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ABSTRACT

EQUILIBRIUM, CONFINEMENT, AND STABILITY
OF RUNAWAY ELECTRONS IN TOKAMAKS

by

Donald Atchison Spong

When an electric field is applied to a plasma, a certain fraction of
electrons in the high energy tail of the distribution may be freely
accelerated. These are normally known as runaway electrons and their
presence has been well-documented in various plasma devices. In this
work, some of the ramifications of the runaway population in tokamak experi-
ments will be investigated. Consideration is given both to the normal
operating regime of tokamaks where only a small fraction of high energy
runaways are present and to the strong runaway regime where runaways are
thought to carry a significant portion of the toroidal current. In
particular, the areas to be examined are the modeling of strong runaway
discharges, single particle orbit characteristics of runaways, macroscopic
beam-plasma equilibria, and stability against kink modes.

A simple|one-dimensional, time~-dependent model has been constructed
in relation to strong runaway discharges. This assumes that a negligible
plasma conduction current is present and that an accelerating beam of
runaways carries most of the current. A parameter study is made of
several of the early ORMAK strong runaway discharges using this model.
Reasonable fits to the experimental data are obtained.

Single’ particle orbits are analyzed in relation to both the strong

-> >
runavay regime and the weak regime. The effects of ExB drifts are first

xiii



considered 1n strong runaway discharges and are found to lead to a

slow inward shrinkage of the beam -- which is quite small for present-

day experiments. Orbits are next treated for high energy electrons in the
weak regime both analytically and numerically; cases are examined

where the runaways are just beginning to intersect the plasma limiter.
This is of relevance to the hard X-ray dumps which have been seen on
tokamaks and quantitative agreement is obtained with ORMAK data. The
transformation of the final runaway orbit (as it is lost from the discharge)
back to its position at an earlier time is also treated. Understanding
this effect is of importance in possible diagnostic uses of hard X-ray
dumps (e.g. for examining the initial plasma breakdown, subsequent
electric field profile, etc.)

Macroscopic beam-plasma equilibria are treated assuming a
pressureless relativistic beam with inértia and using an ideal MHD
approximation for the plasma. This area is of importance to strong
runaway discharges where anomalous outward shifts have been seen in the
beam-plasma column position. It may also be of significance to high
power neutral injection and alpha particle production in tokamaks where
large momentum flows can be present. The basic equilibrium equation is
derived and mathematical limitations on its solution are given. Some
sample numerical calculations are presented and compared with the existing
analytic theories. The beam—plasma column shift is found to be somewhat
less in the numerical solutions than is predicted by the analytic expres-
sions. Beta poloidal limitations are treated by use of a simple

toroidal force balance.

xiv




The stability of a toroidal relativistic beam against kink
perturbations is examined using several models. First, a sheared
velocity, two region beam is considered using an ideal, pressureless
MHD model for the background plasma. The beam is assumed to be rigid,
i.e. 1t displaces without distortion. Then, the plasma model is extended
so that its range of validity includes frequencies which are not
small relative to the ion gyrofrequency and the beam is treated using
both fluid and the Vliasov-kinetic models. Growth rates are numerically

calculated for a fixed boundary beam=-plasma model .

XV



CHAPTER I

INTRODUCTION

I.1 Introductory Comments and Classification of Tokamak Runaway

Regimes

The production of superthermal electrons when an electric field
is applied to an ionized gas has been the subject of numerous investi-
gations, both theoretical and experimental, since the beginning of
controlled nuclear fusion and plasma physics research. Starting with the
early work on plasma betatrons nearly seventeen years ago and continuing
up to the present series of tokamak experiments, runaways have been a
recurrent and familiar phenomenon. Their presence has been received
both with welcome =—- as in the plasma betatron -- due to their sug-
gested potential use for plasma heating and confinement (as well as
accelerator applications), and with foreboding -- as in the tokamak and
stellarator -- due to the, at times, substantial amount of energy which
they can carry out of the plasma region and onto the walls and limiter
of the device. Even in the presently projected reactor tokamaks,
runaways continue to be a source of some concern due to the longer
discharge pulse lengths and better confinement of high energy particles.
Their presence could have some distinct and unanticipated consequences
on the operation of these devices.,

The fundamental reason for the existence of runsway electrons is
related to the decrease in the Coulomb collision frequency with
increasing energy; thus, for any value of applied electric field there

is a certain energy above which electrons will be freely accelerated.



<

This effect was first identified in 1925 by Wilson [1] (inventor of the
cloud chamber) and subsequently examined by Eddington [2] in 1926 and
Giovanelli [3] in 19k9.

In the tokamak device [L4,5], the initial plasma breakdown and Joule
heating are achleved by an induced electric field; this field is fur-
ther necessary to maintain a toroidal plasma current which is required
for overall equilibrium and particle confinement. The production of
runaway electrons may occur throughout the discharge, but is expected to
be enhanced when the electric field is large and the plasma density low,
i.e. in the early phase of the discharge. The existing evidence on
tokamaks, and in particular on the ORMAK device [6,7,8], tends to
indicate that the most persistent and energetic component of runaways
are, in fact, born during the initial plasma breskdown. However, a
lower energy epithermal component of runaways have also been observed
[9,10,11]; these are thought to be continuously generated and lost
throughout the discharge [9]. The loss mechanisms are not yet quanti-
tatively well understood, but have been attributed to magnetic island
formation due to helical current perturbations of MHD instabilities
[11,12] and diffusion in toroidal field ripples.

The motivations for examining runaways in tokamaks are various.
Perhaps the most basic is related to a concern over whether they will
be of importance in larger fusion-grade tokamaks. At present, the
exact conditions which lead to enhanced runaway production are only
empirically known and useful theoretical predictions are not available.
Secondly, runaways can provide a sensitive probe of field perturbations,

MHD instabilities, and the confinement quality of high energy particles .




in tokamak discharges. It is of particular interest to note that the
momentum of a runaway with energy in the MeV range is of the same order as
that of typical fast ions which are produced via neutral injection. Thus,
the runaway single particle confinement characteristics (to be examined
in Chapter III) reflect those of the fast ions. In the same vein, the
equilibrium properties of runaway-dominated discharges (covered in Chapter
IV) may have certain parallels with those of tokamak discharges heated

by energetic neutral injection where toroidal momentum flows may be built
up. A final motivation for examining runaways in tokamaks is related to
the concept of forming an intense toroidal relativistic beam to provide
confinement and/or plasma heating. In the author's opinion, there are

a number of possible difficulties with this scheme such as: synchrotron
radiation losses, § limits, poorly-confined orbits at the edge of the
current channel, micro and macro-instabilities (examined in Chapter V).
Runaway-dominated discharges in tokaﬁaks appear to provide an attainable
means of testing such a concept to determine its advantages and disad—
vantages. The work to follow has been motivated by the above considera-
tions and specifically by the experimental measurements which have been
reported. A classification and review of this experimental work will be

given next.

Several distinct runaway regimes on tokamaks may be identified
depending on the extent to which runaways are present, their energy, and
confinement quality. These will be described below and in this work will
be categorized as the weak, continuous, and strong runaway regimes.

The weak runaway regime 1s present during a normal, stable tokamak

discharge and is characterized by a very low density of runaways



(~lO7 cm~3), most of which are produced during the first 5-10 msec.
They can, however, attain high energies —- in the 7-12 MeV range in
ORMAK type B discharges [8] -~ due to the fact that they seem to occur -
near the outside of the plasma region where the maximum volt-seconds

of acceleration are experienced. In the type B discharges, these part-
icles are observed to remain well-confined up to the end (lifetimes

are of the order of 50-80 msec) when their drift orbits begin inter-
secting the limiter. This subject will be covered in more detall in
Chapter III. In ORMAK type A discharges, runaways are dumped near the
beginning due to the early large inward displacement of the plasma
column and the relatively higher MHD activity.

The continuous runaway regime has perhaps been studied the most
on the Princeton ST device [9] where runaway conditions were not as
favorable during the initial discharge breakdown as on ORMAK. In this
case runaways are generated within the central region of plasma, but
are rapidly lost before they can attain high energies. Their energies
typically range from 50 keV to 1 MeV. This runaway population can
have very adverse effects on the energy confinement properties of
tokamaks; their loss prevents the full Chmic field energy from usefully
heating the plasma. The mechanism for loss of these runaways, as
mentioned above, 1s thought to be related to the large magnetic island
structures and ergodic field lines which result from the presence of
magnetic shear and deviations from axisymmetry (e.g., due to helical
MHD perturbations, field ripples, shell cuts, field errors, etc.). .

X-ray measurements on ORMAK which show strong correlations between 50

keV X-ray bursts and MHD activity are particularly suggestive of




this mechanism [13].

It may be noted that the presence of an epithermal continuous
runaway component during the weak regime cannot, at present, necessarily
be ruled out. The hard X-ray diagnostics which have been used on ORMAK
to examine the high energy (8-12 MeV) runaways are insensitive to the
lower energy component (3_2 MeV). It may well be that an epithermal
population of runaways exists in the central plasma region where island
widths are large and loss rates high while runaways near the outer edge
of the plasma have longer confinement times and thus greater energies
(dque to the lower poloidal field perturbations at the higher g surfaces).

The strong runaway regime is characterized by much higher runaway

9 _10tt Cm—S)

densities (10 and by a substantial fraction of the total
current being carried by runaways. There is at present no good means

of measuring how much current is carried by high energy electrons in
this regime, but rough estimates may be made from the intensity of

hard bremsstrahlung produced when the runaways intersect the limiter and
by examining the equilibrium properties of the discharge.

This regime is well known for its occurrence.during the initial
start-up phase of most tokamak experiments; however, by properly choosing
the impurity content and initial preionization, it can be intentionally
produced in subsequent operation as well [14,15]. The energies of the
runaways have been measured in the 1-7 MeV range on ORMAK. A parameter
modeling [7] of a typical strong runaway discharge will be presented
in Chapter II. It is assumed there that the bulk of runaways are

created early in the discharge and that this occurs within a localized

region which 1s determined by the topology of flux surfaces early in



the discharge. Strong runaway discharges have been observed on the
ORMAK [T7,14], T-6 [15], ™-3 [16], and TFR [17] devices.

An interesting fusion application of runaway-dominated discharges
has been suggested recently [18,19,20]. This concept involves genera-
tion of a runaway beam in an initially low density plasma followed by
acceleration and partial decay into a higher density plasma. This is
closely related to the earlier plasma betatron concept [21,22,23] and
also t0 more recent research into injection of a diode-generated
relativistic electron beam into a torus [24,25] or racetrack [26].

The runaway method has an advantage over the latter approach in that the
relativistic beam is generated in situ, thus avoiding the difficult
problems of inJjecting charged particles across magnetic field lines.
Techniques which have been suggested for external injection involve
either a momentary disruption of the magnetic surfaces at the instant of
injection [26] or a reliance on single particle drifts to carry the beam
into the plasma region [25,27]. Possible advantages of a toroidal relativ-
istic beam relative to Ohmic heating are: the long lifetimes of high
energy electrons, leading %o the potential of a steady-state toroidal
current, somewhat more rapid heating rates and altered macroscopic sta-
bility properties.

The heating rates associated with a toroidal relativistic beam have
yet to be fully experimentally verified; however, due to the potentially
long confinement times of relativistic electrons in toroidal plasmas
(50-60 msec for well-confined runaways in ORMAK, corresponding to a total .
path length of about 10T meters for collisional interaction) even the

energy transfer from classical Coulomb collisions [28] can give apprecisble .



energy loss for certain ranges of energy and plasma density. Recent
density puff experiments [29] on ORMAK indicate that with Just a twofold
plasma density increase, mechanisms are present for completely slowing
down 10 MeV runaways within less than about 10 msec. A long series of
experiments have been conducted [30-35] involving plasma heating in
linear devices by relativistic beams. Nonclassical mechanisms such as
return current heating and microscopic electron-electron two stream
instabilities are thought to be of importance in the observed bean-
plasma interactions. The experimental results indicate that for

relativistic beams of density n, = 1010—10ll cm“3 injected into plasmas

b
l3—lOlu cm_3, energy is transferred from the beam

with np in the range 10
to plasma at efficiencies of about 1% to 4% per meter of path length [27].
The macroscopic stability properties of toroidal relativistic
beams will be examined in some detail in Chapter V; interest in this area
is motivated by the observed abnormally low amplitude of MHD activity in
runaway-dominated discharges [14,15] as compared to normal tokamak dis-
charges. Also, the parameter study to be discussed in Chapter II indicates
the possibility that g (the Kruskal-Shafranov stability factor) attained
values less than unity internal to the plasma without noticeable insta-
bility for a typical ORMAK runaway-dominated discharge. Speculation on

this possibility has also been made in regard to runaway-dominated

discharges on the T-6 experiment [15].

1.2 Review of Fxperimental Results on Runaways and Relation to the

Theory

The theory to be developed in this work is primarily motivated in



relation to the weak and strong runaway discharge regimes. In both cases
the presence of a runaway component has been associated with a number of
characteristic and readily observable effects. Depending on the’energy
density of runaways, these indications vary over a wide spectrum ranging
from a slight increase in hard X-ray level to the large-scale melting of
limiters and burning of holes in vacuum vessel walls (as in the TFR
device). In this section some of the features which distinguish the
weak and strong runaway regimes will be reviewed.

In the case of weak runaway discharges, the most direct indication
of runaways is in the large intensities of hard (up to 12 MeV) bremsstrah-
lung X-rays which are produced. This factor has been utilized as a
diagnostic tool particularly in the ORMAK runaway work and also in the
Princeton ST and TFR experiments. Both plasma (free-free) [9] and wall
(thick target) [8] bremsstrahlung components have been identified; ﬂowever,
the wall bremsstrahlung is typically many orders of magnitude more intense
than that from the plasma. Since runaways are essentially collisionless
particles, their transport from plasma to wall can be explained largely
on the basis of classical single particle orbits [9]; these will be
examined for ORMAK parameters in Chapter III. For the weak runaway regime,
it i1s expected that particle loss due to field ripples, magnetic islands,
et;:. plays a relatively minor role (as compared to the continuous run-
away regime); otherwise, the runaways which are produced early in the
discharge would be lost much faster and at substantially lower energies
than what is experimentally observed.

About the only other indication of runaways which has been measured




during the weak regime is enhanced microwave emission. This has been
studied on the Cleo [36], TFR [17], and ATC [37] devices. The enhance-
ment over classical synchrotron radiation ig attributed to the presence
of an anisotropic superthermal electron population and the resulting
velocity space instabilities. In the author's opinion, this diagnostic
has not yet been developed to the degree that the hard X-ray method has;
however, it certainly has the potential of providing information on the
runaway electron distribut:on functin and the nature of the beam~-plasma
integactions which may be present.

Strong runaway discharges [7,14,15,16,17] are distinguished by
such features as: intense hard X-ray fluxes, anomalous large outward
equilibrium shifts, positive voltage spikes correlated with current
dumps, enhanced microwave emission, and an abnormally low amplitude of
MHD (Mirnov) signals which show no poloidal mode rotation. These dis=-
charges have recently been observed on ORMAK [7,14], the T-6 [15], TM-3
[16] and TFR [17] devices; discharges of a similar nature were also
studied in early work in stellarators.

On the T-6 device [15] strong runaway discharges exhibited insta-
bilities in the form of relaxation oscillations. These resulted in
positive spilkes in the toroidal loop voltage which correlated with
similar discontinuities in nearly all of the other measured discharge
characteristics. The instability occurred only when the mean electron
density was below a value of 2.5 =5 x1072 em™3. Measurements of B_L
from diamagnetic loops indicated that at the moment the instability

developed, energy was transferred from the longitudinal motion of the



10

runaway beam into transverse plasma energy.

Measurements of the electron density profile on the T-6 runaway
experiments indicated that early in time a hollowed-out profile was
present which persisted 2-3 times longer than the hollow initial density
profile in a normal, non-runaway discharge. At the point where the
instability developed, the density profile flattened out and became
bell-shaped. Also, the center of the electron density distribution was
shifted further out from the torus axis than in a normal discharge.

The latter fact was attributed to one of two possibilities; either the

runaways formed a localized beam within the discharge, leading to a

large internal inductance (which would increase the outward plasma shift)

or the B, = 8nanmOce/Bg(a) of the runaways was substantial enough to

contribute to the outward shift. The latter explanation was deemed to

be the more reasonable since it resulted in a mean energy of 500~700 keV -
and density between lOlo and lOll cm—3 whereas the former resulted in

a beam radius of 5-6 cm. If all the observed toroidal current were

carried within a 5-6 cm region, this would have resulted in a q value

less than unity at the edge of the beam.

Methods for converting runaway discharges into normal ones were
investigated on the T-6 experiments. These included: adding inhomogeneity
to the toroidal field, varying the preionization, and changing the filling
pressure. A 20% AB/B ripple in the toroidal field was found to substan-
tially reduce the hard X-rays and convert the discharge characteristics
to those of the normal case. Better preionization and higher filling
pressures also decreased the intensity of runaways.

In experiments on the TM-3 device [16], the relation between ‘
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runaways and disruptive instabilities was examined. It was found that
increases in hard X-rays could be correlated with disruptive events

at iow density and large values of g. Bolometric measurements made
during the instabilities indicated that nearly all the plasma Ohmic energy
was carried by a runaway component. Characteristic electromagnetic
radlation was measured at the lower hybrid, ion plasma, and lower fre-
quencles with the onset of the instability. Dilamagnetic signals also
indicated that rapid transverse plasma heating occurred at the disruptive
events; this was interpreted as being due to a slowing of the runaway
component from either a lower hybrid beam~plasma interaction or Buneman
instability.

Strong runaway discharges on the ORMAK device were quite common
during the initial operation of the experiment [7]. These will be
examined in some detail in Chapter II; they were characterized by much
higher currents than the T-6 experiments - up to 140 kA. Positive voltage
spikes were also observed which correlated with current dumps of up to
20% of the total current and large outward shifts in the equilibrium
position (7-8 em). Due to the higher current levels, the equilibrium
shifts could not be accounted for entirely by an enhancement in B” due
to.the runaways. The remaining discrepancy was attributed to &;, the
internal inductance, which is large if the runaways form a beam within
the plasma channel. Following these early runaway-dominated discharges,
examination of the limiter revealed a melted area on the outside quadrant
and fracture caused by uneven thermal expansion.

A parameter study of some typical shots out of this series is given
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in Chapter II. The conclusion is that a beam-like current distribution
is required to fit the experimental data; this implies a g profile which
goes substantially below unity near the center of the discharge.

A more recent series of runaway discharges [1L4] were also con-
ducted on ORMAK at lower current levels (50-70 kA) in an attempt to
avoid machine damage. These exhibited small voltage spikes and only
slight dumps in toroidal current (€ 1 kA). A systematic attempt was
made through adjustment of the vertical field to keep these discharges
centered. Inferred values of Bp + Qi/2 were quite large; values of
2-3 were typical at the maximum current level, but as high as 6-8
were attained during the current decay. When the vertical field was
preoperly adjusted to maintain equilibrium, the current decay was
quite slow, lasting up to 50-60 msec after the end of the voltage pulse
in some cases. The maximum energy measured by bremsstrahlung was 5-6
MeV. A very low amplitude was observed on the MHD probe signals and no
poloidal mode rotation was seen. Also signals from the pin diode array
indicated relatively little activity interior to the plasma except for
periodic spikes at about every 3-5 msec which correlated with spikes
in the MHD probe signal. The plasma thermal energy, as measured by a
radiometer probe, was quite low. Electromagnetic emission was not studied
on either these or the early series of ORMAK runaway discharges.

Runaways on the TFR device [17] played a rather ocminous role,
leading to the piercing of holes in the vacumm liner. Runaway-dominated
discharges were only obtained at low density operation (ne S 1013 cm—3)

and had a characteristic energy of 6 MeV. Examination of the plasma
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electromagnetic emission revealed that radiation at the electron
cyclotron harmonics was correlated with hard X-ray bursts from run-
aways. The interpretation given for the impact zones on the liner was
that cold electrons trapped in the local magnetic mirrors (due to field
ripples) were being heated near the electron cyclotron resonance by a
beam-plasma interaction between the stream of runaways and the background
plasma. These impacts were later verified to be in the direction of
electron drifts by reversing the direction of the toroidal fileld.

Electron cyclotron emigsion has also been studled in both normal
and runaway-dominated discharges on the Cleo device [36]. A clear
correlation was observed between the intensity and spectral distribution
of the emission and the amount of high energy electrons present. Up to
an order of magnitude more emitted power was measured in runaway dis-
charges than in normal discharges. In the former case, a broad peak
in the intensity was found near w = 3.3wce whereas in the latter a
narrow peak occurred at w = 2mce.

As can be seen from the previous review of runaway experiments
on the various machines., a wide variety of interesting experimental
effects have been identified. To develop an adequate theoretical frame-
work which could be related in detail to all such observations is far
beyond the scope of the present work. However, an attempt is made here
to examine a few of the areas which are relevant to understanding the
role of runaways in tokamaks - particularly in the weak and strong
runaway regimes.

The ensuing work will proceed along the following lines.
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In Chapter II a one dimensional, time-dependent model is presented of a
strong runaway discharge in which the toroidal current is carried by an
accelerating beam of runaways and negligible plasma conduction current
is present. Predictions of this calculation are then compared directly
with several typical ORMAK runaway-dominated discharges from the early
operation phase of this experiment. Chapter III deals with the single
particle orbits of high energy runaways in tokamaks. Both numerical and
analytic theory is presented for parameters characteristic of the ORMAK
experiment. These calculations are particularly pertinent in interpret-
ing the gradual dumps of runaways for which detailed measurements have
been made by Knoepfel and Zweben [42] during ORMAK type B discharges.
Toroidal equilibrium is treated in Chapter IV for the case where a
centrifugal force term is included in the plasma force balance, as would
be appropriate for an energetic beam. This is of relevance to

strong runaway discharges where anomalous outward equilibrium shifts and
large values of Bp + li/2 are observed. Finally, in Chapter V the sta-
bility theory of a toroidal runaway beam-plasma configuration against
helical modes is examined. The approach taken is to examine several
physical mechanisms which might account for the peculiar stability pro-
perties of runaway-dominated discharges. As may be recalled from the
preceding review of the experiments, there are some definite indications
either of instabilities or loss of equilibrium (i.e. voltage spikes,
current jumps, etc.); however, there have also been hints from such mea-
surements as MHD magnetic probes and from the parameter study of Chapter
III that runaway discharges may be macroscoplcally somewhat more stable

than conventional discharges. The mechanisms investigated here include:
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velocity shear in the runaway beam, effects of the longitudinal dynamics
of the relativistic electrons, influence of the high drift frequency of
the runaways around flux surfaces (of the order of the ion cyclotron
frequency), and introduction of toroidal drifts. As both the theory
[L3,4h] and experiments [14,15,16] on the gross stability properties

of runaway-dominated discharges are somewhat in their infancy, a serious
gquantitative comparison is, at present, not possible. However,

certain qualitative features of the results of Chapter V may be of
relevance; these include large growth rates near the rational magnetic
surfaces (~VA/a) and regions of stability at q <1 when the runaway
electron drift frequency (= c/ROq) becomes large relative to frequencies

characteristic of MHD (w << Qci).



CHAPTER IT

One~Dimensional, Time-Dependent Modeling of ORMAK Runaway-Dominated

Discharges

Large intensities of MeV range bremsstrahlung X-rays produced by
relativistic electrons impacting the wall and limiter of the ORMAK device
were observed in the early operation of this experiment. In the following,
a model is presented and applied to typical data from several of these
discharges. The classical production rate of runaways for typical
ORMAK parameters is first examined as a function of the impurity content
and degree of plasma ionization. Experimentally, it has been observed
on a number of machines that runaways tend to be enhanced in discharges
where poor vacuum, high impurity conditions are present. Next, the
initial formation of the runaway beam is studied, taking into account the
effect of magnetic field errors. The remaining part of the model is then
the self-consistent acceleration of the runaway beam in an applied electric
field. From this calculation, the toroidal current is obtained as a

function of time and compared with experimental data.

II.1. Runaway Production Rates

The kinetic theory of runaway production in an ionized gas subject
to an applied electric field has been examined by numerous authors
including Giovanelli [3], Harrison [45,L46], Dreicer [L7], Kruskal and
Bernstein [48-50], Gurevich [51-53], Lebedev [54], Kulsrud, et al. [55],
and Connor and Hastie [56]. With the exception of Kulsrud, et al. (who
numerically solve the Fokker-Planck equation), these calculations typically

begin with the electron Fokker-Planck equation and then divide velocity
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space into various regions in order to obtain an analytic solution. In
all cases, an infinite, homogeneous, quasi-steady-state plasma is assumed;
collective effects are neglected; no magnetic field is present; and a
nearly Maxwellian distribution (without trapped particles) is used.

These calculations also apply only when the applied electric field

is weak relative to the critical runaway field (E << EC). This critical
field is usually defined as follows. When a field E is applied to an
ionized gas, there will be a certain fraction of electrons in the tail

of the distribution which, due to the inverse velocity squared dependence
of the dynamic friction force, will be collisionally decoupled from the
bulk of the plasma and can freely accelerate. The crossover point in the
distribution function from collisional electrons to those which are
freely accelerating occurs at a critical velocity, vc, when the electric
field force Jjust balances the dynamic friction force. The critical elec=~
tric field is defined as that field for which the critical velocity equals
the thermal velocity.

The first extensive examination of runaway production was done by
Dreicer [47] (1960) in a series of two papers. He first treated a fully
ionized gas in static electric and magnetic fields using hydrodynamic
equations. He found that the relative drift velocity between electrons
and ions was not maintained at a steady-state value by collisions, but
increased in time. At the critical field, the increase was rapid énough
such that the drift velocity exceeded the thermal velocity within one mean
free collision time. In a second paper the problem was treated using

kinetic equations and dividing velocity space into two regions: one at
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low velocities dominated by collisions, and a higher velocity runaway
region where the electric field force predominates. It was assumed that
electrons would be rapidly depleted out of the high velocity region by
electric field acceleration. Runaway rates were calculated by examining
the diffusion rate of electrons from the low velocity region to the higher
velocity region.

Kruskal and Bernstein [L8-50] next treated the runaway problem and
found it necessary to divide velocity space up into three and five regions
for Lorentz and Maxwellian models, respectively, in order to obtain con~-
vergent solutions of the Fokker-Planck equation. Theirs represents the
most mathematically rigorous treatment and involves no ad hoc assumptions.
However, the final result for runaway flux was obtained up to a function
of the electric field strength times an undetermined constant which could
only be evaluated by a numerical integration.

Gurevich [51-53] and Lebedev [S4] also examined the classical runaway
flux for a weak electric field and were able to obtain closed-form answers.
In similarity to Dreicer, they also divided velocity space into only two
regions, but used an improved representation for the distribution function
near the runaway regime. Gurevich pointed out that close to the critical
velocity the distribution function deviates substantially from a Max-
wellian and becomes highly directional along the electric field. In this
regime, a series expansion in p-1 (u is the cosine of the angle between ;
and the electric field) was employed, i.e.

> 2

f (v,u) = ¢b (v) + (p-1) ¢i (v) + (p-1) ¢é (v) + ... II-1

Substituting this into the Fokker-Planck equation, the unknown coefficlents
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up to ¢i were determined iteratively. This was accomplished by first
setting QL to zero, solving for ¢b, then setting ¢é = 0, solving for
¢i’ etc. The distribution function was then matched onto a Maxwellian
at the thermal velocity in order to determine the normalization factor.

Runaway fluxes were determined by integrating over the right<half of

velocity space (in the direction of runaway) resulting in the following

expression. /2 E . 1/2
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. The above equations are for the case of an arbitrary degree of plasma
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ionization. The critical velocity is determined by balancing the electric
field acceleration force and the retarding force due to collisions with

neutrals and plasma electrons. It is given by

II-4
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Lebedev [54] followed a procedure similar to Gurevich's, but noted that
Gurevich's distribution function was really only valid for velocities
below v, due to the iterative procedure employed in obtaining the functions
¢b(v) and (%‘VJ. Lebedev employed an improved method and solved for

0

0? @l, @2 by using an expansion in the small parameter E/EC. His

expression for runaway flux is given by the following, and differs from

Gurevich's by only the pre-exponential factor.

g = 21/3 ﬂ—l/2Ne Voo (Ec>l/lL exp (- Ee _ (2 Ec>l/2 -

E LE

Se 1 I1-5
2

E
Kulsrud, et al. [55] numerically solved the Fokker-Planck equation
for runaway rates and compared their results with previous calculations,

They found that their work agreed most nearly with that of Kruskal and
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Bernstein (provided the undetermined multiplicative constant was chosen
to agree with the numerical result at a specific electric field).
Lebedev's calculation was also close; however, Dreicer's runaway rate
was about two orders of magnitude higher than that of Kulsrud, et al.
and Gurevich's was low by a factor of about 3-k.

Conner and Hastie [56] have also recently considered relativistic
corrections to runaway rates. They note that if the applied electric
field is sufficiently weak, then the critical runaway velocity will
become of the order of the speed of light. At this point, a relativis-
tically correct collision integral must be used; they use one given by
Klimontovich [5T]. The fact that V.pjq CBANOt exceed the speed of light

rit

results in a value of E/E = (kTe/mecz) below which no runaways may

crit
be produced. They also found that significant corrections to the cal-

culation of Kruskal and Bernstein enter in when E/Ecrit < V/kTe/mec2

For the parameter modeling of ORMAK discharges, the calculation of
Lebedev has been found most appropriate. The corrections found by Connor
and Hastie begin to be of importance during the steady~state phase of the
ORMAK discharge and for reactor regime tokamaks; however, in the early
part of the ORMAK discharge, when most of the runaways are thought to be
produced, E/Ecrit>‘VkTe/mec so that relativistic corrections to runaway
rates are fairly minor.

Since in ORMAK, as in most tokamaks, the plasma parameters during
the early breakdown of the discharge have not been well-diagnosed, several

approximations had to be made in computing runaway rates. First, the

resistivity was computed using the measured current and voltage;
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temperature was then obtained using Spitzer's formula with an anomaly
factor of four (which was typical of the early ORMAK discharges). The
neutral density was modeled by assuming an initial value and then depleting
this in proportion to the rising plasma density such that total number
of particles was conserved. Other parameters varied were the impurity
content and the penetration time of the Ohmic heating field.

A typical voltage, current, and density plot is given in Fig.II-1
for a capacitor-driven runaway discharge and for a nonrunaway discharge
in Fig. II-2. The major difference between these two shots was in the
direction of the Ohmic heating field; reasons for this dependence will
be examined in the next section. Substituting data from the runaway
discharge into equation II-5 results in the fluxes which are seen in
Figs. 1I-3 and II-4, 1In Fig. II-3, the runaway rate is plotted
against time for different values of Z. For simplicity, it is assumed
here that the average number of electrons per neutral atom and the
effective ion charge of the plasma ions are the same number, Z. Thus,
the values of Z indicated in Fig. II-3 are used both in equations II-3
and II~L in calculating Ec and v, and also in the Spitzer resistivity in
calculating the plasma temperature using the measured voltage and current.
It is known that the ORMAK runaway discharges had a high level of lmpurity
and thus a high Z; however, early in the discharge Z was probably at
its lowest value. Treating 7 as a parameter, it is noted that an increase
tends to lower the initial peak in the runaway rate and to create a second
peak later on in the discharge. The lowering of the initial peak can be

readily explained by equation II-3 where increasing 7 leads to an increase
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in Ec. Moreover, from equation II-L, the critical velocity vC also

depends on Z, but since it enters the calculation of Ec only through the
logarithmic terms, this dependence 1s relatively weak. The second peak
which appears later on in the discharge is not related to the effect of Z

on Ec' At the time when this occurs, the neutral density will have

dropped (according to the-model used here) to zero, thus removing completely
the dependence of Ec on Z., The appearance of this peak has, however,

to do with the effect of Z on the plasma temperature. An increase in Z

will result in an increase in the computed temperatures which, in turn,
lowers Ec and causes the second peak in the runaway rate to appear.

In Fig. II-4, the runaway rate is plotted versus time for various
values of another parameter which could not be measured, i.e. the neutral
density. The values of this parameter which are shown represent the ini-
tial neutral density and it is assumed that the densities decrease as the
plasma density increases. An estimate of ~lO13 cm“3 for the initial
neutral density is obtained from the pressure and temperature of the
fill gas before the discharge. Increasing the neutral density results
in a decrease in the runaway production since, according to equations II-3
and II-4, this leads to an increase in both vc and Ec' Physically, this
reduction in runaway production occurs because inelastic collisions with
neutrals provide an additional mechanism for electron energy loss.

Another parameter which is introduced in the present calculation
is the initial rise time of the induced electric field in the plasma.

The voltage measured experimentally is the total external voltage around
the torus and consists of resistive and inductive components. At early

times in the discharge, the voltage applied to the plasma rises
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rapidly; the time constant is a characteristic of the liner-plasma-
transformer circuit, i.e. the flux change which induces the Ohmic heating
field must soak through the conducting liner and initially low tempera-
ture preionized plasma. Since the electrical characteristics of the
liner-plasma~power supply circuit are not well known early in the dis-
charge, this time constaﬁt is treated as a parameter. For Figs. II-3
and II-4, a value of 0.1 msec is used, and lowering this value results

in more runéways. This is comparable to the time constant which is
calculated by using the Spitzer resistivity and assuming that the

initial preionized plasma in ORMAK has a temperature of 2 eV.

II.2 Initial Formation of the Beam and Effect of Field Errors on Beam

Size

The early ORMAK discharges exhibited a striking dependence on the
direction of the applied electric field. It was observed that a much
lower level of runaway was present if the Ohmic heating field and toroidal
magnetic field were parallel than 1f they were antiparallel. This
effect was analyzed by Rome [6] who was able to relate it to the lack of
closure of flux surfaces in the first few milliseconds of the discharge
for the parallel case. When the two fields are antiparallel, flux sur-
faces can be closed within a certain volume in the discharge, but intersect
the wall outside that volume.

As was indicated in the previous seétion, runaway production is
favored during the early part of the discharge. Since these runaways
are at nonrelativistic energies for the first few milliseconds, they tend

to be closely tied to the poloidal flux surfaces and any disruption in
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these surfaces will lead to loss of the runaway population. At slightly
later times the toroldal plasma current increases rapidly and closes

the flux surfaces. However, by this time the plasma density has risen
to a higher value while the Ohmic heating field has become lower; thus,

runaway production is less favorable.

As mentioned above, when the toroidal magnetic field and induced
electric field are antiparallel, runaways are expected to have well-
confined orbits only within a certain volume of the discharge at early
times. This consideration motivated the modeling of the runaways as a
finite beam whose size was determined by the initial topology of the
flux surfaces. In order to make a quantitative estimate of this size,

the following expression for the flux function, as derived by Rome [6],

was employed:

NpHolp P in (x-r_-a)° + y2 HAT
——ee L 0P 2
VJ(X,Y) = 2+7T2R 5 > - > (X +y ) 1I-6
0 (x—rL+a) +y L
where NL = number of toroidal field coils
IL = current in the error coil
RO = major radius
a,b = width and length of error coils
rL = location of error coil loop centers

The coordinate system is shown in Ref. 6. The beam size is
obtained by first setting y=0 (since Y is symmetric in y)and x = -rp
(limiter radius). Calculating ¥ at this point then gives the value
of flux for which the outer edge of the plasma is just intersecting the

limiter. Solving for a second value of x where the flux takes on the
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same value glves the inside location of the flux surface - x axis
intersection. The difference between these two locations then gives
the size of the beam. In Fig. II~-5, the radius of the closed flux
surface region 1s plotted as & function of time for the discharge
parameters of Fig., II-1. This shows that after about 0.5 millisecond

the entire plasma volume (rp = 23,5 an) should be well contained.

II1.3 Acceleration of Runaways in Applied Ohmic Heating Field

The free acceleration of runaways is now examined using the
familiar relativistic equation of motion. Although the results of
Fig, 1I-3 for Z > 1 indicate that the peak in the runaway rate may be
shifted to a later time as Z increases, it will be assumed here for
simplicity that all runaways are born at a single time, to, early in
the discharge with a negligible initial velocity. We shall also assume
that the runaway current flows only in the ¢~direction and is localized

inside a beam of radius a. The force equation then gives the following

-
-> -+
d_ (ymyv) = -eE = %%ﬁ- 11-7
at
-

where A is the vector potential, m. is the electron rest mass and vy is

0

the usual relativistic parameter. II-T is readily integrated to yield

the velocity given below,

B = AA = A II-8
¢ V1442
- e b d e
where A E —O'E' [A¢(t,R) - A(b ('tO,R) ]

Note that A¢ congists of two parts: one from the flux change in the transe

former core and the other from the beam=-induced flux change.
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—->) > 1 B 3
= — mm——— ¢ $ § 4
Ay(t:R) = A4 (5,R) SR e(t')at E¢(t sR)at IT-9
to to
where €(t) = emf produced by the transformer core flux change
B ->
E¢ (t,R) = beam induced field

Since Acb at t=t0 is solely due to the transformer flux change, the spatial
+ -y
dependence of A¢(to,R) is proportional to R L
The ¢-component of Ampere's law may be written as follows in terms

of the dimensionless vector potential A.

9°A + 3 139 a
e 1322 3R R OR (RA)Y T Hedy I1-10

Here axisymmetry has been assumed so that all derivatives with respect to

¢ are zero. The R,¢,Z coordinate system is illustrated in Fig. II-6.

The toroidal current density carried by the runaways is simply engve
(nR = runaway density, vp = runavay velocity).
J¢ = echB = enpc 7é==?? IT-11
1+A

Substituting ITI-11 into II-10 and defining w__, as the plasma frequency

PR

for the runaway component results in the partial differential equation
given below

3 19 3°A Y : A I1-12
=% (RA) + —5 = -
3R R oR 2 Vient
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To order the above equation with respect to inverse aspect ratio, it is
convenient to use a new coordinate system defined by the following.

R = RO + r cos O I1I-13
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Z =1 sin O
This r,0,¢ coordinate system is also indicated in Fig. II-6 and its
metric is (1,r,R). Transforming equation II-12 into this system

results in the equation below.

2
1 3 oA 3 R 9A A k™A
®Yr By fsersmlt o - =0 II-1k
rR |} or ar 96 r 36 R2 T7E
where k2 = w2 /02
or
Expanding II-14 in powers of € = r/RO gives:
1 3 A 19 oA
. (1-€ cos 9) s T (1+€ cos 0) s~ * T35 (1+e cos ©) 5
2 IT-15
A (2ccose) --EE - o
RO 1+A
Keeping only terms to zero order in € and assuming symmetry in the
poloidal direction equation II-15 reduces to:
19 %A A 1A
rar T T2 T = 0 II-16
R 1+A

0
This nonlinear equation can be readily solved in the two limits A>>1 and
A< <l. In view of equation II-8, these regions correspond to v=c and
v<<c¢, respectively. It is expected that the limit A<<l would hold dur-
ing the early stages of acceleration while the opposite limit would
apply at later times. In addition to these temporal varlations, there
are spatial variations in the speed of the electrons. Since the runaway
beam is highly conductive, electrons near the center will be relatively
well shielded from the electric field while those on the outer flux sur-

faces will feel the full force of acceleration.




35

In view of this, the &K <1 1imit will be applicable near the center
while the outside of the beam will approach the A>>1 limit after
enough time has elapsed to bring these outer electrons to relativistic

energies. The solutions of equation II-16 may be written as given below.

Alr,t) = Co(t) Io(kr) <1
II-17
Alr,t) = -(k_RO)2 +¢ (8) I (x/R)) A1

where IO is the modified Bessel function of zero order. The time

dependent constants CO and Cl are determined by the boundary value of

the external field (i.e. the measured minus the beam and plasma inductive

components) at the beam radius. This is given as follows:

Eﬁﬂ

= _ 1
ot 2ﬂRO

£ - uOROI 1in 2- I1-18

Integrating II-18, the boundary conditions may be expressed as follows:

t
- 1 v b -
Alpmy = 5 = ﬁ/e(t ydt uOI In = I1-19
070 0

The second condition used in determining CO and Cl comes from the
assumption that the solutions II-17 must match at some radial position
r¥ inside the beam where A = 1. The result is two transcendental
equations for r¥*: one that applies to those early times before the
outer electrons in the beam have reached relativistic energies (the
K< 1 1limit) and another that applies to those later times when the outer
electrons have already attained relativistic energies. The time t¥* at

which this transition occurs is determined by the equation given below,
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%
b
kalj(ka) 1n - o ./- e(t')at' + 1 = 0 IT-20
2mn . cR
I, (ka) 0ot

The quantity t* is defined to be the time at which r¥*=a, i.e. for

® t¥ the AK 1 solution applies inside the beam while for t>t¥* the

A<<] solution is used for <Kr<r¥* and the A>>1 solution for r¥*ia,

The two transcendental equations for r¥ referred to earlier are given by

the following:

t*
._.._.._9.__._. % [ |= }l _
2ﬂROmOC Io(kr ).[ e{t')dt Io(ka) + ka%} ka)ln = II-21
tO

(for W t¥*)

I (a/R.)
b 0 0 2
% ¥* = s
r¥k %_(kr ) 1n a2 * Io(r*/RO) (1+ (kRO) ]
¥ o IT-22
= © .[ e(t')at' + (kR )2 -k (a2 - r*g)ln b
[ 0 a
2TR m_c 2
00" |
0 (for t>t*)

Once the radius r* is determined as a function of time, then A(r,t) may

be readily obtained from equation II-17 with the constants CO andCl

given as below,

cy(t) = [Io(kr*)]“l T1-23
>

¢ () = 1+ (KR II-24

1 Io(r*/RO)

Using equation II-8 to relate A to the local electron velocity, the
current density in the beam may be integrated over the cross-sectional

area to obtain the total runaway current as a function of time.
a,

I(t) = 21TnRec/ B(r) rdr IT-25
0
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a
= QﬂnRec/ Ardr

0 1+A
For Xr¥* (the K<1 region), this integral can be calculated by using
equation II-16 with the A/Ré term neglected. In the A>>1 region, a

2)—1/2 >~ ], These considera-—

convenient approximation is that A (1+A
tlons result in the toroidal current given below.

I(t) = 2mngec ALY +1/2 (ag-r*?) II-26
R 2 odr
k r=r¥

Using the solutions in equations II-~17, II-23 and II-24 give the fol-
lowing currents.

2mn.ec ka I_(ka)

R 1 = ¥ II-27
I(t) = ~
k2 Io(kr )
2Tn_ec I (kr¥) 2
I(t) = '—“g"‘“ r¥k m + k_ (ag—r*Z) t>t ¥ II-28
k 0 2

Begides total toroidal currents, a final quantity of interest in this

model is the energy (or relativistic Y) as a function of time.

2,-1/2
vy = (- I1-29
Using equation II-8, this becomes the following:
Y = V¥ 1+a° II-30

II.4 Comparison of Theory with Experiment

Comparison of the above theory with experiment can only be made
through a parameter survey since no direct information is available on

the size of the beam or the total runaway density. As was discussed in
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Section II.1l, calculations have been made of runaway density; however,
this depends sensitively on factors such as the initial plasma impurity
level, degree of ilonization and penetration time of the Ohmic heating
field. Estimates can also be made of the beam size based on the belief
that the radius is determined from the effect of magnetic field errors
on the early evolution of the flux surfaces. The runawsy beam radius
should, in principle, correspond to the'radius of the flux surface
which Jjust intersects the torus wall at the time when the peak runaway
production occurs. However, the effect of field errors on flux surfaces
has been calculated only approximately by averaging over the flux sur-
faces. When beam sizes predicted by this approach are used in the runaway
current calculation, the results only agreed with experimental values
to within an order of magnitude. For the above reasons, the beam radius
and runaway density were left as parameters in the calculation.
Calculations of runaway beam currents have been performed using
the methods developed in Section II.3 for a range of beam radii and run-
away densities. Data has been used from both the capacitor-driven case
(Figs. II-1, II-2) and the battery-driven case (Fig. II-7). Runaways
are all assumed t0 be produced at t0=0. It is also assumed in these
calculations that nearly all the observed current is carried by runaways.
This assumption may be Justified by the data presented in Figs. II-1
and II-2. As mentioned above, Rome's analysis of field errors [6]
indicates that for the electric field direction in the Fig. II-2
discharge, the flux surfaces run into the wall early in the discharge,
thus removing runaways. However, in Fig. II-1 the flux surfaces are

closed and runaways may be freely accelerated. This led then to the
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agssumption that Fig. II-1 represents runaway current plus plasma current
while Fig. II-2 represents the small amount of plasma current present
in the discharge of Fig. II~l. Subtracting the current of Fig, II-2 from
that of Fig. II-1 was thus assumed to give the runaway segment of the
current. It was this current against which the above theory was compared.
Figure II-8 shows results for the capacitor-driven case. It may
be noted that various values of beam radius and runaway density can be
chosen to gilve reasonable agreement with the experimental data. ILower
densities wifh larger radii were found to result in a leveling-off in
the current similar to that which is apparent in Figs. IT-8s and II-84.
This occurs when all electrons across the beam reach relativistic ener-
gies so that further acceleration does not significantly increase the
total current. At low densities, this occurs more rapidly because of
the earlier penetration of the electric field into the beam. In Fig.
IT-9, +the time evolution of the relativistic factor Yy is plotted as
a function of the radial position in the beam. As pointed out earlier,
the most energetic electrons are at the outer edges of the beam with the
central electrons being least energetic since they receive less accelera-
tion. Figs. IT-10 and II-1 show results for the first LL msec of the
battery-driven case., It is found that only a relatively narrow range of
radii and runaway densities would provide agreement with the experiment

3

11 - -
in this case (densities of 2-3x10  om and radii of 5-6 cm). Lower
densities result in a leveling-off in current at too early a time in

the discharge whereas with higher densities the leveling-off which occurs

in the experimental data at about 3k mseec could not be obtained.
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The dip in the experimental data at ~ 15 msec is due to the fact that
the voltage 1s driven negative when the capacitor banks are turned
off and the batteries are connected; this was not included in the
theoretical calculation. The time evolution of the relativistic factor
Y is presented in Fig. II-12 and shows a behavior similar to that of
the capacitor-driven case.

In addition to the above parameter study, another source of infor-

mation about the runaway beam radius is the horizontal plasme column dis-

placement. In ORMAK runaway-dominated discharges, large outward shifts were
inferred from the magnetic loop measurements (~6 to 9 em). As was
mentioned in Section 1.2, similar observations were made on the Russian
Tokamak-6 runaway experiments [15]. Vlasenkov, et al. [15] offered

two possible explanations of this phenomenon -- one being that the major
portion of the current is flowing within a 5-6 cm radius beam and the
other that the electron plasma pressure is highly anisotropic (p“>>pL ).
They found that if the runaway electrons are assumed to possess a
longitudinal energy of 500-700 keV, then the large displacement can be
explained without having to resort to the assumption of a sméll current
channel (i.e. the internal inductance, Qi, is the same as for the normal
plasma regime). However, for ORMAK parameters, calculations based on the
equilibrium theories of Mukhovatov and Shafranov [58], Ott and Sudan
[59], and Mondelli and Ott [60] show that even with a highly anisotropic
pressure (E“~ 1 MeV), it is necessary to choose a runaway beam radius

of the same magnitude as that obtained in the above parameter study

(~6 cm) in order to give agreement with the experimentally-observed

shift. A further compelling reason for choosing a beam radius
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significantly less than the plasma limiter radius i1s that a large beam
subjected to an outward displacement (which is a large fraction of the
limiter radius) would necessarily have to form a highly-distorted
equilibrium and would probably hit the limiter early in the discharge.
It may well be that the current dumps observed after ~Ll msec in the
battery-driven case (Fig. II-7) are due to a part of the runaway beam
colliding with the limiter; however, if the beam radius were of the
same order of magnitude as the limiter radius, these dumps would be
expected to occur much earlier in the discharge.

One further rough indication of the beam size comes from the
damage pattern on the first ORMAK limiter. This also indicates that
most of the energy was localized within a region of the same order as
the beam sizes given above.

In summary, the above considerations and parameter study lead to
the conclusion that most of the runaway current is carried within a
5-6 cm region., If the runaways actually did carry most of the observed
current and if the observed current dumps can be explained on the basis
of the beam hitting the limiter (i.e. a loss of equilibrium rather than a
loss of stability), then this would imply that low values of g (Kruskal-
Shafranov safety factor) near 1/L4 are being attained in the runaway
regime without macroscopic instabilities. This point will be returned
to in Chapter V where a theoretical stability analysis will be presented

in relation to the discharges considered in this Chapter.



CHAPTER TIT

Single Particle Drift Orbits of Runaways in Tokamaks

An analysis of single particle orbits is the first step in con-
sidering a number of questions which regularly arise in plasma physics.
Not only are orbit characteristics essential in relation to basic
confinement, but they also are of importance in the areas of kinetic
theory and stability analysis.

The treatment given in the present chapter relies on the guiding
center or drift approximation. This is obtained by averaging over the
fast gyromotion and has been derived by various authors including
Northrup [61], Bogolyubov and Mitropol'skii [62], and Bernstein [63].
Such a description of the single particle orbits is expected to be
adequate for locating the spatial position of runaways in ORMAK due to
the fact that the gyroradii are quite small. For example, in the
extreme case of a relativistic electron which has a 9Oo pitch angle
(the pitch angle is the angle between the direction of the particle
velocity and the magnetic field), the gyroradius for a typical ORMAK
toroidal field is X Yy millimeters (where y = (l—v2/c2)_l/2). Thus,
even at 10 MeV (y = 20.6), gyroradii are an order of magnitude smaller

than the machine minor radius.

In checking the validity of the drift approximation, one must also
examine the conservation of the magnetic moment, . Since ohly static
magnetic fields are assumed present, the conservation criterion is that
the relative change in magnetic field strength seen by the particle

over one gyroperiod is small; in a tokamak this change largely is due

L8
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to the l/R falloff of the toroidal field. In the case of a runaway

with a pitch angle near 900, this criterion is readily satisfied because
of the small size of the gyro-orbit relative to the scale length of the
field gradient. In the other 1limit where \ >> v, , the change in field

strength over a gyro-orbit is given by the following.
2L L, 28 I17-1

AR 1s the distance the particle moves along the major radius direction
(over one gyroperiod); this depends on the pitch of the field lines.

If it is assumed that g=1, then AR over one gyroperiod is given below:

ITI-2

£
R

where r = minor radius position of particle

Q
e

it

cyclotron frequency

For v, = c and ORMAK parameters, one finds that AB/B = .2%. Thus, the
conservation of U should be a reasonable assumption.

In the following Chapter, an analysis is first made of the effect
of E X E drifts in strong runaway discharges. It would be expected
that this drift would lead to an inward pinching of the runaway beam with
time. This is shown to be relatively slow and thus the approximation
made in Chapter IT of a constant density, constant radius beam is valid.

Next, effects of curvature and gradient drifts are considered in
relation to the weak runaway regime., As was mentioned in Chapter I,

7 —3)

this regime is characterized by a small population (~10' cm of high

energy (5-12 MeV) runaways. These occur both in the type A (high
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density, narrow current profile, high MHD activity) and type B (lower
density, broad current profile, lower MHD activity) discharges. In

type A discharges runaways leave the plasma region at early times
whereas in type B discharges, these particles come out near the end.

In both cases the loss occurs when the energy becomes too high for the
orbits to be contained in the machine. This loss is in particular
expected to be a smooth gradual process in the type B discharges

vhere runaways begin intersecting the limiter during the flatop section of
the current pulse Wwhen most of the discharge parameters are not changing
rapidly with time. The situation in type A discharges is somewhat more
complicated since runaways leave the plasma at early times when plasma
parameters are changing rapidly. The analysis in Sections III.2~III.L

will be in relation to type B discharges.

> ->
IIT.1 E x B Shrinkage Effects on Beam Radius and Density in the

Runaway-Dominated Regime

The parameter study presented in Chapter II of the strong runaway
regime made the simplifying assumption that the beam had a constant
radius and constant density throughout its acceleration to relativistic
energies. In the following, an analysis is undertaken of the approximate
evolution of runaway electron drift surfaces in order to determine if the
above assumption is a reasonable one.

The model assumed is that of a toroidally-confined electron beam
which is being accelerated by a longitudinal electric field. Since the
electrons are sufficlently energetic that they suffer very infrequent

collisions, it is assumed that no collisional particle transport out of
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the beam occurs, i.e. the electrons are perfectly contained. It is also
assumed that the beam has been sufficiently accelerated so that the
P _ 2, 2y=1/2 .
relativistic factor y = (1-v~/c%) is large over the whole cross-
section.
The basic eguations involved in the analysis are the relativistic
drift equation [671 1], the continuity equation, the conservation of
canonical angular momentum, and Ampere's law (written in terms of the

poloidal flux function Y):

e. P2 3s
-+ ~ > > Il -
v+ [-E+B_VB_ 2 I1I-3
Ye Yem,. 9s
0
anR -
+ -
e v (nRv) = 0 III-k
Pcb = mcRYB - ey = constant I1I-5
¥1f) = —
A*Y uORJ¢ I11-6
where J = ~en_ v
¢ R'¢
> -
A%y = RV. (R™50y)
= RA
v o
A¢ = ¢ component of the vector potential
” 2
Here ¢, is a unit vector tengent to a field line (&,=B/B), u = P /2u B

is the magnetic moment, m. = electron rest mass, and y = (l—ve/cg)_l/z.

0

Both cylindrical and quasi-toroidal coordinates (r,0,¢) will be employed;

el

these are illustrated in Fig. II-6. e, may be written in terms of the
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poloidal flux function as:

~ By o~ [ xvV
el___gé g - Ly X V¥ III-7

In the following analysis, the drift velocity given by expression
III-3 will first be written in terms of the surface quantity y (Y and vy
surfaces are related by equation III-5). This velocity is then sub-
stituted into the continuity equation III-4 which results in a form for
the runaway density as a function of y. The field equation III-6 is
then self-consistently solved to zeroth order in the inverse aspect
ratio (eylindrical approximation). The requirement that the total
number of runaways remain constant in time then gives an equation for
shrinkage of the beam radius.

In equation III-3 it is assumed that beam electrons have negligible
perpendicular thermal velocity so that the magnetic moment is zero.
This leaves only E X § and curvature drift terms. The E b'd E drift is
shown in the following analysis to result in a radial shrinkage of the
electron density profile. The curvature drift term is in the Z~-direction
and produces a circulation of runaways around the minor cross-section
of the torus; this is shown to0 distribute the runaways such that their
density becomes a function only of the surface quantity Y. Both of
these drifts will be retained in the analysis and the above-mentioned
effects will be treated by an ordering procedure.

Substituting expression IIT-T into equation III-3 and neglecting

curvature in the poloidal magnetic field results in:

V=B T4 ¢2 + = [.- T 0t T ] II1-8
RB¢ © B¢ RB¢ ¢
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where B = v/c

-> >
Using equation III-5 to relate V{ and Vy, the above equation may

be written in the following form.

2, 2 2
> [ e (y -1) ¢ yh (i _+}
v= Bcd€T 1+ 2 2 + 2 «Vy
1
¢ RO Yee ROwce R
TII-9
A E > E 2 A -
R\ G0/Rw ) @2 o' Bu__
¢ ce 6 ce
eBO 0 r
where CH = mg s B¢ = hB¢, h=1+ ﬁg cos 6O

The second drift term in the 1, direction is of O (p/RO)2 and the

¢

~ 2
third 1¢ term is of 0 (p /aRO) where p = c/wce and a is the beam radius.

For typical ORMAK runaway regime parameters [7] p/a ~ 3x10—2 and

D/RO ~ 10_3. Thus, the second and third 1¢ terms may be neglected in
comparison with unity. Writing the remsining terms in equation III-9

~ -> ~ >
in terms of an 1¢, VY, 1¢ x Vy orthogonal coordinate system, the

following equation is obtained.

>
> E LoeVy
Pes (SR (S - T )
B w B 'VWI O ce
¢ ce
A 3 ITI-10
A > 1, eVy E
+  1xVy |- th + E =5 (.{%>E$JXL__
¢ ce |1¢XVY| o “ce

.
The VY terms are, respectively, of O(vEp/ca) and O(vEp/cRO) whereas the
-
~ 0
V- . = ~
Lyx { terms are of O(p/a) and O(vEp/cRO) Here vy E¢/B¢ and VE/C
bx107 7.
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Neglecting small-order terms results in:

> ~ -> E 2 ”~ >
v = Be |1 + Vy 2} h -1, x Vy -ch IIT-11
b 0 2 ) Bw
B¢ wceB ce

We now substitute this velocity into the continuity equation III-lL,

using E¢ = (-1/R) (9y/3t) and assuming axisymmetry (which implies that
> ~

Ve (nv¢1 ) = 0) to obtain the following equation:

A -> -3
1 B o2 (1¢ x Vy) ¢ Va*] _ o2 ;; n*Y§ )., ITI-12
2 3% T w h D2 5 Y| T -
h ce ce Y “=1

where n* is the normalized density (=nh2/N) and N is the initial runaway
density.
The terms in ITI-12 are ordered by noting the existence of three

time scales. These are defined as follows:

Tq = characteristic time for a change in runaway density to occur.

Tt = time for an electron with velocity near the speed of light

to make one transit around the torus.

Tg = characteristic time for a change to occur in particle
energy as the electron accelerates in the applied electric
field.

The first term in equation III-12 is of o(rd'l), the second of 0
(2WR0p1t~l/a2) and the third of O(perE—l/aQ). Equation III-12 may be
simplified by observing that TE, Td >> Tt, i.e. electrons moving near the
speed of light will make a large number of transits around the torus

before significant changes occur in particle density or energy. Thus,
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the second term in equation III-~-12 is much larger than the first or

third terms. It may be noted that the second term came from the

A ->
curvature drift and represents a flux of runaways in the 1¢ x Vy
- >

(poloidal) direction whereas the third term came from the E x B drift and

>
represents a flux of runaways in the Vy (radial) direction. Keeping

> ~ >
only the dominant term in equation III-12 requires that Vn*'(1¢ x Vy)=0;
this implies n¥* is a function only of vy, n¥=n¥* (y). Substituting this

result into equation III-12 and assuming that Yy is large enough so that

all terms of O(Y~2) and higher may be discarded, the equation given below

is obtained.

2 : 02
-+
dn* 3y [h"2 - =5 IVYIQ] - n¥ 2
dy 3t Woo ce
III-13
B2y By (20)] -
x[at vy + vyev (L)) = o

Using equations III-5 and III-6 to relate V2Y to n¥ and keeping terms
. 2 2 2
only to zero order in the inverse aspect ratio results in V Yzwpe n¥*/c

The terms in equation IIT-13 may then be ordered as:

02 |§y|2 ~ 0 (202

)
w
ce
2
( 8299 ot Lo (px)? ¢ 7 k=uw /
6. 3t ~ 0P E be! ©

2 L s
c . oy py2 . =1

For parameters typical of the CRMAK runaway regime [7] p/a ~ 3 x 1072

and pk ~ 10T,
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Neglecting all terms in equation III-13 which are down by an

order of magnitude or more results in the following non-linear Ricatti

equation:
*
& gn*2 - where o = (w_ /o )% III-1h
ay pe’ ce
which has the solution: n* = (1 - aY)_l III-15

The singularity in n* which occurs at Yy = a_l represents an
approximate limitation on y for a fixed wpe and wce. This may also be
viewed as a limitation of the particle energy density obtainable in a
runaway discharge; the inequality vy < a‘l may be written equivalently as
0,2

)
¢

kept less than twice the toroidal magnetic field energy density. Such

5 (8

Nymoc2 /uo, i.e., the runaway electron energy density must be

a limitation comes about from an inward collapse of the runaway beam on
itself due to the E X ﬁ drifts. The accumulated effects of these
drifts are dependent on jE¢dt (see equations III-19 and III-20 below),
the total volt-seconds applied to the beam. The shrinkage also depends
on the Bg field strength since electrons must move perpendicularly to
the field in their radial E b'd E drifts. A larger toroidal field energy
density would be expected to require a larger jE¢dt (runaway energy
density) for beam collapse to occur. It is interesting to note that
the above limitation is identical to the firehose stability criterion
which will be derived in Chapter IV; since the firehose limit does not
directly depend on the presence of an applied electric field, this is
apparently only coincidental.

Using equation III-15 for the runaway density, it is possible

to make an egtimate of the radial shrinkage of the runaway beam.
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Since a_l ~ lO2 and y~6 to 8 for typical ORMAK runaway discharges,
oy is a small quantity and n¥* may be adequately approximated by expanding

to first order in powers of ay:
n¥* = 1 + qy I1I-16

The beam shrinkage as a function of time is then determined by requiring

the total number of beam electrons to remain constant in time:

21 27 a 52
[ & S a6 S drRen*(y) = 21r%a’R III-17
0 0 0 00

where ay is the initial beam radius.

To perform this integral, it is necessary to determine Yy as a
function of r and t. This is found by substituting expression III-16
into the field equation III-6 and using III-5 to relate y and y. The
boundary condition on ¢ is given (as in ref. 7) by the measured voltage
minus the inductive component of the beam., It shall be assumed, since the
large Yy limit has been taken, that all runaways are moving near the speed
of light and that the total beam current is constant in time. Performing

these manipulations, the following transcendental equation for the beam

radius, a, as a function of time is cbtained:

— I. (k yo a) t 22
xk Yo a —————o %*Eﬁn—e&"‘ S eat'|=5%  111-18
I, (k yoa) 0% 0O 3z

Since equation III-18 cannot be directly solved for a, two limits will De
examined: k ya a >> 1 and k Yo a<< 1. The large k Yo a limit gives
the expression below.

a = k ao 1 e t -1
[a*"“"‘_ ! adt'] II1-19

2\/_0_6_ 2mm . cR

070 0
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while small k /0 a limit gives the following.

1

a

- [
g = = b ——
‘/OL— o ZTTmocRO

e t -1/2
III-20

S e4dt!
0

It should be clear from both of these equations that the beam radius
decreases with increasing volt-seconds in both limits.

A rough estimate of the above shrinkage effect for the ORMAK run-

11 3

away regime, e.g. n = 10 em ®, a=6cm, Jedt' = 0.3 volt ~ second,

B =1.2 wb-m_g, indicates that the beam radius should shrink no more

¢
than 10% and that Yy ~ 1Lk0. Here Y denotes the value of Yy where
max max

the beam collapse would be expected to occur. Thus, drift orbit effects
are relatively minor and since o = 7x10_3, equation III-15 shows that the
density 1s nearly constant over the beam cross-section. However, for
higher energy density beams, more significant effects might be observed,
-3

,a =10 cm, fe d t' 0.6 volt - seconds, B¢ =

5 Wb'm—g, then the beam radius should shrink by roughly 25%. In this case,

e.g. if n o= 2xlO12 cm

Vyayg ~ 120

IIT.2 Curvature Drift Effects

Throughout the drift orbit analysis in the present section, the
Exg term will be neglected since, as shown in the preceding section for
runaway-dominated discharges, it has a relatively minor effect; this
is also expected to be the case for high energy runaways in normal dis-
charges. This drift is then implicitly included again in Section III.3

where the change in minor radius of a relativistic electron undergoing

acceleration is examined; however, the effect found there is an expansion
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of the orbit's minor radius which predominates over any gradual
> >
shrinkage due to ExB drifts.

The remaining terms in the drift equation are then the gradient

and curvature drifts.

2 ~
N éi u -> P, Bel
Ve T ® X|vYe Yem, 9s
2 ITI-21
e
T 2

These two drifts are both approximately in the vertical direction
(along the Z-axis in Fig. II-6). When added onto the basic motion along
field lines, they affect the orbits in various ways depending on which
one predominates. Toroidal orbits have been discussed 1in some detail
in references [4], [64], and [65]. In the case where the curvature
drift is predominant, the orbits are displaced off-center from the
centroid of the current distribution either inward or outward, depending
on whether the particles are moving antiparallel or parallel with the
toroidal current. Runaways, of course, are always antiparallel to the
current and in ORMAK type B discharges are displaced outward. When the
gradient drift is of importance, mirroring of particles can occur as they
move into the toroidal field gradient leading to the well-known banana
orbits.

For runaways which are undergoing acceleration, the predominant
drift is expected to be the curvature term (i.e. vﬁ/RQT) since v >>vy .
The gradient drift is only expected to possibly be of importance when the
voltage is off and runaways begin slowing down; as long as they are under

acceleration, energy is primarily going into Vil Since the area of major
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interest relative to the ORMAK type B discharges is the gradual loss of
runaways during the steady-state portion of the discharge, the gradient
drift will be neglected in the following section. It will be included,
however, in Section III.4 where trapping boundaries will be examined
for runaways which are Jjust intersecting the limiter. It might be

also noted that synchrotron radiation should strongly limit the amount

of pitch angle scattering which could accumulate for high energy electrons.

ITT.2.A. Runaway Orbits for Flat Current Profiles

Orbits are first examined here for the case where the toroidal
current distribution is flat. The reason for considering this case is
because an exact analytic treatment is possible.

One method of determining particle trajectories is by using the
canonical invariants of the motion. For the tokamak, a convenient
invariant is the canonical angular momentum, P¢ . The invariance of Pcb

depends on the axisymmetry of the device (i.e. the fact that d/d$ of

all quantities equals zero) and is given below.

P I RY, -—i— P - III-22

¢:.

For a flat current profile Be and Y may be written as follows [66].

R R
0 21 r 0
= — O — <
Bg =B(r) § = 5?7 & (rer)
L L
ITI-23

2

R. Ir
Y = fr B, Rdar= 0 (r< r)
o 0 I‘2 — L

L
where T, = radius of current carrying region
R, = major radius of torus

0
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I = total toroidal current

Using the poloidal flux as given above in equation III-22 results in the

following:
P, = ym R eR Ir2
o = Moy - SHg III-2k
2 2
cr
L
. 2 _ 2 2 . .
Since r° = (R-RO) + 7° (see Fig. II~6 for coordinate system) and P¢

is known to be a constant over the orbit, equation III-24 is simply the

equation for a shifted circle, as may be seen by completing the square.

ROeI 5 o
P, + constant terms = - (R-R .-A) + 7 III-25
¢ 2.2 0
e ry,
p ol (TL)
where A = outward orbit shift = —Rjz—————
Poo1 (rL) = poloidal gyroradius evaluated at r = r_
= v /0
¢/p
RO
A = aspect ratio = —
L
eB, (r:)
L
Ro= =
P i,

The orbits then are circles which are shifted outward from the
center of the current distribution by an amount ppol(rL)/A. By examining
the drift velocity (equation II-21) and the motion along field lines,
one may also show that the center of these orbits is the stagnation
point. This is defined as the point at which the vertical drift cancels
the vertical component of the motion along field lines, i.e.

VH2 Be
RO, T B

III-26
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IIT-27

For the current profile to be examined in Subsection IIT.2.B, the orbits
are not exactly circles (although they are close) and the orbit center

does not exactly coincide with the stagnation point.

ITI.2.B. Runaway Orbits for ORMAK Type B Current Profiles

The current profile for ORMAK type B discharges has been inferred
from laser Thomson scattering measurements of the electron temperature
[67 ] and assuming that current is proportional to Te3/2. This class of
discharges is characterized by having much broader current profiles than

those of the type A discharges. Various analytic fits have been made

to the type B profiles, but the one used here will be the following:

3
Jr) =4, [1- ()] 11128
r
L
r = radius of current region (or limiter radius)

L

A plot of the above current profile along with Be(r) and q(r) is shown in
Fig. III-1. As may be seen, Be(r) is larger over the entire radius in
this case than for a flat current profile. This will allow higher energy
orbits to be contained for the type B profile than would be the case
in a flat current profile.

First, an approximate analytic calculation will be made of the
orbit shift using the same methods as in Subsection III.2.B (i.e.
conservation of P¢). Next, orbits will be presented which are obtained
by a numerical integration along the trajectories for those orbits which

are Jjust intersecting the outside of the limiter. It is of particular

interest, with regard to interpreting the experimental results,
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BG’ Jq), and q as a Function of Radius for an ORMAK Type B Current Profile.
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to determine under what conditions of energy, current and orbit radius
this intersection occurs. These numerical results will then be compared
with the analytic estimate.

For the current distribution of equation III-26, By and the

poloidal flux function are giveh as follows:

_ QOIrRO 1 1/ 3
Bolr) = ——— |2 - 5l
3rL cR L
ITI-29
2
o) = o[ b - de (2]
3r20 an 25 rL
L
Here I is the total toroidal current.
L 31 ,
I=2r /) rdrj(r) = 5 J.r III-30
0 oL
Substituting the above results into equation III-22 for P¢ gives the ,
following:
20R. I e
P, = Rv, =~ 22 (R—R)2+22”-1--1—L ] III-31
o = o™y 3r e 0 L " o5\ r, -

At this point, it is necessary to make an approximation in order to
analytically obtain the orbit shift. The approach taken will be to
neglect the (1/25) (r/rL)3 term in comparison with 1/4. The neglected
term is an order of magnitude less than the one retained for r/rL'< 0.85.
This approximation should not be unreasonable except for orbits with

large minor radii = rL or which are shifted far out near the limiter

so that they spend most of their trajectory near r = re. The resulting

equation for P, may then be written as follows:

¢
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5B, I 3ric? A
P¢ = 5 (R_RO - TR T Ym0v¢) + Z + constant terms I1I-32
3rc 0

III-32 is the equation of a shifted circle with the shift, A, given as:

=3 _L ' -
Ymov¢ =3 o) (r.) II1-33

In order to more adequately examine drift orbits for the above
current profile, a numerical drift orbit code developed by J. A. Rome
and J. C. Twichell at Oak Ridge has been employed; this code integrates
the drift equation (III-21) from a specified set of initial conditions
using a Cauchy-Euler scheme. It assumes circular, centered flux surfaces.
The step size for the integration method is automatically adjusted in
order to maintain a certain prespecified accuracy; for the orbits
calculated here the relative accuracy is set at 10_h. In Figs. I1I-2
and III-3 a series of cases are presented for a range of energies and
toroidal currents. The orbits are projected back onto a minor cross
section and the first orbit on the left is at 1/2 MeV while the remaining
ones go up in 1/2 MeV steps to 15 MeV. All of these orbits are started
out near the outside of the torus (r/rL = ,99) on the equatorial plane
and thus represent the marginal condition for orbits to be just
contained. It is assumed that the magnetic moment is zero (pitch
angle = 0°) for all of these cases.

The marginal condition for orbits to be just confined may be written
as follows:

A+r ., =1 III-34

where A = shift of the orbit center away from center of torus
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ryo T critical orbit radius where orbit just intersects the .
limiter
ro = limiter radius

Using equation III-3]1 for A results in the equation given below:

'JUI“'s
[

3
= o) {(r.) + v, = r III-35
> 0 pol 'L

This can also be written in the following manner:

2

> Iy 6

TR, T tra T I1I-3
m003

where IA = By - = 17.1 By (k Amps)

is the Alf'ven current
III-36 then defines a relation between the energy of the electron (or Y),
the toroidal current and the radius of the orbit which is just beginning
to lose confinement. A similar relation may be found for the flat

current profile. The two cases are given below.

Ve A Foi
T =53 (- :?'L") =31

(Type B current distribution)

WL A Tei

(Flat current distribution)

RO
where A = aspect ratio = =

L
In Fig. III-4 both of these are displayed along with a plot of .
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j;gz—/l VS. rci/rL which is obtained from the numerical calculations.
The latter curve has been deduced from the orbits plotted in Figs.
ITI-2 and II1I-3 as well as runs which are not shown in Figs. III-2
and III-3 at 2kA, LkA, 30kA, 50kA, ..., 90 kA (the curve labeled
orbit expansion will be discussed in the next section). The lines in
Fig. III-4 define the transition region between confined and unconfined
orbits; orbits corresponding to parameters above these lines are
unconfined whereas orbits corresponding to points below the lines are
confined.

As may be seen, the line obtained from the numerical orbit
integrations deviates from the analytic approximations for the type B

profile at low values of r (<.3) and also in the range .5 < rci/rL

ci/rL
< 13 the two calculations are always within .5 IA/I of each other.

The deviation at the high values of rci/rL might be expected since the
analytic calculation assumes (r/rL)3'<< 1. The deviation at the lower
end of the curve has to do with the fact that the shape of these orbits
deviates substantially from circular as may be seen from Figs. III-2
and I11-3. The elongation along the major radius which is present for
the inner orbits in Fig. ITI-2 is caused when an orbit comes close to

the maximum in B, (see Fig. III-1) such that one side of the orbit is

S
Just to the inside of B@max and the other side is Just to the outside
of Bemax’ This results in a relatively larger rotational transform

over the top and bottom of the orbit than on the sides. Thus, the
vertical drift term is more important on the sides and relatively less

important on top and bottom. This, then leads to the observed elongation.
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As may be seen from Fig., III-1, B occurs at r/r_ = 0.86 for ORMAK

fmax L

type B profiles.

Fig. III-L4 demonstrates, as was mentioned earlier, that the flat
current profile results in substantially poorer confinement properties
for high energy runaways than the type B profile. This may be ex-
plained from Fig., III-1 where it is clear that the poloidal field Be,
and thus the rotational transform, is larger over the discharge ares

for the type B profile than for the flat profile.

ITII.3 Expansion of the Orbit Minor Radius with Applied Electric Field

The orbits which were investigated in Section III.2 represent the
final position of runaways just before they impact the limiter and
produce bremsstrahlung which can be experimentally measured. It is
also of interest to know how the orbits evolved to this position as
they were accelerating. It would be expected that the center of the
orbit will gradually displace further out from the center of the
current distribution as the electron accelerates to relativistic
energies; however, the question of whether the minor radius of the
orbit, T as it is just intersecting the limiter is the same as at
earlier times needs further examination. This is treated in the pre-
sent section.

The calculations to follow will demonstrate that as a runaway
accelerates, the minor radius increases with time. On the surface,
this may appear to be inconsistent with the results of Section III.1;
there a’slight shrinkage was found in the beam radius for the strong

runaway regime. The reasons for the contrasting results of these two
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sections arise from the differing physical models used. In the present
section, single particle runaway orbits are analyzed assuming that the
runaways carry a very negligible fraction of the total toroidal current
(as is appropriate to the weak runaway regime); this allows one to
decouple the single particle orbit problem from the self-consistent
poloidal magnetic field problem. In Section III.1 this simplification
was not possible since runaways were assumed to carry all of the
toroidal current. Thus, evolution of the orbits of Section III.1

was self-consistently coupled with the poloidal magnetic field
description. As a result, large changes in the minor radius of the
orbits did not occur, as they were accelerated, since this would

also have caused substantial changes in the toroidal current distri-
bution. However, for the weak runaway regime, sizeable changes in

the minor radius of the accelerating orbits are possible since the
runaway component accounts for only a negligible fraction of the

toroidal current (f 1%) .

IIT.3.A. Flat Current Profile

The flat current distribution will be treated first using the geo-
metry illustrated in Fig. II-6. The toroidal current, I, and electric
field, E¢, are in the - ¢ direction; the runaway velocity, v¢, is
in the + ¢ direction. Centered circular flux surfaces are assumed so
that the flux function is given as in equation III-23.

R I
W(R,2) = = [(8-R )%+ 2

CI‘L

2
] III-39

This problem will be treated using the Lagrangian equations of
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motion. The Lagrangian for a relativistic electron in space-time form

is given by the following:

L = —m002 Vl— v2/c2 - %- VR + ed TII-L0

In the subsequent calculations, electric fields due to a potential
(e.g., radial electric fields), will be neglected so that ¢ = O.

The equations of motion are then as indicated below.

4 (L) 3L _ Q, = force in ith coordinate direction ITT-h1
dt 94 qu i
i

Since the only force present is that due to the electric field E¢,
only the ¢ component of III-41 will be considered. Axisymmetry is

assumed so that3 LA ¢ = 0, resulting in the following.

dr
a 3Ly _4 . & = (o) (-k VO = =
EE(‘a‘j;)-dt mgry = ¢ Al = (o) (Bg)mm ™ = eREy = ecy/om
ITI-L2

where €¢ = toroidal voltage
Integrating III-L42 with respect to time and substituting the flux

functlon as given in IITI-39 one obtains the equation given below.

eROI

c2r
L

)° + 7°] III-L3

S- e (t')at' + Pi = ymgRv, -

2m ¢ 2 [(R—Ro

Here P¢O is a constant of integration. Its significance is determined

by setting t = O, v¢ =0, and r = T the initial radius before

acceleration. One then obtains the following.

0 eR T
P¢ =- 55 T, IIT-hh
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Equation III—IEBmay then be written in the form given below.

42,2 5 r 2 .2
- ¥ A\ = —— -
2TIR I 0

Completing the square on the right-hand side of equation III-L5
results in an equation for shifted circular orbits with a minor radius

which depends on time.

r
L 2 2 2
(R - Ry - Ry Ppor)  * 2T =1 (%)
c2r2 r2
2, _ 2 L L, 2
where r (t) = ry - f€¢(t')dt' + gerpol + 75 ppol III-46
2mR 1 RO

In order to complete this description of orbits, it is necessary to
determine the time dependence of ppol in a constant applied electric
field. This may be obtained by again using the Lagrangian given in

III- 40. The total time derivative of L is given by the following:
D B ] ITI-b7
i i

It has been assumed here, for the sake of simplicity, that L is not
explicitly time-dependent - as it would be, for example, in the current
build-up and decay phases of the discharge. These effects could be
incorporated by adding ad L/ 9t term to III-47 Using equation III-L41

in the above, one obtains the result given below.

R A TR i
== ? (qi aqi) $ Q¢ III-L8

Here é is the angular frequency about the torus axis. Integrating III-48

then gives the following.

_—_'a__I.i_.e__ v oL (48 v
L + constant i ay aqi ~- Jdt ¢ (¢ )€¢(t )

III-k9




7>

By setting t = 0 and Y =1 the left-hand side of this equation may be

. . s 2
identified as myc s the rest mass energy. For a constant electric field

III-49 results in the equation given below.

2 2 pef e &
Ymoc = mgc + on o) €¢ ITI-50
where ¢ = total angular distance traveled (radians) during
acceleration
t v
=/f ‘¢ at'
0 R
In calculating ppol’ the approximation is made that v¢ ~ Be.
3 1
_meTry ey 1o /2
o] T e 1+ -1 IT1I-51
pol 2el 2
2ﬂmoc

A reasonable approximation for runaways in ORMAK is that the total
angular distance ¢ traveled around the torus by the end of the discharge
should be adequately given by ¢ = cT/RO where T is the time over which
acceleration occurs. This may be justified by the fact that the run-
aways reach relativistic velocities early in the discharge. ppol

under this approximation becomes the following.

m _c3r ete, 12 /5
o =L Iy 9]-1

pol = 2el 2mm R ¢

ofo ITI-52

Substituting this into equation III-46 results in the orbit locus given

below. )
3 1/2
(R-R_ - zL-ppol)g + 27 = rg - ri oS [(v*-1) - (v - 1)]
RO el
r2 r 2 m c3
2 () o
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Plots of r/rO and A for several different initial orbit radii,

energies, and toroidal currents are given in Figs. III-5 and III-6.

III.3.B. ORMAK Type B Profile

The preceding calculations may be readily modified for the case of
an ORMAK type B cﬁrrent profile by making similar approximations as
those used in Section III.2.B. At present, the numerical orbit inte-
gration code used in IIT.2.B. is not capable of treating the orbit
expansion effect which occurs in an accelerating runaway; thus, only
an analytic calculation is presented.

The flux function in this case was given by equation III-27 as the

following:
2
20IR .r
V() = —— -5 (57 I11-5k
3rLc L

Again, as in Subsection III.2.B., the second term in brackets will be
neglected since it is an order of magnitude less than the first for
r/rL < .85 . The remaining derivation then proceeds in an analogous
fashion as that of Subsection III.3.A. and the equation given below is

obtained for the orbit locus as a function of energy and current.

r
3L 2. ,2_ 2
(R-RO -3 Ro pol) + 7 T
ITI-55
3
where r = ri - ri ¢ M %—[Y -1 =YY% - 1]
el
m.c r_\2
0 L 2
- 09 7 <RO> (v -1

Comparing III-55 and III-53 it may be seen that the minor radius of

an orbit being accelerated in a type B current profile expands more
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slowly and shifts outward a smaller amount than for the flat current
profile. For the case where Yy >> 1, the dependence of the radius is

given as follows in terms of o the initial orbit radius before

acceleration.
o > 1/2
9 r -
r_ _ 1+ pol L I1I-56
ro R2 I_2
0 0]

(flat current profile)

52 2 1/2

oo+ 2 pei _;_]

r 25 2 2 ITI-57
0 Ro ro

(ORMAK type B profile)

In Fig. III-7 a plot of IA/I vs. ro/rL is indicated for several
energies using equation III-55., Here the radius plotted on the horizon-
tal scale is the initial radius ry of the orbit before acceleration was
applied. This line then represents the orbits with initial radius Ty
which will just intersect the limiter by the time they reach an energy
(y - l)moc2 in a toroidal current I. The minor radius which they have

as they intersect the limiter then may be obtained from the ORMAK type

B curves plotted in Fig. L.

III.4 Effects of Finite Pitch Angle (Gradient Drifts) on Runaway Orbits

The preceding analysis of Sections III.2 and I1II.3 has treated the
case where the pitch angle is equal to zero. In the present section,
this constraint will be relaxed and trapping boundaries are investigated
for runaways which are just intersecting the limiter. The rationale for

considering this problem is to determine the amount of pitch angle
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scattering which must take place before significant changes occur in the
orbits away from the untrapped cases considered in Section III-2.
This is of importance in interpreting the dumps of hard X-rays seen in
ORMAK type B discharges since one would like to infer from these measure-
ments the radial location from which the runaways came. As was pointed
out earlier, it is expected that vy >> v, for runaways; however, they
will always have a certaln finite pitch angle. Measurements of enhanced
microwave emission from runaways may eventually reveal information on
the amount of transverse energy in this component.

In a tokamak, mirroring of particles can occur as a result of
moving into the region of higher toroidal field on the inside of the
torus. If one gradually increases the pitch angle on a given orbit,
then the point where v = 0 will first appear on the equatorial plane.
This first, barely-trapped orbit will be D-shaped; as the pitch angle is
further increased, two v =0 points will be present and the orbit becomes
banana-shaped. The transition point from an untrapped to a trapped orbit
then occurs with the presence of the D-shaped orbit where v = 0 on
the equatorial plane. The onset of this particular orbit will be investi-
gated in the present section for high energy runaways.

For a relativistic particle, v may be written in the following form.

m 2Ch
v=t Y -2 - —=2uB III-58
1 55 > 5
(€+moc ) Y moe

2
c

where € = energy = (y - 1) m,
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magnetic moment

=
fl

2 2 2
Py Y mgvy

2mOB 2B

Thus, the trapping boundary for the relativistic orbits 1s defined by:

m ZCh
1 -2 - 2B _ III-59

2.2 2 2
(€+moc ) Ymge

At this point, it 1s convenient to define a pitch angle, X, with

reference to the particle's velocity at the outermost edge of the

torus (at R = RO + ro where it is just beginning to intersect the limiter)

by X = tan_l(vL/v“). The magnetic moment, U, may then be written as:
2 2 .2
Y mO(RO + rL) v™ sin"y

W= III-60

ZBORO

Here it has been assumed that the magnetic field is equal to the toroidal
field, B = BORO/R. The trapping condition may now be written in the

following form.

R, +r
1- i .0 L Bgsin2x =0
2 R -r
Y 0 c
III-61
or siny = [0 e
RO + rL

where r, = the minor radius to the position on the equatorial

plane where v = 0

The position rc must now be determined from the conservation of P¢.

It will be assumed that vy = v¢; P¢ is then given as below.

B, = YmgR ¢ B cos X - Sy (r) TII-62
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For the orbit which is just intersecting the limiter, the position, r,»

where trapping just begins, is found by setting P¢ at r = T equal to
P¢ at r =, (where v = 0).
ym (R. +r.) c Bcosyx -=P(r.) =-=9(r)
0*0 L c L c c I1I-63

Obtaining r, for general current profiles is difficult due to the
complicated dependence of Y on r. However, for a flat current profile,
or for the approximate ORMAK type B profile used in Section III-2,

r, may be readily obtained and is given below.

2_2 [t
c L I RO cos X

(flat profile) IIT-64
N P T W i A

(ORMAK type B profile)

1]
where IA = Alfven current = 17.1 By KAMPS

Now that solutions are obtained for rc in terms of the pitch angle,

the trapping boundary is found by combining equations III-64 and III-61.

3 Iy
(A +1) (cos x)° =2 cos X +37 =0
(flat profile)I ITT-65
(A + 1) (cos X)3 - 2 cos X * %— 4% =0

(ORMAK type B profile)
here A = aspect ratio = Ro/rL
These two equations determine the pitch angle X where trapping begins for

the runawasy Just intérsecting the limiter. They have been solved for a

range of the parameter IA/AI and the results are plotted in Fig. ITI-8.
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For each of the two curves shown, electrons corresponding to points
above the line are trapped while those below it are untrapped. As nmay
be observed from the plot, higher energies and lower currents (i.e.
higher values of IA/AI) require larger pitch angles for trapping than
at lower energies or higher currents. This may be explained by the
fact that as IA/AI becomes large, the inside edge of the orbit is
displaced farther out (i.e. r, is smaller); thus the trajectory does
not move as far into the toroidal field gradient and a relatively
larger pitch angle is requiredkfor trapping. A similar explanation
applies to the difference between the flat profile and type B profile
curves. The type B orbits are better confined (more nearly centered)
than those for the flat current profile. They therefore, in general,
move farther into the toroidal field gradient and will become trapped
at relatively lower pitch angles.

All points to the right of the dashed lines in Fig. III-8 correspond
to unconfined orbits.

In addition to the above calculations, a number of cases have been
run using the drift orbit code of Twichell and Rome for ORMAK type B
current profiles; these are displayed in Fig. III-9. Energies of
1 MeV, 2 MeV, 3 MeV, 5 MeV, 10 MeV are included with pitch angles

e}

(x = tan T vy /vy) of 0%, 20°, 40°, 60°, and 80° at each energy (for

100 kiloamps toroidal current). As may be seen, a significant devia-
tion from an untrapped orbit (¥ = 0°) does not occur until the 60°
pitch angle case. The 60° and 80° orbits are trapped banana orbits
which become fatter as the energy is increased; at 10 MeV the 60O orbit

is no longer trapped, but has become barely untrapped. These trapping
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boundaries are in agreement with the type B profile curve of Fig. III-8.
The conclusion then is that for pitch angles of MOO or less, the pre-
dominant effect on the orbit is caused by the curvature drift (i.e. the

orbits are reasonably well approximated by x = OO).

III.5 Relevance of Orbit Theory to Hard X-ray Dumps in ORMAK Type B
Discharges

The experimental results for weak amounts of runaway in ORMAK type B
discharges were mentioned earlier in Section I.2. The typical signature
left by runaways in these discharges is a gradual dump, beginning at
around 35 msec. The energy and intensity then monotonically increase up
until the beginning of the current decay (at about 60 msec) where the
peak intensity and energy occur. The maximum energies are in the 10 - 12

MeV range and the intensities indicate that roughly 1013 runaways were

present in the discharge (corresponding to a density of around lO7 cm-3).

The single particle orbit theory presented in this chapter is thought
to provide a valid explanaﬁion of the observed loss of runaways. The
curves of Fig. III-4 indicate that there are a class of orbits which will
become unconfined for runaway energies and toroidal currents characteristic
of type B discharges. Certainly the final loss of these of the particles
may be affected by such factors as interaction with image currents in the
wall, toroidal field ripples, etc. However, the basic gradual outward
displacement of the orbits with increasing energy should be adequately
described by the drift orbit model developed here.

There is no direct experimental means of measuring the minor radius

of the orbit; this quantity must be deduced from the theoretical model
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using the measured energy and toroidal current. The intensity at a given
energy and current level then provides information on the density of
runaways at that energy and radial position. The number of runaways

ASR driven into the limiter per unit time by the orbit shift is given

by the following equation [8].

ASR - Arc o
— —_— I -
At WrRr v 3T i

where nR = density profile of the runaways

R = major radius

rci = radius of runaway orbit as it is intersecting the
limiter

Arc = rate at which the runaway orbit is being driven into

At

the limiter.

Since rci(t) can be obtained from the curves of Fig. III-4 as a function
of measurable quantities (Y,I), the runaway density as a function of
radius in the discharge may be unfolded. This can either be obtained
at the moment when the dump occurs or at an earlier time in the discharge
by use of the orbit expansion model. Such an analysis has been reported
in ref. 8 for a typical ORMAK type B, low density, stable discharge.

In Fig. 3 of ref. 8 the energy, intensity, and deduced runaway density
profile is presented, indicating a maximum in density at r = 17 cm.
The location of this maximum in runaway density may possibly be related
to the pronounced skin effect which is thought to occur early in a tokamak
discharge when most of the runaways are formed.

The above technique for obtaining nR(r) has interesting potential
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applications for accurately diagnosing the early breakdown and current
penetration phase of a tokamak discharge -- an area which at present
remains largely unexplored. Runaway production, as indicated in Chapter
1T, is a highly sensitive function of parameters such as electric field,
plasma density, neutral density, temperature, and impurity content,
Thus, as the rate of runaway formation becomes better understood, an
unfolding of the nR(r) profile which reveals information on these para-
meters can be considered.

A further, more direct experimental application which is possible is
the use of the inferred Y(r) profile to diagnose the radial dependence
of the Ohmic heating field. ©Since the final energy of the runaways is
sensitive to the total volt-seconds they have been subjected to, the
Y(r) profile should accurately reflect the e¢(r) profile. Modifications
to the shape of the Ohmic heating profile may be produced, for example,

by neutral injection [68] and impurity transport.



CHAPTER IV

Macroscopic Relativistic Beam-Plasma Equilibria and Bp Limits

Macroscopic beam-plasma equilibria and stability are primsrily of
relevance to the runaway-dominated regime in tokamaks and also may be
of importance in considerations.of application of relativistic beams
to toroidal plasma heating and confinement. The large toroidal
momentum carried by high energy electrons can significantly modify
tokamak equilibrium properties. A similar problem may arise from
momentum flows induced by neutral injection; this process is presently
under intense examination as a heating technique for tokamak plasmas.
However, in the latter case, toroidal field ripples may be effective
in preventing the build-up of large flows [69]. In the present chapter,
a theory is developed in order to investigate the effects of the centri-
fugal force of a relativistic electron beam on the pressure balance in
a toroidal plasma. Mathematically-imposed limitations on the solution
of the resulting nonlinear partial differential equation are discussed
and related to physical considerations. Several examples of numerical
solutions to the equilibrium equation are given for a simple model of
plasma pressure and beam flow velocity; these are then compared with
the existing analytic equilibrium theories. Finally, an estimate is
made of possible Bp limitations in toroidal relativistic beam~plasma
configurations.

As was mentioned in Chapter I, large outward shifts in the
equilibrium position have been observed in strong runaway discharges

on the ORMAK and Russian T-6 devices. The cause of these anomalous

90
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shifts has been attributed either to the effect of the large toroidal
momentum carried by the runaways or to the increased internal inductance
of the beam-plasma channel (i.e. if the runaways were initially formed
as a beam). It is difficult at present to experimentally distinguish
between these two possibilities since the measured magnetic probe
signals are only sensitive to the composite gquantity BL+ B” + Qi. One
possible means for separating the poloidal betas from the internal
inductance is to investigate the dependence of the shift signal on
toroidal current. If other discharge parameters can be held constant,
then the poloidal betas for both beam and plasma should increase with
decreasing current whereas Qi will remain constant (since it only
depends on the profile rather than on the magnitude of the toroidal
current). Exploratory experiments have been performed on the ORMAK
device [14] at lower current levels than the early runaway discharges
[7] which are indicative of this effect. An example of this phenomenon
is shown in Fig. IV-1l where the total current and inferred value of

B + 21/2 are plotted. The values of Bp + Ri/2 have been calculated

pol
using the measured in-out magnetic probe signals, toroidal current, and
epplied vertical field. This data is used in the equilibrium shift

code [70] developed by R. J. Colchin of Oak Ridge; this code takes into
account the time-dependent socakage of the fields into the aluminum sheli

surrounding the plasma. As may be seen, B + &i/Q rises to extremely

pol
high values near the end of the discharge. For the reasons mentioned

above, most of the observed increase in these particular discharges comes

from the poloidal beta of the runaway beam.
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The presence of large values of the gquantity Bpol + Qi/2 in
runaway discharges, however, leads to significant problems of inter-
pretation since most of the existing analytic theories of toroidal
equilibrium implicitly assume a low beta poloidal ordering [71,72,73].
In the following, a theory is developed which does not necessarily
assume such an ordering for the beam or plasma.

The equilibrium properties of a charge-neutralized toroidal
relativistic beam have been examined by Ott and Sudan [59] and Mondelli
and Ott [60]. In these papers, the beam was modeled by choosing a beam
distribution function dependent on the constants of the motion: H,
the energy, and P, the canonical angular momentum. Specifically, the

o
distribution used was G(H—HO) G(P(b ~P.). In ref. [59], the plasma was

0

included only to provide charge neutralization and did not carry any
current or have pressure. However, in Ref. [60], the background plasma
had finite pressure and carried current; this was included by means of
the ideal MHD equations. The relativistic beam was introduced through
adding its current to the toroidal plasma current and by including its
centripetal force in the virial theorem. The effect of the beam on
the equilibrium was to augment the outward displacement of the plasma
column. It was also noted that for the particular beam distribution
chosen, the beam current profile was quite nonuniform for large values
of the ratio I/IA, the total current (beam plus plasma) to the Alf'ven

current (I, = 17.1 By KAMPS). This nonuniformity decreased the internal

A
inductance of the beam-plasma column and tended to decrease the outward
shift. In both the treatments of Ott and Sudan and Mondelli and Ott,

a low beta poloidal ordering is inherently assumed due to the
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approximation of treating the asymmetry in the poloidal field only to
first order in the inverse aspect ratio.

Green and Zehrfeld [TLW-T76] have investigated a related problem -- i
finite resistivity stationary states with poloidal and toroidal flows.
They employ the MHD pressure balance equations with inertial flow,

Ohm's law, Maxwell's equations, the mass continuity equation, and an
equation of state. Three coupled equations are derived which describe

the equilibrium; various limitations on the solvability of these

equations are examined. A large aspect ratio limit is taken in order

to obtain an analytic solution. Again, the asymmetry in the poloidal
field is only treated to first order in the inverse aspect ratio;

thus, the results obtained are limited to relatively small energy
densities for the flows and plasma pressure relative to the poloidal field

energy density.

IV.1 Basic Equations for Anisotropic Beam-Plasma Equilibria

The following analysis is based on the static scalar pressure force
balance relation for the plasma, a zero pressure equation of motion for
the beam, Maxwell's equations, and a mass continuity equation for the

beam component.

3 > > -> 1> >
nbmo[§€-+ veV| (yv) = E-beB Iv-1
-> 1 -+ >
Vp = =J xB V-2
¢ P
> > g _ .
VxB=2Lg+ Lo V-3
c c 9t

> >

VeB = 0 V-4
a -3 -5
v + V'(n.bv) = 0 Iv-5
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>
where Jp = plasma current
-> > > -
dJ = beam current J=d_ + J
b P b

beam density

- (1v?/eB)"L/2

<v = P
i

beam velocity
To obtain a stationary toroidal equilibrium, all explicit time
derivatives are neglected. Combining equations IV~1 and IV-~2 then

results in the following force balance relation.

> >
JxB IV-6

> > > > 1
C

nbmov-V(Yv) + VUp =
A vector identity is now used to combine the two terms on the left-hand

side of IV-6.

> 3 > > > >

Ve(mv) = ye(mv) b om (vV)() V-7

The first term on the right-hand side is identically equal to zero by
virtue of the time independent continuity equation. Equation IV-6 may

then be written as follows.
- > > > 1>

Ve [pI + Yo, m v v] = - JxB Iv-8
<>

where I = diagonal identity tensor

It will be assumed that the predominant beam velocity 1s along field
-3 A -5
lines, i.e. v = v;;b where b = B/|B| (the beam is nearly force-free).

This assumption results in a diagonal tensor on the left-hand side of IV-T.

r 0 0]
<> > >
pIl +ynmv<v = 0] P 0] Iv~-9
% 5
0 0 p+ynbmovII

In writing the tensor in equation IV-9, an orthogonal coordinate system
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has been chosen which has é\= E/IB[ as one of its directions; the other
two are perpendicular to E.
The form of the force balance relation in equation IV-8 is
now the same as that for an anisotropic tensor pressure plasma model.
Techniques for treating this problem have been discussed in references
[T7-79]; similar procedures will be employed for reducing equations
IV-3, IV-4, and IV-8 and will be discussed in the following.
Substituting IV-9 into the force balance relation IV-8 gives the
following equation.

-> e d —>AA A A A,\-—)-

IxB = Vp + ynm ViE [(VeB)B + (beV)D] + Db(beV) ( Yn.meVH IV-10

oll—'

This may be written in a slightly different form by noting that

A A -> -
(b*V)b = k, where Kk is the magnetic field line curvature. Also, the

identity given below will be employed.

9B Iv-11

d

b-=R—Y

v
o |-

> A 1 > > e
Veb = & (VeB) + Be

Wi+

Equation IV-10 may then be written in the following manner.

> > A
IXB = Vp + ymgmgv,” [ B gi b K] ¥ g’i@' (v myv Tv-12

An equilibrium relation is obtained by examining the component
of IV-12 perpendicular to the field lines. However, first an identity
will be derived by taking the component of IV-12 parallel to field lines;
this identity will determine the functional dependence of p and
Ymonva2 which can be allowed. The parallel component is given below.

2 19B, 7 ~1,23 2
0 = %%-+ yomov© |- ag f Kb+ a7 (Ymon, v ) Iv-13
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-> > A
The field line curvature is always perpendicular to B so that K +b=0.

Equation IV-13 thus reduces to the following identify.
2
Ym0 Vil

3
55-(p + anmOVnz) - 5 —=0 1v-1h

For the case of an axisymmetric tokamak equilibrium, equation IV-1k

may be satisfied by the following choices.

p = p (¥) IV-15

anmovn2 = %~ o(y)
0

where p (¢) and p (Y) are functions which depend only on Y, the

poloidal flux function. BO is the magnetic field at the center line of

_+.
the torus and B = |B|.
The component of IV-~12 perpendicular to field lines will now be

examined; this is given below.

> >

o > >
Vp + Ymon vy K = JxB V=16

o |-

In the manipulations to follow, it is convenient to write the field
line curvature in the following form (for a derivation of this, see

ref. [77] ).

> >
K =3 V,B + (VxB) x B IV-17

UﬂlH
n

Employing Ampere's law and equation IV-17, IV-16 may be written in the

form given below.

2
5> > > - Ym i -
O(VXB)X B = V_Lp + ——-—Q—n—b—-——-—— V_LB IV-18
B

-1 2 12
where 0 = = - ymgn v, /B
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The following identity is now used to convert IV-18 into the form in
which the general tensor pressure equilibrium equation is usually

written.
> > ->

> > > >
B x [Vx(0B)] = 0B x (VxB) + B x (VoxB)

- -> > 2*)' -> D ->
= 0B x (VxB) B“Vo - (BeVo) B

+
2 ym.n v 2
> >
= 0B x (VxB) - BV (———O—n—g-”—-> IV-19
B
> > > - ) 2Ymon.bV”2 -3
= 0B x (VxB) - V_L (Ymon.bV“ ) s v,

Using the above relation in IV-18 results in the following equation.
2
-> -> > -> > Ymonbv” >
[Vx(oB)] x B =V, (p+ymOn_bV|| ) - —5 v,B IV-20
FPurther use of IV-20 now requires specification of a coordinate system
and a means of labeling magnetic field lines. For the case of an

axisymmetric tokamak, the magnetic field is given below.

>

-+ ~ waf
B=L{ 4O IV-21
R R .
where F = RBT
B = toroidal magnetic field

T
Here a cylindrical (R,$,2) coordinate system is employed as is shown in
Fig. II-6. Since p and Ymonva2 must have the B and ¥ dependences as

indicated in equation IV-15, the right-hand side of IV-~-20 becomes the

following.
-SRI 2y