined; this is given below. 

++ 
JxB 

In the manipulations to follow, it is convenient to write the field 

line curvature in the following form (for a derivation of this, see 

ref. [77] ) . 

+ + + 
('VxB) x B 

IV-16 

IV-17 

Employing Ampere's law and equation IV-17, IV-16 may be written in the 

form given below. 2 
++ + + ymo~vll + 

a('VxB)x B = 'V.Lp + 'V J...B IV-18 
B 

l 2 2 
where a - 47T - ymo~vll /B 
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The following identity is now used to convert IV-18 into the form in 

which the general tensor pressure equilibrium equation is usually 

written. 
-+ -+ -+ -+ -+-+ + -+ -+ 
B x [Vx(oB)] = OB x (VxB) + B X (VoxB) 

-+ -+-+ 

B2Vo 
-+-+ -+ 

= aB x (VxB) + (B•Vo) B 

2
-+ (ymo~v11 

2 
-+ (9xB) ) = OB x B V..L 2 B 2 
-+ -+-+ -+ 2 2ymo~vll -+ 

= OB x (VxB) - \7 .1. ( y:m.Onb vii ) V.J...B B 

Using the above relation in IV-18 results in the following equation. 
2 

IV-19 

-+ -+ -+ -+ 2 ymonb vii -+ 
[Vx(oB)] x B = \7 ..L (p+ym0~ vII ) - B \l.LB IV-20 

Further use of IV-20 now requires specification of a coordinate system 

and a means of labeling magnetic field lines. For the case of an 

axisymmetric tokamak, the magnetic field is given below. 

IV-21 

where F = RBT 

= toroidal magnetic field 

Here a cylindrical (R,¢,Z) coordinate system is employed as is shown in 

Fig. II-6. Since p and ym0~v 112 must have the B and 1/J dependences as 

indicated in equation IV-15, the right-hand side of IV-20 becomes the 

following. 

R.H.S. 

-+ 

\71/J 

-+ 
'ill/J 

2 
ymO~VIi 

B 
IV-22 

• 

• 
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Substitution of the field given in IV-21 into the left-hand side of 

IV-20 results in the expression given below. 

R2 + + + + - a- [~x(aB)) x B = (~*~) ~~ l (+ + \ + 
+ a ~a·~~} ~~ 

F + R2 + + 
+ - ~ ( aF ) + - ~1/J.x ~ ( aF ) a a IV-23 

Thus, the vector equilibrium force balance equation is as follows. 

+ 
(~*~)~~ + 

R2 + + 
+ a ~~X~ (aF) 

= IV-24 

A 

Dotting equation IV-24 with l¢' the unit vector in the ¢-direction, and 

assuming axisymmetry, results in the equation given below. 

A 

l • 
¢ 

+ + 
[~~x~(aF)] = 0 IV-25 

The meaning of this identity is as follows. Since axisymmetry is present, 
+ + 

ueither ~~ nor ~(aF) can have a component in the ¢ direction; thus, 
+ + A 

~~x~(aF) cannot be perpendicular to l¢. Equation IV-25 then implies that 
+ + + + 
~~x~(aF) = 0. Therefore, ~~ must be in the same direction as ~(aF) and 

constant~ contours coincide with constant crF contours, i.e., crF is only 

a function of ~· It may be noted that this result is slightly modified 

from that of ideal MHD scalar pressure toroidal equilibrium theory 

where F is only a function of ~. This result would, of course, be 

obtained in the above analysis in the limit that ym0~v11 2+ 0 (i.e. the 
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beam disappears). However, since the toroidal beta associated with the 

beam (ratio of the beam's kinetic energy density to the toroidal field 

energy density) will usually not be more than a few per cent, a is 

nearly a constant. Thus, the function F comes close to being a 

function only of~ in most cases of interest. 

Using the above fact, the third term of the left-hand side of 

equation IV-24 may be written as follows. 

F + F () + 

0 V(crF) = cr ()~ (crF)V~ IV-26 

+ 
Now all the terms of equation IV-24 are in the V~ direction and the 

equilibrium is determined by the equation given below. 

l + + F () 
t1 *~ + - ( Va • v~) + - - ( aF) a a a~ IV-27 

This is of a similar form as the anisotropic tensor pressure 

equilibrium equation given, for example, by Grad [78] for an axisymmetric 

system. It is, for general choices of p and '(!110~v11 2 , a nonlinear, two­

dimensional partial differential equation. For the choices of p(~) and 

2 
y.m0~v 11 given in equation IV-15, it is always elliptic, as will be 

shown in Section IV.2. 

As was mentioned above, in the case where the directed beam 

kinetic energy is much less than the toroidal magnetic field energy, 

a ~ (4n)-l and IV-27 reduces to the following. 

IV-28 

This is similar to the tokamak scalar pressure equilibrium equation [80] 

2 d 
except for the additional term -4TIR ()~ 

2 
(ym0~v 11 ) caused by the presence 

• 

• 
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• of a runaway beam. 

In conclusion, equation IV-27 represents the equilibrium condition 

for a zero pressure, streaming runaway beam with the predominant flow 

+ A 

velocity along the field lines, v ~v11 b. Conditions for the existence 

of solutions to this equation will be discussed in the following section 

and numerically computed solutions will be examined in Section IV.3. 

IV.2 Conditions on the Existence of Solutions 

Two conditions must be satisfied by equation IV-27 in order for a 

solution to exist; these will be examined in the present section. They 

are known as the firehose and mirror instability conditions. 

A. Firehose Instability 

The firehose instability, as its name suggests, occurs in anisotropic 

plasmas where the pressure parallel to the field lines is much greater 

than that transverse to field lines. The exact condition for the firehose 

instability is that cr=O at some point in the plasma. As may be seen 

from equations IV-20 and IV-22, this would lead to the following. 

a 2 + 
~ ( p + ym0~ v 11 ) Vl./J = 0 IV-29 

This then implies that either 1./J=constant or p + ym0~ v 11

2
=constant. 

In order to avoid such a situation, a must be greater than zero over 

the plasma cross-section or, 

IV-30 

As may be recalled from Chapter II, this was also the condition 

which had to be satisfied in order to prevent collapse of the beam due 

+ + 

• to ExB drifts. For runaway regimes in present tokamaks, the above 
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condition is well satisfied. Significantly higher energies and runaway 

densities would be required before this limit would be approached. 

B. Mirror Instability 

The mirror instability is normally associated with equation IV-27 

not being elliptic. Since the boundary conditions on~ are usually of 

the Dirichlet type on a closed surface (e.g., a conducting shell), 

equation IV-27 is a well-posed, unique problem only when it is elliptic. 

If it becomes parabolic or hyperbolic, then unique solutions no longer 

exist. For the case of a toroidal relativistic beam immersed in an 

isotropic plasma, equation IV-27 is always elliptic; this will be 

proven in the following. 

Using equation IV-15 in IV-27 results in the equation given below. 

1 -+ -+ F a R2 
+ - (lla·IJ~) + -- (oF)= -

a a a~ a 

where a = 1 p 
4n - B B

0 

(pI + JL pI) 
Bo 

and primes denote derivatives with respect to ~ 

IV-31 

Ellipticity is defined as follows for a second order partial differential 

equation. 

fu 
a--+ 

2 3 x1 

a2u 
c--+d=O 

dx:2 
2 

IV-32 

2 2 IV-32 is elliptic provided ac-b > 0; for ac-b < 0 it is hyperbolic. 

In order to check this condition on equation IV-31, it is first necessary 

to work out what the second term on the left-hand side of IV-31 is. 

-+ 
Va 

1 IV-33 = 
-+ 
VB is given by the following. 

• 

• 
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-+ 
VB = (l IV-34 

-+ -+ 
1/0•1/~ is then given as below. 

l 
IV-35 

Substituting IV-35 into equation IV-31, writing out the ~*~ 

terms in (R,¢,z) coordinates, collecting second derivatives in R and Z, 

and substituting into the ellipticity condition gives the following. 

-+ 2 
or l + AJV~I > 0 

where A = 2 2 
0R B

0
B 

F a F -l 
(B----) 

R2 () B 

IV-36 

The derivative, a F/C3B, may be calculated using the fact that 0F depends 

only on ~· This results in the equation given below. 

"'aBF = - .E _£_ IV-37 
a 0 B2B 

0 

Using IV~I 2 = B2
R

2
-F

2 
and IV-37 in IV-36 gives the following condition. 

2 2 F2 2 2 0B B (BR + __ _£_) + p(BR -F)> 0 
0 0 B B2 

0 

IV-38 

Substituting in 0 = l/4TI - p/B B0 , equation IV-38 reduces to B B0/4TI>O 

which is always satisfied. Thus, equation IV-27 is elliptic . 
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IV.3 Numerical Results and Comparison with Analytic Equilibrium Theories 

The numerical solution of equation IV-27 has been investigated using 

a modification of the scalar pressure equilibrium code developed by 

Callen, Dory, and Fowler [80] at Oak Ridge. This uses the successive 

overrelaxation technique; ghost points are employed to satisfy flux 

conserving (conducting shell) boundary conditions. 

Both the plasma pressure and beam momentum functions, p(~),p(~), 

given in equation IV-15, are modeled as quadratic in ~ plus a small 

higher order term in~ to insure that both p'(~) and p'(~) go to zero 

at the plasma boundary. The function aF, which depends only on ~ is 

chosen as indicated below. 

2 2 2 
g ( ~ ) = ( aF) = ~ IV-39 

where gw = a constant 

sp = poloidal plasma beta 

spb = poloidal beam beta 

The procedure used for solving IV-27 then is the following. a is 

initially set equal to l/4TI. Using the specified functions p(~), p(~), 

and g(~), equation IV-27 is solved by successive overrelaxation to a 

desired degree of accuracy. A new value for a is then calculated according 

to the following. 

where 1 B=­
R 

1 ilil 
4TI B

0
B 

( lv~ 12 
+ 

IV-40 

g2(~) 1 l/2 

a old 

• 

• 
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• These values of cr and Bare next used in equation IV-27, and it is solved 

a second time. New values of cr and B are then calculated, equation IV-27 

is solved, etc. This iteration is continued until a desired degree of 

accuracy is obtained in cr and B. 

Some typical equilibria are shown in Fig. IV-2; these are plots of 

constant ~ contours. In Fig. IV-3 the current distribut~on on 

the equatorial plane is shown as a function of R for several values of 

A comparison has been made between the above numerically-computed 

equilibria and analytic calculation given in refs. [60,73,76]. The 

analytic approaches come to essentially the same conclusion regarding 

the shift of the outermost plasma flux surface. 

b2 b (fl.* + 1:.) 
2 cb2 

6.0 = [ln- + (1 §:__) + 2I B..L 2R0 a 2 b2 
IV-41 

where A* s + 
spb H 1 = 2 + --p 2 

sP = peloidal beta of plasma 
2 

spb peloidal beta of beam 
81T(~ ym0 v 11 ) 

= = 2 B
8 

(a) 

s = externally applied vertical field 

I = total toroidal current 

a = radius of beam-plasma column 

b = radius of conducting shell 

Ro = major torus radius 

.Q,i = internal inductance 

• For the numerical calculations, no vertical field is present and the 



• 

RNIS~TR~PIC BERM-PLASMA EQUILIBRIA 1 

ANISOTROPIC BEAM-PLASMA EQUILIBRIA 3 

FIGURE IV-2 

ORNL DWG. 75-13737 
RNIS~TR~PIC BERM-PLASMA EQUILIBRIA 2 

ANISOTROPIC BERM-PLASMA EQUILIBRIA 4 

Anisotropic Toroidal Beam Plasma Equilibria: (1) BP = .64, Spb = 1.2; (2) BP = 1.2, Bpb = 2.3; 

(3) B = .38, B b = 4.6; (4) S = .35, B b = 5.7 p p p p 

• 

~ 
0 
0\ 



• 
1.0 

0.8 

)( 0.6 
0 
E ......... 

' ......... 0.4 

0.2 

0 
50 

, 
' I 

I 

I 
I 

60 

ORNL DWG. 75-13730 

{3 p ' {3pb 

0.64' 1.2 

' 1.2 2.3 
' 

0. 38 ' 4.6 

J..A-0.35' 5.7 

I 
I 

70 80 90 100 110 
R (em) 

FIGURE IV-3 

Toroidal Current Distribution as a Function of Major Radius for EQuilibria of Fig. IV-2. 

• 



108 

poloidal betas are calculated after the iterations have converged using 

the equation given below. 

S or S b p p = 
2 B 

2c !(p or BQ p) dRdz 

[!j¢dRdz] 
2 IV-42 

~O is obtained by measuring the shift of the center of the outermost 

plasma flux surface away from the center of the minor cross-section. 

Results are plotted in Fig. IV-4. As may be seen, ~ten Spb becomes large 

relative to S , there seems to be a substantial discrepancy between the 
p 

results of the code and the analytic theory. The shift predicted by the 

numerical calculation is generally less than that of equation IV-41. 

Part of this is perhaps due to the fact that the analytic theory is based 

on an inverse aspect ratio expansion-to first order - and does not take 

into account the non-circularity of flux surfaces which occurs for large 

~0 . The aspect ratio used here is that of ORMAK, A= 3.4. The discre-

pancy also may be caused by the model used, i.e. the functional dependen­

ces chosen in IV-15 for p and ym0~vll
2 . Apparently the 1/R dependence 

2 
introduced into ym0~vll by its linear dependence on B (as required by 

equation IV-14) results in the beam term of equation IV-27 having rela-

tively less of an effect on the equilibrium than the plasma pressure 

term. This is related to the fact that the plasma term goes as R
2 

times 

a function of~ while the beam term goes as R times a function of ~· 

The former thus has a stronger variation around a flux surface than the 

latter, and thus has a more marked effect on the poloidal asymmetry 

(i.e. the outward shift) in the flux function contours. 

• 

• 
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IV.4 Estimates of S Limitations on Toroidal Beam-Plasma Equilibria 

Beta peloidal limits are an important consideration in the feasibility 

of a tokamak fusion reactor since the total S is related to S 
p 

2 2 
by S = S /A q where A is the aspect ratio, and q is the Kruskal­

p 

Shafranov factor. For example, typically A ~ 3, q(a) > 2 and Sp ~ A 

so that S is limited to less than about 10%. The limit on S comes 
p 

about when the externally-applied vertical field (used to counteract the 

outward plasma expansion force) becomes equal to the peloidal field on 

the inside of the torus. At this point, a second magnetic axis can form 

on the inside edge of the plasma and deterioration of the confinement 

properties would be expected to occur, i.e. particles can escape from 

the plasma region at the thermal velocity near the separatrix. Estimates 

of how large S can become before this phenomenon occurs have been made 
p 

by various researchers and are reviewed in ref. [80]. However, in most 

of this literature, the equilibrium is treated by making an expansion in 

c, the inverse aspect ratio, and assuming the orderings S ~ 1, ~/a << 1 
p 

(~=shift of the center of the plasma column, a=plasma minor radius). 

Thus, the limitation obtained, i.e. that S <A, is beyond the assumed 
p -

orderings. In ref.[80] toroidal plasma equilibrium is examined for 

devices of arbitrary aspect ratio and without any ordering in ~/a or 

B . This is accomplished by a numerical solution of the problem similar 
p 

to that used in Section IV.3 . It was found there that Sp can be as 

high as desired, but the requirement that q • (the minimum value of the 
~ln 

Kruskal-Shafranov factor) be greater than unity prevented any significant 

improvement in the total S. The reason for this was that as Sp 

• 

• 



• 

• 

lll 

is increased, the plasma becomes increasingly diamagnetic - thus 

reducing the allowable toroidal current if o . is to be maintained > l. Jnln 

As a result, (Bpol)max is decreased along with S for a fixed Sp' 

The presence of a relativistic electron beam would be expected to 

augment the outward force of the beam-plasma column (due to the 

centripetal force) and thus aggravate the S limitation. In the following 

analysis, this effect is examined and conditions on the v/y of the beam 

are noted for which a second magnetic axis would be expected to occur. 

(v=N r 0 , p = density of beam electrons per unit length, r 0 = classical 

. 2 2 2 2 -l/2 electron radlus = e /m0c , y = (1-v /c ) ). It should be pointed out, 

however, that this treatment is based on a simple force balance which 

inherently assumes a low beta ordering. The ultimate answer to the 

question of beta poloidal limits with relativistic beams will perhaps 

have to come from a numerical solution of the equilibrium problem such as 

that discussed in Sections IV.l and IV.2. 

The outline of this section is as follows. First, to put the method 

used in perspective, a S limit is obtained for a toroidal plasma without 
p 

a beam. Next, the analagous equilibrium limit is found for a cold beam 

in a cold pressureless plasma. Finally, the same limit for a cold beam in 

a warm plasma is calculated. Since toroidal relativistic beams may be 

able to attain low q values, the latter limit is examined with respect 

to the question of what beam parameters would not result in a degradation 

of the equilibrium limit for the plsma species alone if there were no 

limits on the beam current density. Possible limits on the beam current 

density will be investigated in Chapter V . 
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IV.4.A. Equilibrium Force Balance for a Toroidal Plasma 

In the following, the force balance in the direction of the major 

radius is considered for a toroidal plasma. This has been given by 

Shafranov [72]; it was obtained there by using a variational principle 

2 
on the functional Q = !(B /8rr + p)dv, the total energy of the plasma and 

magnetic fields. The resulting major radius force balance may be written 

as follows. 

2 =-2 
~.) B -B. l - e l 
2 + p + 8TI }· IV-43 

c 

where Ro = major torus radius 

a = minor torus radius 

p = plasma pressure averaged over the minor cross-section 

B = toroidal field external to plasma e 

B. = toroidal field internal to plasma 
l 

- averaged over the minor cross-section 

L ::: internal inductance 
l 

BL = external vertical field 

I = total plasma current 

c = speed of light 

A Sp limit may be obtained from IV-43 by requiring that B 1. < Be (a) . 

However, first the physical significance of the terms in IV-43 will be 

pointed out. 

The first term is related to the fact that in a current-carrying 
-+ -+ 

plasma ring there is an outward force caused by unbalanced J x B forces . 

The poloidal field crossed with the ring current results in a net force 

• 

• 
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along the major radius due to the asymmetry of the peloidal field about 

the ring axis. A simple means of calculating this force is by the 

method of virtual displacements. A slight outward displacement is made 

in the major radius of the plasma and the change in inductive energy 

is calculated. From this a force may be obtained. 

FR 
l ow 

IV-44 = oR
0 2rrR0 

here peloidal field energy = l I 2 
w = --L 2 2 

c 
and L == total inductance = L + L. t ext 1n 

For a toroidal plasma without a conducting shell boundary, the inductance 

is given by the following. 

L ext 

8R
0 = 4rrR0 (ln a 2) 

IV-45 

Therefore, the outward force along the major radius is given as below. 

B~(a) 
4rr 

ln --- - l + ~ 
( 

8R0 51,,) 
a. 2 

IV-46 

In the case where the plasma is located inside a perfectly conducting 

shell, the external inductance is given as follows: 

Lext = 4 TI {R ln 12. - [;}_ [ ( 1 + a 
2

) (/1. + 1.) + ln 12. ] } 0 a 2 b2 2 a IV-47 

where ~ = displacement of plasma column in shell 

In this case the radial force is given by: 
2 

Be(a) b 5/,i 
-- (ln- + -) 4rr a 2 IV-48 = 
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The situation with no conducting shell present, equation IV-46, 

would correspond to late times in a tokamak discharge when the fields 

have diffused through the metallic shell. The case with a perfectly 

conducting shell, equation IV-48, corresponds to times early in the 

discharge when the metallic shell is still effectively perfectly con-

ducting. For most present-day tokamaks, the latter approximation is 

of relevance. 

The second term in the force balance equation, Tia2p/R
0

, originates from 

the outward expansion force per unit length due to finite plasma pressure. 

This may be seen by examining Fig. IV-5 where a segment of a toroidal 

plasma is shown. Adding up the components of force in the direction of 

the major radius results in the following. 

Net outward force 

per unit length 
= 

2na2p(d¢/2) 

R0d¢ 
IV-49 

The third term in the force balance is caused by the curvature of the 

toroidal magnetic field and may be verified by integrating the magnetic 

stress-energy tensor over the minor cross-section. Combining IV-43 

with the minor radius force balance given below 

p + :::: IV-50 

and requiring that BL < B8(a) (which insures that a separatrix will not 

form on the inner edge of the torus) results in the following. 

8R0 3 ~i -} B8 (a) I 
(ln 7- 2 + 2)+ 2P < __;,..c __ 

(no conducting shell) 

IV-51 

• 

• 
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2{B~(a) b 1 9,, } B8(a)I 
Tia ( ln - - - + -1:.) + 2p < 
R

0 
4TI a 2 2 c 

(conducting shell at r=b) 

IV-52 

2 2 
Using B8(a) = 2I/ca and dividing IV-51, IV-52 by (Tia /R0 ) (B8(a)/4TI) one 

obtains the equations given below. 

9,, 3 
f3 + -1:. < 2A - ln8A + -2 p 2 

(no conducting shell) 

9,, b 1 
f3 p + -:}- < 2A - ln ~ + 2 

(conducting shell) 

IV-53 

IV-54 

In Fig. IV-6 a plot is made of the two above relations for a range of 

aspect ratios and for several wall to plasma ratios, b/a. As may be 

the above limits 9,.1 somewhat higher seen, on f3 + l 2 come out than what is 
p 

conventionally assumed to be the limit, i.e. f3 + 9,i;2 <A. The reasons p ~ 

for this discrepancy are not entirely clear; however, it perhaps is 

related to the fact that the usual limit was obtained from a partial 

differential equation describing plasma equilibrium whereas the above 

limit is obtained from an integral form of the equilibrium equation. 

Both approaches inherently assume circular flux surfaces, small horizontal 

column shifts, and large aspect ratio. 

IV.4.B. Cold Beam-Cold Plasma Equilibrium Limit 

A force balance is now examined for the case of a toroidal relativ-

istic electron beam with a cold, pressureless background plasma which 

serves only to provide charge neutralization and carries no net current. 

The electron beam is assumed to have no transverse pressure, but does 

• 

• 
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have parallel momentum and produces a net self-field. It is assumed 

that the presence of the beam does not significantly modify the toroidal 

field, i.e. the beam is neither paramagnetic nor diamagnetic. There are 

then two forces which must be balanced by the external vertical field --

the centrifugal force and the ring current expansion force. The force 
2 2 

due to the curvature in the toroidal field goes as B - B. and thus is 
e 1 

zero under the above assumptions. These considerations result in the 

following equation. 

+ -=l_.l.JL 
2TIR () R 

0 0 

IV-55 
c 

I2 8R
0 

t. 
where w = 2rrR0 (ln- 2 + ...1:.) 

2 al 2 
c 

(no conducting shell) 
2 b l L} 12 { b -% [ (l 

a 
(/1. + 1.) = 2rr c2 Ro ln - +l) - ln - + R ...1:. 

al b2 2 a1 0 2 

(conducting shell) 

al = beam radius 

a2 = shell radius 

Ib = beam current 

llb = average of beam density over the minor cross-section 

Rearranging IV-55 gives the equations listed below 

(S + ti) 
a 

l < 2 _g_ ~-ln8~+ l 
2 b al 

IV-56 

(no conducting shell) 

t (Sb + ti) 
a b < 2 _g_ ~ - ln-
al al 

IV-57 

(conducting shell) 

• 

• 
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::: aspect ratio of beam 

= 

In the limit that v1l ~ c, the beta peloidal of the beam is equal to 

2y/nv where vis the Budker's parameter (v = Nr
0

,N =number of electrons 

per unit length, r
0 

=classical electron radius= e2/m
0

c2
). Equations 

IV-56 and IV-57 may also be written as lower limits on v/y: 

1 a2 ~. -1 
V /y > TI [ 2 al ~ - ln8~ + 1 - 2 

2 
J IV-58 

1 a2 b ~i -1 
v!Y > - [2 - ~ - ln - - -] 

TI a 1 a
1 

2 IV-59 

IV.4.c. Cold Beam- Warm Plasma Equilibrium Limit 

The models of Subsections IV.4.A and IV.4.B will now be combined in 

order to consider the equilibrium limitation on a toroidal relativistic 

beam immersed in a warm plasma which carries current. The forces acting 
-+ -+ 

on the plasma are then the net J x B ring expansion force, the outward 

component of the pressure force, and the curvature in the toroidal field 

whereas the beam forces consist of the current ring expansion and centri-

petal forces. It is again assumed that the beam does not modify the 

toroidal field; however, the plasma is diamagnetic. The force balance 

equation is then given as follows. 

IV-60 
c 



where w = 

120 

.Q,. 
- 2 + __2:..) 

2 
(no conducting shell) 

2 
b !::. ln--­
a

2 
2 [

( l + a2) (A + 1.) -
b2 2 

ln 12. ]+ 
a2 

(conducting 

I = I + I = beam plus plasma current t b p 

~ 2 
.Q,i = Be/Be (a

2
) 

a 2 = plasma radius a1 = beam radius 

IV-60 then results in the two Sp limits given below. 

1 
( S 1 + .Q,. ) + S < 2A - ln8A + l 

2 b l p 2 

where S' 
b 

(no conducting shell) 

b < 2A- ln-
a2 

+l 
2 

(conducting shell) 

shell) 

The peloidal betas above are defined with respect to the total 

IV-61 

IV-62 

peloidal magnetic field (from both the beam and plasma currents) evaluated 

at the boundary of the plasma. In order to determine the extent to which 

the presence of a beam aggravates the plasma equilibrium limit derived 

in Subsection IV.4.B, the above two inequalities will be rewritten in 

terms of S's which are defined with respect to the peloidal fields of each 

component separately. For simplicity, it is assumed that a1=a2=a. 

The situation where a1 f a2 will be considered subsequently. The limits 

• 

• 
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IV-61 and IV-62 then become the following. 

A I 2 
sb __£__ + 
2 I 2 

t 

A 

< z IV-63 

where s = s' 
b b 

I 2 
t = 

I 2 
b 

peloidal beta of the beam referenced to the 

beam's self field 

= peloidal beta of the plasma referenced to the 

peloidal field produced by the plasma current 

and Z = {:-

ln 8A + ]._ 
2 

.R-. 
1 

2 

b 1 .Q,i 
ln-+--­

a 2 2 

(no conducting shell) 

(conducting shell) 

Equation IV-63 may then be rearranged to obtain the limitation on the 

plasma beta peloidal, s : p 

A I 2 I 2 
sP (Z -

1 A 

IV-64 < t 2 sb b 
I 2 I 2 

p t 

A 

It may be recalled from Subsection IV.4.B. that Sp was limited to less 

than Z for a warm plasma without a beam. Equation IV-64 indicates that 

if there is no limit on the beam current, then it may be possible to 

make the right-hand side of IV-64 greater than z. That is, the presence 

of the beam may actually allow an enhancement over the usual plasma 

beta peloidal limitation. This will occur when the following inequality 

is satisfied. 

I 2 
t 

I 2 
p 

1 A 

(Z - 2 t\ ) > z IV-65 
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Using the fact that Ib = ~ IA 
A 2 

and sb = TI y/v for VII ~ c where 

3 I 

IA = (m0c /e)yS is the Alfven current, it is possible to rearrange 

equation IV-65 into the form given below. 

IV-66 

Note that as Ip ~ 0, the result of Subsection IV.4.B. (withal = a2 ) is 

recovered. 

The case where a
1 

~ a 2 is now considered, i.e. the beam radius is 

less than the plasma radius. The internal inductance, ~i' may become 

large as the current distribution is narrowed; in the following, a simple 

current distribution is assumed -- that of a flat beam current profile 

added onto a flat plasma current profile. In this case, the internal 

inductance is given as below. 

fp = I /I , p t 

+ 2f 2 ln l 
b E: 

IV-67 

Using equation IV-67 in equation IV-64 then leads. to the following limit. 

l A 2 A 2 fb €4 2 
2 Sbfb + Spfp < Z' - 2 + 4 (fp-fb) -fb ln E: 

~. 
where Z' = Z + ~ 

2 
A 

The resulting limitation on Sp is as given below. 

A < _L 
sP f 2 

p 

IV-68 

IV-69 

• 

The conclusion, then, of the above treatment of Sp limits is that for • 
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certain values of v/y, the beam does not deteriorate the S poloidal 

limit of the plasma without a beam. However, for lower values of v/y, 

the presence of a beam can severely limit the allowable beta poloidal 

of the plasma. 

As may be seen from Fig. IV-1 (discussed earlier), the above limits 

have already been approached in runaway-dominated discharges on ORMAK. 

Although these discharges have not yet been thoroughly diagnosed, it was 

observed that the plasma thermal energy was very low. One possible 

explanation for this might be the rapid plasma energy transport which 

would occur if a separatrix were actually formed near the inner surface 

of the plasma . 



CHAPTER V 

Helical Instability Modes in Tokamak Runaway Discharges 

One of the fundamental limitations in tokamak devices is that posed 

by macroscopic MHD instabilities with spatial dependences of the form 

f(r) exp [i(m8 + n~)] where m = 0,1,2, .•• and n = 0,1,2. These cor-

respond to helical perturbations of the plasma column normally known as 

kink and flute modes; flutes are driven principally by plasma pressure 

whereas kinks are driven by magnetic field energy. The peloidal (m) 

and toroidal (n) mode numbers of the instability are roughly related to 

the safety factor q by q = m/n where q = 2TI/i = rBt/R Bp (r and R are 

the minor and major radii, i is the rotational transform). Thus, the 

perturbations conform closely with the pitch of the helical magnetic 

field lines. A good discussion of the linear theory of these modes for 

circular cross-section tokamaks is contained in a paper by Shafanov [81]. 

Experimentally, kink modes have been observed since the early days of 

tokamak work [82] and continue to be an area of active research due to 

their potential for deteriorating plasma energy confinement [83,84]. 

When the safety factor q goes below unity either inside or outside 

the plasma, the m = 1, n = 1 mode is unstable; this is usually thought 

to be the most serious of the kink instabilities and may be avoided by 

satisfying the well-known Kruskal-Shafranov condition~ q > 1 or 

2 I <r Bt/2R. Flute modes are also predicted to be unstable at q < 1; 

however, at larger values of q, flutes are prevented in the tokamak 

by the average minimum B stabilization which is present [86]. In order 

that q not fall below unity anywhere within the plasma or vacuum region, 
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most tokamak designs assume that q must be maintained above 2.5-3 at 

the plasma edge; this criterion is predicted by resistive MHD theory. 

However, results on recent devices [83,85],such as TFR, indicate that in 

order to obtain maximum plasma energy confinement times, even higher 

values of q(a) (6 to 9) may be required. Extrapolation of these results 

to larger devices is not completely clear at present. 

Since there is a maximum attainable toroidal magnetic field (imposed 

by technological constraints) and a limit on S (normally taken as 
p 

S < A) , the fusion power density in a tokamak reactor may be shown to 
p 

scale in proportion to q to the inverse fourth power. Thus, the above q 

limitations impose a severe constraint on the power per unit volume and 

result in large minimum plasma sizes in order to obtain significant 

energy multiplication in a tokamak. 

Macroscopic kink instabilities also are of relevance to runaway-

dominated discharges and to considerations of toroidal relativistic beam 

injection. The basic reason for this is the high current densities 

which may be obtained when most of the current is carried by electrons 

- 13 2 
moving near the speed of light, i.e., jb = ~ec ~50 (~/10 ) kAmps/cm 

(;bin cm-3 ). Thus, for toroidal fields and major radii typical of 

present-day tokamaks, the q limitation may be exceeded within the dis-

charge even when a relatively small fraction of the background plasma 

density is running away. This may be seen by expressing the q value 

at the edge of a relativistic beam in terms of nb' R, and BT. 

q(a) V-1 

= toroidal field (gauss) 
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R =major radius (em) 

For example, with R = 80 em, BT = 20 kG, q would reach unity if a density 

of 8x1010 cm-3 relativistic electrons were carrying all the current. 

For most tokamaks, this is less than 1% of the typical plasma electron 

density. 

As was mentioned in Chapter I, the experimental evidence on runaway-

dominated discharges in tokamaks has indicated certain signs of macro-

scopic instabilities; however, the characteristic features of instabilities 

in these discharges differ significantly from those of MHD modes in the 

normal tokamak regime. Typically, current dumps are observed which 

correlate with positive (and sometimes negative) voltage spikes. The 

size of these dumps varies from a few percent up to 20% of the total 

current, as in some of the early ORMAK discharges [7]. In the latter 

case, the large current steps were thought to have been related to the 

poor horizontal positioning of the plasma. However, a more recent 

series of strong runaway discharges on ORMAK [14] which were well-

centered, still showed definite, but smaller jumps in current (~ 4%). 

The MHD magnetic probes, which are sensitive to rapid fluctuations in 

the poloidal field, generally exhibit a much quieter level of activity 

in the strong runaway regime than in the normal tokamak discharges. 

This feature has been observed on both the Russian T-6 and ORMAK devices. 

The only noticeable activity on these measurements are the occasional 

spikes which correspond to changes in poloidal field induced by the 

current dumps. 

The instability analysis presented in this chapter has been 

• 
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motivated on the above observations along with the conclusions of the 

parameter study of Chapter II. On one hand, there appears to be evidence 

of macroscopic instabilities in runaway-dominated discharges which lead 

to fast current dumps, etc. However, on the other hand, the general 

level of magnetic field fluctuations and the parameter study of Chapter II 

indicate that the runaway regime might possibly have enhanced stability 

properties over what is normally the case in tokamaks. In order to 

better understand these features and to examine the implications with 

respect to fusion applications of toroidal relativistic beams, several 

mechanisms will be investigated here which are thought to be distinct 

to runaway-dominated discharges. These include: velocity shear in the 

runaway beam, effects of the longitudinal dynamics of the relativistic 

electrons, influence of the high transit frequency of the runaways around 

flux surfaces, and consideration of toroidal drifts. 

Relatively little work has been done to-date on the macroscopic 

stability theory of toroidal relativistic beams in strong magnetic 

fields. The first treatment was made by Lee [43] in 1972 who con­

sidered a cylindrical model with a flat current profile. The beam 

was immersed in a cold, pressureless, ideal MHD plasma and periodic 

boundary conditions were imposed on the perturbed fields along the beam 

propagation direction in order to introduce toroidal effects. The beam 

was assumed to be cold and rigid such that a beam segment as a whole 

undergoes transverse displacement without internal distortion. Also, 

it was assumed that the only significant forces acting on the beam were 

due to perturbed magnetic fields -- effects of perturbed electric fields 
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• were neglected. The conclusion was that a small margin of stability 

could be attained over the usual Kruskal-Shafranov condition; 

specifically, the instability threshold form = ±l, n=l kink modes was 

-l 2 
found at q = (l+€) where E = ym0c S/eR0BZ and thus enhanced stability 

properties are only obtained at very high energy densities where 

sychrotron losses would be prohibitive. Growth rates for the insta-
I 

bility were estimated at the Alfven transit time around the torus. 

Lovelace[44] has also examined kink and flute instabilities in 

toroidal relativistic beams. He attempted to derive an energy prin-

ciple whereas Lee's analysis was based on a normal mode approach. His 

treatment also differed from Lee's in that he included effects due to 

the finite ratio of beam kinetic energy to magnetic field energy den-

sity. A sufficient condition for the stability of kink modes was 

obtained which indicated that q>l was required for stability of beams 

with decreasing energy density as a function of radius. It is of 

interest to note that for hollow beams, such as those examined in 

Chapter II, Lovelace's stability criterion would allow stability at 

q<l. A necessary condition was found for the stability of flute 

modes which was similar to the standard Suydam condition for an iso-

tropic plasma -- if the plasma pressure were replaced by the directed 

beam kinetic energy. 

Theoretical work has also been done concerning kink and sausage 

modes in relativistic beams with no external magnetic field [87-90]. 

This will not be reviewed in any detail here since it is not of direct 

relevance to tokamak runaway regimes. These instabilities are usually 

• 
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known as "hose" modes and result from an interaction between the 

beam and induced eddy currents in the background plasma. The per-

turbations are of the same form as kinks, i.e. exp[i(m8 + k
11
z)] and 

growth rates are of the order of the skin diffusion time of the 

perturbed fields. This is physically related to the fact that it is 

difficult to produce the perturbed currents in the beam necessary for 

growth of a kink because of the longitudinal stiffness (effective 

3 parallel mass = y m0 , transverse mass = ym
0

) characteristic of relativis-

tic electrons. They must be induced in the background plasma and the 

time scale for this to occur is governed by the diffusion times of the 

perturbed magnetic fields. 

The outline of the present chapter will be as follows. In Section 

V.l, the effects of velocity and energy shear will be considered by 

means of a two-region beam model. Similar techniques and approxima-

tions are used as employed by Lee, i.e. cold beam and plasma, ideal MHD, 

etc. A marginal stability condition is derived for the n = 1, m = l 

kink mode. In Section V.2, a number of the restrictions on the analysis 

of Section V.l will be relaxed. The longitudinal beam dynamics are 

considered and perturbed electric field forces on the beam are taken 

into account as well as those due to perturbed magnetic fields. The 

model for the background plasma still assumes low temperature, but is 

not restricted to frequencies much less than w . , as is the ideal MHD 
Cl 

model. This is of importance since the basic drift frequency of the 

relativistic electrons around a flux surface can be of the order of 

w . for the parameter range under consideration. As will be discussed 
Cl 
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in Section V.2, over certain ranges of q this can act to short out 

instabilities which normally grow on longer (MHD) time scales. Energy 

spread in the beam electrons is formally treated and the effect of 

toroidal curvature drifts is discussed. Dispersion relations are 

derived for both free boundary and fixed boundary models. Finally, the 

spectrum of growth rates and real frequency components is numerically 

calculated and plotted for a range of parameters. 

V.l Kink Mode (m = 1, n = 1) in a Two-Region Relativistic Beam with 

Velocity Shear 

A possibly important difference between a beam generated in a strong 

runaway discharge and that considered by Lee [~3] is related to the 

presence of steep velocity shear and density gradients. The reason for 

this has to do with the fact that the externally-induced electric field 

producing the runaways will soak into the outer regions of the plasma 

first; as runaways are produced there and begin their acceleration, 

inductive effects will cancel out a large portion of the field from the 

central portion of the beam. Fewer runaway electrons will be produced 

in the center of the beam, and they will not be accelerated as much as 

the outer electrons; thus, there will be a higher recombination rate 

of these inner electrons back into the bulk electron distribution. 

The purpose of this section is to examine the stability of a toroidal 

relativistic beam with velocity shear against kink modes (m = 1, n = 1). 

The model chosen is that of a cylindrical beam consisting of two regions 

with different constant velocities over each region. Similar assumptions 

will be made as in Lee's analysis [43]. These are listed as follows: 

• 

• 
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(a) The plasma is a pressureless, uniform fluid obeying ideal MHD. 

No currents are flowing in equilibrium other than that of the 

beam. 

(b) The electron beam is a cold, rigid body with a finite velocity 

and inertia in addition to current. When the beam is perturbed 

perpendicular to its direction of motion, the displacement is 

rigid -- a beam segment as a whole undergoes transverse displace-

ment. The center of mass of both velocity regions displaces 

the same amount so that there is no internal distortion in the 

beam. 

(c) Beam velocities in both regions are assumed to be large com-
I 

pared to the plasma Alfven velocity; this allows one to neglect 

the electric forces acting on the beam in comparison with mag­

netic forces. For ORMAK vA ~ 107 m/sec in the runaway regime 

operation. 

(d) The cylinder walls are perfectly conducting and the toroidal 

field (in z direction) is strong compared to the beam self field. 

The aspect ratio is assumed to be large so that the torus may be 

approximated by a cylinder with periodic boundary conditions. 

In Fig. V-1 a side and cross-sectional view of the beam is presented. 

The beam moves in the z direction; in order to balance off the radial 

A 

forces, an equilibrium i.e chosen which includes a rotation in the -e8 

direction. The equilibrium quantities are given by the following. 

~(r) = H = Heaviside function 
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FIGURE V-1 

Side and Cross-Sectional Views of Two-Region Relativistic Electron Beam . 
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v = r 
+ 

JB = 

Bz = 

IB = 

= 

where 
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(vz - vz ) H (a1-r) + vz H (a2 - r) 
1 2 2 

-r (w
1 

- w2 ) H(a
1 

- r) - rw
2 

H(a
2 

- r) 

0 

+ 
-e%v 

constant 

total beam current 

2 
Tie nB [al 

0 

2 2 
vz + (a2 - a ) 

1 1 

0 < r <a 
- 1 

vz2 ] 

rc 

2IB 2IB 
1 - 2 ---

rc rc 

= = current carried in region 1 

= = current carried in region 2 

V-2 

V-3 

The rotation frequencies w
1 

and w
2 

may be calculated by balancing the 

radial centrifugal force with the inward-directed Lorentz force for 

each region: 

2 ymv
8 

r 
= e V-4 

c 
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Letting v8 = wr and solving for w in each region results in the 

following. 

w = l w for region l 

wcl 
2 1/ w = [l + 4 WSl] 2 

- cl V-5 
--

2 2 2 
wcl 

w2 = w for region 2 

w 
- c2 v-6 

2 

eBZ 
eBZ 

wcl = wc2 = y
1

mc y2mc 

w 2 2evZliBl 2 2evZ2IB2 
WS2 = = (31 2 2 2 2 2 y1mc a

1 
y

2
mc (a

2 - a ) l 

Equation V-4 has two possible solutions; those given in equations V-5 

and V-6 repre~ent the slower of the two frequencies, corresponding to 

motion along the helical field lines. The orbits are slightly 
+ + 

separated from the field lines since v x B cannot be zero if the radial 

centrifugal force is to be balanced. The higher frequency solution 

which is obtained from equation V-4 is approximately equal to the 

gyrofrequency for the beam electrons. 

The tangent of the pitch angle for the magnetic field lines in the 

two regions is given by the following. 

• 

• 
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_ s
1

r 
0 <r <a 

al - l 

- slal (s2a2 
2 2 

= €~ a1) (a~ -
:i) --+ al ~r ~a2 r r 

a2 

- s2a2 
a2 .:S_r <R 

r 
V-7 

where €1 = Be(al) = 2IBl 

Bz a1cBZ 

€2 = _Be(a2) = 2 
(IBl + IB2) 

Bz a2cBZ 

In the calculations to follow, s1 and s 2 will be employed as ordering 

parameters for each region. If the larger of s
1 

and s 2 , i.e. 

s=max (s
1

, s 2 ) is assumed to be a small quantity, then a differential 

equation may be derived for the perturbed e component of vector paten-

tial, oA
8

. The form assumed for the perturbations is oA
8
= oA8 ( r) exp 

[i(m8 + kZ- wt)] where m = ±1, k = n/R0 , and Im(w)>O. The derivation 

of the following equation has been given by Lee[43] and will not be 

reproduced here. 

2 
(k

2
r - w ~ + kill tan l/J) 

VA 

[
oA8tan l/.1 

+ (IDkr + tan l/J) 2 
1 a a ---r-
r dr ar 

r 

V-8 
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I 

Here v A is the Alfven velocity of the plasma. Since BZ and p (plasma 

density) do not depend on r, neither does vA. 

As in Lee's model, the perpendicular displacement of the beam center 

-+ 
of mass is described by a vector Y (z,t). The perturbed beam currents 

-+ 
are then derived from Y by computing Eulerian derivatives of the beam 

velocity and density. The result is given below. 
-+ 

-+ dY 
oJB = -enB dt V-9 

The'convective time derivative following the beam motion is employed 
-+ 

for ~~' resulting in the following: 

-+ 
dY -i(w - kv ) ikvZl (in region one) - == ~ 

dt Zl 

V-10 
-+ 

~~ = -i(W- kvz2 ) ~ ikvz2 (in region two) 

Here w has been assumed low in comparison to kv Zl and kv Z
2

• Calculating 

perturbed beam currents for each region results in: 

= 

V-11 

= 

In order to satisfy the field equation V-8, the beam displacement (as 

was pointed out by Lee[43] must be of the form given below. 

+ /\ -... A 

Y = (e + im e )Y 
X y 

Y=Y
0 

exp [i(kz-wt)] V-12 

Combining equations V-8, V-9, and V-10 gives the following results for 
-+ -+ 

81' 82' oJBl' oJB2. 

• 

• 
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Y ime {·( k - ) H( ) = e~0 e l - vZl + mw1 a1-r 

A 

[H(a1-r) (illkvz1 -w1 ) + w1a1o(r-a1 )] - vZl ez 

c 

_,.. 

OJB2= enB 
0 

- H( a -r)] 
1 

V-13 

V-14 

V-15 

- (klla -E ) o(r-a ~ Yeime V-16 
2 2 2] 

At this point it is necessary to evaluate Y in terms of oA
8

• For the 

two-region problem, it is convenient for later manipulations to 

evaluate Y in terms of either oA
8

(a
1

) or oA
8

(a
2

) alone. A relation of 

this form may be obtained by writing out equations of motion for each 

beam region separately. The equation of motion for region 1 is given 

below: 

2 d2; 
Tia1nB Y

1
m ---2 = 

0 dt 

1 
c 

V-17 

The equation of motion for region 2 is given by the following. 

1 R 2TI _,.. _,.. _,.. _,.. 

~ ~ rdr ~ d8 [oJB2 X B + JB2 X oB]~ V-18 

_,.. _,.. 

The portions of the force terms involving integrals over oJBl and oJB2 

may be evaluated in terms of Y using equations V-13 and V-15 and moved 
_,.. 

to the left-hand side. This leaves the oB term which may be written 
_,.. 

in terms of oA. Performing the indicated integrations results in the 
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equations given below. 

V-19 

V-20 

Combining equations V-19 and V-20, an expression may be obtained for 

ime Ye only in terms of oA8(a2 ). 

where A1 -

a 2 
1 

V-21 

Using equations V-18 and V-21, s1 and s2 may be written in the following 

form. 

s = 1 V-22 

• 

• 
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VZ2 

(s1-ffika1 )2oA
8

(a
1

) o(r-al) 2-
s = - 2wSl vZl V-23 2 

-k2v 2 -wCl ffikv ZJ. 
2 al 

Zl +WSl 

Substituting s1 and s2 from equations V-22 and V-23 into the field 

equation V-8 then leads to the equation given below. 

2 2 
[ OAa - 1 a a ] (k r - w r + k:ffi tan 1jJ) - --r- roA 2 r r or or 8 

VA 

(ffikr + tan 1jJ) [ 
oA8tan1jJ - 1 a a 

tan 1jJ l + 2 ; h r-a;;- oA8 
r V-24 

= 

2 ~ 2 a2 
2wS2 (s2-mka2) 2 2 oAe(a2) 

+ ------------------a~2-_a~l~-----------
-k2vz~(l+A1)-wc2ffikvz2(l+A2)+w6~(l+A3) 

* Multiplying the above equation by roA8 and integrating over r from 0 

to R results in the following real integral form for w2 

• 
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R -a a 
+ 1 rdr ikma-;(roAe) ~ (6A8 tan 1/JI

2 

0 

2 

2w~2 -:-=2::::__2_ ( e:2 -ilika2) 2 I cSAe ( a2) 12 
a2-al 

V-25 

It may be noted that all terms in equation V-25 are positive-definite 

except for the last two. A sufficient condition for stability may then 

be obtained by requiring both of these to be greater than zero. For 

the first of the two terms, the condition given below results. 

2 2 
+ mwCl kvZl 

2 
< 0 k VZl - wf31 V-26 

(for v
72 > vz1) 

2 2 
+ mwClkvZl 

2 > 0 k VZl - wf3l V-27 

Requiring the last of the two terms to be positive gives the following 

condition. 

V-28 

In examining the implications of the above stability conditions, it is 

convenient to write them in terms of the value of the safety factor, q, 

• 

•• 
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at the positions r = a
1 

and a 2 • 

al Bz kwClv Zl 

RoBe(al) 
= 2 V-29 

WSl 

a2BZ kwc;::vz2 
(A

2 
+ 1) 

RoBe(a2) 
= 2 

WS2(l+A3) 

Here R
0 

= torus major radius and it has been assumed that k = 1 /Ro for 

the ill = ±1, n = 1 kink mode. Equations V-26 to V-28 thus become the 

following. 

a
1 

+ill q(a
1

) - 1 < 0 

(for vz 2 > v Zl ) 

a
1 

+ m q(a
1

) - 1 > 0 

( for v Zl > v Z2 ) 

a
2

(1 + A
1

) (1 + A
3
)-l + ill q(a

2
) - 1 > 0 

(in both cases) 

Here a
1 

and a 2 are small quantities as given below. 

where 3 
1
Al 

moe 
yl (~) I 

= = Alfven current for 
e 

3 
y2 ( v~2) 

I 

1A2 
= moe = Alfven current for 

e 

V-30 

V-31 

V-32 

V-33 

region 1 

region 2 



q(a1 ) may be related to q(a2), the q-value at the outside of the beam 

by the following. 

V-34 

Using the above relation and choosing m = l, the sufficient stability 

conditions given in equations V-30 to V-32 may be written in terms of 

q(a2 ) as follows. 

(A2+l)A
3 

A2 

(A2+l)A
3 

A2 

(in both cases) 

V-35 

V-36 

V-37 

The above equations indicate that for vz2 > vZl there will be a 

window of stability near q = l whereas for vZl > vz2 there is a lower 

limit on q(a2) for which stability is present. These sufficient sta­

bility conditions may be summarized in the following two inequalities. 

V-38 

V-39 

• 

• 
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For example, if a
1 

= 0.5 a2 , y
1 

= 3, y
2 

= 9, then a sufficient condition 

for stability is the following. 

V-40 

whereas for y1 = 9, y 2 = 3 the sufficient condition is ~(a2 ) > 1.27 

(l- a1 ) which is e~uivalent to ~(a1 ) > l- a1 (using e~uqtion V-34). 

Since the parameter a
1 

is small, except for high beam energies, the 

above example does not indicate any substantial region of stability 

A somewhat stronger sufficient condition for stability will now be 

derived from e~uation V-25. This is obtained by employing e~uations 

V-19 and V-20 to combine the last two terms of V-25. E~uating V-19 

and V-20 leads to the following relation. 

+ alvZ2 ] 

( 2 al2) Y2 a2 -
V-41 

V-42 
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Substituting equation V-41 into V-42 and requiring the latter to be 

greater than zero as a sufficient condition for stability, leads to the 

following inequality. 

x[y2 VZl 
yl VZ2 

+ 

Writing V-43 in terms of q(a2), A1 , A2, A
3 

results in the stability 

criterion given below. 

v 
A ( 1 - _g) [ a

1 
+ m q ( a

2
) 

2 VZl 

where o :: A
3

(A2+1) 

The above equation is cubic in q(a2) and for given values of 

v-43 

v-44 

v22/vZl' y1/y2, a1/a2, a1 and a 2 , determines regions along the q(a2) 

axis where stability exists. Since other choices of these parameters 

may also cause the right-hand side of equation V-25 to be positive, 

this result is sufficient for stability, but not necessary. 

It may also be noted that the above analysis results only in marginal 

conditions for stability and does not give information about growth 

rates near the instability thresholds. These will be treated in 

detail in Section V.2 • 

• 

• 
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A dispersion relation may be derived by solving the field equation 

V-25 in the regions 0 < r < a1 , a1 < r < a 2 , and a2 < r < R. Jump 

conditions on ~ oA8 are obtained by integrating equation V-25 from 

a1 - s to a1 + s and from a 2 - s to a 2 + s; conducting shell boundary condi­

tions are then assumed at r=R. Substituting the solutions of the field 

equation V-25 into the jump and boundary conditions and assuming the 

continuity of oA8 (r) at a1 and a 2 results in a dispersion relation. This 

is derived in Appendix A. 

In conclusion, a stability analysis has been performed for kink 

modes in a two region, sheared velocity and energy relativistic beam. 

The method used is similar to that employed by Lee[43]. The result 

is several sufficient conditions for stability; when evaluated for 

parameters thought to be typical of the strong runaway regime in 

tokamaks, these indicate only a slight change from the usual q > l 

limitation. 

V.2 Kinetic Beam-Plasma m=l,2,3,4, n=-1 

I 
Alfven Wave Instabilities 

A number of the assumptions made in the cold fluid plasma, mono-

energetic beam analysis of Section V.l will now be relaxed. An attempt 

is made here to further clarify the properties of the unstable kink 

modes and to explore the validity of the fluid plasma - rigid beam models 

by employing a more kinetic approach. A cylindrical beam-plasma con-

figuration is assumed and radial velocity shear will not be treated in 

the present analysis; density profiles for beam and plasma will be taken 

as flat for simplicity. 
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• 
Specifically, the new effects treated in this section include: 

influence of perturbed electric fields on the beam, longitudinal dyna-

mics of the beam electrons, generalization of the background plasma 

model to include frequencies which are not small relative to the ion 

gyrofrequency, beam energy spread, and toroidal curvature drifts. Also, 

since the beam is treated kinetically, beam perturbations are taken 

into account by examining the perturbed particle orbits instead of 

using the macroscopic displacement vector which was utilized in the 

preceding section; thus, some degree of beam distortion is allowed. 

Perturbed electric field forces are included in the analysis 

described in this section in order to examine the effect of the two 

mass approximation to relativistic particle dynamics. 

V-45 

Interest in this characteristic is based on an examination of the 

theoretical and experimental literature[87-90] on macroscopic modes in 

straight relativistic beams without external magnetic fields. As was 

mentioned earlier, the relative stiffness of beam electrons against 

acceleration along the propagation direction (due to the fact that their 

velocity cannot exceed the speed of light) may act to inhibit build-up 

of the axial perturbed currents necessary for a kinking of the beam to 

develop. If such an effect were of importance in strong runaway dis-

charges, it could act to limit the growth rates of instabilities to 

magnetic skin diffusion times which are potentially much slower than 

I 
the Alfven transit time for high temperature plasmas. However, as 

will be discussed later, such an effect is found to be relatively • 
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unimportant, at least in the fixed boundary, high conductivity model 

(for which calculations have been done). This is due to the fact that 

the component of perturbed electric field along the beam propagation 

direction is much less than the transverse components. For a highly 

conductive plasma, the magnetic field is frozen in and ions are drawn 

into the kink motion; thus, the effect of the electron dynamics is 

negligible due to the small ratio of the electron to ion mass. It is 

only when resistivity is present that the freezing of the field is 

disrupted and the longitudinal beam electron dynamics are expected 

to become important. 

The extension of the plasma model to include frequencies which are 

not small relative to the ion gyrofrequency is motivated by the following 

fact. The basic bounce or drift frequency of a relativistic electron 

(w ~ c/R0q) around the poloidal direction is of the same order as the 
br 

ion gyrofrequency for parameters characteristic of present-day tokamaks. 

Since MHD instability modes normally grow on much longer time scales 

than the ion gyroperiod, the presence of a high energy electron com-

ponent which transits around flux surfaces on a much faster time scale 

can act to partially short out such instabilities. This is similar to 

the effect identified by Guest, et al.[91] for ballooning modes in high 

beta plasmas in the presence of hot electrons. Specifically, in terms 

of the following analysis, the above considerations require keeping 

2 2)-1 terms in the plasma dielectric of at least order (w -w . and retaining 
Cl 

win comparison to k11v11 in the beam terms. 

It will be recalled that in Lee's analysis[43] and in Section V.l, 
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w was neglected relative to k11 v 11 *. The calculations to follow indicate 

that over certain ranges of q this is not a necessarily valid assumption. 

Retaining this term in the beam perturbed currents results in complex 

eigenfrequencies, whereas without it only a pure real or pure imaginary 

spectrum is obtained. Physically, the reason for the complex eigen­

frequency is due to the fact that the instability analysis is made from 

the lab frame; as the beam goes unstable to kinks, its relative motion 

results in an apparent oscillation superimposed on the exponential 

growth. Since the complex eigenvalues prevent use of an energy principle, 

a normal mode approach is taken. 

As was pointed out by Lee[43], the instability criterion for toroidal 

relativistic beams against m = ±1, n = 1 modes is related to the closure 

of beam particle orbits as opposed to the more restrictive criterion 

of closure of field lines. Such a consideration has motivated the treat­

ment of beam energy and toroidal curvature drifts. Finite thermal spread 

in the beam energy results in a broadening of the closed particle 

resonance condition and leads to an effect analogous to Landau damping. 

Toroidal curvature drifts were examined in some detail in Chapter III; 

they act to separate drift orbits away from flux surfaces and lead to a 

slightly longer transit time for beam electrons around the torus than 

would be the case if these drifts were not present. The condition of 

closed particle orbits thus would be expected to occur at slightly 

lower values of q than would be the case in a cylindrical model. 

* w was assumed to be of order vA/R0 while k11v11 is of order c/R
0

. 

• 

• 
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V.2.A. Physical Model, Particle Orbits, and Field Equations 

In the following analysis, the model assumed is that of a cylindrical 

relativistic electron beam immersed in a cold background plasma and 

surrounded by a conducting wall. A constant magnetic field is applied 

along the axis of the cylinder; the beam and plasma are assumed not to 

significantly modify this magnetic field, i.e. there is no net dia-

magnetism or paramagnetism. The effect of toroidicity is introduced 

by periodic boundary conditions on the perturbed fields. Helical per-

turbations of the form exp[i(me + ns- wt)], s = z/R
0 

(n,m are integers) 

are considered. The use of a cold plasma model is justified due to the 

long perpendicular wavelength of the kink instabilities. This is of 

the order of the plasma minor radius whereas electron and ion Larmor 

radii are, at most, a few millimeters. Thus, kJ..pi and kl.pe<<l and 

finite Larmor radius corrections for the background plasma are negligible. 

Since a uniform axial current density is assumed, Be and q are given 

by the following. 

47T 
cr 

r 
f J(r) rdr = 
0 { 

2 
2Ir/ca 

2I/cr 

{

q(a) 0 < r <a 

= r 2B C/2R I 
z 0 

r > a 

a = radius of current channel 

0 < r <a 

r > a 

In Cartesian coordinates Be may be expressed as given below. 

B = 
X 

B = 
y 

v-46 

V-47 

V-48 
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The unperturbed relativistic orbits are then given by the components 

of the force equation. 

d 
dt (yv ) = r2 v 

x e y 

-Q v 
e x 

where Q :: eBZ 
e 

r2 X 
e ---

qRO 

(xv + yv ) ~ 
X y 

v-49 

0 

Since no unperturbed electric field is present, y = constant. Defining 

± ± ± 
v = v ± iv , x = x ± iy and assuming x ±iwt = x e one obtains from 

X y 

V-49 the following equation for w. 

which 

w+ 

w 

2 Q w -
QevZ 

0 yw - = e qRO 

has the two roots: 

= 
r2 

e 
2y 

r2 e 
= 2y 

[l + i1 + 4v~y/qR0r2e 

..L 

Q 
e 

~ 

y 

where wbr = = transit or bounce frequency 

V-50 

V-51 

w+ and w_ are approximately the gyrofrequency of a relativistic electron 

and the frequency corresponding to motion along the field lines, 

+ 
respectively. The functional dependence of v- will now be explicitly 

calculated; this is necessary for the Vlasov beam model of 

• 

• 
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Subsection V.2.B. The guiding center motion is separated out as is 

indicated in Fig. V-2 and in the following equations. 

-+ -+ 
-+ -+ vx $6 -+ -+ A 

t;, = X + y = X + (v x b)/w+ V-52 
$62 

-+ 
here t;, = position of the orbit guiding center. The Cartesian components 

-+ 
of E;, are given below. 

s = x + v /w 
X y + 

V-53 

Taking time derivatives of s and s results in the following equations. 
X y 

$6 y 
e -- = 

l 
vx + w+y [ _\t v 

e x 
---dt qRO 

ds l 
n x 

__::;[_ = e 
vz] v -- [$6 v ---dt y w+y e y qRO 

Substituting equation V-53 into V-54 one obtains: 

dE;, $6 r2evz v 
X (l 

e ) (t;,y +_]S --= v --- -dt X w+y w+yqR0 w+ 

ds n r2evz v 
__::;[_ = v (l - _e_) + (t;,x - 1) 
dt y w+y w+yqR0 w+ 

V-54 

V-55 

Employing equation V-50 and combining the two above equations results in 

+ 
the following equation for s- = s ± i s 

X y 

+ WevZ df;- = + + 
± c !::! + iw c dt w+yqR0 -

• s± - s ±i(¢-wt) V-56 
• • - ~e 
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where ~ = an arbitrary phase factor 

The transverse equations of motion (V-49) may now be written in the 

following manner. 

d (yv ) Q v 
Qevz 

(~ - v /w ) = dt X e Y qRO X y + 

d (yv ) Q v 
Qevz 

(~ + v /w+) dt - -y e x qRO y X 

From equations V-50 and V-51 two useful identities given below are 

obtained. 

Q (Jj + 
e + 

Using the above, equations V-57 may be combined. 

V-57 

V-58 

V-59 

+ 
Substituting equation V-56 for ~- into V-59, the following solution is 

obtained for ± v. 

+iw t] e + V-60 

Equation V-60 has components corresponding both to the gyromotion 

(at w+) and the motion along field lines (at w_). The energy dependence 

of w will be of importance in the Vlasov treatment; w_ is dependent 

on y since the finite mass of the electrons causes them to lag the field 

lines slightly. As was mentioned in Section V.l, this is necessary in 

-+ -+ 
order for the v x B force to exactly balance the centrifugal force 
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associated with the helical motion of the electrons. A spreading out 

in the energy distribution of the relativistic electrons is related to 

a spreading out in the position of the particle orbits away from field 

lines. 

For perturbed fields with the dependence exp[i(m8 + n~- wt)], the 

+ + 
components of the curl E and curl B equations result in the following 

six equations: 

1: L ( pEe ) - im E 
pap p r 

v-61 

V-62 

V-63 

41TiJ 
= E + Z 

z w V-64 

V-65 

V-66 

rw nc 
here p = c and n

11 
= R0w • 

In the instability analysis to follow, these six equations will be com-

bined in the following manner. Br and B8 from V-62 and V-63 will be 

substituted into V-65 and V-66 to obtain equations for Er and E8 in 

terms of E , B , J and J
8

. These are then substituted into equations z z r 

V-61 and V-64 resulting in two differential equations for the perturbed 

longitudinal fields E and B : z z 

• 

• 
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IJ 2 + (l -
2 47T [iwJ a 

( pJ e) J v-67 B nil )Bz = -3P ..L z wp r 

IJ 2 + (l 
2 4rr · { 2 "11 a 

rnJ 8J}v-68 E - nil )Ez = - _l (l - nii)J +- [i-a- (pJ ) .l z w z p p r 

where IJ 
2 ( 

J.. 

1 a a ( ) m
2 

-pap Pap--2 
p 

-+ 
The remaining task is to determine the perturbed currents oJ in terms 

of the perturbed fields E and B z' this will be worked out in Subsection z 
-+ 

V.2.B. Since oJ will, in general, depend on both longitudinal and trans-

-+ -+ 
to use equations v-62, verse components of E and B, it is necessary 

-+ 
V-63, V-65 and V-66 to express oJ in terms of E and B . Once J and z z r 

J 8 are specified, the transverse electric fields are obtained (in terms 

of E and B ) by solving the equations given below. z z 

47Ti Jr + (l - n 112) Er 
w 

47Ti J 2 
w 8 + (l - nil) Ee 

-+ 

!!!:.B 
p z 

_ mn
11 

= -E 
p z 

3E 
+ . z 

lnllap 

- i 
aB z 
ap 

v-69 

V-70 

When J = 0 (no plasma or beam), the above equations (V-67 to V-70) 

reduce to the usual waveguide TM and TE equations as are given, for 

example, in ref.93· Once two coupled eigenmode equations are obtained 

for E and B from equations V-67 and V-68, solution and application of 
z z 

apfropriate boundary conditions results in a dispersion relation. This 

will be done in Subsection V.2.D for fixed boundary and free boundary 

models. 

The kink instability treatments of Lee[43] and Lovelace[44] ignore 

the coupling between equations V-67 and V-68. 
-+ -+ 

Lovelace assumes oE•B=O 
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whereas Lee neglects all perturbed electric fields. These approxima-

tions are based on the assumption of a highly conducting plasma and 

result in consideration only of equation V-67 (or its equivalent in 

terms of the vector potential oA8)with Jr and J 8 expressed in terms 

of oBz(or oA8 ). In contrast, in the work which has been done on hose 

instabilities[87-90] (where the equilibrium B field is zero) only 
z 

equation V-68 is typically considered and V-67 is neglected. 

V.2.B. Perturbed Currents 

1. Background Plasma 

The dynamics of the electrons and ions in the background plasma 

described by the following force equations. 

+ 
dv- . 

e,1 = 
dt 

dv . ze,1 
dt 

- + +Ht .v- . 
e,1 e,1 

2 
d (E._) 
dt 2 

+ 
V .Sl .X- • 

ze,1 e,1 e,l 
qRO 

+ _e_ 
m . e,1 

E 
z 

V-71 

V-72 

In similarity with the analysis of Subsection V.2.A., the orbits are 

given below. 

± 
v . e,1 

v 
z . e,l 

where v
11 

, 

w+ and w_ 

= 
n .r 
~~e, 1 

v ' j_ 
eo, 

are the 

2 

;..L 

~ e±i8 0 [e+iw_t -e+iw+t] 
...!.. 

= initial conditions on orbits 

nonrelativistic analogues of the frequencies 

equation V-51. Since the analysis here is for a cylinder with 

V-73 

V-74 

defined in 

a constant 

magnetic field, it will not include certain effects which occur in a 

• 

• 
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toroidal geometry with time scales of order (w_)-1 . These include 

trapping of electrons and ions in orbits which mirror on the high field 

side of the cross section. As a first approximation, all of these 

effects will be ignored as being important for kilocycle frequencies, 
I 

but not for megacycle frequencies near the Alfven transit frequency. 

The guiding center for the above orbits is defined by: 

v 
X t,; = y -

Y w+ 

and has the time dependence t,;± = E,;~e±i(SO-w_t). 

Given the above unperturbed orbits, one may calculate perturbed 

V-75 

velocities by retaining the perturbed electric field terms in equations 

V-71 and V-72. The following dependence has been assumed for the per-

turbed fields. 

-+ -+ 
E = E.:( r) exp[i(me + nz/R

0
-wt)] V-76 

± 
E = E ± iE 

X y 

Since only the long wavelength modes are of interest in this analysis, 

it is assumed that sr(r) and s
8

(r) are slowly varying functions of r,i.e. 

1 dsr 
---
€ dr 

r 
<< 

Sie i 

yT ./m . e,l e,l 

For frequencies in the megacycle range, the above ordering implies that 

r and e are essentially constant from the frame of reference of the 

nonrelativistic electrons and ions. Another way of viewing this is that 

if a snapshot is taken of the plasma particles over the time scale of the 
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instability, only the gyromotion would be seen. Both electrons and 

ions would appear stationary with respect to their movement around the 

minor cross-section. 

For these reasons, the perturbed plasma currents will be taken as 

simply those for a uniform infinite magnetic field. 

± 
4nJ . = 

e,~ 

41TJ 
z . 
e,~ 

2 + 
iw .E­

pe,~ 

w + n . 
e,~ 

iw2 .E 
pe,~ z 

w 

In the case of electrons w will be neglected in comparison with s-2 • 
e 

V-77 

For a resistive background plasma model the only change in the above 

is in the perturbed electron current along the longitudinal direction. 
2 

41TJzjelectron = 

where v = 
ee 

iw E pe z 
w + iV ee 

4 41Te n lnt\. 
e 

V-78 

The transverse ion and electron currents are not affected here since 

the appropriate collision frequencies are much lower than s-2 . • In 
e,~ 

fact, for temperatures typical of tokamaks, v will be generally a 
ee 

good deal less than w unless a large fraction of impurities are present. 

V.2.B.2 Relativistic Beam Perturbed Currents - Fluid Approach 

The starting point for calculating the perturbed beam currents is 

the relativistic force equation; the Cartesian components of this equation 

are given as follows: 

• 

• 
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d n v x v B v B 
n v e z ~ (E +~-~ dt(yv) = e y qRO m0 X c c 

d n v y v B v B e z ~ (E Z X X Z 
dt(yvy) == -n v + ---e x qRO mo Y c c V-79 

d n v B v B 
dt(yvz) - - _e_ (xv + yv ) - ~ (E + ~ 

y X 

qRO x y mo z c c 

Here the fields E ,B , .•. are perturbed fields; the equilibrium fields 
X X 

are contained in r2 and q. In the following analysis, the terms 
e 

arising from transverse beam velocities crossed into longitudinal and 

transverse perturbed B fields will be neglected. These terms are 

-1 
expected to be of order (qA) as compared with the terms arising from 

the longitudinal velocities (near the speed of light) crossed into the 

transverse perturbed B fields. The validity of this assumption has 

been justified by examining the size of the perturbed fields at 

roots of the dispersion relation. 

In treating the perturbed orbits, the approximation will be made 

d d 
that dt (yvx) = 0 and dt (yvy) == 0 to first order, i.e. the perturbed 

motion is adiabatic. This is also equivalent to a drift kinetic 

approximation since the fast gyromotion is neglected and the guiding 

center motion is retained. It will be recalled from Subsection V.2.A. 

that the unperturbed guiding center orbits are as follows. 

v = -wbry X 

v = wbrx V-80 y 
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d n 
- (yv ) = - _e_ (-w xy + wb xy) = 0 
dt z qR

0 
br r 

The Cartesian coordinates of the unperturbed orbits are given as: 

V-81 

z = z0 + vilt. 

The first order perturbed beam velocities are then given below. 

v 
v = -w y - _e_ (E + 2. B ) 

X br nJ. n Y C X 
0 e 

v 
v = wbrx + j ( E - 2. B ) 

Y Oe x c Y 
V-82 

d (yv)=-~E 
dt z Ina z 

Also, from the relativistic energy equation one has the following . 

.9:1.= e vE dt - --2 z z 
moe 

V-83 

The perturbed velocities in the longitudinal and transverse directions 

are then obtained by integrating equations V-82 and V-83 with respect 

to time over the unperturbed orbits. First, for the perturbed velocity 

in the z direction, the results given below are obtained. 

-oo 

dt I E ( t I) 
z 

ie Ez =- ------~~~----mo ().) - (m+nq)wbr 
V-84 

Also, integrating the energy equation V-83 results in the following. 

ie vii Ez 
oy = - -2 ().) - (m+nq)wbr 

moe 
V-85 

Combining equations V-84 and V-85 gives the perturbed longitudinal 

velocity. 

• 

• 
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z = -ie 

m y3 
0 

E 
z 

w - (m+nq)wbr 
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In order to obtain the perturbed transverse beam velocities, it 

V-86 

is necessary to first calculate the perturbed positions; these may be 

+ 
found by integrating the first two of equations V-82. In terms of x-

+ 
and v- these are given by the following. 

± 
v = 

+ dx-
dt = ±iw.. x± - _e_ (tiE± + v z B±) 

Dr m0ne c 

V-87 has the solution given below. 

± ±i(80 + (J.)b t) s ± x = re r + ux 

+ 

V-87 

V-88 

The perturbed position ox- is obtained by integrating over the unper-

turbed orbits and is given by: 

e 
± iiO'T 

0 e 

E± + . v B± 
- l z 

c 
w - (m+nq)~r 

Substituting the above result back into V-87 leads to the desired 

transverse perturbed velocities. 

+ 
where ov-

w - (m+nq)~r 

V-89 

V-90 

Now that the perturbed velocities have been calculated, perturbed beam 

currents may be found. The perturbed distribution function is given 

by the following. 

of V-91 

For the case of a beam of relativistic electrons with uniform velocity 
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near the speed of light and no transverse thermal energy, an appropriate 

distribution function is F0 = o(vz-v0 ) o(v~-rwbr) where v
0 
~c. The 

perturbed currents in this case are given below. 

2 
= ± iwpb 

r2 
e 

E 
z 

4nJ = z w - (m+nq)~r 

2 
where wpb = 

w - ~m+nq)~r] 

3 a Fo 
The final term in equation V-93 comes from 4nefd v or vz ar 

A uniform density profile is assumed in the following analysis so 

that this last term of J will be absent. If it were desired to 
z 

V-92 

V-93 

examine the case where the beam density was still uniform, but local-

ized within the plasma at a radius rb, then the final term of V-93 

would contribute a o function o(r-rb) to the perturbed Jz. This is 

physically due to the perturbed current caused by the gross motion 

of the beam boundary as it is undergoing displacement. In this 

situation, boundary conditions of the perturbed fields at r=rb must be 

derived by multiplying the two coupled equations V-67 and V-68 by rdr 

and integrating over the layer rb - E to rb + E with E + 0. 

V.2.B.3. Relativistic Beam Perturbed Currents- Vlasov Beam Model 

The starting point for a beam which has energy spread is the rela-

tivistically correct Vlasov equation. 

• 

• 
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of -+-+ e -+ 1 -+-+ of at+ v•Vf + ;
0

[E +-;;- (vxB)]·a-p = o 

-+ -+ 
where p = ym v 

0 

2 2 -1/2 
and y = (1-v /c ) 

V-94 

The above equation is linearized by assuming f = f 0 + of where fO is 

an equilibrium distribution function. 

e -+ 
m [oE + 

0 

V-95 

of is then obtained by integrating over the characteristics of the above 

equation (unperturbed orbits): 

t -+ -+ 
Of = ~ I d t I CE + vxB J • a f 0 

m c ~ 
0--<Xl .I:! 

The equilibrium distribution function f 0 depends only on the three 

constants of the motion which are given below. 

2 
H = m c y 

0 

pz = YffioVz + ~ Az 

1
8 

= ym0 (xv -yv ) + ~ rA 
y x c e 

V-96 

V-97 

-+ 
Therefore, a f 0/a p may be expanded, using the chain rule, to obtain the 

following. 

a f 0 a f 0 a H a f 0 a P z a f 0 a 18 
aT = ali a]S + a P z ap + a 1

8 
~ V-98 

The above derivatives of the constants of the motion are given below. 

a H -+ 
a]S = v 



A 

Xl 
y 

"' Yl 
X 

164 

Equation V-96 may then be expressed in a somewhat simpler form: 

Of 
a f 0 a f 0 oP 

af
0 

oLe = ali on aP + --z aLe z 

t + 
where on =j dt' (v•oF) 

-00 

t 
oP =J dt'oF z z 

-00 

t 
oLe =! dt' (xoF - yoF ) y X 

-00 

V-99 

V-100 

V-101 

a f
0 

a f 0 a f
0 

In the above, §H, aP' ar::- have been removed from the time-history 
z e 

integrals since they depend only on the constants of the motion and 

thus are time-independent. 

In what follows distribution functions which depend on only H 

and Pz will be considered, i.e. f 0 = f 0(H,Pz). The next step in the 

analysis is to perform the time-history integrals indicated in equation 

V-101. From Subsection V.2.A., the unperturbed orbits, neglecting 

gyromotion, are given by the following. 

r = ~l. = constant 

e = eo w t V-102 

z = zo + v t z 

• 

• 
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Therefore, the wave-phase factor in the perturbed fields is as given 

below. 

Assuming that w has a small positive imaginary part, the following 

expressions may then be obtained for oP and oH. 
z 

oP ~ 
z 

E 
z 

oH = ie 
m0(w - wbrnq - mw_) {

v E 
z z 

+ 
rw w i8 0 -

+ - [--e _ _;;E::._ __ 

2 
w - wbrnq - mw 

+ 

V-103 

V-104 

+ w_] 

V-105 

Since w >> w and w, the above equation for oH may be approximated 
+ 

as follows. 

V-106 

The perturbed beam current is then given by the equation below. 

-+ oo oo af af
0 oJ = -e J p..Ln.pj_l ;dp'' [oP zaP o + oH ali 

-00 z 
V-107 

0 

Substituting oP and oH as given in equations V-104 and V-106 into V-107 
z 

results in the following equation . 



a f
0 --+ 

ClP z 
(v E z z 
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- w nq - mw 
br -

)
-1 

V-108 

The first term in the integrand may be integrated by parts to obtain 

the result given below. 

OJ • -iwp~ ( p~ dpJ_[ dp11~ (w )
-1 

- w nq- mw br -

V-109 

From this point on it will be more convenient to convert the above 

integral to an integration over v 11 andy. The Jacobian of this trans-

formation is given as the following • 

l...Bh. .1..RL V-110 
ay a v 11 

where J 
2 2 

= = m0v-'- y 

~ ~I 
ay a v;, 

In performing the above integrations, a highly-peaked distribution 

function in v
11 

will be considered with v11 ~ c. A spread, however, will 

be allowed in the energy dependence, i.e. f 0 (vll ,y) = o(vll-v0 )F(y) 

h If . d f" d (1 - vo2/c
2

)-
112

,. then P...LIJI were v
0 

~ c. y
0 

1s e 1ne as y
0 

= 

• 

• 
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may be written as below. 

3 2 
2 

P J..l J I = mo c ( Y 2 - l) 
Yo 

In the following analysis, a step function dependence will be con-

sidered for F (y) . 

{ 
0 Y <Yo 

F ( y) = K Yo < Y <y 
m 

0 y > y m 

The normalization constant K is obtained by requiring that 
00 

27T l PJ.. dpJ dpll f 0 = Nb, where Nb = electron beam density. This 

results in the equation given below. 

- l) = N 
b 

3 
3 [ ym X (yO,ym) = -2.,.....:::.y_ -3 

Jl 0 y 
0 

-+ 
Equation V-109 for 8J may then be written in the following form. 

-+ 
8J = 

. 2 
lW b 
--l?.£. X 

rru 

V-lll 

V-112 

V-113 

V-114 

V-115 
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Performing the integrations indicated above and employing the fact 

that f 0 is even in vr and v8 , one obtains the perturbed currents given 

below. 

aJ 
r 

aJ 
z 

= 

= 

= 

2" 2 lW b p 
mo 

2" 2 lW b 
J2 

mo 

2 
iwJ2b 

mo 

Yo-Ym 
x(yO,ym) 2 2 

w+yO c 
Ee 

Yo-Ym 
x(y0 ,ym) E 2 2 r 

W+Yo c 

I 2 
x(yo,y ) [ ....!__ E - I E -

z 2 z 2 2 m 2 y0 c 
Yo 

The integrals I
1

, I 2 , I
3 

are given in Appendix B. 

V.2.C. Inclusion of Toroidal Curvature Drifts 

(cE 
z 

A possibly important effect which has not been included in the 

analysis of the present chapter (since a cylindrical model is used) 

is that of toroidal drifts. These were examined in some detail in 

V-116 

V-117 

Chapter III; there it was found that for low pitch angle electrons with 

energies in the l to 5 MeV range, the orbits are close to circular, but 

are significantly displaced from flux surfaces by an amount ~ = p 
1

/A 
po 

(ppol = gyroradius in poloidal field, A = aspect ratio - this applies 

only to a flat current profile). Such an effect can alter the stability 

analysis in several ways. First of all, due to the deviation of orbits 

off of flux surfaces, the beam electrons will travel a slightly larger 

distance in going around the torus than if they were closely tied to 

field lines. Also, if substantial energy spread is present, then there 

will be a greater mixing or spread in transit frequency and spatial 

• 

• 
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location of the orbits than in the cylindrical model. This feature 

may be seen in Fig.V-3 where orbits started out on the same flux 

surface at the left-hand side are plotted. Finally, the inclusion of 

the proper toroidal orbits will result in poloidal mode coupling. 

It may be recalled from Section V.l that the condition for kink 

instabilities in a relativistic beam derived by Lee[43] corresponded 

to the closure of particle orbits in one transit around the torus, 

v /R0 = w we Nl 2 2 
-1]' is i.e. where w = + 4w

8
;wc w the beam cyclo-

z - 2 c 

tron freq_uency, w
8 

is the beam betatron freq_uency. If one formally 

assumes that the same condition applies for a toroidal beam, then 

the modification resulting from toroidal drifts may be readily 

calculated. In Fig. V-4 a flux surface is shown (dashed lines) along 

with the corresponding toroidal orbit (solid line). Taking into account 

the slightly greater distance travelled by the toroidal orbit than the 

related cylindrical orbit (colinear with the flux surface in Fig. V-4), 

the condition for a closed orbit becomes the following. 

where f = 

> w 

2 + a 

a = orbit radius 

V-119 

Translating the above into a q_ limitation results in the ineq_uality given 

below. 

q_ > f(l+fE) 
l V-120 
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ORNL DWG. 75-7306R 

100 kA TOROIDAL CURRENT 
(ORMAK TYPE 8 PROFILE) 

I 

-+-

6 MeV 

5 MeV 

3 MeV 

FIGURE V-3 

Relativistic Electron Orbits in ORMAK Projected onto a Minor Cross 

Section - All Orbits are Started Out at the Left-Hand Side on the 

Equatorial Plane. 
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FIGURE V-4 

ORNL DWG. 75-13729 

RELATIVISTIC 
ELECTRON 
ORBIT 

Magnetic Flux Surface and Toroidal Relativistic Electron Orbit . 



where s 

8 = v /c z 

and f > l 
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It may be noted that for a given toroidal magnetic field and major 

radius, the above criterion would imply that higher energy beams are 

required as the total current goes up to maintain a given amount of 

enhancement in the stability criterion. This is due to the fact that 

at a fixed energy the orbits become more closely centered on flux sur-

faces (6 goes to 0 and f goes to l) as the toroidal current is raised. 

The above mechanism thus scales unfavorably since increasing the energy 

past a certain point will lead to substantial losses from synchrotron 

radiation. However, it does not scale as unfavorably as the analagous 

stability enhancement which was found in the cylindrical model by Lee[43]. 

The presence of poloidal mode coupling becomes apparent when one 

attempts to integrate over the unperturbed toroidal orbits to obtain 

perturbed beam currents. As will be recalled from Subsections V.2.B.2 

and 3, the perturbed currents involved integrals of the form given below. 

t 

J dt' f(r)exp [i(me + nz/R0 - wt')] 
-00 

where (r,e,z) = [r(t'),e(t'),z(t')] are the coordinates of the 

unperturbed orbits 

and f(r) is some function of r (e.g. E8(r), Br(r),etc.) 

In the cylindrical analysis r,e, and z were given by the following. 

r = constant 

e = e0 w t 

z = z 0 + vzt 

V-121 

V-122 

• 
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However, when toroidal orbits are taken into account, the above equations 

become: 
r' = constant 

e, = eo 
I w_t V-123 

z' = zo 
I + v t z 

where the r,8,z and r' ,8' ,z' coordinates are shown in Fig. V-5 and are 

related by the following. 

[ 
r I Sin 8 I ] 

8 = tan -l f:. + r I COS81 

r = r'~l + t:.
2
/r' 2 

+ (2t:./r') cos8' 

Z = Z I 

V-124 

To first order in 6./a, the above transformations become as shown below. 

r ~ r' + t:.cos 8' 

· e · e' - 6 · 2e' sln ~ sln sln 
r 

t:. t:. 
cos e ~ 2r + cos 8' - 2r cos 28' 

Ut . l . . th b t . im8 l lZlng e a ave equa lOns, the e factor in the integrand of 

equation V-121 becomes the following (in terms of 8'). 

eim8 = [ b_ + ei8' _ b_ e2i8 '] m 
2r 2r 

V-125 

V-126 

When the above transformation is used in a stability analysis (via an 

integral like V-121), a coupling will enter in between the various order 

m modes. This is due to the fact that eime is related to the functions 

i8 I 2i8 I 2im8 I 

l, e , e , ... , e For example, m = l is coupled to m = 0,1,2, 

m = 2 is coupled tom= 0,1,2,3,4, etc. This fact can greatly complicate 

an instability analysis and will not be further considered in this work. 

However, in order to perform a realistic stab~lity calculation for a 

toroidal relativistic beam where the quantity p 1 /A is not small cam­po 

pared to the beam radius, it would need to be taken into account. 
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FIGURE V-5 

Relation Between r,e and r~,e~ Coordinate Systems. 
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V.2.D. Dispersion Relation 

A dispersion relation will now be derived for both a fixed boundary 

model and a free boundary model. For simplicity, the perturbed beam 

currents used will be those derived for the fluid model of Subsection 

V.2.B.2; this derivation could readily be generalized to treat the 

case of the Vlasov beam model. The derivation will proceed according 

to the following outline. First, the perturbed currents for the three 

species present: electrons, ions, beam electrons, will be substituted 

into the field equations of Subsection V.2.A. Next, these equations are 

manipulated until two coupled equations for the perturbed fields ~ 

and B are obtained. Finally, a decoupling method is used to solve these 
z 

equations and a dispersion relation is obtained by requiring the appro-

priate boundary and jump conditions to be satisfied by B and E • 
z z 

Adding up the perturbed current for the three species as given in 

equations V-77, V-92, and V-93 results in the following perturbed currents. 

2 2 2 v 
41TJ iW w iw:Ebwbr E ~B 

r Ei E Ei w r c 8 = Sf"" Ee wn (m+nq)~r w w2-0.~ r w2-0.~ w -
l e 

V-127 

l l 

2 2 . 2 
v 

41TJ8 iw w 
Ei 1w bwb E + ~ B 

_ __&_ 
Ee + w 

E E r e c r = w w2-0.~ w2-0.~ 0.. r wn w- (m+nq)~r 
l e 

V-128 

l l 

41TJZ 
2 2 

E iw 
E + iw

12
b 

~ z = z 
(m+nq)~r w 2 wy3 w -w 

V-129 

The field equations V-62 and v-63 are now used for Br and B8 ; also, the 

following quantities are defined . 
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2 

Q 
= wbrwJ2b l 

V-130 
wQ w - (m+nq)~r e 

2 
ww 

J2i D = 2 2 
&G. (w -&G. ) 

l l 

V-131 

2 w 
Ei s = l -

w2-&1.2 
V-132 

l 

2 2 w w b l p = l - ~ - ___l2E_ 
2 wy3 w - (m+nq)wbr w 

V-133 

The perturbed currents V-127 to V-129 may then be written in the form 

given below. 

41TiJ 
r 

w 

41TiJ
8 

w 

41TiJ 

= 
oE 

[s- 1 + (l- n 11 )Q] Er- iDEe- iQ
0

Pz 

= [S- l + (l- n 11 )Q] E8 + iDEr + Q ~ Ez 

_ __;;;;z_ = ( P - l ) E 
w z 

V-134 

V-135 

V-136 

The transverse perturbed electric fields, Er and E
8

, are now obtained in 

terms of E and B by substituting J and J
8

, as given above, into equation z z r 

equations V-69 and V-70. It is convenient to define the following 

quantities. 

V-137 

-1 
E:2 = G D(nll + Q) V-138 

• 
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-1 2 
c::

3 
= 1 +G n

11
(n

11
+ Q) [S- n

11 
+ (1- n

11
) Q] 

-1 
c:: 4 = n

11
DG 

2 2 2 
G = [S - n 11 + (1 - n

11 
)Q) - D 

Er and E8 are then obtained as given below. 

E = r 

a B 
E . z 
e = -~c::l a p 

dE 
1) _z 

a P 

c:: 4 a B 
m Z ;m 

--c::B +- ... E p 1 z n
11 

ap - p €2 z 

a E . 
m( ) z ~m -- c:: -1 E +c:: --+--c::B 

pn II 3 z 2 d p pnll 4 z 

Substituting the above equations into equation V-61 results in the 

V-139 

V-140 

V-141 

V-142 

V-143 

following equation. This is the first of the two coupled radial eigen-

value equations. 

n2B + B + . n2E = 0 €1 v_L z Z l€2vJ.. z V-144 

where 11~ -

Combining equations v-62, V-63, and V-64 with equations V-142 and V-143 

for Er and E8 then results in the second of the two coupled radial eigen-

value equations involving E and B . z z 

V-145 

In order to examine stability, it is then necessary to find the eigen-

values of the coupled system of equations V-144 and V-145. In order to 

get these into a convenient form, equation V-144 is first multiplied by 

-c::
3

/c::2 and added to V-145; V-145 is then multiplied by -ic::1 /c::4 and added 
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to V-144. This results in the two coupled equations given below. 

V-146 

V-147 

Equations V-146 and V-147 are now in a form for which a solution may be 

obtained. A technique for decoupling these equations is used below 

which was given in Ref.93 for the normal modes of a plasma filled 

waveguide. Defining the two functions ~l and ~2 as follows: 

+ Z B 
l z 

,,, = E + Z B 
"'2 z 2 z 

one may write E and B as given below. z z 

E 
z 

B 
z 

= 

= 

V-148 

V-149 

V-150 

Equations V-146 and V-147 are then decoupled by substituting the above 

forms for E and B and properly choosing the constants Z and z
2 

such 
z z 1 

• 

• 
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that decoupled equations for ¢1 and ¢2 result. Straightforward algebra 

shows that such a choice i.s given by the following. 

This results in the two equations given below. 

2 
where T1 , 2 

These are Bessel's equations and have the following solutions. 

V-151 

V-152 

V-153 

A
1 

and A2 are constants. One of these is determined by the boundary 

conditions. 

V.2.D.l. Fixed Boundary Model 

In the fixed boundary model, both the beam and plasma extend all the 

way to the'wall and there is no vacuum region in between. For both 

the fixed boundary and free boundary models, a perfectly conducting wall 

will be assumed. This is reasonable in relation to tokamak runaway exper-

iments since the time scales for the instabilities are so short (less 

than 100 ~sec) that the liner and shell will appear perfectly conducting. 

For such a boundary one has the following requirements on the perturbed 
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fields. 

V-156 

where pa = aw/c 

a = shell radius 

Setting E equal to zero at the boundary (using equations V-149, V-154, 
z 

and V-155) leads to the equation given below. 

J (T2P ) m a V-157 
J (Tlp ) m a 

Next, using equation V-143 and setting E8 equal to zero at p=pa leads 

to the following equation. 

-ic: 
l 

a B z 
()p r=a V-158 

Substituting equations V-154 and V-155 and combining with equation V-157 

one obtains the dispersion relation as given below. 

V-159 

V.2.D.2. Free-Boundary Model 

In the free boundary beam-plasma model, the beam and plasma extend out 

to a radius r=a and then a vacuum region is present between r=a and r=b. 

The boundary conditions on the conducting wall (at r=b) are the same as 

* in the fixed boundary model, i.e. Ez(r=b) = E8(r=b) = Br(r=b) = 0 . 

* Note that from equation V-6?, Br = ~ Ez-n11 E9 , one of this conditions is 
redundant. 

• 

• 
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• At the plasma-vacuum interface, three jump conditions may be derived 

from Maxwell's equations and two more from equations V-144 and V-145. 

In summary, the two coupled differential equations for the per-

turbed fields E and B within the plasma (as derived in Subsection z z 

V.2.D) are given by the following. 

V-160 

2 
t::

3
V E + PE 
j_ z z V-161 

The solutions of the above equations are as given below. 

V-162 

V-163 

A
1

, A2 = constants which will be determined 

In the vacuum region, the differential equations for E and B decouple, z z 

resulting in the following. 

V 
2
B + (l 

2 
nii)Bz = 0 

j_ z 
V-164 

V 
2
E + (l -

2 
n11 )E = 0 

_j_ z z 

The solutions are given below. 

E =Alm(Kp) + A4Ym (Kp) 
z 

V-166 

B = A
5
Jm(KP) + A6Ym (Kp) 

z V-167 

K2-where = 
2 

l- nil 

From equations V-162, V-163, V-lb6, and V-167 it may be seen that there 

• 
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are six undetermined constants, A
1

,A2 , ... ,A
6 

which will be found from 

the two conducting shell boundary conditions and the four independent 

interface jump conditions. 

At the conducting wall one has the conditions Ez and Ee equal zero. 

The first of these results in the equation given below. 

V-168 

The second of these may be evaluated by using equation V-66 with J
8

=o 

(to give the vacuum result), i.e. E8 = -n11 Br- iB;. Since B is zero 
r 

at the conducting wall, this results in the following equation. 

V-169 

At the plasma-vacuum interface, the following three jump conditions 

may be derived directly from Maxwell's equations by integrating over a 

small pillbox region at the interface and assuming that the equilibrium 

magnetic field inside the plasma is equal to that in the vacuum. 

[B (r=a)] = 0 r 

[E (r=a)] = 0 z V-170 

[E (r=a)] = e 0 

where [ ] indicates the change in a quantity over the interface. 

Only two of these conditions are independent due to equation V-62. 

Requiring the continuity of Ez and E8 over the interface leads to the 

following two equations. 

-AlZ2Jm(Tlpa) + A2Z1Jm(T2pa) - A3(Zl-z2)Jm(Kpa) - A4(zl-Z2)Ym(Kpa)=O 

V-171 

• 

• 
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+ ~ [(n2 - 1)-l + E
3

] [A
3
Jm(Kpa) + A

4
Y (KP )] 

nllpa II m a 

- A2T2J~(T2pa)] V-172 

- Z2TlAlJ~(Tlpa)J 

The final two jump conditions are obtained by integrating the 

differential equations for the perturbed fields E and B over the z z 

interface. In order to do this, it is first convenient to combine 

equations V-160, V-161, V-164, and V-165 into the following form. 

+ iE2H(p-p ) V 2E = 0 
a 1_ z 

V-173 

V-174 

where H = Heaviside step function 

Equations V-173 and V-174 are now multiplied by pdp, integrated over the 

layer from p - E to p + E and then E is allowed to go to zero. The 
a a 

necessary integrals are given below; X represents either B or E • z z 

lim 

E+O 

p +E 
a 
J p -E 
a 

ax I 
C)p P­a 

V-175 



lim 

s+O 

P +s a 
J 

p -E: a , 

p +E: 
a 

lim f 

p -E: s+O a 

p +E: 
a 

X pdpH(p-p ) -= 
a 2 

p 

lim J pdpH(p-p )X = 0 
a 

s+O 
p -E 

a 

p +E: 
a 

lim J pdpH(p-pb) X= 0 
p -E: 

s+O a 

184 

0 V-176 

V-177 

V-178 

V-179 

Thus, the interface integrals of equations V-173 and V-174 result in the 

following conditions. 

pa - + - i ~( -) ---
2 

(s
3

- l)E; (p ) + P [E~(p ) - E~ (p )] + -
2 

s4 Bz pa = 0 V-181 
z a a z a z a 

Substituting in the field solutions given in equations V-162, V-163, 

V-166, V-167 gives the two equations given below. 

- pa 
2 

+ pa t5KJ~(Kp) + AEfY~(Kp a) - (Zl - Z2)-l 

x (AlTlJ~(Tlpa) - A2T2J~(T2pa)J} V-182 

- ~ E2 (Zl- Z2)-l [ZlA2T2J~(T2pa) - Z2AlTlJ~(Tlpa)J = 0 

• 

• 
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pa 1 
- ~ (s3 - 1) (Zl- Z2)- [ZlA2T2J~(T2pa) - Z2AlTlJ~(Tlpa)] 

+pa{ A{J~(Kpa) + A4KY~(Kpa) - (Zl- Z2)-l [ZlA2T2J~(T2pa) 

- z2 AlTlJ~ (Tlpa)]} 

i -1 ~ 
+ 2 E4 (Zl - Z2) [AlTlJm(Tlpa) - A2T2J~(T2pa)] = O 

Equations V-168, V-169, V-171, V-172, V-182, V-183 now provide six 

V-183 

independent equations for the constants, A1 , A2 , ••• , A6 • The dis­

persion relation is derived by requiring the determinant of the coeffi-

cient matrix to be equal to zero. This is given in Appendix C. 

I 

V.2.E. Normal Plasma Alfven Modes 

Before examining the unstable spectra (presented in Subsection V.2.F.), 

the roots of the fixed boundary dispersion relation (equation V-159) 

will be investigated with the relativistic beam density set equal to 

zero. It can be shown that in this case only purely real roots are pas-
I 

sible. These are simply the Alfven modes of a cylindrical cavity. 

In Figs. V-6 and V--7 roots of the dispersion relation V-159 are 

plotted as functions of plasma density (at fixed toroidal field) and 

toroidal field (at fixed plasma density). As may be seen, the frequencies 
I 

do scale with the Alfven velocity; they go linearly in magnetic field 

strength and inversely proportional to the plasma density. 

By examining the relative size of the terms in equation V-159 with 

beam density set equal to zero, an approximate analytic theory can be 

developed to explain the results displayed in Figs. V-6 and V-7 . 
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The exact dispersion relation is given as follows. 

V-184 

For the frequency range examined here (w ~wei) and for plasma densities, 

toroidal fields, and minor radii typical of tokamaks, the first term 

in the above equation is four to five orders of magnitude less than 

the other two; also, z2 is several orders of magnitude less than z
1

. 

Thus equation V-184 is adequately approximated by the dispersion relation 

given below. 

-P T
1

(S - n~) J~ (p T
1

) + mDJ (p T
1

) = 0 
a m a m a V-185 

Also, for the frequency range of interest the following approximations 

can be made. 

2 
S - n 11 :::: S 

T 2 
1 

D/S 

2 2 
:::: c IvA 

~ -w/!J. 
l 

Defining the following quantities, 

x = aw/vA 

o = c/aw . pl 

the dispersion relation may be written as given below. 

1 
J 

1
(x) + m (o - -) J (x) = o 

m- x m 

V-186 

V-187 

V-188 

The zeros of this equation as a function of 8 are plotted in Figs. V-8 

and V-9 for m=l and m=2. Also, zeros of J 
1 

are plotted using dashed 
m-

• 
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lines. As may be seen, the zeros of equation V-188 do not depend 

strongly on the parameter 6 and are approximately equal to the zeros of 

J l' Thus, the roots of V-188 are roughly given by w ~ jm-l,s 
VA . m-
a 

Using the calculated roots of V-188 (from Figs. V-11 and V-12), the re-

sults of Figs. V-6 and V-7 may be reproduced. 

V.2.F. Numerical Results for Growth Rates 

The unstable spectra have been numerically calculated for the fixed 

boundary kink mode dispersion relation (equation V-159) over a range of 

parameters which are typical of tokamak strong runaway regimes. These 

will be presented in this section and discussed; before examining the 

dependence on various parameters, a few general remarks will be made on 

the features of the results. Roots were calculated using the Cauchy 

root-finding subroutine developed by Beasley and Meier [94]. A technical 

point with regard to equation V-159 is that a branch cut is present 

near the low frequency roots due to the square root involved in computing 

T1 . This can be avoided, however, by noting that the second term in 

V-159 is an even function of T1 and thus may be written such that it only 

2 
depends on T1 . 

One feature which was seen in all of the growth rate calculations 

was that the real part of the unstable root was relatively small above 

where the maximum growth rate (as a function of q) occurred, but then 

rose to high values for q just below the maximum growth rate. Near 

where the growth rate went to zero, the real part would become as 

large as half the ion gyrofrequency. This is interpreted, as was men-

tioned earlier, as being due to the high frequency with which the 
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relativistic electrons move around the poloidal direction. When this 

bounce frequency was artificially lowered, the real component of the 

root became generally less than the growth rate. It is thought that the 

high transit frequency may be effective in shorting out the growth of 

instabilities. As may be seen from the results (Figs. V-10 to V-17), 

whenever the real part of the frequency rose to high values (relative to 

the ion gyrofrequency) the growth rate fell rapidly to zero. 

A second feature which was observed in the calculations was that the 

first term of the dispersion relation V-159 was always much less (by 4 

to 5 orders of magnitude) than the other two. This term may be related 

to the effects of electron inertia; it would become more significant if 

the collision frequency of equation V-78 were large relative tow, i.e. 

for a resistive plasma. This same term contains the effects of the longi­

tudinal dynamics of the beam electrons; its relative smallness is the 

basis for the statement which was made in the introduction of this section 

that such effects were not of importance in the fixed boundary, ideally 

conducting beam-plasma model. 

A final characteristic of the growth rates calculated is that the 

thresholds do not precisely correspond to rational magnetic surfaces; 

although, in most cases the maximum growth rate occurs there. This 

feature is perhaps related to the fact that the beam displacements have 

been calculated kinetically, by integrating along unperturbed single 

particle orbits, and thus do not conform exactly to the pitch of the 

helical field lines. 

• 

• 
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V.2.F.l. Dependence on Beam Density 

In Figs. V-10 and V-11 growth rates and real frequencies are pre-

sented as a function of beam density. Densities are chosen such that 

the beam carries 25%, 50%, and 100% of the total current which is con-

sistent with the q-values and other parameters. In this case ORMAK 

parameters are used for the major and minor radii and a toroidal field 

of 15 kG is assumed -- the plasma density is 1013 -3 em . As may be seen, 

the growth rates are higher when the beam carries a larger fraction of 

the current. 

V.2.F.2. Dependence on Beam Energy 

In Figs. V-12 to V-15 growth rates and real frequencies are plotted 

for beam energies of 250 keV, 500 keV, 1 MeV, and 14.5 MeV. The beam 

is assumed to carry 100% of the current and the toroidal field and 

plasma density are again 15 kG and l013cm-3. Fairly slight differences 

are seen between the 1 MeV and 14.5 MeV cases, but large changes are 

apparent in going from 250 keV to 500 keV to 1 MeV. Increasing energy 

seems to shift the growth rate curves to the right on the q-axis, but 

not to change the shape substantially. This effect is particularly more 

noticeable for the higher m numbers. 

V.2.F.3. Dependence on vAle 

In Figs. V-16 and V-17 growth rates and real frequencies are plotted 

for vA/c=.0576, .0415, and .0345. These correspond to a plasma density 

of 1013cm-3 and toroidal fields of 15 kG, 18 kG, and 25 kG, respectively. 

The beam carries all of the toroidal current and has an energy of 1 MeV . 

The growth rates scale with vA/c, as is the case in ideal MHD[81], 



194 

becoming larger as vA/c is increased. It is also noted that the upper 

value of q where the threshold occurs is relatively independent of vA/c, 

whereas the lower threshold is not. The lower threshold goes to lower 

values of q as vA/c is increased. 

• 
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CHAPTER VI 

Summary and Conclusions 

The purpose of this work, as discussed in Chapter I, has been to 

develop theoretical models to explain a number of the salient features 

of runaways in tokamaks. Specifically, the characteristics of the 

weak and strong regimes (which were defined in the introductory comments) 

have been investigated. The areas studied include: parameter modeling, 

particle confinement, equilibrium, and macroscopic stability. 

In Chapter II, a parameter model was presented in relation to strong 

runaway discharges. The assumptions made there were that the runaways 

are predominantly formed in the early phase of the discharge and the 

bulk of the toroidal current is carried within a localized beam (due 

to the evolution of contained drift surfaces early in the discharge). 

The gradual acceleration of this beam in the applied Ohmic heating field 

was treated self-consistently using the relativistic force equation 

and Ampere's law. The model was then applied to several typical strong 

runaway discharges from the early operation phase of the ORMAK device, 

assuming that the bulk of the observed current was carried by runaways. 

Reasonable fits to the experimental data were obtained for beam densities 

on the order of 1011cm-3 and beam radii of 5-6 em. It should be 

kept in mind that this treatment represents only a preliminary, approx­

imate model of a strong runaway discharge. A number of effects have been 

subsequently identified by experimental measurements in this regime which 

merit further study and inclusion in such a model. These include: 

gradual loss of runaways from the beam due to poorly-confined orbits, 
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• energy loss from synchrotron radiation, deviation of runaway acceleration 

from free-fall, and proper treatment of the poloidal variation in beam 

equilibrium properties. Techniques for treating some of these areas 

were then developed in the remaining work. Single particle orbits and 

confinement (both in relation to the strong and weak regimes) were 

analyzed in Chapter III and the beam equilibrium problem was studied in 

Chapter IV. Keeping in mind the above approximations of the strong run-

away model of Chapter II, it was of interest that its prediction of a 

5-6 em beam radius implied the beam was attaining q values (q is the 

Kruskal-Shafranov safety factor) less than unity without substantial 

instabilities. This observation, and the experimentally-measured low 

level of MHD activity in runaway discharges, motivated the stability 

analysis of Chapter V. 

In Chapter III, as mentioned above, the drift orbits of high 

energy electrons in the tokamak weak and strong runaway regimes were 

++ 
studied. The effect of ExB drifts in the strong regime was examined 

using the drift, density continuity, and Ampere's equations. It was 

determined that relatively little change occurred in the beam radius or 

density profile for parameters characteristic of the study of Chapter II. 

Next, drift orbits were analyzed for the weak runaway regime and a model 

was developed to explain the hard X-ray dumps which occur near the end 

of ORMAK type B discharges. The transport of high energy runaways out 

of the plasma region was found to be largely determined by the presence 

of the curvature drift term; however, the effects of finite pitch angle 

• 
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(finite gradient drift) on the orbits were also considered. Finally, 

the change in minor radius of an accelerating electron was examined; it 

was found to gradually increase as the runaway gained energy. Under­

standing this effect is of importance in relating the final orbits of 

these particles - as they intersect the plasma limiter - back to orbit 

characteristics earlier in the discharge. These considerations are 

necessary if runaway dumps in tokamaks are to be used for diagnostic 

purposes. 

Next, in Chapter IV, the macroscopic equilibrium properties of 

toroidal beam-plasma configurations were studied. The basic equations 

were formulated and two mathematical limitations on their solution 

were indicated-- the firehose and mirror instability conditions. 

Some sample finite difference numerical solutions of the equilibirum 

equation were displayed and compared with analytic equilibrium theories. 

Also, estimates were made of beta poloidal limitations in toroidal beam­

plasma equilibria using a simple force balance. It was found that the 

presence of a beam can reduce the allowable plasma beta poloidal; 

however, if the beam current density may be increased arbitrarily, 

such equilibrium limits can be avoided. 

Finally, in Chapter V possible limits on the beam current density 

due to macroscopic instabilities were explored. The effects of spatial 

velocity and energy shear on m=l, n=l kink mod~s were examined first 

using a cold, ideal MHD model for the background plasma and a rigid 

beam model. Only very slight enhancements in the stability boundaries 

for this mode were found with the inclusion of beam velocity shear . 
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Next, this model was generalized to allow consideration of several 

kinetic effects. The influence of perturbed electric fields was 

included in the beam equation of motion and the differing effective 

inertias of the beam'electrons parallel and perpendicular to the pro-

pagation direction were taken into account. A Vlasov treatment of the 

beam energy spread was developed and the effects of toroidal drifts 

were discussed. Also, the background plasma model was extended so 

that frequencies which are not small relative to the ion gyrofrequency 

could be considered. Numerical calculations of the instability growth 

rates were made for a fixed boundary model with n=l, m=l,2,3,4; these 

were examined as a function of beam energy, beam density, and vA/c. 

Somewhat larger growth rates were found near the q=l point than had been 

previously estimated by Lee [43]. Regions of stability were also 

present for q <l; near the lower marginal point, the real part of the 

unstable root was observed to become larger than the growth rate and 

was usually an appreciable fraction of the ion gyrofrequency. In the 

author's opinion, this indicates that an MHD approximation (which 

assumes w <<w .) for the background plasma is simply not adequate for 
Cl 

macroscopic modes in runaway-dominated discharges; this is related to 

the fact that relativistic electrons in present sized tokamaks have 

large drift frequencies (wd = c/R0q ~wei) around the minor cross 

section. It is clear that a thorough study of macroscopic instability 

modes in toroidal relativistic beam-plasma configurations has only been 

just begun [43,44]. A number of effects such as beam energy spread and 

the influence of toroidal curvature drifts which have been touched 

• 
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upon here merit further consideration. Also, as data becomes available 

from experiments on beam current profiles, inclusion of this feature in 

the theory would be desirable . 



APPENDIX A 

Dispersion Relation for Two-Region Sheared Velocity Beam 

A dispersion relation will be derived for m = ±1, n = 1 kinks in the 

following for the two-region sheared velocity beam model. The analysis 

begins with the perturbed field equation V-24. 

[ o:8 1 a a ----r-
r a r a r 

[ 
oA8 ta

2

n 1j; 
+ (~r + tan 1/J) 1 a ---

r a r 
r 

= 
2wS~ (1 - vz2/vZl) (e1 - IDka1 )

2 
oA8 (a1 ) 

2 2 ~ 2 
-k vZl - mwClkvZl + wSl 

2 ~ 2 2 2 -1 
2wS2 (e2 - mka2) a2(a2 - a1 ) oA8(a2 ) 

+ --~--~----~--~~-----=----~--~--------
-k2v~~ (1 + A1 ) - mwC 2kvz2(1 + A2)+ w~2 (1 

Two jump conditions are obtained on the derivatives of the perturbed 

A-1 

field oA
8

(r) by integrating the above equation from a1 - e to a1 + e 

and from a2 - e to a
2 

+ e and then allowing e to go to zero. These are 

A-2 

(oA
8 

tan 1/J)~ - (oA8 tan 1/J)~ ] 
a2+ a2-

A-3 
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oA8 (a1_) =lim __ a __ (oA
8

)ja _c 

e+O ar lc.. 

and similar notation is used at r = a2. 

The solution of equation I-1 is given by the following. 

1 0 < r < a 
1 

2 
(X-B)R 

2 

- E: 2a 2 ] 

(Y-B)R - E a 
2 2 

where D,D~,D~; =constants of integration and the following quantities 

have been defined. 

Y=B+:ffik+i:L 
VA 

X=B+:ffik-w 
VA 

From the above solutions, the derivatives of the perturbed fields near 

r=a1 and r=a2 may be calculated (for use in equations I-2 and I-3) as 

A-4 



given below. 

( oA ) = 0 
e al-

(oAe tan ~)~a = -sl/al 
l-

= 

(oA8 tan~)~ 
2-

= 

2l0 

• 
A-5 

A-6 
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A-lO 

A-ll 
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Using the condition that oA8 must be continuous at r=a
1 

and a
2

, one 

may express the two constants D~ and D ...... in terms of D. 

D
... Dv a (a~ + AX

2
Y) 

= 1 - 4Aw ln -=2--AXY--2 
al + 

~ {ln [(Y-B)a -E 
2 r • (X-B)R 

2 

-o2a2 ] D ...... 2 2 
(X-B)a -E 2 2 (Y-B)R -E:

2
a

2 

{ 2 
+ AX2Y 2 2 } DvA a2 • a; +A~ ] x l + 4Aw ln [ 2 
+ AXY2 

a2 a1 + AX Y 

A-13 

A-14 

Substituting equations I-5 through I-8 into the first jump condition 

(equation I-2) gives the following solution for the constant D. 

- (s - ma k) 
l l 

A-15 

( E + Ba - !:_ )} 
l l a

1 

Finally, using equations I-9 through I-12 in the second jump condition 

(equation I-3) and employing equations I-13 to I-16, a dispersion relation 

may be obtained relating w and k. 

A-16 

where the following quantities have been defined • 



T = -l 

T = 2 

Da2e:2XY 
+-----=-=--~~-2 2 2 2) (a2+AX Y) (a2+AXY 

• 

2 (X-B)R -e:2a2 
2 (Y-B)R -s2a2 
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• APPENDIX B 

Perturbed Current Integrals for Vlasov Beam Model 

The three momentum space integrals used in the perturbed currents of 

the Vlasov beam model (Equations V-116 to V-118) are given below. 

Il 
ym 

£X [w - ~ (nq+M) - E:m~ y]-l =! y r r 

Yo 

ym £X ( -1 
I2 =I y3 

[w - ~r nq+m) - E:m~ry] B-2 

Yo 

I3 
yrn 

ydy [w - wbr(nq+m) - smwbry]-l =I B-3 

Yo 

Evaluating these integrals (for example, see ref. 95, pgs. 59-60) 

leads to the following. 

B-4 

I2 = ) -1 { 1 ( 1 1 ) ~r e 1 ) } [w - wbr(nq+m ] 2 ~ 0 2 - y! + w-~r(nq+m) Yo - ym 

2 2 2 B-5 
E: m wbr 

[Yo 
w - w (nq+m) - E:~rmym] br 

[w - wbr(nq+m) ]3 
ln -

w - w (nq+m) -ym br s~rmyo 

Yo - Ym w - wbr(nq+m) 
ln r: - w (nq+m) - sw . my ] 

I3 
br bL.!!!._ 

B-6 = 

• smwbr 2 2 2 - w (nq+m) E:~rmyo E: m wbr br 
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APPENDIX C 

Free Boundary Beam-Plasma Dispersion Relation 

The following are the coefficients of A1 ,A2 , •.• , A6 in equations 

V-168, V-169, V-171, V-172, V-182, and V-183. 

C = Ym 2 (Kpb) 

c = Jm 3 (Kpb) 

c4 = Ym (Kpb) 

C5 = -Z2Jm(Tlpa) 

C6 = Z1Jm(T2pa) 

c
7 

= (z2-z1 )Jm (Kpa) 

ell = - _E!_ (e: + l 
nllpa 3 2 n

11
-1 

c12 = - _E!_ (e: + _l_) 
nuPa 3 2 n11 -1 

cl3 = 
i Jm (Kp ) 2 

1-n11 
a 

cl4 = 
i Ym (Kp ) 2 a l-n

11 

Jm (Kp ) 
a 

Ym (Kp ) a 

l [ pa i ] Cl5 = TlJm(Tlpa) (Zl-Z2)- - ~ (e:l-l) - pa + 2 e:2Z2 

C16 = T2Jm(T2pa) (Zl-Z2)-l [p~ (e:l-l) + pa- ~ E2Zl] 
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1 

• 

C-1 

C-2 

C-3 

C-4 

C-5 

C-6 

C-7 

C-8 

C-9 

C-10 

C-11 

C-12 

C-13 

C-14 

C-15 

C-16 

• 
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• cl7 = pa K Jm (Kp ) 
a 

C-17 

c18 = p K Ym (Kp ) a a C-18 

cl9 = TlJm(Tlpa) -1[ pa (z1-z2 ) ~ (s
3
-l)Z2 + paZ2 + ~ E4] 

C-19 

c2o :::: T2Jm(T2pa) (z1-z2)-l [-:a (s3-l)z1 - p z - i s 4 ] a l 2 C-20 

c21 = pa K Jm (Kp ) a C-21 

c22 = p K Ym (Kp ) a a C-22 

In terms of the above quantities, equations V-168, V-169, V-171, V-172, 

V-182, and V-183 may be expressed as follows. 

0 0 cl c2 0 0 Al 

0 0 0 0 c3 c4 A2 

c5 c6 c7 c8 0 0 A3 = 0 
C-23 

c9 c1o c11 c12 cl3 cl4 A4 

cl5 c16 0 0 cl7 c18 A5 

c19 c2o c21 c22 0 0 A6 

A free boundary dispersion relation is then obtained by setting the 

determinant of the coefficient matrix equal to zero • 

• 
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