skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Satellite power system (SPS) brightness due to reflected sunlight

Technical Report ·
DOI:https://doi.org/10.2172/6991925· OSTI ID:6991925

The development and operation of a Satellite Power System would place very large structures in orbit around earth for several decades. Sunlight reflected off such structures, particularly specular components from large flat areas, is expected to create ground illumination that will attract observers. In order to assure that this illumination does not exceed the irradiance tolerances of the eye, reflections from these satellites must be carefully controlled by vehicle orientation and surface specifications. The solar power satellite (SPS) at geosynchronous earth orbit (GEO) has 55 km/sup 2/ of glass covered solar cells that are oriented normal to the sun, as well as a 1 km/sup 2/ microwave antenna. Transportation of construction materials from low earth orbit (LEO) to GEO requires 23 Orbit Transfer Vehicles (OTVs) that have 1.6 km/sup 2/ solar panels oriented normal to the sun during their 6 month transits. The Staging Base (SB) at LEO, that accommodates OTV fabrication and cargo transfer, consists of 0.5 km arms protruding from a .44 km/sup 2/ open grid aligned with its orbit plane. Diffuse reflections would make the SB/OTVs readily discernible in the daytime and the OTVs and SPSs observable all night (except during eclipse). Sporadic specular glints would appear on the ground from the OTVs and SPSs near the midnight meridian, from the solar panel surfaces of OTVs during LEO fabrication around midday, and from OTVs near LEO at dawn and dusk. The ground level irradiance has been evaluated for several unusually bright configurations using the present system design. Procedures and results are presented and discussed.

Research Organization:
Boeing Aerospace Co., Seattle, WA (USA)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-31-109-ENG-38
OSTI ID:
6991925
Report Number(s):
DOE/ER-0081
Country of Publication:
United States
Language:
English