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Raman Scattering in
Crystals

Abstract

A tutorial presentation is given of Raman scattering in crystals. The physical con-
cepts are emphasized rather than the detailed mathematical formalism. Starting with an
introduction to the concepts of phonons and conservation laws, the effects of photon-
phonon interactions are presented. This interaction concept is shown for a simple rubic
crystal and is extended to a uniaxial crystal. The correlation table method is used for
determining the number and symmetry of the Raman active modes. Finally, examples are
given to illustrate the relative ease of using this group theoretical method and the predic-
tions are compared with measured Raman spectra.

1. Introduction

The purpose of this report is to provide a tutorial presentation of Raman scattering in crystals in
which the physical concepts are emphasized rather than the detailed mathematical formalism. It is this
writer’s view that such a presentation is lacking in the literature and that the physical description should
be instructive for those unfamiliar with Raman spectroscopy.

Since the invention of the cw gas laser, Raman scattering has experienced a great increase in popular-
ity. Raman spectroscopy has now become a common tool in many laboratories. The high intensity and
narrow linewidth of the laser output permit the measurement of the Raman scattered spectra of crystals
under high resolution. Prior to the introduction of the laser the mercury discharge lamp was in common
use as the Raman excitation source. With the mercury source many crystalline properties were either
undetected or poorly resolved. Many of these problems have been rectified or reduced with the laser
source. The collimated and plane-polarized characteristics of the laser output permit the nieasurement of
the separate components of the scattered light facilitating the identification of the different vibrational
modes in the crystal. Using the mercury source, positive identification of the different lattice modes was
not always possible.

[n writing this report it is assumed that the reader is familiar with solid state physics at least at the
introductory level and has had a graduate level quantum mechanics course. The texts by C Kittel, Intro-
duction te Solid State Physics (John Wiley and Sons, New York, 3rd Edition) and by L. Schiff, Quantum
Mechanics (McGraw-Hill Book Company, New York) are good general references and are about the level
of the material presented here. Additional reference material is listed in the bibliagraphy. In preparing this
report the writer has attempted to stress the physical concepts and to give sufficient detail and examples to
illustrate the points being made. This approach has not always been 1aken in the past in texts and review
articles on Raman scattering theory.

Given in Fig. 1 is a frequency-wave vector diagram illustrating the areas of applicability of the
different scattering processes currently in vogue.! The roordinates are proportional to typical values of
energy and momentum that are transferred during the different scattering processes illustrated. The ap-
proximate wave vector corresponding to the edge of the first Brillouin zone for a typical crystal would be
approximately 1 (A) ' From this diagram it can be seen that optical experiments are generally along the
k = 0 axis and the neutron and y-ray scattering experiments measure the crystalline properties at the zone
edge. Shown in the neutron scattering region are typical data points from a scattering experiment on
saodium. From the figure one can see large regions that are inaccessible by present scattering techniques.
Fram this diagram it can be seen that a complete understanding of a crystal often requires measurements
using several scattering techniques over a wide range of wave vector and frequency. Often these results
must be combined with those of other measurements such as ultrasonic scattering to complement the
scattering data.



For a review of the different scattering techniques the reader is referred to the paper by Chu’ and the
references sited there. For the report presented here only Raman scattering will be discussed.

2. Phonons

By analogy with electromagnetic waves, the elastic waves in a solid are quantized and the quantum of
energy is called the phonon. The earliest experimental evidence for the existence of these phonons or
quantized lattice vibrations was the measurement of the heat capacity of solids at low temperatures. The
inelastic scattering of x-rays and neutrons are also experimental evidence for quantized lattice vibrations.
Before discussing several special properiies of the phonon let us briefly restate the resulis found from the
analysis of the vibrations of a linear monatomic lattice.2

2.1 Linear Monatomic Lattice

Consider a linear monatomic lattice. In general, the vibrations will be linear combinations of the
vibrations parallel or perpendicular to the individual chains. Lattice waves with wave vector k and vibrat-
ing perpendicular to the linear chain are called transverse phonons.

The equation of motion for an atom in plane s is

du,
dt?

= zcl‘(uup - us) ’ 2.1}
P

where u, is the displacement of the atom of mass M from iis equilibrium position and C,, is the force
constant between planes s and p. In general, C, will be different for transverse and longitudinal vibra-
tions. Assuming a traveling wave solution of the form

u,,=u {0) gils tplk-a it s (2.2)
one finds
N 4 - 2
© = (o Z C,isinl/2pkaf , 2.3)
p=0

where a is the lattice spacing. Restricting the interaction to nearest neighbors, p = 1, we find
4c, 12
w = (W |sin1/2kal| . 2.4)

Equation (2.4) gives the relationship between @ and k, called the dispersion relation, with C,, the force
constant between adjacent atoms, as the constant of proportionality. Thus, in principle, for a monatomic
lattice of atomic mass M it is possible to evaluate the lattice force constant C, from the dispersion relation.
Knowledge of the atomic interaction, C,, is perhaps the most important property that one can obtain about
the crystal. For a linear lattice of spacing a, the wave vector corresponding to the edge of the first
Brillouin zone is k., = n/a. Typical values of the interatomic sparcing are a ~ 1 A, thus ko, ~ 10%em ™’
or 1{A)-' as shown in Fig. 1.

For the Raman scattering experiments the wave vectors of interest are those near the center of the
Brillouin zone, k = 0. This is called the long wavelength limit. In the long wavelength limit, pka « 1 in
Eq. (2.3) and

W~ k? :7; }_: p" <, . (2.5)

P



showing that the long range-forces, C,, will become important because of the p* term. We will see this to
be the case when discussing the lattice dynamics of piezoelectric crystals.

2.2 Momentum of Phonons

A phonon having wave vector k interacts with a photon or another phonon as if it had momentum
‘hk. In reality a phonon on a lattice has physical momentum only when k = 0. This can be seen as follows,
The linear momentum of the crystal can be written as

N-1
p=m ; u, o,
-
s=0

where m is the mass of the crystal. m = MN? for an N by N lattice of identical particles, each of mass M.
The sum is over all atoms in N planes. Substituting from Eq. (2.2) we find

N-1
p = -iomulo)e " Zeim . {2.6)
5=0

Rewriting the sum in Eq. (2,6), we find

N-1 iNka
iska _ 1-¢
€ - ika
Ly -
= 1-e

For a crystal, the periodicity requires thatu, = u,, yor

eiNkJ =1 ,
which is just the periodic boundary condition.
Thus, from Eq. (2.6), p = 0, unless k = 0 and then

p(k=0) = -iwMN* (0)e i | 2.7

This means that the phonon carries zero momentum unless k = 0. The reason for this can be seen
from the following physical picture. Phonons are associated with the crystal and are essentially bound to
it in contrast with a photon, which can exist independently of the crystal. The problem of interest,
however, is the momentum transferred during a collision. For this case Beck? has shown that the
de Broglie relation, p = hk, is valid for phonons provided we give it a different interpretation. For
elementary processes de Broglie’s relation determines the momentum change of the total system when a
phonon is emitted or absorbed; the total momentum of the system is not quantized in this case. The
excitation of a phonon of wavelength 1 = 2x/k implies a transfer of momentum h/A to the motion of the
center of gravity of the linear chain. The interatomic coordinates are relative coordinates and carry no
momentum. The phonon behaves as if it had momentum hk, sometimes called the crystal momentum,
which is not the momentum in the ordinary sense, For more discussion of crystal momentum the reader is
referred to the article by Beck® or the texts by Kittel® or Shockley.*

2.3 Conservation Laws

The conservation conditions for Raman scattering can be derived classically by considering the inci-
dent electromagnetic wave interacting with the dielectric constant, which is undergoing thermal fluctua-
tions. Such a derivation can be found elsewhere.*® The conservation of energy states

how, £ he = ho, | (2.7a)



where w,, @, and w, are the angular frequencies of the incident photon, the phonon, and the scattered
photon, respectively. The conservation of momentum is

Tk, + hk = hk, . . (2.7b)

k;, k, and k; are the wave vectors of the corresponding particles.

The conservation conditions can also be derived by analogy with the conditions for Brillouin scatter-
ing. Quantum mechanically, scattering from the thermally produced inhomogeneities is equivalent” to the
first-order Raman scattering associated with a transition in the vibrational states of the acoustic modes.
Classically, the Brillouin scattering can be considered as the result of reflections of the electromagnetic
waves from the traveling acoustic waves in the crystal. Because of interference effects the scattering will
be directional dependent for a given wavelength acoustic wave. Also, the scattered light will be Doppler
shifted because of motion of the acoustic wave. Following Heald,” the conservation ¢..iattions for Raman
scattering will be obtained using this model for Brillouin scattering.

Let us consider the acoustic waves in the medium as a train of partially reflecting plane mirrors with
spacing 4 = 2n/k and moving with velocity v. A plane clectromagnetic wave reflected from these surfaces
will undergo a change in frequency due to the Doppler effect. Since the velocity of the mirror will add to
that of the reflected wave, the direction of the reflected wave will be dependent upon v. Consider the case
as shown in Fig. 2. The incident electromagnetic wave is advancing with velocity ¢ and is reflected from
the mirror advancing with velocity v. The effective interface is determined by Huygens principle. From
geometrical considerations the interface between the incident and reflected wavefronts is defined from

v/siny = ¢/sin@ . (2.8)

We wish o express these relationships in terms of the angles 8; and 8,. This can be done when we note
that the angles of incidence and reflection are equal relative to the effective interface and not relative to
the mirror. Thus

0, +v=0, -y
Also 8, + 8, + 2a = =, so that Eq. (2.8) becomes

v sin1/2(8, - 8) 29
¢ cosl/2(6, + ) Z9)

The Doppler shift of the reflected wave can be obtained by considering two successive wave fronts
incident on the moving mirror as shown in Fig. 3. From this, one finds

Ay = Rcos 8,4, = Rcos 9, ,

or

1, 1,
cos 8, cosB, (210)

Combining Eqs. (2.9) and (2.10) one obtains the Doppler-shifted frequency of the reflected wave. Writing
k = 2x/A, Eq. (2.10) becomes

kicos 8, = kycos 8, , (2.11)

which are just the momentum components of the incident and reflected wave vectors parallel to the
mirror.

Shown in Fig. 4 are waves reflected from adjacent mirror surfaces. The Bragg condition for the
incident wave is n4, = A sin ) and for the reflected wave nyd, = Asin 8, The order coefficients for



both waves, n; and n,, as well as their sum must be positive integers for interference to take place.
Therefore

Apsin 6 A sin &
n=n;+n,= —_ (2.12)

- A * A,

The electromagnetic properties of the crystal are approximately sinusoidally modulated by the acoustic
waves, thus we can take n = 1. Taking k = 2#/4, Eq. (2.12) becomes

2n 2w . 2n .

A_p = i—lsm 0, + Tzsm 8,

or

k, = k;sin 8; + k,sin 8, , (2.13)

which is just the perpendicular component of the momentum relation. Had we assumed the mirror
moving in the opposite direction to that shown in Fig. 2 then k, would have a negative sign.

P
The energy conservation equation follows from Eq. (2.9)

sin1/2(8, - 8) 2sinl/2(6;, + ) cosf - cosf, cos B — cos B,
ws1/2(8 + 6) 2sin1/2(6, + 8) sin(f, + 6)  sin B cos & + cos B sin B

A\
C

Substituting cos 8, = 1,/4, cos 8, from Eq. (2.10} we find

v /Il -4
vo_ Aok @19)
¢ A,sin8 + A;sin 8,
From Eq. (2.12) with n = 1 we find
A4
i—z = A;sin & + A,5in 6,
P
Substituting this expression into Eq. (2.14) we find
i 73
c Ad,
or
Y.L £
A, A A4
W, = Wy - O (2.15)

where the sign of w, depends on the direction of mirror motion. Equations (2.11), (2.13), and (2.15) are just
the conservation equations

ho, = he, = he, , (2.16)
and
hk, + hk, = hk; . (2.17)

Retaining n # 1 in Eq. (2.12) corresponds to multiphonon interaction, which are not of interest here.
5



2.4 Inelastic Scattering of Phonons

For photon-phonon interaction, the energy on the photon is much greater than that of the phonon,

W2 > wp

or since @; = ck; and @, = vk,, we have that [k | ~ |k;|and & ~ @,

It therefore follows that

k, = 2Ksin y/2 (219
or
2v.on
w, = ——siny/2 , (2.19)
C

where y is the scattering angle; v, and n are the velocity of sound and index of refraction in the crystal. A
‘very important consequence of Egs. (2.18) and (2.19) are that for a given scattering experiment with k,, 1,
v,, @, and n specified, the wave vector and frequency, k, and @, of the phonon are completely specified.
These formulas are true for Brillouin as well as Raman scattering,.

Typical values for Brillouin scattering in solids® are phonon frequencies of about 10° Hz (energies of
the order of 19~ eV) and phonon wave vectors about 10 cm ™! (10-* A1),

For right-angle Raman scattering using visible light excitation {20,000 cm ~') the phonon wave vector
and frequency inside the crystal are typically

kp~@rxnx2x100em™) x V2 =3 x 10°em ™' ~ 1072 (A)"!

and
® = kv, =3 x 10° x5 x 10° ~2 x 10" Hz (107> eV}

Referring to Fig. 1 it can be seen that these values of phonon frequency and wave vector fall within the
appropriate areas of the figure for Raman and Brillouin scattering. In deriving Eq. (2.18) it was assumed
that the fractional change in the magnitude of the photon wave vector was small. For the two examples
given above this fractional change is about 1077 for the two scattering processes, thus justifying the
assumption that

[y |~ k2| -

3. Diatomic Linear Molecule, Cubic Crystal

It will be instructive to consider in some detail a crystal with two atoms per unit cell. By considenng
the interaction of the laftice vibrations of this crystal with the electromagnetic radiation, we can gain
insight into the expected Raman spectra of the crystal and show how these spectra might change under
certain perturbations. We will first consider a cubic crystal for which the forces are isotropic. In Sec, 4, the
uniaxial crystalline problem will be considered.

Let us consider the cubic lattice as shown in Fig. 5. The mass of the atoms are taken as M, and M,,
respectively. The lattice spacing is 2a. If we assume nearest neighbor interaction only, then the equations
of motion can be written as

dzulsrl
l_d_tz— = Clug g + Uy — 2up,,y)

and B (3.1)
d:u.\

My e = Clua, ) + U, — 2uy,)



We sish the solutions for the two types of atoms to be of the form of traveling waves having different
amplitude,

e
— gelll.sollkn wi]

Us e
and 3.2
Uy, = E|l25 ka- wt|

Substituting these into the equations of motion and imposing the periodic boundary condition we find

2 1 14 1 1\ d4sin%ka [*
toef Ly Laecel{ L« LY . :
o =<5 * &) [(M. " 11 MIMZ] 43

This solution is shown in Fig. 6 for the case M, > M,.
The values of k can lie any place within the first Brillouin zone. For typical values of the lattice
constant the maximum wave vector will be of the order

Kpax ~ 3 x 108 cm ™!

From Sec. 2 and Fig. 1, we estimated
k~3x100em™? < Ky

for right-angle Raman scattering. Therefore, ka ~ 102 and Eq. (3.3) can be approximated by the follow-
ing fork — 0,

w? ~2C (Mil + ML:) {independent of k)
and
2 2C 2.2 K
~ B - . 34
w? M+ M, kia (w— k) (34

The upper branch, corresponding to the plus sign in Eq. (3.3), is called the optical branch because we can
show that for transverse displacements of the particles at k = 0 (i.e., the long wavelength limit) the two
atoms vibrate against each other with a fixed center of mass. To show this we substitute the assumed
solutions (3.2) into the equations of motion (3.1) and for k = 0 find

- wM¢ = 2Cy - 2CE (3.5

[

ft

- M, = 2CE€ ~ 2Cnp . (3.6)

Dividing one of these equations by the other, we have

(_"ﬂ)£=-n_--f_
My/ 1 -in-8

or

M,
£ = ( ')n : 37)




This shows that the two atoms of masses M, and M, move in the opposite directions. [f these atoms
carried charges of opposite sign, this type of vibration could be excited by an optical field and hence the
name optical branch. More about this branch later.

The lower branch corresponding to the minus sign in Eq. (3.3) is called the acoustical branch and has
the character of being linearly proportional to k for small k values as seen by Eq. (3.4). The phase velocity
corresponding to this lower branch is

/2
v=%=( 2€ —) a , (3.8)

M, + M

for the long wavelength limit.
Consider longitudinal vibrations in an elastic string. The phase velocity is given by?

v = (E/p)/? 3.9

where E is Young's modulus and g is the linear density. For the diatomic lattice

E =aC
and

M, + M,
P="mn

Substituting these values into Eq. (3.9) we find the phase velocity in the elastic string to be

2C \I2
“'(W) t

which is identical with Eq. (3.8).
The amplitude ratio &/5 for these acoustic vibrations is

2
1 1 1 1\ 4sin?kal'/?
Z‘M'l(v.*m:) l(ﬁ*i@)'wﬂ ]

from Eq. (3.5) and @® from Eq. (3.4) corresponding to the acoustic vibrations. In the limit of small k we
have £/n — 1, which means the two masses M, and M, are moving in unison, the same as adjacent
masses in the elastic string. For this reason the mode is called the acoustic mode and the lower branch of
Fig. 6 is the acoustic branch.

In general, electromagnetic waves propagating within the crystal will interact only with lattice vibra-
tions of the same wavelength and same approximate frequency. From the order of magnitude estimates
above we saw that for right-angle Raman scattering k ~ 3 x 10° cm ! < k_,,. This means that for Raman
scattering we are in the long wavelength limit; i.e., small k values. From Egs. (3.3) (3.5), and (3.6) we see
that fork — 0

&/n =

wa(nus —0

but @, remains finite. [n the discussion of the optical behavior of a crystal we will therefore only be
concerned with the optical branch.

The above discussion can be extended to the case of more than two atoms per unit cell. For p atoms in
the primitive cell there will be 3 p equations of motion. Three equations will correspond to the acoustical



modes; uniform undistorted translation of the cell as a whole atk = 0 (@ = 0). The remaining 3(p - 1)
modes will each have a nonzero frequency in the long wavelength limit and are the optical modes. For the
case of p = 2 (NaCl, for example) the three optical branches can be classified approximately into one
longitudinal and two transverse branches in the long wavelength fimit. For the interactions considered sa
far these three branches will be degenerate. By considering the long range electrostatic interaction origi-
rating from the lengitudinal motion of the ions, we will show that this degeneracy is partially removed.

Physically, one can see this by considering the transverse and longitudinal motions of adjacent atoms
for the optical branch as shown in Fig. 7. We have seen above that the acoustical branch is not important
to our problem. For the transverse motion of the optical branch (TO) the net dipole moment produced by
the ionic displacements will be zero because the adjacent particles have opposite charges and will cancel
each other. For the longitudinal motion of the optical branch (LO) there will be a net dipole moment
produced by the ionic displacements in both time and space. Thus, for the longitudinal motion there will
be an electrostatic interaction in addition to the elastic restoring force previously considered. For the
transverse motion there will only be the elastic forces In the long wavelength limit the frequency of the
longitudinal motion will be greater than for the transverse motion, @ (LO) > @ (TO). This photon-
phonon interaction is discussed in greater detail in the following section,

The elastic force interaction, also called the deformation potential interaction, is proportional to the
relative displacement of the positive and negative sublattices during vibration. The long range electromag-
netic interaction is proportional to the electric field produced by the induced dipole moment. For ionic
crystals the electric moment associated with the vibration is strong so that the electromagnetic interaction
is important.

3.1 Photon-Phonon Interaction

The macroscopic theory of long wavelength optical vibrations for a diatomic molecule has been given
by Huang.”* For describing the optical vibrations, the most convenient parameter specifying the relative
displacement of the positive and negative ions is the recuced mass,

M; M,
M= ——b o
M, - M,

and the rgordinate
w = (u* - u)/ (Mn)

where u* - u~ is the relative displacement of the positive and negative ionic lattices and n is the number
of cells per unit volume.

The equaiions of motion describing the diatomic molecule, including the deformation potential and
electrostatic interactions, can be obtained from the Lagrangian density!!

1

" 1 1
&= -2-w2k - (5 1wt =~ y,w-E - TRE EZ) .

where the y's are undetermined constants and E is the macroscopic internal electric field arising from the
induced dipole moment. The equation of mation is

W+ yaw-ypE=0

The momentum density conjugate to w is d.%4/dw = w, and the Hamiltonian density, #= T + V,is

N 1 1
H'= 7 ’2'*3711“’2:712""'1‘:"2“7’121‘:2



The polarization, given by

a7

= E =YW + ¥nE (3.10)

P

is the macroscopic dielectric polarization in terms of the displacement and electric field vectors, w and E.
The equation of motion shuws that in addition to the usual Hooke's law restoring force there is an
electromagnetic restoring force. The polarization equation is made up of a lattice polarization proportional
to the relative displacement and an electric field induced term. Assuming plane wave solutions, the

equations become

wiry - ©) = y,E
(3.11)

P=yow + rpE

Following the usual procedures!' we solve Eq. (3.11) in terms of the experimentally measurable quantities
£, €, and @, the dielectric constants at low and optical frequencies, respectively, and the lattice trans-
verse vibration frequency. The important result is that first derived by Lyddane, Sachs, and Teller (LST};
that is

& 1/2
Wy ={— 0,
€,

In general £, < g; so that w; > @, in the long wavelength limit. The degeneracy between the one
longitudinal and the two transverse vibrations has been removed. Shown in Fig. 8 is the long wavelength
region of the dispersion curve. For the scale used only the optical frequencies w, (LO) and w, (TO) are
indicated. The acoustical frequencies would coincide with the k-axis.

The y-coefficients in Eq. (3.11) are found'! to be the following:

Yy = @
(80 - gm)l/z
=|l—] w
Y12 P t
g, -1
Yo = “ar

Substituting these parameters into Eq. (3.11) we find

P (su - 5,)1/2 £ - 1E
= + —
- ow+———F (3.12)
and
e, - £.\!72
2 _ )= |2 I) o E
w(w? - »?) ( e \E . (3.13)

The lattice dynamics presented so far are propurties of the diatomic crystal assuming no externai
effects, The dispersion relation for an electromagnetic field inside the crystal is just

C
w = T*k ’
VEx

10



and is shown in Fig, 8. The phase velocity c/\fe, = 2 x 10'" cm/sec is just the slope of the dotted line.

In the region of the crossover of the photon and phonon dispersion curves the interaction between
the phonons {@w, and @,) and the photon becomes very important. Physically, the transverse lattice
vibrations mix with the electromagnetic field to form the observed infrared dispersion. The interactivn
between ions has no effect on the longitudinal lattice motion so @ will be unchanged. The effects of the
phonon-photon interaction can be seen from the coupled solutions of the lattice dynamics equations (3.12)
and (3.13) and Maxwell’s equations.

Assuming plane wave solutions of the form

P = PO Ei(k-ﬂ»wt)
w = w, ek R-wn
E = EO elitk-R-ay)

Maxwell's equations can be written as

_ —4xlk(k-P) - w?P/cY]

E - ol (3.19)
For the transverse vibrations k-P = 0 and the solution of Eqs. (3.12), (3.13), and (3.14) is

w? = 2—1—(wf£0 + i) = [Lz (wPey + K - @? k’czfsw]m (3.15)

[ dg;

or

K B} ~ 607

P

In the long wavelength limit, k — 0, the solutions to Eq. (3.15) become

o = w! (Ey/EL) (3.16)
and
w? = (e . 317
For the longitudinal vibrations k.P = kP and

AV
= w((a) = Wy . (3.18)

Equation (3.18) is just the LST relation we found earlier for the case of no coupling between the phonon
and photon, which shows that the jonic interaction has no effect on the longitudinal vibrations.

Shown in Fig. 9 are the solutions (3.15) and (3.18) for a hypothetical crystal, using the frequency and
dielectric coefficient values of NaCl. The longitudinal vibration (LO) is nondegenerate but the transverse
vibrations (TQ) are two-fold degenerate reflecting the two independent orientations of E in the plane
normal to k.

At this point it will be instructive to digress momentarily to derive the dispersion relation for the
frequency dependence of the dielectric coefficient. To do this we must first generalize the equations of
motion by introducing a damfing term. This can be done by adding to the Lagrangian density, % the
Rayleigh dissipative function'

1



yv'vz ,

7 1
' 2

which is the usual ad hoc way of introducing the dissipative term. When this is done, in place of Eq. (3.13),
we have

(e - B\
w(w! - 0 + iye) = I ©E

where ¥ is the damping coefficient. Substituting this expression for w into Eq. (3.12) we find

(€4 — &) @}
P=l. gx_]+_(9_,_)‘_E
4r (w? - ©) + iwy

The dielectric coefficient is
&gw) =1 + 4nP/E
or

elay = g + w—i’—— . (3.19)
Oy - W+ iyw

where S = (g, ~ £.) 0! is a dimensionless mode strength. Eq, (3.19) shows the dispersion relation for the
dielectric coefficient,

Returning to Fig. 9, the transverse optical frequency, @,, can be measured by several methods, one of
which is absorption spectroscopy.” For linear polarized radiation normal to a thin plate, the transmission
will be a minimum at @ = @, as shown below.

Assuming the incident light propagating along the x axis, the following relations are valid for the
scalar magnitudes of the electric field.

incident side (A e'*™< + B e WY/} g-iwt
within the plate (C e“nv/c 4 D eg~iwn/cy g-iwt

far side [F ef(@x/c- @b

Included in the expressions are the reflected components of the electric field and n is the refractive index
of the crystal. Imposing the usual boundary conditions that the field be continuous at x = 0 and x = d,
the amplitude ratio for the incident and far side fields is given by

- imd/c

_ 4ne
[(n + Uzeiwnd/r - l)zeimnd/c]

> | tri

For thin plates wd/c <« 1 the ratio becomes

1

E___ 1
Ay 9dge g
2c

The transmittance is just the magnitude squared of this ratio and is written as
1 _ 1

- wd 2 .ad
l+12c(n n?) l+:2c

T=,£
A

(* - &
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For very thin plates T will be a minimum when w(e* - € = w(n*? - n?) is a maximum. From the
dispersion relation Eq. (3.19) we have

R N iSwly
A B T W + (R

The maximum condition is found from

df_ e ] 0
do (e} - w?)? + @y’

The solution is & = @, and corresponds to the minimum in the transmission for thin plates. w, is the
frequency at which the refractive index, n, and the dielectric constant, &, become very large.

For the hypothetical crystal ciescribed in Fig. 9 the value of @, = 3.09 x 10'® Hz is that measured by
Barnes'? for the thin sodium chioride crystal. For polar crystals there are several methods for finding the
longitudinal optic mode frequency, w,.

The first method depends upon the application of the LST relation, provided the low and optical
frequency dielectric constants, g, and &,, are known. From the given data w, is found from the LST
relation

&g \172
sﬂ

The value shown in Fig. 9, @, = 4.6 x 10" Hz was obtained using the data’ £, = 5.62 and €,, = 2.25. This
method is reasonably reliable for ionic crystals but for crystals with small energy gaps or more than one
reststrahlen band there will be uncertainty in the g, and g, values.

A second method is to identify w, and @, with the lower and upper frequencies of the reststrahlen
band of the crystal. The theory” behind this is as follows, For normal incidence, the reflectance is given by
[s(e) - 1f

Rie) = (el + 1

where ¢(w) is the frequency dependent dielectric coefficient given by Eq. (3.19). As w is increased from
zero to w,, the value of &(w) increases to a large value with the effect that R = 1. For frequencies slightly
larger than w,, € switches from a positive to a negatively large value up to the frequency corresponding to
~ &) 0}
o) = &, + — ‘52 =g, + (fu :),' =0
0 - W +iye @ - 0+ iyw

The solution is

golll
w=0l|—] =o ,
&,

%,

which is just the LST relation. For frequencies o, < w < @, the dielectric constant is negative so that the
complex index of refraction n = V& is pure imaginary. The dielectric constant can be written

gw) = (n - 6,
where n is the refractive index and J is the extinction coefficient. Within the crystal, for a pure imaginary

index of refraction, the planar waves will be of the form of damped exponential waves with the damping
coefficient proportional to &. Therefore, for frequencies w, < @ < @y, the reflectivity will be large and the
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crystal will be highly absorbing. Curve fitting of the measured reflectance data using the dielectric disper-
sion relation with @, as an adjustable parameter is a second method of determining the longitudinal
optical frequency.

Other methods have been used for determining @, and ®,. Each has its particular advantages and
disadvantages. It is not the purpose of this paper to discuss these further but the interested reader should
refer to the literature™ for details.

In conclusion to this section, we have shown that the photons and phonons mix in the presence of
electromagnetic radiation within the crystal. The transverse lattice vibrations mix with the radiation field
and together they become the observed infrared dispersion. This mixture of photons and transverse
optical phonons in a polar crystal is called a “polariton.” A number of papers'® have appeared recently
describing the theoretical and experimental properties of polaritons. Details of these properties will not be
given here but one can see that they are an extension of the present discussion.

In Fig. 9 those waves with @ < @, are predominantly mechanical oscillations of the lattice (phonon-
like) with only a small fraction of their energy being radiative. Ignoring the mixing for these waves, we
have just the transverse vibrations of Fig. 8. For these vibrations the phase velocity is small compared with
¢/\J€,, and the electrostatic approximation is adequate. For those transverse vibrations with @ > @, their
phase velocities are greater than ¢/\/&, and the electrostatic approximation is invalid. For these vibrations
the mixing is so large that the vibrations are photon-like. In Fig. 9 for @ = 2w, and k 5 20,(¢;)"%¢ the
upper and lower vibrations are phonon- and photon-like, respectively.

For the scale used in Fig. 9 the acoustic branch coincides with the absissia. For example, at k =
5 x 10° cm ! the frequency of the acoustic mode will be about4 x 10" Hz and would be indistinguish-
able from the k-axis of Fig. 9.

The conservation conditions of Egs. (2.16) and (2.17) can be used to determine the frequency at which
a Raman phonon will be excited. Rewriting the conservation conditions.

o, -0, =0 (3.20)
ki -k, =k ., ‘ (3.21)
and using
@,
k =Zandk, = — ,
v A4

it is possible to eliminate w,_ from Egs. (3.20) and (3.21). v; and v, are the phase velocities of the incident
and Raman scattered radiations. Squaring Eq. (3.21) and making the above substitution one finds

Tt

2
! o @, @,
2 5 1
K==+ -2 Zcos @ ,
vi A\ Vi Vs

where 8 is the angle between k; and k. Using Eq. (3.20) to eliminate a,, the above equation becomes

v. vz 172
w = wi(l ~ —cos 9) vl - ol Zsin? 8| . (3.22)
Vi

For the dispersion curve, such as Fig. 9, Eq. (3.22) specifies the allowed phonon frequencies, @, for a given
phonon wave vector, k (magnitude {k| and direction 8).
For forward scattering (8 = 0) the phonon frequency is given by

@ = w,(l - E) + vk . (3.23)
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For an isotropic crystal v, = v;, then Eq. (3.23) becomes

@ = vk . (3.24)
This expression is just the dispersion curve for the laser photon of frequency m, and is shown as the dot-
dashed line in Fig. 9. In general, v, > v, since the index of refraction increases with frequency so that for
an isotropic crystal with @ = 0 the photon dispersion curve will intersect the photon dispersion curve as
shaown by the dot-dashed curve marked § = 8, v, > v;. The intersection of these two curves specifies the
values of (@, k), which will occur. Polaritons are produced at the crossing of these two lines. From Fig. 9
one can thus see a range of polariton frequencies are available by varymg the scattering angle. Experimen-
tally, this has been shown to be the case for the cubic crystal GaP.!°

Right-angle Raman scattering is of more interest to the present problem. The phonon frequency,
obtained from Eq. (3.22) with 8 = 2/2, becomes

v2 1/2
= v - o = . (3.25)
“a

With v, = v, the wave vector intercept (@ = 0) corresponds to
k =41x100em™!

for the crystal of Fig. 9. The @ = n/2 curve of Eq. (3.25) is shown in the broken scale section at the right
side of Fig. 9. For the parameter values used, the right-angle Raman line will be vertical indicating a TO
and an LO phonon will be involved in the Raman scattering. The edge of the Brillouin zone is at about
10° cm ™!, which lies off the right-hand edge of Fig. 9 emphasizing the intesest in the long wave-
length limit.

From Fig. 9 one can see that, assuming w, and @, correspond to Raman-active vibrations, the Raman
spectra for the diatomic cubic crystal will consist of two lines at frequencies @, and w,. The transverse
vibration will be doubly degenerate.

Mooradian et al."” have reported the measurements of the Raman spectra for several polar cublc
crystals having two atoms per unit cell. The zincblende semiconductor crystals, GaAs, InP, AlSb, and GaP
are examples of such crystals and their data are reproduced in Fig. 10. For each crystal only two Raman
active modes are measured; a twofold degenerate transverse mode and a singly degenerate longitudinal
mode. For these polar cubic crystals the electrostatic interaction removes the degeneracy between the TO
and LO vibrations. For the materials measured this separation between @yand w, was from about 21 cm ™!
for AlSb to about 44 cm ~? for InP.

It is interesting to compare the values of @y (LO) and @, (TO) measured from the Raman spectrum
with those values found from reflection spectra, Johnson'® measured w,(LO) = 294 cm ™! and @, (TO) =
266 cm " ! from the reflection spectrum of GaAs, which are in good agreement with the values @, (LO) =
284 em ' and o, (TO) = 2a1 .m‘l measured by Mooradian et al.'” The Raman data are prebably more
exact because of inaccuracies™ in the dispersion relation as mentioned previously.

4. Diatomic Linear Molecule, Uniaxial Crystal

The long wavelength lattice vibration properties for uniaxial crystals can be obtained from a general-
ization of the analysis for the cubic crystal of Sec. 3.

In a uniaxial crystal the light propagation properties are described by twe indices of refraction.
Imagine a point source of light within our crystal. At any instant of time the wavefront forms a continu-
ously expanding surface. For a unjaxial crystal this surface will be either a sphere or an eilipsoid of
revolution depending on the polarization of the light. The sphere and ellipsoid will touch along a certain
axis defined to be the optic axis (also called the ¢- or z-axis) of the crystal. Due to this anisotropy of the
crystal, the vibrational frequencies of the atoms moving parallel to the c-axis will be different than when
the motion is in the plane perpendicular to the c-axis. We will call these @, and @ ., respectively. The
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static and optical frequency dielectric constants will alse be different for these directions; £, £, £, , and
€', . The phonon spectrum can be obtained from expressions similar to Eqs. (3.10), (3.11), and (3.12) for the
parallel and perpendicular components of w, E, and P. There will be six equations for the six unknowns
oy, o ,E,E, P, and P, . We will have a nontrivial solution only if the determinant of the coefficients
vanishes. This determinant is shown on the facing page. In the detesminant 8 is the angle between the
propagation vector k and the c-axis and a is the angle between the displacement vector D, and the plane
defined by the c-axis and k. For ordinary waves D L k, so that cos @ - 0. Fai the extravidinary wave D
and k are coplanar so that cos & = 1,

Rather than solving for the general case, the solutions corresponding to ordinary and extraordinary
waves are of most interest. For the ordinary wave E and P are perpendicular to both k and the c-axis
{(cos @ = {) and Eq. (4.1) becomes

v'e, - [Pk + ol g+ K] =0, (4.2)
or

22 0 2 2
kict &, 0, - & @ .
= {ordinary wave} ,

w? w? - !

which are the same forms as Eq. (3.15) for the cubic crystal. For the extraorainary wave D 1 k, but E and
P do not, in general, have a simple orientation relative to k or the c-axis (cos & = 1). The solution to
Eq. (4.1) for the extraordinary wave becomes

K (0}e) - wle)(w? ] - wle))
@ (0} - @) (wle) - 0, )sin? 6 + (02 - w)){w] & - wle)cos? B

(extraordinary wave) . (4.3)

For the special case of @ = 0, that is, propagating along the optic axis, the extraordinary wave reduces to
the ordinary wave; Eq. (4.3) trtansforms into Eq. (4.2),
In the long wavelength limit (k = 0), Eq. (4.2) becomes

2 _ 2 £ :
@ = @ -ET (ordinary wave) , (4.4)

and from Eq. (4.3)

& )
o’ = w} (Ellli) = (wf)® (extraordinary wave) (4.5)
and
1 _ o [EL ry2
o = wl |~ =(w]} . (4.6)
L

The expressions (4.5) and (4.6) define “’I’i and wi analogous to w, defined by Eq. (3.16). In the long
wavelength limit the spectra will consist of a doubly degenerate line at @ = @ and a singly degenerate
linearw = wff as given by Eqs. (4.4)-(4.6).

For right-angle Raman scattering k ~ 10° em~! and w/c ~ 1 em ! so that K*¢¥/w? — «. From
Fqs. (4.2) and (4.3) this means

o = w. (ordinary wave) (4.7)
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and

(we! - w?¢) (w? &% ~ a)zsl)

cos’ @ + sin’ 3 = 0 (extraordinary wave) . (4.8)

(0! ~ w?) (0} - w?

Thus, the Raman spectrum will be expected to have an angle @ independent line corresponding to the
ordinary wave Eq. (4.7) and an angular dependent extraordinary Raman spectrum as shown in Eq. (4.8).
For @ = 0 and 8 = /2 the spectrum for the extraordinary wave will be a doubly degenerate line with
frequency given by Eqgs. (4.5) and (4.6), respectively. For the general direction, the Raman spectrum will
consist of three lines, two of which will have angular dependent frequencies.

Dispersion curves can be drawn for the uniaxial crystal similar to those shown in Fig. 9. For the
uniaxial crystal we will consider two limiting cases depending on the relative magnitudes of the aniso-
tropic forces and the electrostatic forces.

4.1 Flectrostatic Forces > Anisotropic Forces

The electrostatic forces remove the degeneracy of the longitudinal and transverse vibrations as shown
in Fig. 8. The amsotroplc forces anse because of the blrefnngence of the uniaxial crystal. For a negative
uniaxia) crystal @} > @', and { > % . The opposite is true for a pesitive uniaxial crystal. For the
dominant electrostatic forces case we have

v -0, |« of-oando’ -0, . (4.9)

Hexagonal ZnO is a positive uniaxial crysta! for which Eq. (4.9} is satisfied.'” Figure 11 is a schematic of
the dispersion relations Eqgs. [(4.2) and (4.3)] for the propagation vector paraliel {§ = 0) and perpendicular
(8 = 7/2) to the c-axis corresponding to this limiting case for a positive uniaxial arystal such as ZnO. For a
general value of 8, one root of Eq. (4.3) will lie in the vicinity of @', and @'. while the other root will be
close to @', and of.

The Raman spectrum for a positive uniaxial crystal, such as is shown in Fig, 11, would be expected to
have two lines for & = 0 and three for 8 = n/2. For 8 = 0, the lines would conespon:l to the (2) »', and
(1) wf vibrations and for @ = /2 the lines would correspond to the ', ! and w¢ vibrations. For a
given measurement the separations | w{ - @' | and| a) - w* | may be too small to resolve the angular
dependence predicted by Eq. (4.3).

4.2 Anisotropic Forces >> Electrostatic Forces

The anisotropic forces are mainly responsible for the separations [mf - of ]and | ) - cuL] The
electrostatic forces produce the separations ‘w‘ - [ and lml - o' [ For the llmmng case of interest
here, the anisotropic forces are much greater than the electrostatic forces so that

o - o > ef - eland|e) - 0| . (4.10)
The solutions of Eq. (4.3) for these approximations will be

= (@) sin? 8 + (wf) cos? 0 (4.11)
and

= (@) cos? 8 + (0 ) sin?d . (4.12)



The dispersion curves shown in Fig, 12 correspond to a positive uniaxial crystal with the anisotropic forces
dominating the electrostatic forces. As the angle hetween the propagation vector and the c-axis is in-
creased from 0 to n/2 the upper Raman line will change from transverse extraordinary to longitudinal
extraordinary while the lower branch changes from a longitudinal extraordinary at 8 = 0 to an ordinary-
extraordinary degenerate transverse vibration at 8 = /2, On physical principles one would expect a large
anisotropic effect for this crystal because only a transversely polarized phonen can be infrared active.

She et al.™ have shown that quartz is an example of a crystal for which the inequality, Eq. (4.10), is
satisfied. The angular dependence predicted by Eqgs. (4.11) and (4.12} as given by She et al. is reproduced
in Fig. 13. Here one can see for certain vibrations the variation of the phonon frequencies with phonon
propagation direction.

5. Scatiering Process

The microscopic description of the Raman scattering process can be expressed quantum mechanically
in several different ways®! depending upon the decomposition of the Hamiltonian of the system. For the
Raman process ane photon is annihilated from the incident beam, one Raman photon is created and one
phonon is created; the number of photons and phonons differ by 3 in the initial and final states. By this
description the Raman effect is called a three-particle process. For a three-particle process the vector
potential operators for the two photons and one phonon app.~ar each time in the matrix element of the
scattering matrix describing the process. This means that the lowest order nonzero scattering matrix will
correspond to third-order perturbation theory. The third-order perturbation calculations are tedious and
the details can be found elsewhere.2!?2 The conservation of momentum and energy Eqgs. (2.7a-b) follow
directly from this calculation with the essential result that the Raman scattering efficiency for isotropic
crystals is given by

2
S=A >_ e Ryel| . 5.1
na-

Y
e and ef are components of the unit vectors & and &, in the polarization directions of the incident and
scatiered photons. A is a constant of proportionality and R, is a second rank tensor called the Raman
tensor. The subscripts on R, indicate the photon polarization directions. The form of the Raman tensor
R, is as follows:

Y‘ (‘DI ] HL-L | ‘bn) (d)a| Aa '.Pn', d)ﬂ) (d’ﬂl Ap ) Pp‘ rDi)
Z ot (Ea - Ei](EH - Ei)

aff ap

+ (@ I A, Pa] P, (‘ba,HeLl D) (B f A, Pﬁl ;)
(Ea - Ej)(Ey - E))

, Ol A0 0o | 0 (@[ A, ] D) (B P [ @)

(Eq - E)(Ey - E) (52)

This is the sum of three terms each of which contains the product of two matrix elements involving
phaton annihilation and creation operatars (for example, (D,| A - p,| ®p) and (Py| A, - p,y| D)) and one
matrix element involving the phonon annihilation and creation operators (for example, ($[ H, | ®,)). In
the above expression | @;) and | @) are the initial and final state functions and | @, ) and | ®,) are interme-
diate state functions. The energy denominations are defined in the appendix. H,; corresponds to the elec-
tron-lattice interaction Hamiltonian and contains both phonon annihilation and creation operators. The
electric potential operators, A,, contain photen annihilation and creation operators.



The Feynman diagrams corresponding to Eq. (5.2) will each have three interaction vertices, one
corresponding to each matrix element. There will be six of these diagrams because each matrix element in
Eq. (5.2) contains two operators; an annihilaticn and a creation operator. The six Feynman diagrams are
shown in Fig. 14. The first diagram corresponds to the first term in Eq. (5.2). In this figure, the first
interaction vertix corresponds to an incident photon being annihilated from the initial state function | &) .
The second interaction is that of a Raman-photon creation invelving the intermediate states, The third
interaction involves a phonon creation and the final state function | ;). Interchanging the order of the
photon annihilation and creation produces the second Feynman diagram of Fig, 14, Following this same
procedure we can show the origin of the six diagrams of Fig. 14.

Ovander? has made a group-theoretical determination of the different Raman tensors corresponding
to each of the 32 crystal classes. A summary of this calculation is given in the appendix. Collected in
Table I are the symmetry species (irreducible representations) corresponding to the allowed Raman transi-
tions. In the table, x, y, or z in brackets after an irreducible representation indicates that the vibration is
infrared active and has the direction of polarization indicated. As an example, the Raman-active A vibra-
tion of crystal class C; is infrared active with polarization along the z-axis. In Table 1, directly above the
irreducible representation, is a matrix, which gives the nonvanishing components of the Raman tensor.
The different elements of the matrices are the nine components of the tensor obtained by allowing both
o and p to take on the values x, y, and 2.

5.1 Selection Rules

The selection rules for the Raman eifect in ionic crystals can be found with the application of simple
group-theoretical methods. Given below is a brief discussion of the physical concepts of the method and
the details can be found in the literature®™?’ and standard texts® on group theory. For the discussion
given here it is assumed that the reader has at least an introductory knowledge of group theory including
the meaning of character tables.

5.1.1 Factor Groups

The selection rules for the Raman effect in ionic crystals are obtained using the factor group analysis.
A basic assumption of this analysis,” also called the “unit call approach,” is that the intermolecular
interactions are strong so that vibrational coupling exists bet veen molecules.

The unit cell is a basic building block of the crystal. The crystal lattice is constructed by successive
translations of this unit cell. The unit cell here is defined as the smallest unit in which no atoms are
equivalent under the translation operation. The atoms within the unit cell may be equivalent under other
symmetry operations but translations are excluded. The symmetry of the crystal is one of the 230 space
groups and each is an infinite group since they include translations. Mathematically, the space group of a
crystal is that group of operations which carries an atom into an identical atom. The symmetry of the unit
cell is described by a factor group of the space group operations and is called the unit cell group or factor
group. The factor group is defined from the space group when the translation operations are taken as
identities. By this definition, the factor group will be finite, In general, the factor group is not a point group
of the crystal but it is isomorphous with the 32 crystallographic point groups.? In practice, the factor
group is never derived from the space group but is always obtained from an inspection of the isomor-
phous point group. The isomorphous point group is easily obtained from the space group by deleting the
superscript from the Schoenflies notation. For example, for a crystal with space group C3,, the cor-
responding factor group will be isomorphous with the point group C;, and the C,;, character table would
be used as the character table for the factor group. The character table for the point group is identical with
that for the factor group, however, some mirror planes and n-fold axes in the point group may become
glide planes and screw axes in the factor group.

The correlation table method is a convenient method for applying the factor group analysis. Prereg-
uisites for this method are knowledge of the crystal space group and site group symmetries, and the
number of molecules per unit cell. Fateley et al.® have compiled all the necessary tables for the applica-
tion of the correlation method. This method is applied in Sec. 6 to determine the number and symmetry of
the Raman vibrations in crystalline NaClO,. Given in this section will be only an outline of the method.
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Table . Raman-active vibrational symmetries and Raman tensors.

Crystal class

International Schoenflies Raman tensors
a . d .ooe .
- b - e . f
d . ¢ - f -
2 G, Aly) Bix,z)
m C, A'lx,z) Aly)
2/m Cy, A, By
a od - . e
b d . . PP f
€ . - . e - . f
22 D, A B,{z) B,{y) B,(x)
mm2 Gy, Ay2) A, B(x) B,ly)
mmm Dy, Ag By, By By
a - - d e d -¢ -f
. oa . d -¢ f -¢ -d e
. . B f -f e
3 G A(z) E(x) E(y)
3 Cy =S, Ay E, E,
a . - . . . ~¢ -d
oA - - -c d - -
. . b . d - -d -
32 D, A, Elx) Ely)
3m C,, Alz) E(y} E(-x)
3m Dy, Ay E Eg
a . - 4 - e . - ~f
< oa - d —¢ . . . . e
. . b . e £ . -f e
4 C, A2} B E(x) E(y)
1 S, A B(z} E{x) E(-y)
4/m Can A, B, Eg Eg
a . . c . d . P
A PR d . . . e
. - b . P e . . e
4mm C,, Apz) B, B, E(x) Ely)
422 D, A, B, B,(2) E¢-y} E(x)
2m Dyy A, B, B,(z) E(y) E(x)
4/mm D,, Ay By, By E, Eg
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Table 1. (Continued).

Crystal class

International Schoenilies Raman tensors
a c ’ - -d [ § -e
a d - - ¢ f - -e f
b c d ~-d ¢ . .
6 Cq A(z) E,(x) Ey) E, E,
6 [ A E” E” E’(x) Ely)
a/m Con Ay Eyy Ey Ey Ep
a - BN 4 - d d
H € . - 4 . -4
b [ -c - . C—
622 Dy A, E,(x) E,(y} E, E,
émm Lo Az E,(y) Ey( - x} E, E,
om2 Dy A} E” E” E’ix) E'ty)
6/mmm Dey A Eyg Ey, Eqy Ez
a b -by3 . - - d d
a b bv3 - - d d
a ~-2b . . -od d
23 T A E E Fix} Fip) F(2)
m3 Ty A, E, Ey F, Fy Fy
432 o A, E E Fy F; F;
3m T, A E E Faix) Fy(y) F ()
mim [0} Ay Eg E, Fag Ey Fay

5.1.2 Correlation Table Method®*®

By way of review, the character table of the point group C;, is given in Table I The last two columns
of the character table are particularly important for the factor group analysis given here. The translational
unit vector transformations are indicated by T,, T,, and T, in the next to last column opposite their
corresponding species. For example, in Table 11, the translational unit vector parallel to the crystallo-
graphic z direction, T,, has symmetry species A,. The species of the three rotational unit vector transfor-
mations R, R,, and R, are indicated opposite each vector. Infrared and Raman activities of the different
species are indicated in the Jast and next to last columns of the character table. A mode wil} be infrared
active if it transforms as one or more of the translational unit vectors. In Table Il species A, and E will be
infrared active. A mode will be Raman active if it transforms as ane or more of the direct products, a,, etc.,
of the translational unit vectors. The direct products are indicated in the last column of the character table.
For example, in Table 11, species A and E will be Raman active.

For the application of the correlation method the unit cell may be considered to be made up of a
combination of p polyatomic molecules or jons and s monatomic ions. Considering first the polyatomic
molecules or ions, the number of modes and their symmetries are determined using the point group of the
free molecule or ion multiplied by the number of polyatomic molecules and their number of internal
degrees of freedom. The number of internal degrees of freedom for an n atom molecule or jon is (3n-6),
where we have subtracted three translational and three rotational external degrees of freedom. The sym-
metry species of these 2x(3p) external degrees of freedom are the same as those of the transformations of
the translational and rotational unit vectors given in the point group character table.

The next step is to correlate the point group symmetry species of the internal and external modes
with the symmetry species of the site group of the polyatomic molecule or ion. Followirig this we correlate
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Table II. Character table for the point group C;,.

Cy, E 2, 3n

Ay 1 1 1 T My b @y @y,
A 1 1 -1 R,
E 2 -1 1] (T,. T,l; R,, R,i (e, - [ “:y'i (ayl, a,,)

the site group symmetry species with the symmetry species of the factor group. The correlztion of one
species under one symmetry to a species under another symmetry can be determined by exzmining the
character tables of the two species or by using published correlation tables.2**"

The s monatomic atoms or ions in the crystal wili give rise to 3s translational modes. Correlation in
this case is between the site group of the ions and the crystal factor group. The site symmetry species are
the same as those of the translational unit vector transformations in the character table of the site group.

Iacluded within the correlation of the external mades will be three translational degrees of freedom
correspending to the acoustic modes. As pointed out in Sec. 2, these three degrees of freedom correspond
to translations of the entire crystal >~ are nat infrared or Paman aclive. The symin,e |, species of these
acoustic modes are the same as the transformations of the translational unit vectors in the factor group
character table. These acoustic modes are subtracted from the other modes of the same species leaving
only the genunine translatory lattice modes,

The infrared and Raman activity of the internal and external modes under the factor group symmetry
are determined form an examination of the character table as described above.

The factor group analysis including the correlation method are demonstrated in Sec. 6 to determine
the number and symmetry of the vibrational modes for crystalline NaClO,. Also shown in Sec. 6 is an
accounting method used by Fateley et al.” as a check on the correlation method.

5.2 Scattering Etiiciency, Isotropic Crystals

The Raman scattering efficiency is defined® to be the ratio of the number of scattered photons
produced per unit time per unit cross-sectignal area of the crystal in the solid angle dQ about the direction
of observation to the number of incident photons crossing a unit area in unit time. The transition probabil-
ity will be proportional to the scattering efficiency. For the isotropic crystal the scattering efficiency is
given by Eqg. (5.1). As an illustration of the calculation of the scattering efficiency using the matrices of
Table [, let us consider the trigonal class L'y,. This example will be shown in detail 5o that it might be used
as a pattern for calculating scattering efficiencies for the piezoelectric crystals of Sec. 5.3.

The irreducible representations of crystal class Dy are A and E; as shown in Table 1. The matrices
corresponding to these irreducible representations are

a . . c - B . -C -d
A|H= . a JE, = |. -C d;Eb‘= —C . . . (53)
b . d - -d

In general, Raman spectrometer systems are designed for right angle scattering. However, it will be
instructive 1o consider the scattering at some other angle, 8, as shown in Fig. 15. The incident and
scattered photon and the phonon wave vectors are coplanar and for convenience will define the xz-plane.
The direction and magnitude of the phonon wave vector is specified according to Eq. (2.18). Using a gas
laser as the excitation spurce the incident radiation will be plane polarized. The components of the
scattered radiation can be measured independently by using an analyzer in the scattered beam. With the
scattered radiation analyzed perpendicular to the xz-plane the row and column matrices describing the
incident and scatiered waves will be

[s]
6 = (el ef o)ande, = |ef ] - (5.4)
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Expanding Eq. (5.1), the scattering efficiency will be
S = AlefRyef + e/ Ry ef]”. (5.5)

From Eq. (5.3) one sees that the nonzero component of R,, is —¢ from the second E, matrix. R, will
correspond to a from the A, matrix and —c from the first E, matrix. If we were to restrict the incident
radiation to be polarized only along the x-axis (e = 0) then S = A [c]? and one would be able to identify
the E_ vibrations from the Raman spectrum.

With the analyzer in the scattered beam adjusted to accept the radiation polarized parallel to the
xz-plane the unit vectors become

x

€,

8 = (e, ef,0)andd =0 | , (5.6)
A

and the scattering efficiency is

S = A[eR, el + e/ R, e + e/ R el + &R e . (5.7

This expression can be evaluated using Eq. (5.3). If we were to make a right-angle Raman scattering
measurement, = /2 in Fig. 15, and let

(o]

Eq. (5.7) would become

S=A[eR e’ + /R, e’ = Ald -df =0 ,
assuming e} = e. This last example illustrates, for two- or three-fold degenerate phonons, that contribu-
tions of the two or three matrices given in Table [ are added to find the total scattering efficiency.

5.3 Scattering Efficiency, Piezoelectric Crystals

The scattering efficiency formula, Eq. (5.1), must be modified when applied to crystal vibrations that
are simultaneously Raman and infrared active. The reasons for this are that in a polar crystal the long-
range electrostatic forces partially lift the group-theoretical degeneracy of the lattice vibrations. More
Raman lines are observed than would be predicted by the group-theoretical correlation methad of Sec. 6
and illustrated in Figs. 11 and 12. The scattering efficiency is calculated on the basis of the space group of
the crystal Jattice corresponding to k = 0 in Figs. 11 and 12, while the phonon frequencies observed in
Raman scattering correspond to k values at the right-hand edges of the figures. In addition, in unijaxial
crystals some of the Raman frequencies are angular dependent. The long-range electrostatic forces also
produce an electron-lattice interaction in addition to the deformation-potential interaction. This additional
interaction also varies with phonon direction due to the variation in field strength. These effects require
that the scattering efficiency expression be modified for polar crystals, We will consider first the case of
the cubic crystal and then the uniaxial crystal.

531 Cubic Crystals

In cubic crystals the three-fold degenerate Raman- and infrared-active vibration will be split into a
two-fold degenerate transverse and one-fold degenerate longitudinal vibration as shown in Figs. 8to 12.
The scattering efficiency expression (5.1) can be modified to account for this mechanical polarization by a
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coordinate rotation of the axes describing the Raman tensor. For cubic crystals this simple rotation is
sufficient because both the phonon displacement and electric field point in the same direction. As a result,
the symmetries of the scattering produced by the two clectron-lattice interactions are identical. The modi-
fied scattering efficiency for a cubic piezoelectric crystal becomes

2
S=A|> eR,Ee (5.8)
PO.Tk
PR
where §' are scalar components of the unit vector defining the direction of the mechanical polarization of
the phonon. The contributions of the matrices in Table I for a phonon of given polarization in the rotated
coordinate system are summed hefore taking the square in Eq. (5.8),

As an example of this coordinate rotation® and the application of Eq. (5.R), consider the F, vibration
of the T; cubic crystal class assuming the scattering geometry of Fig. 15. The mechanical polarization of
the phonon in the direction of the phonon propagation vector (i.e., the longitudinal vibration) will have
componernts

Ef = (-cos 872, 0, sin 072) . (5.9)

The transverse components will be

1 = (i1 8/2, 0, cos 6/2) (5.10)
and
=10 , (5.11)

for the components parallel and perpendicular to the scattering plane, respectively. For the cubic crystal it
is not necessary to distinguish between &} and &', since these will be degenerate. The incident wave has
components & = (e}, e!, 0) and the scattering wave will have components e} = (cos @, 0, -sin 8) and
esl = (0, 1, 0) parallel and perpendicular {o the xz-plane, respectively.

For purposes of illustration, the scattering efficiency calculation will be shown in detail for the case of
longitudinal phonon excitation and the scattered light analyzed parallel to the xz-plane.

cos A\ |2
S7 = A {e], e, 0)|F,(x)(-cos 8/2) + F,ly)- 0 + F,(2)sin 6/2})| o . {(5.12)
sin @

Here F, (o) signifies the matrices corresponding to the irreducible representation of the same symbol.
The product F, (x) (—cos 8/2) is a rotation by an angle of 8/2 about the y-axis corresponding to the
longitudinal phonon vibration. Substituting the matrices of Table [ into Eq. (5.12) and performing the
multiplications we have

Sf = A'd® (ef)? (sin 3 672) . (5.13)

For incident radiation plane polarized along the x-axis, e/ = 0and Sf,' = 0, so that the F, vibration would
not be excited. The remaining scattering efficiencies are calculated in a manner similar to that for Sf,’ with
the following results

S = A'[edsin 2] , (5.14)
S! = Ad?|(e! cos 36/2)* + (] sin 6] (5.15)
and

St = Ad'|ef cos /2] . (5.16)
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The constant of proportionality for longitudinal vibrations in Egs. (5.13) and (5.14) is different from
that for the transverse vibrations in Egs. (5.15) and (5.16) because the electric field associated with the
polar Jattice vibration provides an additional electron-lattice coupling term. The transverse phonon is
unaffected by this electric field as shown in Fig. 8.

5.3.2 Uniaxial Crystals

For uniaxial crystals the lattice displacement which determines the deformation potential scattering
will not, in general, be parallel to the electrostatic field which controls the polar scattering. As a result the
scattering formula of Eq. {5.8) is further modified® by including a second matrix rotation and the result is

2
5= [Ze"kf (@' + ke ] \ (5.17)

apt

where @ and f8 are coefficients proportional to the deformation potential and electric field strength,
respectively. £ is a unit vector in the direction of the lattice displacement and K is a unit vector parallel to
the electric field. in general, £ is not parallel to k in a uniaxial crystal. For a cubic crystal £and k are parallel
for longitudinal phonons and (& + B)* = A’ of Egs. (5.13) and (5.14). The electrostatic field does not
couple with the transverse phonons as shown in Sec. 2 and as a result # = 0 for both cubic and uniaxial
crystals for the transverse phonons.

As an example of the application of the scattering formula (5.19) let us consider first the case of a
crystal with the electrostatic force predominating the anisotropic force as shown in Fig. 11. For this case
the electric field vector will be approximately collinear with the lattice displacement, & ~ k. The compo-
nents of .f will be the same as Egs. (5.9)-(5.11) with the exception that for the uniaxial crystals Eq. (5.10)
will correspond to the extraordinary wave and Eq. (5.11} the ordinary wave. The photon and phonon
waves in a uniaxia) crystal will be only approximately longitudinal or transverse because of the birefrin-
gence. Assuming the geometry of Fig. 15, the scattering efficiency for a semi-transverse scattered wave
and a semi-longitudinal phonon in a crystal of C,, symmetry will be

r cos 8
S =(a+ B)Zl(ei,e{, o)[nf,fE(x) + é‘fE(y) + éfA(z)]( o ) ,
-sin §,

where E(x), E(y), and A(z) represent the matrices corresponding to the irreducible representations of
Table I. Making the substitutions from Table I, the scattering efficiency becomes

Sf = (@ + P*asin 6/2cos 6 + e cos B/2sin 02 (e})? , (5.18)

indicating that both the A and E modes will be excited. For scattered light perpendicular to the xz-plane
the scattering efficiency will be

= (& + B)*(ef asin 8/2)F , (5.19)

showing that only the A modes are excited. The semi-transverse extraordinary phonon has a negligible
electric field so that B = 0 in Eq. (5.17) and the scattering efficiencies are

S' = [aeXcos 8/2¢os B - e el sin 6/2 sin 8] & (5.20)
and
St =4 [e.’ acos 9/2]z . (5.21)
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The scattering efficiencies for the transverse ordinary phonons (8 = 0) become

Sl = efesin g a® . (5.22)
and
sy =0 . (5.23)

illustrating in the one case that only E modes are excited and in the second case that no Raman-active
modes will be excited,

Let us now consider the case of Fig. 12 corresponding to the polar uniaxial crystal with the anisotropy
of the short-range forces predominating over the electrostatic forces. For this case the two extraordinary
phonons have lattice displacements either approximately parallel or perpendicular to the optic axis of the
crystal. The electrostatic field will be parailel to the phonon propagation direction. For the extraordinary
phonon corresponding to a Jattice displacement parallel to the c-axis we have

£ =1(0,01)

The coefficient f§ is proportional to the magnitude of the electric field along the coordinate directions so
that the z component will be 8 sin 8/2 and

k = (-cos 672, 0, sin 8/2)

The scattering efficiency of Eq. (5.17) becomes

S = [ Z ef RS, (aL® + Bsin 072 k')ef;]2 . (5.24)
e

The parallel and perpendicular scattering efficiencies become

S =|ejaja+ Bsin’ B2]cos @ + e efsin /2 cos &2 sin 6} (5.25)

and

S, =|erala + psin*or2])® . (5.26)

For the extraordinary phonon with displacement perpendicular to the c-axis and along the x-axis

£ =(L0,0)
and
B — -Bcos b2

Th. scattering coefficients are

S = [e," affcos 8/2sin /2 cos @ - ef e {@ - Bcos? 6/2)sin 6}2 (5.27)
and
S, = |erapcos 6/2sin 6/2)7 (5.28)
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The scattering cfficiencies for the ordinary phonon are the same as for the case with the predominate
electrostatic forces and are given by Egs. (5.22) and (5.23).

5.4 Scattering Efficiency, NaCiO,

The value of the scattering efficiency lies in the ease of identifying the particular vibrational species in
the Raman spectrum. The C,, uniaxial crystal of Sec. 5.3.2 is an illustration of this property. Given in this
section are the scattering efficiencies for crystalline NaClO, and we will illustrate how the various vibra-
tional species can be identified from the Raman spectrum.™

Crystalline sodium chlorate, NaClO;, belongs to the cubic space group T (P 2,3) with 4 molecules per
primitive cell.* From Table [ it is seen that the F vibrations are simultaneously Raman and infrared active
while the A- and E-species vibrations are only Raman active. Therefore, the scattering efficiency is given
by Eq. (5.8) for the F phonons and by Eq. (5.1) for the A and E phonons. The Raman tensors for crystal
symmetry class T of Table I are repeated here to be

a - - b - . - by3
A =]. a . [:E=}|- b RS . —b\’3

Fx)={- « d;Fyy=|- -« -LiFz=|{d . - . (5.29)

For right-angle Raman scatteriny the notation describing the incident and scattered polarizations is as
follows."’ For example, y(xz)x indicates a measurement of the Raman tensor element R, scattering along
the x-crystallographic axis with light incident in the y direction. The subscripts of the R, -tensor element
indicate that the incident light is plane polarized parallel to the x axis and the scattered light is plane
polarized parallel to the z axis.

Using Eqs. (5.1) and {5.8) and the Raman tensors of Eq. (5.29), we can show that the spectrum z{yx)y
will contain only the F(z) mode corresponding to transversely polarized phonons. The polarization veclors
of the incident and scatlered light are & = (0,1, 0) and &, = (1, 0, 0), respectively. The scattering geometry
is shown in Fig. 16. Using Eq. (5.1) and the A and E matrices of Table | the scattering efficiency will be

S=AleR, e =A00-00)=0 ,

yx T

since the R,, element of the matrix A + E is zero. For the F matrices, Eq. (5.8) is the scattering formula
since these vibrations are polar. From Eq. (5.8) the scattering is

S = Alef(Ry & + R & + R )], (5:30)
where

(s 0,__]-‘L);'=(0,_L’_L) to=
g ( i) TR R

For the longitudinally polasized phonon, &', Eq. (5.30) becomes
S° - Alel (Ry, & + Ry, &4 + Re, ED e = %dz

The first term vanishes because £ = 0, the second term is zero because RY, = 0in F(y)and the remaining
term is nonzero. This shows that only the F(z) vibration will be excited.
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Similar calculations will show that the spectra z(xz)y and z(yz)y will contain F(y) and F(x) modes,
respectively, corresponding to both longitudinal and transverse phonons.

The A and L modes are not infrared active so that the scattering efficiency will be given by Eq. (5.1).
Let us take & = (1, 1, 0) and &, = (1, 1, 0), then only the E vibrations will have a nonzero scattering
efficiency and the E species can be identified from the z(y’x’}y” spectrum where x* and y’ are axes
459 relative to the x and y axes and rotated about the z axis. Spectra measured for & = (1, 0, 1) and
& =(1,0,T),and & = (0,1, 1)and &,_ = (0, T, 1) will also yield only E-species vibrations. For NaClO; one
cannot excite only the A vibration. The spectra z(xx)y, z(yy)x, and x(zz)y, for example, will contain A + E
and by comparison of these spectra with the z(y'x')y’ spectrum (E species) the A vibrations can
be identified.

6. Prediction of Raman Spectrum of NaC10,

The number and symmetry species of the Raman- and infrared-active modes in jonic crystals can be
predicted using the factor group analysis and correlation method as outline in Sec. 5.1. This determination
will be demonstrated for the case of sodium chlorate.

As stated in Sec, 5.4, NaClO; belongs to the cubic space group N° 198, T?, (P 2,3} with 4 molecules per
primative cell. The site symmetries™ of the sodium and chlorate ions are both C,. The point symmetry of
the free chlorate ion® is C,, and the factor group symmetry is T corresponding to the space group T%, The
NaClO; molecule will be decomposed into a menatomic ion (Na’) and a polyatomic ion (ClO;) for the
analysis that follows.

6.1 Chlorate Ion, Internal Vibrations

The free chlorate ion of C;, symmetry is to be correlated with the species of the siie group symmetry
C; and the factor group symmetry T. From the character table corresponding to C,, symmetry, Table H, it
can be seen that the translatory modes belong to species A; and E and the rotatory modes belong to
species A, and E. The correlation C;, — C; — T is shown in Table IIl. The published correlation tables of
Fateley et al.?? were used for this step but the character tables® of C,,, C;, and T could have also been
used, The free chlorate ion has six (3n-6 = 3 x 4 -~ 6 = 6) internal modes of vibration consisting of four
frequencies of two different symmetry species.’® These internal modes are labeled vi(A,). v,(A,), v4(E),
and v,(E) and are shown in Table 1I]. The rotatory and translatory external frequencies are also shown in
the table. From the last column of Table lil it is seen that the frequencies and symmetries of the internal
mades of the chlorate ion in the crystal will be

r

it

mernal = 2A (v, va) + 2E(v3, v)) + 6F (v, v, 2 vy, 2vy) . (6.1)

6.2 Sodium Ion Vibrations

The symmetry species of the sodium ions could be determined using the procedure of Sec. 6.1 but it
will be instructive to use the method of Fateley et al.”? Identical results are obtained by either method but
the bookkeeping is easier by the Fateley method.

The site symmetry of the sodium ion is C; and this is to be correlated with the factor group symmetry
T of the crystal. This correlation is shown in Table IV. The columns headed {7, 7, C, a;, a5 + ag are used
in checking the correlation method. The number of translations corresponding to symmetry species y is
indicated by t. From the C; character table,”* a translation in the z direction (T,} will correspond to the
A species; thus the 1 under t¥ in Table [V. The degrees of freedom for species ¥ are given in the first
column labeled £7 (= nt"), which is the number of translations times the number of ions per unit cell. For
the A species we have {7 = 4 x 1 = 4. From the Cj character table the E species corresponds to two
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Table IIl. Correlation diagram for the chlorate modes of
sodium chlorate.

Frec ion Site symmetry  Factor symmetry

Cyy G
try, vy, T,) A,/—A-——A (v, vy)
R, Ay ><E vy, ¥y)
g v M(T,, T (R, R)) E——————E=== FT, R, vy, vy, 2¥y, 2¥;)

Uinvernat = 2A + 2E + 6F

Table IV. Correlation diagram for the sodium ion modes of
sodium chlorate.

L U N T € g =a,
i1 A A 1 T=1+0
§ 2 E E 2 1-0-1

translations (T, and T,)sot” = 2 and f7 = 4 x 2 = 8. As the first check, the sum of the degrees of
freedom for each species must equal the total degrees of freedom for all the ions in the unit celt (4 Na ions
x 3 degrees per atom = 12 total degrees = 4 (A species) + B8 (E species) = 12). The column labeled C,
gives the degeneracy of the species {. The usual convention is used (A, B — 1, E — 2, F — 3, etc.). The
columns labeled a, and a; indicate the number of lines originating from species A and E and terminating
on each species under T. In the first case, it is seen thata, = 1 and ap = 0 with the sum given by a,. In
group theory language, a; = a, + Ag are the coefficients relating the irreducible representation to the
reducible representation. Another way of expressing it is that a; is the number of lattice vibrations of the
equivalent set of atoms or ions in species { of the factor group. The total number of vibrations of the
equivalent sodium ions will therefore be

Fetiom = > 2:- 4= 1A + 1E + 3F . (6.2)

a3
L3

As a check, the sum
>

must equal the total degrees of freedom of the sodium ion. From Table IV thissumis1 x 1 + 1 x 2 + 3 x 3
= 12 = 3 x 4. This example illustrates the value of the internal checking capability of the Fateley method.
This same procedure will now be used for determining the external vibrations of the chiorate ion.
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6.3 Chlorate Ion External Vibrations

The site symmetry of the chlorate ions are C,, the same as the sodium ions. This means that the
correfation table for the chlorate ion will be the same as that given in Table IV and the chlorate ion
external vibrations will be of the same form as Eq. (6.2). We have for the chlorate ions

Foo, = A +E +3F . (63)

6.4 Rotatory Spectrum

The frequency spectrum arising from the rotatory motions of the sodium and chlorate ions can easily
be predicted by using Table IV. From the character table for point group C, it is seen that species A
corresponds to the R, and species E corresponds to rotations R, and R,. The character table for the
rotatory motion is identical to Table IV but with t” replaced by R? indicating the rotational motion
corresponding to species ¥. f¥ will now be the total rotational degrees of freedom for each species. For the
example illustrated here

Nir=12
P

¥

Because of the similarity of the correlation tables for the translatory and rotatory motions we will use
Table 1V. The rotatory spectrum for the sodium and chlorate ions will be

I,=A+E+3F . (6.4)

The internal check on the accuracy of Eg. (6.4) is the same as that given in Sec. 6.2.

6.5 Acoustical Vibrations

From the character table of the point group T the three pure translations of the lattice belong to the
species F. For the Raman spectrum we are interested only in the optical vibrations and the pure transla-
tions correspond to acoustic modes. We therefore substract the acoustic modes from the translational
modes,

6.6 The Spectrum for NaClO,

The total vibrational spectrum is given by Egs. (6.1), (6.2), (6.3), (6.4) and the acoustic modes; the
results are summarized in Table V. The lattice vibrations are the sum of Eqs. (6.2) and (6.3). The infrared
and Raman activities, indicated in the last column of the table, are determined by consulting the transfor-
mation properties of the translational unit vectors and their direct products as listed in the character table
for point group T. From the character table it is seen that only the F species will be infrared active while
the A, E, and F species will be Raman active. [t should be noted that only the F species are simultaneously
infrared and Raman active. The results of the factor group analysis indicates that there should be at least
24 Raman lines in the spectrum. The analysis does not predict the additional number of lines to be
expected because of degeneracy removed by the electrostatic forces for the F species. The use of several
scattering geometries can sometimes assist in identifying the TO and LO modes as shown in Sec. 5.4.

Shown in Fig. 17 is the Raman spectrum of NaClO; taken by Hartwig et al.”> Similar spectra have
been measured by She et al.** and Nicola et al.”” The scattering geometry of Fig. 17(a) is (y’x’)y” and the
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Table V. Number and symmetry of the Raman- and infrared-
active vibrations for crystalline NaClO,.

Crystal Lattice Acoustical Intramolecular Spectral
symmetry vibrations vibrations Rotations vibrations activity
T T
A 2 1 2 R
E 2 1 2 R
F 6 1 3 6 R, IR

Table VI. Raman-shifted frequencies in crystalline NaClO,
at 294°K.

Frequency

shift

fem ') Symmetry Species
65 E m’
73 F(TO) m
77 F(LO} m
84 A m
93 F m > Lattice modes
120 F 3 2A + 2E + SF
126 F s

128 F ]

132 A m
177 E m

192 F w Retation

482 E 5 Intramolecular
488 F s l E + 2F

619 A s

624 F(TO) ] } Intramolecular
629 F (LOY s A+ F

720 F w

919 A w } Rotation

932 A s

937 A+ F(TO sw Intramolecular
940 F L) w A+F

957 E m

966 F m Intramolecular
986 F(TO) m E + 2F

1025 F(LO) m

1062 E w .

1085 F w } Rotation

* Approximate relative infensities: weak (w), medium (m), strong (s).
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analysis of Sec. 5.4 shows that the resulting spectrum will correspond to E vibrations. The geometry of
Fig. 17(b) is z(xx)y and corresponds to A + E vibrations. Comparing {a) with (b} one can identify the A
modes. The scattering geometries of (c) and (d) will cxcite F (TO) and F (LO) modes, respectively. By this
procedure each of the Raman lines has been identified and the results®® are summarized in Table VI,
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Figure 13. Angular dependence of phonon frequencies in quartz from Ref. 20.
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Figure 14. Feynman diagram of the Raman effect in crystals.
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Figure 16. Scattering geometry for measuring the z{y,x)y spectrum.
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Figure 17. Raman spectra of NaClO,. (a) z{y'x’)y’ spectrum showing E phonens. (b) zlxx)y, cor-
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