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Electronic Behavior of Highly Correlated Metals
Ariel Reich

ABSTRACT

This thesis addresses the question of the strongly interacting many-body problem: that
is, systems where the interparticle correlations are so strong as to defy perturbative
approaches. These subtle correlations occur in narrow band materials, such as the
lanthanides and actinides, wherein the f-electrons are so localized that a variety of new
phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As
well, one has the alloying problem, where local interactions are paramount in determining
the overall behavior. The technique employed in dealing with these systems is the Smail-
Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms,
coupled with periodic boundary conditions, is solved exactly. This islla.ntamoum to solving
a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical
overhead is further reduced by employing the full space group and spin symmetries. By its
very nature, the Small Cluster method is weil abie to handle short-range interactions, as
well as the combinatorial complexity of the many-body problem, on an equal footing. The
nature of long-range order and phase transition behavior can not be incorporated, but
sometimes clues as to their origin can be discerned. The calculations presented include: a
two-band Anderson model for an interrm~diate-valence system, wherein photoemission and
fluctuation behavior is examined; a single-band Hubbard model for a temary alloy system,
such as copper-silver-gold; and a Hubbard model for a heavy-fermion system, wherein

Fermi surface, transport, magnetic and superconducting propertes are discussed.



To my father,

who did not live to the see this day;
and, my mother,

who might not have always understood,
but was always supportive.



Acknowledgments

I wish to acknowledge the contribution and encouragement of the following people:
Daryl Chrzan, Changfeng Chen, Cesar Proetto, Erik Sowa, Randy Victora, as well as the
rest of the solid-state theory group at Berlceley, the staff and students at the Nordisk
Institut for Teoretisk Atomphysik (NORDITA) and the H.C. @rsted Institut in
Copenhagen for their gracious hospitality during my year in Denmark, and last, but not
least, I wish to €Xpress my enormous debt of gratitude to my thesis advisor, Leo Falicov,

for his invaluable guidance and friendship throughout these graduate years.



Table of Contents

ACKNOowledZementS. . coiviiniimiiiiiieiniiiii e i
Table Of CONMIENES. .. cieeiiieiiirini it aa et e e e saaaa s ii
Chapter 1. Introduction to Highly-Correlated Electronic Systems.......cocvuuvinnnne. 1
L INtroduction.....c..ccceiiiiiiiiiiiiiiiii i s 1
11. Physical systems with large many-body correlations...................... 2
A. Heavy-Fermion and Intermediate-Valence Behavior........... 3
B. Alloy Behavior.........ccocciiiiiiiiiiiiniiiriciiicerccreeeeee 6
II1. Survey of theoretical approaches to many-body syster.ns ................... 8
IV.Small Cluster approach........ccccceeeememmiiiiiiiiiienieeenrnrisisiens 10
A. Space Group SYMMELIY......ccceiremrnnrreierieioreniirnnane 12
1. A four-site fcc crystal example.......ccoeenereennnnnens 13
B. Spin SymMmMetry......cccoiiiimniiniiiniiciniicmmennneersmeessnes 15
V. Summary of Thesis.......... eeeretrereeaenre e erreeate s banseanestaeanarnanan 17
VI REferences..oociiiiiiiiiiiiiiii et 18a

Chapter 2. Calculation of Fluctuation and Photoemission Properties in a Tetrahedral-

Cluster Maodel for an Intermediate-Valence System.........ccceeeveeivvrennanee 19
I INtroduction. cvici i iuiiciiiniinniiiic e e ee e 19
II. The Hamiltonian..........coooiciiiiiiiiiii it e eeans 20
III. Method of Calculation.......cc.cceiiiiiiiiiieeniiciiinininicrice e ccnonee 22
IV RESULLS ..t e 25

A. Valence — "f"-0CCUPANCY.....coveiiiriiiiiniieennersniiinennenes 25

B. Intra-atomic charge fluctuations............c.ccvevvvrnrnunnen. 26

C. Thermmodynamic behavior........c.coococoieiiiiiiicniin, 30



D. Photoemission and Inverse-Photoemission results............ 32
V. ConClUSIONS. ittt cee e caeiie et etae it s b eesaearamentasnes 36

VL RO OIS i iiiiiiiiininrininiiitesetnsenrensuaananasenntancacantananenneanenann 37

Chapter 3. Many-body Tetrahedral-Cluster Model for Binary and Ternary Alloys..39

I, Introduction.......ccooiiiimiiiiiiiiiii 39
II. The Hamiltonian.........ccoviiiiinniiie, 40
III. Method of Calculation.....c.ccocoiviimiiiiiiiiiiiniiic e, 43
IV RESUILS ..ot 4

A. Zero-Temperature results — compound stability................ 44

B. Thermodynamic behavior........c.cccoociiiiiiiiiiniiniiinnnnnn. 48
V. Conclusions.....ccccvvviiniiiininnniinieiciineinnn e eeeeaeeet s 56
VL REfeTENCES. .ottt et aa e 57

Chapter 4. Heavy-Fermion System: an Exact Many-Body Solution to a Periodic-

Cluster Hubbard Model........coooooiiiiiiiiiiiiiiiiicen e, 59
I Introduction. i 59
II. The Hamiltonian........coeoriiiiiiiiiiiii e e 60
III. Method of Calculation.......cc.ceriiemiciiiieiiiiene e e 64
IV RESULES .t e e et e aae 69
A. Many-body spectrum of sStates..........c.cccocicemreenircraranes 69
B. Fermi Surface behavior........ccocciieiioiinnnciiiiicinnee, 74
C. Spin-Wave spectrum.............coueviene SR 76
D. Electron-Transport properties.........cccccocvicrnericcnreneacens 80

V. oM C U ST OMS vaniu i iteiiiti it teecearasrsestsssesanenetseneeenreneenns 84



VL R G IO C S . i ttiiiiunieentieriteerrreeareanaretieteresstnstesnrnatenenenseasnns 86

Chapter 5. Heavy-Fermion System: Superconducting and Magnetic Fluctuations

within a Periodic-Cluster Hubbard Model..........ccccocvvniniiiiniiniiiiinnn 88
I INtroduction.......ccoiviuiiiniiiiniiiiiiiiiinii e 88
[I. The Hamiltonian.........cccvenviiiiiniimnmnn e, 8%
III. The Gutzwiller-Projected State.........cccoucieieiiininiiniiciininiericnnn. 91
IV RESUMS. .o e 95
A. Superconducting correlations.......c.comiiieiiiiinienenanans 95
B. BCS wavefunction for a finite cluster...........cccocoeeeeee. 103
C. Magnetic corTelations..........cvveveveiiininniiniininceneanianns 107
V. ConclusionS. ..o e 109

VL R OIS .ttt iiiiiiiiiiiiiiiiiiriainninreasaccaransensasacensensansonnnnnns 111



Chapter I. Introduction to
Highly-Correlated
Electronic Systems

I. Introduction

There was a saying, something to the effect that "You cannot change one thing in the
Universe without affecting every other."” This is the statement of the many-body problem —
a problem at the heart of modern physics — to take into account, in some consistent manner,
the intricate correlation between the particles in a system. This notion pervades every scale
of the quantum world, from condensed matter, to nuclear, to particle physics.

In terms of the low-energy excitations of a many-body system, one may speak of
quasiparsicles and collective excitarions. When the interactions act to merely dress the
particles, with effective masses, charges, etc., then one is talking abo'ut quasiparticle
excitations. When particles respond in concert, as for example in a plasma oscillation, then
one is referring to a collective excitation.

One of the surprising aspects of many-body physics is that initially strong interactions
acting between the particles of a system sometimes can be renormalized as weak residual
interactions acting upon quasiparticles. An example is Coulomb screening in a solid.
Therein, a negatively charged electron repels others until the positively charged shell built
up around the clectron effectively screens out its charge. This screened entity then interacts
quite weakly with other such quasiparticles, and may act in concert to build up collective
excitations: plasmons.

The notion of quasiparticles is thus an inherently perturbative notion. Systems where
perturbation theory applies are therefore referred to as "normal”. However, as Pines! states
quite clearly: "It would seem that nature does not believe in power-series expansions in the
many-body problem.” In the case of superconductivity, at the temperature where

perturbation theory breaks down, one sees the instability to Cooper pair formation, i.e. a
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phase transition takes place. Any approach based on normal one-electron states is doomed
to failure unless carried to all orders simultaneously. In this new superconducting phase,
however, one may speak of the quasiparticles as electrons with long-range order whose
energies are modified from the non-interacting case by a gap energy. The collective
excitations correspond to excitons, formed by pairs of quasiparticles, and almost
unmodified plasmons.

There are, of course, the "abnormal" systems where many-body effects are non-
perturbatively strong, and it is incumbent on the physicist to seek new tools with which to
describe the related phenomena. This thesis deals with one method in particular, the Small-
Cluster Method.

The purpose of this chapter is: (i) to. survey the physical properties of the heavily-
interacting systems under study, (ii) to give an account of other theoretical methods,
employed in dealing with these systems, (iii) to give an exposition into the workings of the
Small-Cluster approach, and (iv) to summarize the nature of the various calculations

reported in this thesis.

II. Physical systems with large many-body correlations

Most condensed-matter systems do not present very strong correlation effects, luckily
so that modern physics can avail itself of very powerful methods, such as the ab initio
pseudopotential approach, to describe & wide variety of physical systems. Simple metals,
compounds, and especially semiconductors are all finding adequate description through the
band-structure picture, with each band corresponding to a set of quasiparticle excitadons.

There are regions of the periodic table that still elude such approaches. Most notably,
there are the lanthanides and actinides, at the bottom of the table, whose occupation of the
[-levels represents the extreme limit of electon localization and correlation. There is also
the metallic alloys, which represent the two-headed problem of configurational statistics,

and electronic band structure.



Chapter 1. introduction I Highly-Conwiated Electionic Systems 3

A. Heavy-Fermion and Intermediate-Valence Behavior

The phenomena of heavy fermions and intermediate valence are related and should be
considered as part of a spectrum of behavior, which ranges in one extreme from the
almost-completely uncorrelated s-band metals, such as the alkalis, to p-band materials
such as semiconductors, to the increasingly narrow-band transition metals, until finally

arriving at the lanthanides and actinides, where the 4f and 5f electrons come into play

(see Fig. 1).
uncorrelated localized
electrons electrons
-—S—-b simple metals heavy-fermion
, regime
d semiconductors ,..:
> :
transition metals 34f,.. \
intermediate valence
'regimg N
0 U / bandwidth oo

FIG. 1. Following Fulde et. al.2 . the spectrum of metal behavior is presented as a
function of the intra-orbital Coulomb repulsion U/, for various band metals. This
diagram does not include the factor of band occupancy: heavy-fermionic behavior resulting
from near-half filling of the f-band, intermediate valence occurring at lower fillings with
the f-electrons hybridizing strongly with the conduction band.

As one could easily guess, one of the chief determining factors of this spectrum is the
occupation of orbitals of higher and higher shells, and larger angular momentum. In the
d- and f-band metals, the filling of these multiply-degenerate levels compete quite closely
with an outer s-orbital. In the crystal lattice, this outer s-orbital overlaps the most with

adjacent atoms and forms the widest bands, while the 4- and f-bands are each narrower in
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turn, and are mostly due to hybridization with the s-band. There is another feature to this
localization, and that is the increase in electron-eleciron correlation. As two electrons in the
same orbital would spend much time close together, they would exact a large Coulomb
repulsion penalty, U. The many-body interactions thus become quite strong, resulting in
many new subtle effects coining into play. One may therefore classify electrons as being
itinerant (easy to hop trom atom to atom), such as the d-band electrons in the transition
metals, or localized, as for solid molecular oxygen. In the rare earths, one may have a
coexistence of both extremes.

The itinerant electrons of the d-band transition metal series may interact to form
paramagnetic (normal), ferromagnetic aud antiferromagnetic structures3. The iatter case, as
occurs in chromium, is perceived as beiﬁg the result of band structure and Fermi surface
effects, which results in a spin-density-wave instability, with the separating »f part of the
Fermi surface and 2 lowering of the overall energy. As for the other metals, there is an
intra-site exchange interaction favoring the parailel alignment of spins, the so-called Hund's
rule, competing with the assignment of cncrgiés according to the band dispersion” The first
effect is to favor ferromagnetic order, the second paramagnetic. It is in ircn, nickel and
cobalt where ferromagnetism wins out. Place nickel with oxygen in nickel oxide, however,
and the resulting structure is antiferromagnet’ . Iere, Hund's rle assures the strong local
moment on the nickels remain, but the presence of the paramagnetic oxyg:n between the
nickels prevents electronic exchange in anything but an antiparallel configuraticn. Thus, the
system is insulating with a residual, band-structure induced, antiferromagnetic interaction.

One sees the large Coulomb repulsion from a magnetic ion leading to an interaction
which is ferromagnetic in some instances, antiferromagnetic in others, In the frce-elecon
model, a similar phenomenon occurs and it is known as the Ruderrnan-Kittel-Kasuya-
Yosida (RKKY) interaction, It is the result of a second derivative singularity ir the
magnetic susceptibility of the free-electron gas, and is oscillatory with period 2 F (thus
alternately ferro- and antiferromagnetic), and decreases asymptotically with distance as
1/r3. The idea of the magnetic f-electrons interacting indirectly through the almost-free

conduction electrons is the mechanism for making elements such as gadolinium indirect
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ferromagnets. It also leads to complicated spin arrangements in other rare-earth elements.
The intermediate-valence systems, such as cerium, represent a competition between

two f-orbital configurations, all others inaccessible due to the large Coulomb repulsion in

these localized orbitals. The f-electrons participate only indirectly, through hybridization,

in the conduction process. In the heavy-fermion materials, such as UBe_, , this f~lectron

13’
transport is somewhat less difficult, the large band masses resulting in a large electrical
resistance and heat capacity, and the residual antiferromagnetic interactions yield
susceptibilities far larger than ordinary metals. The large scaling differences between

heavy-fermion, intermediate-valence and conventional metals is demonstrated in Table I.

Table I. Experimental evidence® attestin g to the qualitative difference between heavy-
fermion, intermediate-valence and conventional metals.

Heavy-Fermion Materials Intermediate Conventional
: Valence . '
super magnet normal
conductor
UPt, U,Zn, CeAl, Ce Pd Ag
Specific Heat
coefficient 450 400 1600 12.8 9.4 0.6
¥0)
m.l/mq:)lc-l{2
s Magnetic
usceptibilit
o T 7 12 4 24 08 -
memu/mole
Room-
Temperature
Resisitivity 150 110 170 77 20 2
p -ohm-cm

There have been a variety of simple models introduced to shed light on the competition
between band structure and correlation effects. This simplification is necessitated by the
enormous combinatorial difficulties presented by full, rather than mean-field averageable,

many-body interactions. Kondo® modeled dilute magnetic alloys by coupling a conduction
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band with a sole magnetic impurity. In this way, the spin compensation of the conduction
electrons near the magnetic ion could be described. Straightforward as this model may
seem, it took the advent of renormalization group techniques to account exactly for the
transition to Kondo behavior. At the other extrerne, Hubbard® proposed a single-band
model with on-site Coulomb repulsion, a model whose rich magnetic structure and metal-
insulator transition behavior seems to belie its simple form. In order to answer the question
of the interplay of the s and d bands (or for that matter, s and f) Anderson’ proposed a
two-band model, with which questions of moment formation, magnetic quenching and

charge fluctuations can be addressed.

B. Alloy Behavier

The problem of predicting alloy properties between unlike metals has been a daunting
task for condensed-matter physicists. Depending on concentration and temperature
conditions, one may find solid solutions, component segregation, ordering of compounds,
structural transformations, etc. (See Figure. 2). One may pursue the problem by one of two
tacks: a classical statistical approach or quantum mechanical one. Either limit has proven
satisfactory in some physical situations; but a fully predictive theory where both statistical

and band structure considerations come into play still eludes physicists.

..Q.Q.OOOOOO oo@ooooo
. 0.6000 0. 00000
0.0 0.0 00 0.0, 0 0 00
e.0.0.0 00 000000
0. 0.0 000 0.0.0 000
00000 0.0.©,0.00
0.0 000 ©.0.0.0.0.0
00000 0.0.0.0.0.0
800000 0 0.0, 6.0°0
Q.Q.Q.OOOOOO OOOOOOOOOOO
00000 OO0 000
Cu-Ag Au-Cu Ag-Au
segregated ordered solution

FIG. 2. An example of the rich structure of alloy systems. The three metals copper, silver
and gold are so much alike, yet as alloys, Cu-Ag segregates almost completely, Au-Cu
orders in specific ratios, and Ag-Au forms the almost prototypical solid solution.
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In the former, one creates a phenomenological theory where all the quantum mechanics
is embodied into effective pair-pair interactions (or even higher order groupings) and then
classical statistical mechanics calculations yield the configurational entropy.

In the simplest example, following Kittel and Kroemer3 , one ascribes binding

energies between nearest-neighbor atoms of types A-A, B-B and A-B binding energies

“si“pp

the concentration of element B, it can easily be shown that the mixing energy, uM, obeys:

and u 48° respectively. In a crystal structure with p nearest neighbors, and x

1 1
u, = —px(l—x)[uAB —E(“M + Uy )] .

M 2 2.1

The mixing entropy per atom is:

o, =—[(l-x)log(l-x)+xlogx]. 2.2)

M
The free =nergy of mixing can be expressed as fM =uy —T0y, with 1T the reduced
temperature. A system is said to segregate in a composition range where the free energy
-has negative curvature, since the system wouid find segregating into a linear combination
of various constituents outside of this range more energetically favorable. This region is
known as a sofubility gap. Bearing this in mind, one can establish an upper limit for the

onset of the gap at a temperature of:

1 1
Tu =ZP[HAB_5(1‘AA+“BB)]' @23)

which aptly demonstrates the competition between binding like and unlike species.

A variety of approaches have been proposed to handle alloy behavior. They proceed
from two tacks: local or band pictures. In the local picture, where short-range interactions
can be best handled, one has the cluster-variation methodm'11 (CVYM), wherein one can
extend the above model to include second-nearest neighbor interactions, effective three-
atom (ring) interactions, and even four-atom (tetrahedron or square) interactions. By virtue
of all the adjustable parameters involved, they are set to fit best the experimental phase
diagrams.

The other limit is to consider the alloy amenable to band description. The question at
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hand is which quantity, relevant to the pure metals, must be suitably averaged. In the
virtual crystal approximation, one assumes the overall potential to be the weighted average
of the pure metal constituents. In the Coherent Potential Approximation (CPA) introduced
by Soven and by Velicky et.al.u, wherein the self-consistent band energies are acquired
by assuming all atoms scatter independently, an averaging of the pure metal Green's
functions.

In the limit of very dilute alloys, one can appeal to perturbation theory to treat the
impurity atom as a perturbing potential, whose effects are screened quite effectively past a
distance of one lattice unit'>. The other extreme, taken up by Terakura er. al.Mis o
perform ab initio Local Density Approximation (LDA) calculations on a few selected

ordered compounds, compare the relative energies of formation, and extract effective

"forces"” from them.

There have been attempts to connect the band-structure and cluster expansionsls'm, an
example being the Cluster-Bethe lattice approach. The Bethe lattice, which is coupled here
1o a central cluster whose configuration is varied, forms a branching ringless tree, which
though unrealistic, provides an easily handled continuum and represents some extension
over no band structure at all. |

The Small Cluster approach, described below, offers a compromise between statistical

averaging and band structure, offering a little of both.

II1. Survey of theoretical approaches to many-body systems
. The . >rmion many-body problem is very much a problem onto its own and has
occupied a lot of the literature. Perturbation expansions, based on Feynman diagrams and
Green's function approaches, are usually straightforward to carry out, though the question
of convergence can be quite difficult to answer.
For example, consider a Hamiltonian H = H otV wheee H o is the one-electron
part and the interaction,V, is bilinear in the fermion fields. The one-particle Green'’s
function, G(k.,!), being the probablility that a quasiparticle, at time 7, will have

1
wavevector Kk, can be shown "to obey:
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t
<¢°|T(ck(: )ck(O)S )l¢o>

Gt )=-i
<d IS |D >
o o

3.1

where | @ > is the ground state of A 0 T is the Wick time-ordering operator, and the S-
o

matrix is given by:

n oo
s =2('r11) J‘ jdtl wdt, T (V@ W) V@),
n - 0O

00

(3.2)
This of course assumes that there is no symmetry cross-over from the non-interacting to the
interacting ground state, and that the series converges. One can see that only in the regime
where (3.2) can be expanded unambiguously does the quasiparticle picture have meaning.
Beyond that, one must resort to different approaches.

Without the conventional tools in hand, some theorists have sought to exploit various

properties of these heavily-interacting systems. For the actinides and lanthanides, the large

18, where

multiplicity of the f-orbitals has encouraged some to examine 1/N expansions
N is the number of orbitals per site. That is to say, seven orbitals is "close enough” to an
infinite number of degrees of freedom that one czn expand about the infinitely degencrate
state, an analytically soluble limit.

With the very large Coulomb energies effectively forbidding double occupation within
a site for the heavy-fermion materials, a new statistics is suggested which is even more
restrictive than fermionic. With this in mind, Coleman'? and others have pursued the
slave-boson approacn, wherein a fictitious boson is introduced to satisfy the book-keeping
of single electron occupancy, and together, the bosons and electrons can yield to
convertional field-theoretic approaches. The problem is that subsequent application of
mean-field theory to the bosonic degrees of freedom can lead to nonsensical results.

A similar tack is the projection process first proposed by Gurzwiller?®, which is to take

the non-interacting many-body wave function, that is to say, the produc: of one-electron

functions up to the Fermi level, and then project out any part ccntaining doubly-occupied
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sites.

Others have elected to run simulations on small clusters of atoms. This includes the
present author, and the details of the method are the subject of the next section. There is
however, in addition to the exact diagonalization approach, a Monte Carlo technique first
introduced by Scalapino et a2 They use the well-known Mewropolis algorithm23 to
evaluate numerically the action integral within the field-theoretic context. Hirsch?* was able
to refine the technique for the Hubbard model, by mapping the d-dimensional fermion
quantum problem onto a (d + 1)-dimensional Ising problem, whose updating procedures

in a Monte Carlo scheme are much more well-defined.

III. Small Cluster approach

The small cluster approach proceeds from the premise that working with a crystal of
N-atoms, with periodic boundary conditions imposed, is equivalent to solving a bulk
crystal, sampled at N points of the Brillouin Zone. If this mini-crystal preserves the full
symmetry of the lattice environment, then the sampled points will be points of high
symmetry. The cluster hiearchy in the face-centered-cubic (fcc) structure is illustrated in
Figure 4. One can see the logical progression, as more and more atoms are added, to
eventually saturate the entire Brillouin Zone, starting at the points of high symmetry and
working inwards.

In the context of the many-body problem, the advantage is quite clear. In order to treat
elecuron-electron interactions non-perturbatively, one must take into account each n-
electron configuration explicitly, a problem whose scope grows exponentially with n.
Withour a stadstical approach, such a problem becomes intractable for all but small a.

The advantage of this sampling technique is fully realized when examining physical
features that depend on the high-symmertry points of the crystal, as is often the case for
electron band edges. Also, the small cluster size can model short-range interactions quite
effectively. Conversely, long-range phenomena, and in particular phase-transition

behavior, can not be modeled, but the underlying mechanisms can sometimes be discerned.
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n
S
Z
il
oo

FIG. 4. The Small-Cluster approach hiearchy for the fcc (face-centered-cubic structure).
Maintaining cubic symmetry imposes the requirements that the possible cluster sizes are
N =1,4,8, 16, 32... atoms, which corresponds (o an equivalent number of points in the
Brillouin Zone. Notice that the 8-atom and 16-atom clusters have inreconcilable k-vector

samplings, i.e. one is not the subset of the other.

11
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Although the solution of simple two-atom clusters formed the work of Falicov?’ and
Harris in 1969, and Lin® and Falicov in 1980, the method really came into its own in 1984
with the solution of a four-atom tetrahedral-cluster model by Falicov?’ and Victora. This
work is notable in its full utilization of group theory to factorize the Hamiltonian matrix into
smaller Jordan blocks corresponding to the different irreducible representations of the
underlying space group. Since then a whole series of works have been publishedzs,
covering such diverse behavior in metals as photoemission, magnetism, thermodynamics,

valence fluctuations, superconductivity, phonon processes, etc.

A. Space group symmetry

Each crysial environment presents a set of symmetry operations which leaves it
invariant. These operations include the identity element, operational inverses, exhibit
associativity, in other words, have all the properties of a group. While this is not meant to a
treatise on group theory, and while the author strongly recommends acquaintance with texts
such as Falicov?? or Tinkham:"o, a few concepts should be elaborated here.

In solid staie physics the space group contains operations which involve both point
and tanslational operations. The point operations consist of the various rotations and
reflections the crystal admits about a given basis point. The periodicity of the lattice is
revealed by its translation group. A space group is called symmorphic if it consists only of
point operations taken about a basis point. Non-symmorphic groups, which are not
considered in this thesis, include operaiions such as screw axes and glide planes which do
not fall into the previous categories.

A Hamiltonian which purports to describe a system with a given group symmetry,
must itself preserve the symmetry of that system. Therefore, wave functions following one
particular representation of that group can only mix with wave functions of that same
representation.

A familiar example from atomic physics are the spherical harmonics, Y i which

follow the representations of the full rotation group, i.e. s, p, d, f, etc., corresponding to
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1=0,1,2,3, etc. Group theory says that only functions with the same (/,;m) can mix, and

imposing a Coulomb potential yields radial eigenfunctions, which are the Laguerre

polync.mials in the hydrogen atom.

1. A Four-site fcc crystal example

A case more in line with the work in this thesis is to illustrate the results of Falicov and
Victora'® wherein they solved a four-atom tetrahedral cluster Hubbard model. Using the
second-quantization notation where Cia( Cficr ) represents the destruction (creation) of

an electron on site i, and spin g, the following Hamiltonian was imposed:

. H=H + H

d v 3.1
where
_ t
H‘ = ¢ Z cl,o Cja
<ij>o (3.2)

is the nearest-neighbor hopping, with hopping integral ¢, and

- t t
Hy =U zCiT it il
! (3.3)
is the on-site elecaon-clecaon Coulomb repulsion of swength U.

The nature of the relevant space group and its representations is presented in Chapter
II, Section III. The salient feature here is that this probiem can be mapped isomorphically
onto the problem of solving an isolated tetrahedral molecule, which is governed by the
Tewrahedral group, T, . The group has five irreducible representations: I X r 5 r 3 I‘4, and
r s and consisis of 24 operaticns: the identity (E), 3 two-fold rotations (Cz)' 8 three-fold
rotations (C 3). 6 reflections () and 6 improper four-fold rotations (S 4)» which are

written in cycle notadon in Table II.
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Table II. The action of the T 4 Broup operations on the four-atom cluster.

£ F c S
(1)(2)3)4) (234) (124) (12) (1324)
_Cz— (243)  (142) (13) (1423)

(12)(34) (134)  (123) (14) (1342)
(13)(24) (143)  (132) (23) (1243)
(14)(23) (24) (1234)

(34) (1432)

With this table, and the character table (Chapter 2, Section III, Table I) one can immediately

write the (unnormalized) projection operator for the 1"5 representation, say:

ZPR(FS) =1-(12)34)-(13)(24)~(14)(23)
R
—(12)=-(13)-(14)-(23)-(24)-(34)
+(1324)+(1423)+(1342)+(1243)+(1234)+(1432)
(3.4
From (3.4) it is immediately straightforward to isolate the states for, say, four electrons
following the l'5 representation. Stardng from some simple four-electon states such as:
t t t t
it 1L G2t G310
ettt ¢ !
1T 21 "3T Tat
tt

and ¢ ! c t c c
1 I O A 2 R O 3.5)

one can form a Basis for the 31' (spin triplet) representation by projection thus:

¥ >e ctel
¥> ZP(F” €1 St

t ottt tot ot ot ottt et tot
( CASTRLI RSVt SR RIS RS VAP RTINS RPVRST A

et ¢+ttt + +_t t_ t ot
Tlefreliefes ve el e -eencacyy e e ey
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(3.6)
t ot t t
I‘{‘2>oc ER: PR(TS)cchzicaTc“

L.ttt _t ST T TP I U SN S SR S
=7(C1TC2L-C3TC4T LIV LI R R PIRST RSy ‘czTclicatTcsT)
(3.7)

t t t ot
l‘{‘3>oc ER: PR(rs)CITCN'CZTC4T

Lt ottt ot ottt tot ottt
-ﬁ(cchliczTcﬂ MEPERPYAR S R LA TR A (P AP TAS RS Y
toot ot AP TN SN S S S S S IO I
L TRPC A I VP LIt R I R TASE AT +czTczic4Tc3T)
(3.8)

(It is implicit that the creation operators are zcting upon the vacuum, | 0 > ) Applying the
Hamiltonian (3.1)—3.3), one can therefore show the following relations hold:

H1Y >= 2f21 1% >+U 1¥ >
! : ! 3.9)
HIY >=22t l‘l‘3>
2 (3.10)
HI¥,> = 2f20 1% >+ 2f20 19,540 19> -

which, by solution of the secular equation, yields the energies as roots of the cubic:

3 2 2 2 2
E -2UE "+E (U =16t ")+8 U =0 (3.12)

B. Spin symmetry
In this thesis, all models considered are of a basis of singly degenerate, spherically
symmetric orbitals, i.e. s-orbital like. Thus, the angular momentum of the many-body
wavefunctions are pure spin, with no orbital angular momentum coming to play.
It is rather straightforward to arrange to isolate states with a given z-projection of
angular momentum, i.e. separating the wavefunction according to the different values of

np-np =2 Jl. To exploit the full spin symmetry, a bootstrap process is employed.
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Denoting the angular eigenvectors for one spin 1/2 particle as
11 1 -1 |

|7’7>='+> s IE’T>= -

’

(3.12)
it is straightforward to show?! that additional particles can be added on in the following
manner:

1

IS+5.S+-;-> =1§,8>®@1+>

1 1 28 1
18-=,8—=> = /—-—-—IS,S>®I—>— 15,S-1>®@ | +>
2 2 25+ 1
JZS+1 (3.13)

where 1], Jz > refers to a state with total angular momentum J, and z-projection JZ.

Table III. The number of representations of a given spin for 1-8 spin 1/2 particles.

N S 0 12 2 32 2 52 3 IR 4
1 1

2 1 1

3 2 1

4 2 3 1

5 5 4 1

6 5 9 5 1

7 14 14 6 1

8 14 28 20 7 1

As one can see from equation (3.13), a state of spin J = S for N particles gives rise to
states of spin J =S - 1/2, S + 172 for N+1 particles. This procedure results in a multiplicity
of angular eigenvectors as prescribed in Table III. With the multiplicities roughly doubling
with each additional particle, one sees that this method becomes quite cumbersome for all

but a small number of particles.
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IV. Summary of Thesis

In Chapter 2, an exact solution of a four-site tetrahedral crystal model, the smallest
face-centered cubic crystal, is presented in the case of an intermediate-valence system. The
model consists of: (a) one extended orbital and one localized orbital per atom; (b) an
interatomic transfer term between extended orbitals; (c) an interatomic hybridization
between the localized and extended orbitals; (d) strong intra-atomic Coulomb repulsion
between opposite-spin localized states; and (e) intermediate-strength intra-atomic Coulomb
repulsion between the localized and extended states. These competing effects are examined
as they manifest themselves in the intermediate-valence, photoemission, inverse
photoemission and thermodynamic properties.

In Chapter 3, an exact solution of a four-site tetrahedral crystal model with periodic
boundary conditions, the smallest face-centered cubic crystal, is presented in the case of
binary and ternary alloy systems. The model consists of (a) a single s orbital per site with
nearest-neighbor-ogly hopping (b) a Coulomb repulsion-between electrons on the same
site; and (c) a single electron per atom. The model, which represents Cu, Ag, Au, and their
‘alloys, shows all the segregational, solutional, and compound-forming tendencies of the
real systems. Such characteristics are absent in non interacting independent-clectron
approaches. Calculations demonstrate extreme sensitivity to the input one-electron
parameters, with minor differences resulting in widely different alloying properties.

In Chapter 4, an exact solution of an eight-site crystal model with periodic boundary
conditdons, a small face-centered cubic crystal, is presented for the case of a heavy-fermion
system. The model consists of: (a) a single, fully symmetric orbital per site, with nearest-
neighbor and second nearest-neighbor hopping; (b) an infinite Coulomb repulsion between
electrons on the same site; (c) antiferromagnetic superexchange interactions; and (d) a
nearly-half-filled band (7/8 electron per site). Applicaton of group-theoretical techniques
yields a sct of energies which are at most (analytic) solutibns of quadratic equations.
Depending on the sign of the nearest-neighbor hopping parameter the ground state exhibits

cither a huge accidental degeneracy (the heavy-fermion case), or simple, uniform, saturated
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itinerant ferromagnetism. The model is, at once, asy to handle and yet rich in structure.
Fermi surface, spin-wave, and electron transport properties are investigated, and
consequences for real systems discussed.

In Chapter 5, the model of the previous chapter is further explored. Band fillings necar
half-filling (six, seven and eight electrons per cluster) are examined. Superconducting and
antiferromagnetic correlations are studied and compared with the predictions of the non-
interacting limit. The suitability of various approximations (the so-called BCS and

Gutzwiller ground-state wave functions) are quantitatively estimated.
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Chapter II. Calculation of
Fluctuations and
Photoemission Properties in a
Tetrahedral-Cluster Model for
an Intermediate-Valence
System

1. Introduction

The lanthanides present an interesting physjcal situation in which the f orbitals, lying
close to the Fermi level, can interact stongly with the conduction bands, the phenomenon
being known in the literature as Intermediate Valence.!* This situation arises when two
electron configurations, (4f )" and (4f )"+1, are very close in energy, but differ greatly
from any other-due fo strong Coulomb electron-electron repulsion. These f~orbitals can,
however, hybridize with completely delocalized conduction states.

The many-body asﬁects of the electronic structure of cerium have been investigated by
many group53'5'6. In its fullest sense, these effects cannot be derived in a Local-Density
Approximation (LDA), although calculations incorporating various screening effects on the
4f electrons have been published7. It is therefore a challenge to include more throroughly
the many-body effects. The approach taken here is the exact solution of a limited-size
crystal with all many-body interactions.

The crystal under consideration here is a tetrahedral grouping of only four atoms with

8 of

periodic boundary conditions, which is the smallest non-trivial fcc crystal, the structure
¢- and ¥cerium. This small-cluster approach, used successfully before to explore
photoemission bchavior9 in the ransition-metal nickel, was applied by Parlebas er. a! 10
to the present problem. The extent of their investigation was only 1o map out the rather
large phase space offered by the choice of coupling parameters, and the results indicated a

model dominated by one-electron effects.
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The calculation on this small cluster is exact, but the Brillouin Zone is restricted to four
poimsl 1. the center of the zone, T, and the centers of the three square faces, X. This
approach yields good results for uniform and very short-range correlation behavior, and is
therefore meaningful for photoemission and inverse-photoemission processes. The
bandwidth is one of the adjustable parameters, and can be chosen to fit best the
experimental data.

The model is inadequate, however, in its weatment of the conduction band, since it
yields a series of distinct and disconnected levels, whereas cerium is known to have a wide
s - d band, with 4f electrons located near the Fermi levell2. With only nearest neighbor
interactions coming into play, phenomena depending on intermediate and long-range forces
are poorly mimicked. Thus, one would not expect to see phase transitions, although one
might see indications of how they might occur.

In this chapter, the behavior of the tetrahedral cluster with total populations of three,
four and five electrons is analyzed. Four electrons in the crystal correspond to one electron
per atom, a situation similar in some sence to ceriurn, which has one of its four outer

clectrons participating in hybridization. In this approach, one can study the value of the

intermediate-valence, photoemission spectra, and thermal properties.

II. The Hamiltonian

The tetrahedral cluster has four sites labeled i=1,2,3,4. Two types of orbitals are
proposed, each being either spin up or down, denoted with subscript 6. The creation
(destruction) operator for an extended coﬁducn’on-likc state is written as cf,‘o-( Cig )
and that for a single f-like state, denoted by f Tio( S ig )- The latter is a localized state,
but is not a true f-state, since it has positive parity and a degeneracy of one. This feature
makes the problem tractable. The Hamiltonian is composed of five parts:

H=H +H +H + H + H 2.1)
c / hyb r-r c-f
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where

H = -t 2 CT c 2.2)

< i,j:o ic J o
i®j
H =E 3 f' g 2.3)
f 4 i 0 o
+
H = v 2 (car f + f [4 ) (2.4)
hyb ij.o ic Jjo ic jo
i #2)
+ +
H =U X f 5 f' 7 @.5)
Ir-r i it il il
1 t
H =G 2 c ¢ f f (2.6)
c-f i ;g {0 ioc io o

These terms are:

(a) a "hopping" interaction (2.2) between conduction states on adjacent sites, with
mansfer integral 7 ;

(b) an occupation energy (2.3) for the f~orbital, whose strength E 0 is measured with
respect to the center of gravity of the conduction band states;

(c) a hybridization interaction (2.4) between the conduction and f-states on adjacent

sites (crystal symmetry usually forbids on-site mixing”),

with strength dependent only on
hui, as shall be shown;

(d) an f - f on-site (intra-atomic) Coulomb repulsion (2.5), with U > 0;

(e) the ¢ - f on-site €oulomb repulsion (2.6), with G > 0. The model presents some
limiting cases which permit analytic solution. If (2.5) and (2.6) are neglected, the
Hamiltonian becomes that of a one-electron problem; (2.2), (2.3) and (2.4) can be

diagonalized simultaneously to yield two singler and two triplet one-electron orbitals with

energies:



9
(88}

Chapter 2. Calculation of fluctuations and photoemission properties...

E =11E -3 i’\/(E +30) +36v7 ] Q@7
1z 2 0 0 )
and
1 2 2
E =—[E+ti\/(E-t) + 4v ] 2.8)
3% 2 0 0

respectively. These orbitals can be occupied independently. If (2.4) and (2.6) are
neglected, the conduction and f-states decouple. The conduction states are extended one-
electron orbitals [a singlet at (-3¢) and a triplet at ¢ ], and the f-states produce a collection
of atomic configurations of energies 0, £ o and 2E 0+U, corresponding to zero, one and
two f-electrons per site, respectively. If (2.2) and (2.6) are neglected, the problem
becomes atomic-like, i.e. is decoupled into four sites, with a straightforward assignment of
energies.

The parameters were chosen as follows.

(a) The transfer integral  is set to be positi\./c and equal to 1 ¢V (bandwidth 4 s | =4
eV); because 7 is positive the singlet lies below the triplet, and the conduction-band states
“pile up" at the top of the band;

(b) The f-orbital energy is set at Eo =0.75 eV, so that it lies close to the conduction
band wriplet, allowing sizeable hybridization to take place;

(c) The strong f - f repulsion, which is effectively infinite for ground state
conﬁgurationsa, turns out to be at least an order of magnitude greater than the bandwidth,
and so was taken arbitrarily to be U = 25 eV.

(d) The choice for the hybridization and the ¢ - f Coulomb repulsion is a much more

subtle question; both parameters have been left as varying.

III. Method of Calculation
The Hamiltonian presented above (2.1)-(2.6) has many symmetries to exploit, thus

permirting group-theoretical techniques to reduce greatly the size of the problem.
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First of all, the number of electrons, N, is a good quantum number. There are sixteen
orbitals to be occupied, with simple combinatorial arguments predicting 16! / (16-N)!
N! states for N electrons. In the absence of spin-orbit coupling, the total angular
momentum and its z-projection, (/, J . ), are good quantum numbers as well.

The fcc structure with four sites (four lattice translations) spans a space group with
192 operations. This group contains the inversion and has 20 irreducible representations!!
(ten at " and ten at X ) with the following degeneracies: I'l, l"l’, F2, F2' (d@=1) r12’
l"lz' d@=2), l"ls, l"ls', l"zs, 1'25', Xl’ Xl" Xz, X2', X3, X3', X, X, @d=3);
and X, X' (d=6). For spherically symmetric atomic orbitals (even parity) only five
representations remain: l"l, 1'2, 1'12, X 1 and X 2 These representations transform, under

the operations of the full tetrahedral group, T o ® the center of the tetrahedron, like the

five wraditional representations given in Table I.

TABLE I. Character Table of Td. .

1 3 8 6 6

E Cz C3 e} S4
l"l 1 1 1 1 1
I‘2 1 1 1 -1 -1
I‘3 2 2 -1 0 0
T, 3 -1 0 1 -1
I‘5 3 -1 0 -1 1

The Tdnotation is retained, with associations: I” =T' ;T =T ;I =T ;T =X
1 12 2 3 12 4 1
and l"5 = X2. A left superscript, 25+1, as in 73"‘1'1-. refers to the spin degeneracy. For

example, the the one-electon energies presented in (2.7) and (2.8) correspond to 2l",, and
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2[‘4, respectively. These energies are depicted in Figure 1.
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FIG. 1 One-electron energies (without many-body effects) for 1=1 eV, E 0= 0.75
eV. The hopping term (2.2) breaks up the four c-states into a lower 21‘1 singlet and an
upper 2l" 4 triplet. Hybridization (2.4) breaks up the f-states analogously, and mixes them

with the c-states,

TABLE II. Size of blocks of the various representations.

N Spin . L n T Ty

3 32 2 4 4 6 8
172 12 2 14 26 16

4 2 2 8 6 6 10
14 16 30 46 50
0 23 7 33 48 32

5 5/2 2 4 4 6 8

3R 14 32 40 54 72
172 46 34 86 132 120
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The multi-dimensional representations of T d—l‘3 , 1'4 and 1'5 — yield another quantum
number: the index of the funcdon within the representation. With the use of all these
symmetries, the problem factorizes into much smaller sets as shown in Table II. Thus,
group-theoretical techniques bring the size of the largest block to be diagonalized down to
132 x 132, a considerable reduction from 4368 x 4368 for the five-electron problem. It
should be noted that these blocks, when diagonalized, represent exact solutions of the

Hamiltonian (2.1).

IV. Results
A. Valence - "f"-occupancy

Intermediate-valence properties of this model were investigated first, as a function of
the various parameters. The f~occupancy, for N electrons, is defined simply as:

D YAV R 2
! 4 NG .g io ic NG

where '{’NGis the N-electron ground state. For the sake of comparison, cerium has four
electrons per atom in its outer shell; its valence is defined as 4 —n e The experimental
values of the valence are somewhat controversial> 141516 and have been quoted to range
from 3.3 to 3.7 ("f = (0.7 10 0.3) for a-cerium, and between 3.0 and 3.1 ("f =10t
0.9) for y-cerium,

Results for four electrons in the cluster (one electron per site) are presented
graphically in Figure 2. In the absence of hybridization, n = 0.5 (2 electrons in the lov\}-
lying conduction state singlet, two in the f-states) for small G values. Large values of G
favor promotion to the higher lying conduction-state triplet, yielding n ;= 0.25 for
intermediate values, and ng = 0 for large G values. As hybridization blurs the distinction
between the conduction and f-states, a smooth variation between the two extreme n h

values, for finite v, is not surprising.
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hybridization "v" (eV)

0.0 0.2 0.4 0.6 0.8 1.0
Coulomb repulsion "G" (eV)

FIG. 2 Contour plot for the f-orbital occupancy, for varying values of the on-site
Coulomb repulsion G, and hybridization v, with other parameters taken as: t = 1 eV,
Eo = 0.75 eV, U = 25 eV, Singularities occur at v=0,G = 0.50 eV and G =
0.55 eV, where there are promotions of electrons from the f-levels to the conduction-

state triplet.

Further inspectior <hows the contour corresponding 1o n = 0.33 passing through
G =0eV, v=0.5eV. The value of nf is not a monotonic function of v for small G.
B. Intra-atomic charge fluctuations
With a two-orbital per site and four-electron per cluster configuration, there are finite

probabilities for the occupation, at each site, of zero, one, two, three and four electrons. It
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can be shown that these probabilities, P", are related directly to the one-,two-, three- and

four-electron correlation functions by:

P =1-N +N - N +N (4.2)
0 1 2 k} 4
P = N -2N + 3N -4N 4.3)
1 1 2 3 4
P = N -3N +6N 4.4)
2 2 3 4
P = N -4N 4.5)
3 3 4
P = N (4.6)
4

where

NI = ; n “4.7)
N2 =Z r; n 4.8)

N = Z n n n 4.9)

n n (4.10)

and the number operators ny, (u =c¢ T, ¢
There is no loss of generality with such a choice since the states are fully symmetrized.

The results for the I'y ground state are plotted in Figures 3 and 4. These plots
show, respectively, the cases without and with hybridization. For v = 0 ¢V, a double-
step function in the f-occupancy of Figure 2 is more clearly seen, with two transitions,

corresponding to successive f-electrons being promoted to the higher conduction-triplet
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states. For finite v, the transition is once again smooth.
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FI1G. 3 Plot of the electron-occupation probabilities for 0, 1, 2 z;nd 3 electrons, fort =1
eV.Eo =075 eV, v=0eV and U =25 eV as functions of the ¢ - f Coulomb

repulsion. Note the successive steps, corresponding to f-electrons being promoted to the

conduction states.

Table III shows the values of P, for various limiting cases ( Ep << -3;, U >>
1, the atomic f-level case; Ej >> ¢, the pure conduction-band free-electron case; v=G
=0, U >>1, the unhybridized juxtaposition of free conduction-band and f-electrons:
and, a typical intermediate-valence case). It can be seen that the results of Parlebas ez. a/.!0
can now be more easily understood. The structure is dominated by one-electron terms
because the main effects of the U and hybridization terms are to reduce P3 and P4, which

are already small numbers in the free-electron case. In particular, a large U makes P4 =0.
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FIG. 4 Plot of the electron-occupation probabilities for 0, 1, 2 and 3 electrons, for ¢ =1
eV, Eo =075¢eV, v=05eV and U = 25 eV as function of the ¢ - f Coulomb’

repulsion. The steps of the v = 0 eV plot (Figure 3) are here smoothed out.

TABLE II. Electron occupation probabilities.

Atomic Free electron No hybridization Intermediate
strong Coulomb Valence
repulsion at the Fermi Level
E <« -3 v =0eV v =0.5¢V
0 ( % >>1 ) G =0 G =0
U >» 1t U =25eV U=25¢eV
Po 0 0.316 0.281 0.267
,7 1 0422 0.469 0.492
,; 0 0.211 0.219 0.215
I;' 0 0.047 0.031 0.026
l: 0 0.004 0 0
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The four-electron probability is identically zero for I'; symmetry, as the states
containing terms with electrons in each of the four orbitals of one site must be of I 301 11"4
symmetries. The Coulomb repulsion G favors the many-body states being more extended,

and thus the decrease of Py, P, and Pj in favor of that of P; is not surprising.

C. Thermodynamic behavior

In order to compensate partially for the small size of the cluster, thermal properties of
the system were investigated via a grand canonical ensemble, wherein four-electron states
are allowed to come to equilibrium with three- and five-electron states. Having set the

average occupancy, <N>, to four electrons, a straightfoward analysis!? would show the

_chemical potential |1 to obey:

A=t = Ziz .11
3 5

where Zy, is the canonical partition function for N elecirons.

The behavior for a typical set of parameters is shown in Figure 5. There are three
characteristic temperatures that appear, all arising from transitions that have analogs in
atomic physics: configuration, inter-cluster (charge transfer) and term fluctuations.

The highest characteristic temperature, Tg, at about 0.3 eV, is caused by a
configuration fluctuation and is a purely one-electron effect. It corresponds to the energy
required to excite an electron to the next highest onc-electron orbital. As this energy is
usually sizeable (see Figure 1), Tg is accordingly large. '

AtTep=2x 1073V, there is a rise in the charge fluctuation, <N 2 >- <N >2,
due to many-body effects. It corresponds to thc energy to transfer an electron from one
tetrahedral-cluster to another!8, This can be seen from the following argument. The
thermodynamic weighting or probability of three and five electrons can be shown to satisfy;

Z

4

/ZZ
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fluctuation, <N 2> -<N>2, The parameter values are: t= 1 eV, E,=075¢eV, v=
0.5eV .U =25eV,G=1eV. The characteristic fluctuation temperatures, Tg, T5r
and T-r are indicated.
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0
The rise is fully consistent with leading term behavior e ~ BTcr | where Terp=12(g;

+ {-:50 )—640, and ENO is the N-electron ground-state energy. In the non-interacting one-
elecron pictare, one should expect Tg to be identically zero, as the four-electron case
would truly be an average of the three and the five. The intra-site elecmron-electron
Coulomb repulsions, therefore, cause significant, albeit small, alterations to the ground-
state energies.

The lowest temperature rise. Tgz = 2x10-4 eV, occurs in the expectation value of
the spin squared, S(S+1), for four electrons. It is also a many-body effect, its low
temperature caused by the presence a very low-lying excited state, of symmey 31‘5,
relative to the 1I‘4 ground state. This close concordance occurs over a wide range in
parameter space. It is thus a term fluctuation, the phase space being large enough for four
electrons 0 accomodate the spin-flip without adding a large intra-atomic Coulomb energy
from (2.5). '

Another question is whether this model can, in any way, address the question of the
t0 ¥ -cerium phase transition8. As this transition involves a change in lattice constant, from
4.85 A 10 5.16 A, respectively, one might expect that, as a consequence of the transition,
the hybridization, v, might decrease effectively, with a much less marked decrease in .
This is because the overlap between two c¢-states making up the extended conduction states
should be less sensitive to the increased separation than that between a c-state and a more
localized f-state. That being the case, then from Figure 2, one can see the parameter values
proposed in Section 4.1 are justified. In that parameter region, n ¢ increases with
decreased v, while elsewhere it decreases. It must be stressed that this is not, in any way,

being proposed as a mechanism for the transition, but rather a consequence of it.

D. Photoemission and Inverse-Photoemission results
Photoemission (inverse-photoemission) spectra were calculated by the instantaneous

removal (addition) of an electron from (to) the four-electron ground state, with the
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distribution among the three-clectron (five-electron) states then analyzed. These processes
involve destruction (creation) operators with the one-elecron symmetries 2I"1 and 2F4.
With a four-electron ground state of symmetry 11'3, group theory predicts that the only
possible accessible states, for both three and five electrons, must have symmetries 21"3,

r 4> and 2I's. Examples of the calculated spectra are found in Figures 6 and 7.
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FIG. 6 Spectrally-resolved photoemission distribution, shown for: r=1eV, E 0= 0.75

eV, v=05eV.U="125eV.G =1 eV. For each spectrum the symmetry and band

("c" = conduction and "f" for f-state) of the emitted electron is shown.

An examination of the photoemission and inverse-photoemission results show clear
twin-peaked distributions. They are, in some way, reminiscent of the broad two-peaked

distribution of real cerium, although they arise for different physical reasons. The
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calculated inverse-photoemission spectrum also has a moderately-sized peak, of energy U

greater than the other two.
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FIG. 7 Spectrally-resolved inverse photoemission distribution for: r=1eV, E 0=

075 eV, v=05¢eV U=25¢eV,G =1 eV, For ecach specrum the symmetry and

band ("¢” = conduction and "f" for f-state) of the absorbed electron is shown. To be

noted is the minor peak, of energy U greater than the other two, corresponding to double

Sf-occupancy.

Thus, except for this latter peak being displaced relative to the other two by the f - f
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Coulomb repulsion, boih distributions are dominated by one-electron effects. The picture,
neglecting hybridization, is one of transitions to either a given f~ or conduction state. It is
still very much in evidence with the hybridization, and even the many-body repulsion
terms, added. The point to note, however, is that if the distribution is resolved spectrally
into the f and conduction electron contributions, a clear dependence on the hybridization is
seen. With increasing G, the height of the second peak decreases, as subsidiary peaks gain

in strength. The varying peak composition is presented in Figures 8 and 9.
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FIG. 8 Spectral composition of the second peak in the inverse-photoemission, as a function of the
hybridization v, symmetries 2!‘ 4 and 2!'5 (accidentally degenerate) contributing. Here (= 1 eV,

Eo=0.7S¢V.U=25¢V,G=0eV’
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FIG. 9 Spectral composition of both peaks in the photoemission, as a function of the
on-site Coulomb repulsion G. Here t=1 eV, Eo =075eV, v=05eVY U=25

eV.

V. Conclusions

A model for intermediate valence has been examined, which although too simple to
mimic cerium, exhibits many interesting properties in its own right. It shows low-
temperature spin and charge fluctuations, which reveal much about the phase space and
many-body aspects of the model. The spin fluctuations point to very-low-temperature
magnetic behavior, while the charge fluctuations suggest an intermediate-valence system
bordering on heavy-fermionic; in other words, the f~electrons participate in conduction at
modest temperatures. The model also suggests that experimental work should be
implemented in intermediate-valence solids to analyze spectrally the phoioemission

processes, which would reveal the nature of the hybridization and the electron-electron
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repulsion contributions.

Although the importance!? of incorporating an on-site ¢ - f Coulomb repulsion (2.6)
in representing real systems has been discussed, it appears that for this mode the addition
is not crucial, in view of the evidence from the valence, thermodynamic and photoemission
properties.

An extension of this model to represent more accurately metallic cerium obviously
suggests itself. Although not suspected as being a relevant improvement alone by the
author, the inclusion of seven f-orbitals presents daunting problems. Such action brings
the number of one-electron s::tes to consider up to 64 which, which for the four electron
problem, offers 64!/60!4! = 635,376 combinations. These states would be either even or
odd under inversion, thus bringing in the full set of twenty representations of the space
group, rather than the present five.

Of considerably more importance is the broadening of the conduction states into a
continuous band20 responsible for transport effects. This non-negligible feature is not

compatible with a small-cluster approach.
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Chapter III. Many-Body
Tetrahedral-Cluster
Model for Binary and
Ternary Alloys

I. Introduction

As viewed from the perspective of the constituent elements, the alloy phase
diagrams of copper, silver, and gold should be very simple and straightforward. ‘i'hese
elements are, after all,!- simple s band monovalent metals, with a full 4 band
(configuration (vd)10 [(v+1) 5]! ), crystallize all in the fcc structure and have topologically
identical and quantitatively very similar Fermi surfaces. The question is then, how is it that
the alloying behavior between these three metals are completely different: copper-silver
alloys show an almost complete tendency to segregate, silver-gold alloys form an almost
perfect solid solution throughout the concentration range, whereas gold-copper alloys form
intermetallic compounds with only specific ratios - corresponding to the formulas AusCu,
AuCu, and AuCus. Different approaches to study this problem have been taken,5.7 most
notably calculations by the cluster-variation method,8.9 the cluster-Bethe-lattice!0-12 and
local-density-approximation (LDA) methods,13 but all these methods have their drawbacks.
While cluster expansion methods are able to account well for the configurational entropy,
they fail to take account of the actual band structure, and while the LDA is much better for
clectronic calculations, it is only.good for ground-state properties. The approach taken here
is to obtain exact soludons of a limited-size crystal with all many-body interactions, or
equivalently, to solve exactly a many-body problem with limited sampling in k space.

The small crystal approach has been used successfully to solve the Hubbard
model!4-16, to explain photoemission and thermodynamic properties!7:18 in nickel and
iron, and to get insight into the intermediate-valence behavior!9.20 of cerium. It has proved

to be very good at determining uniform and short-range properties in crystals. In the
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context of alloying, it is felt that the method should also prove useful and informative.
Random groupings of atoms do not have long-range order and, because of the short-range
order character of the interatomic interactions, a given atom only interacts with a local
environment of the surrounding atoms. This is precisely the setting for a small cluster
approximation. Thus, one might see the trends of order-disorder transition, though not the

actual abrupt changes of phase caused by the long-range-order correlations.

II. The Hamiltonian

The tetrahedral cluster used here has periodic boundary conditions and four sites
labeled i=1,2,3,4. There is one s orbital per site, each being either spin up or down,
denoted with subscript 6. The creation (destruction) operator is written as c?,- ol Cig)
The Hamiltonian, essentially based on the Hubbard model,!4 is composed of three parts:

H=H + H + H , @n

band occ ,many

where
*
H = —Z t c c , 2.2)
band ij:o ii ioc jo
i)
+
H = Z E ¢ c . (2.3)
occ iio i e io
t t
H = Z U c c c c 2.4)
many i § ittt il il

These terms are :
(a) a band "hopping" interaction (2.2) between conduction states on adjacent sites,

with transfer integral ¢ . equal to lM if both sites i and j are atoms of type A and ¢
ij
if one is of type A and the other B;
(b) an "occupation” energy (2.3) for the i-th atom, whose strength E is
i

measured as an offset between unlike atoms, equal to £ for atom A, E for atom B;
A B
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(c) an on-site (intra-atomic) Coulomb repulsion (2.4) for site i , with Ui > 0,
which takes value UA' or UB, etc., depending on the type of atom.
It is a common, well established and good approximation!2 to assume that the
hybrid hopping element ¢ B is

t = t t 2.5)

i.e. the hopping parameter for two different atoms is the geometric mean of the two
identical-atom hopping elements. It follows straightforwardly from many physical models
and can be seen to be, loosely, the result of the overlap of the exponential tails of the two
wave functions. The decay constants average arithmetically and thus the total overlap
averages geometrically. This approximation is independent of the size of the atoms and of
the sparial extent of the wave functions.

By means of a virial-type argument, the ¢ ‘s being considered as a measure of
1]

the electron kinetic energy, and the U 's as a potential energy, one establishes a
. H

proportionality between them:
U = f t . (2.6)

i i
where fis a scaling factor, of the same order of magnitude as that employed by Robbins
and Falicov.!2 The required magnitude of f implies a many-body interaction too strong to
be handled perturbatively. The large value is necessary to keep charge fluctuations within
the cluster realistically small, yet it must not be so large, in comparison to the bandwidth, to
produce metal-insulator transitions, ferromagnetic and antiferromagnetic behavior, and
other broken-symmetry effects.

A simple assumption of setting a constant, species-independent U was soon
dismissed, because it does not produce the wide range of alloying behavior encountered in
nature. A possible consideration of serting the Coulomb repulsion inversely proportional to

the atomic size was also abandoned based on the author's previous experience.
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24
A4

2 2 2

FIG. 1. The tetrahedral-cluster method as employed in the context of alloying. There are,
topologically, four different tynes of clusters, repeated indefinitely throughout the crystal
by periodic boundary conditions : A4, the pure metal; the binary intermediates A ;B8 and
AB, ; and the emary intermediate A,8C.

For a binary alloy A-8 in the tetrahedral-cluster approximation the following five
compounds must be considered: A4, A3 B, AZBZ, ABJ, and B4. In this case, the
Hamultonian (2.1)—(2.4) has only two relevant parameters, 8 and &, defined by

6 = /ot Q2.7

and

€ = (E - E )8 . (2.8)
A B AB

It should be noted that the substitution 8— 1/6, € = - &, is equivalent 1o interchanging

A and B. For ternary alloys, there are 15 compositions, the five above plus A3 C,
AZBC. AZCZ. ABZC'ABCZ' ACJ, 83 C, BZCZ. BCJ, and finally, C4 (see Fig. 1).

There are also, as discussed below, four independent Hamiltonian parameters.
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III. Method of Calculation

The Hamiltonian presented above (2.1)-(2.4), for the four-atom cluster is
computationally very simple. With eight orbitals, the number of many-body states for N
electrons is 8! / (8-M)! N!, which in the case of four electrons (one per site) results in 70
states which separate, according to spin, into 1 quintuplet, 15 triplets, and 20 singlets,
regardless of atormnic composition,

With the many-body repulsion (2.4) neglected, the remaining one-electron terms can
be diagonalized analytically. For A4, the one-electron energies break up into a singlet of

energy

E (A ) E - 12¢ s 3.1
14 A AA

and a triplet

E (A) E + 4@ , 3.2)
3 4 A AA

The bandwidth in this model is therefore 16:  for the pure metals. Furthermore, it should
LR

be noted that the A4 cluster can be solved analytically, with the many-body terms included,

by judicious use of group theory.15 For A3 B, the four onc-electron states are a doublet

with energy (3.2), and two singlets:

E (A B) =-1-(E +E )-4
12 3 24 B AA

1 2
i—\/(E -E -8: ) +192¢: (3.3)
2 A B A4 AA BB
For AZBZ, there are four singlets: one with energy (3.2), one (its mirror image) with 8
replaced by A throughout, and two additional ones with energies:
1

il

E (AB) =
2 2 Ba

(E +E ) -2(¢t +1 )
1z A B AA

1 2
i-\/(E -E +4 - 4 ) + 256 1
2 A 8 B8 AA AA BB

Finally, for the ternary compound AZBC there remains a singlet of energy (3.2), plus three

(3.4)
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singlets which are the solutions of the cubic equation:
E°+[160,, ~(E,+E, +E.E® +

[E Eg+EpEc +ECE, — 4, (Eg+Ec)=320 4, tyy +5ipg fcc+ice iay JE

1
+ 320t ,, ton E +5:BB tecEatitcctas Ep)
+192t  tpptoe + 4, Eg E.-E EZE. =0 (3.5)
IV. RESULTS

In a 6—¢ plane (Figs. 3 and 4), one can establish triplets of points, one each
corresponding to the binary al’oys A-B, B-C and C-A, subject to the straightforward
constraints :

6 0 0 =1 @.1
AB BC CA

d
9 1/3 P 1/3 9 1/3
BC cA AB
£ - + £ " + € = 0. 4.2)
as | @ Bc|® ca |0
ca AB BC

Ideally, one would want to be able to input appropriate parameters, either obtained from

an

first-principles band-structure calculations or experimentally derived. In other words, one
could take the known bandwidth and ionization energy, say, and associate them with the
relevant parameters 6 and £

Thus, the approach taken here is to determine whether wiplets of binaries can exist

with the properties of the copper, silver and gold systems.

A. Zero-temperature results - compound stability
The first property that was investigated was the zero-temperature segregation-solubility

tendencies. In deciding on the stability of a particular compound at zero t»mperature, one



Chapter 3. Many-Body Tetrahedral-Cluster Model for Binary... 45

must consider all possible decompositions into other compounds which yield the same
global concentrations. The lowest-energy decomposition will be the one selected by nature
- this is just a restatement of the fact that the free-energy curves as functions of any

parameter, e.g. composition, must have non-negative curvature everywhere.

-0.05 0.0 +0.05
og, p

FIG. 2. The independent-electron picture of binary-alloy formation. For modest bandwidth
ratios and occupation offsets only three possibilities apper: the fully concave phase (speckled
region), the phase with A3B absent (cross-hatched region), and the phase with AB; absent

(striped region).

For binary alloys, only the ground-state energies of all five compounds A4_,B,, n =
0,1,2,3,4, are necessary to determine the stability at zero temperature. One must, of
course, have the pure metals appearing with 100% probability at the concentration end

points, so it is a matter of deciding on the stability of the intermediate compounds at all
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other concentrations. It turns out that there are eight different topological possibilities. The
first case is that in which no intermediates appear, i.c. there is complete segregation, as in
copper-silver alloys. There are three cases of only one intermediate appearing, and three of
all but one appearing. Finally, there is the case — here called the fully concave solution —
where the three intermetallic intermediate compounds are stable. This is the case for both
the complete solid solution, as in silver-gold alloys, and the three truly stable intermetallic
compounds — CuzAu, CuAu, CuAusz — of copper-gold. Five of the eight cases — those that

occur at reasonable values of the parameters — are illustrated in the inset of Fig. 2.

0.05 0.0 +0.05

FIG. 3. A many-body picture of binary-alloy formation, Coulomb factor f = 5.0. Here, a
segregating phase (white region) has opened, bordered by a phase of A,B; stability
(thick striped region), and situated amazingly close (o a triangular-shaped phase region of
fully concave alloys, demonstrating the extreme sensitivity of alloy behavior to one-
electron parameters. (For a full explanation of the various shadings, see inset in Fig. 2.)
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As mentioned previously, one can reduce the specification of a binary alloy to two
parameters, the bandwidth ratio 8 and occupancy-energy offset &, keeping the Coulomb
factor f fixed. Three plots of stabiliity regions in the 6—¢ plane are presented for various
f. i.e. f = 0.0 (the independent-electvon picture), 5.0, and 6.0 (in Figs. 2, 3, and 4,

respectively).

0.5

0.4

0.3

0.2

0.1

0.0

0.05 0.0 +0.05
log, p
FIG. 4. A many-body picture of binary-alloy formation, Coulomb factor f= 6.0 . Here,

the segregating phase is more stable and the fully concave region lying nearby has
increased in size. (For a full explanation of the various shadings, see inset in Fig. 2.)

What is most evident from the independent-elecon picture (Fig. 2) is its simplicity

and lack of structure. Only three of the eight stability regions appear, and none of them is
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the fully segregated case. What happens when the Coulomb repulsion is turned on,
however, is that a wedge appears between two of the regions, opening up, literally, a
solubility gap (Figs. 3 and 4). In addition, a triangular island of fully concave alloys is
created, in close proximity to the fully segregated alloys. That leads to the most important
conclusion of this work : when realistic many-body effects ae taken into account smail
changes in the one-electron parameters cause enormous change: in alloying behavior.

In ternary alloys, the degrees of freedom are many more, with scenarios where the
ternary intermediates A;BC, AB7C, and ABC; may or may not participate. Determining
this generalized global stability is a simple problem in linear programming, and it results in
the separation of the ternary concentration graph into triangular regions. Within each
triangle, a point determining the nominal concentration of the alloy yields a decomposition
into three phases with concentrations corresponding to the corners of the triangle and with
relative abundance inversely proportional to the distance between the point of nominal

concentration and the relevant comer of the triangle.

B. Thermodynamic behavior

With the entire multiple composition, many-body energy spectrum determined, it is
straightforward to predict thermodynamic behavior for this model by carrying out the
appropriate Boltzmann statistics. With three types of atoms, A, B, and C, there are three
corresponding atomic chemical potentials, 4 , Bg, B¢, but as the number of atoms in
the cluster is fixed at four, that leaves the potentials overdetermined; thus, one introduces

relative potentials:

U =4 - u =4 - u 4.3)
B

and the Gibb's sum, from which all thermodynamic behavior is derived, is defined simply

as2l
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BGiu +kp )
!

G = E ¢ oz (py, (4.4)
jok Jk
0<j +ks4

where [ is the inverse temperature, and Z ; ;(f) is the canonical partition of the cluster
with j atoms A, k atoms B (and 4-j-k atoms C.)

For a given temperature and concentration, the probability of finding a given cluster j
k is given by

Blip +kp )
P = e ! 'z (B)IG (4.5)
j k

ik /

whereas the chemical potentials are deterrined so that

1
x=z > P 4.6)

Jik jk
0sj +ks4 .

and
. .
y = 7 Z k Ek “4.7)

jok 4
0sj +k 54

where x is the concentration of A, y is the conceutration of 8 (andz = 1-x-y is the
concenrration of C ).

In the infinite-temperature limit, the partition functions tend to the multiiicities of each
cluster, which is 41/j!k! (4-j-k)!, with a resulting trinomial probability disaibution of

J -

4! j k 4 - .
P (x,y) ’y (l-x-y) (4.%)

In the zero-iemperature case the problem reduces, as mentioned above, to finding the
minimum of a linear function (the weighted energies) on the surface of a polyhedron —
formed by connecting the ground-state energy of every one of the 15 clusters to that of
cvery other one. This construction results in phases represented by triangular planar

sections, in which a system at a given concentration, (x,y), has the properties of the
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weighted average of the sectional end points.

-1562

-3137 —-3865

+430 +201 +465

FIG. 6. Graphicz: representation of the ground-state energies and the zero-temperature
wiangular segregational regions for the set of parameters labeled 2 in Table I. Encrgies are
in units of t = (t4425m¢cc )!/3x10°6. The energies represented by stripes do not yield

stable configurations at T = 0.

Three cases have been selected for the purpose of illustration. The corresponding
parameters are displayed in Table I. The first case — labeled number 1 in the Table I and
presented in Fig. 5 — demonstrates the extreme behaviors very well. In this sitvation there
exists, for the given set of parameters and in a range of temperatures (kg7 = 0.0016
(t a4 t g8 t cc )P in Fig. 5], one binary alloy possessing an intermediate, ordered state
(Fig. 5, C-A), one rapidly approaching the infinite temperature binomial distribution (Fig.

S, A-B), and one almost completely segregated into the pure metals (Fig.5, B-C).

TABLE L. The input parameters for the three cases considered.

] 4] 0 £ £ £ f
AB BC CA AB BC CA

I 1000 0938 1066 0025 0.125 -0.148 6.0
2 0944 0915 1.099 0095 0.160 -0.248 5.0
3 1039 0929 1.036 -0217 0100 0105 60
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FIG. 5. An example of a mu"y-alloy system in which the three binary pairs are such that
one has a fully ordered A,C, phase (C-A), another exhibits almost complete random solid
solution (A-8), and the third almost completely segregates ( 8-C ). The parameters for this case
correspond (o those labeled | in Table I at a temperature kpT = 0.0016 (tx4tppice )53.
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For this temperature range one could say that C-A forms the CA intermetallic compound,
A-B forms a complete range of solid solutions, and B-C completely segregates into its

constituent elements.
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o
Q
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A 1 A 1 T = 0.003
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100% "C" concentration 100% "B"

FIG. 7. Depiction of the desegregation of the B—C ailoy with temperature, for the sets of

parameters labeled 2 in Table 1. Energies and temperatures are in units of ¢ =

(antggice MP.

The second case, its ground-state energies, and the triangular phase regions are
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presented in Fig.6. One can see that two edges, A-B and C-A, have fully concave profiles
(the latter has for all compounds larger heats of formation) while the third, B-C has
unstable intermediates, i.e. all intermediates have positive energies relative to segregation of

the pure metals. Also, the fully intermediate ternaries, A;BC, AB;C, and ABC) are all

unstable.

g [ '
8 ™
0 ]l YT=0.000
’\. B = d o
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> [ )
<] T = 0.001
Q
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Y . 4
o
5
g N T=0.005
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100% "A" concentration 100% "C"

F1G. 8. Depiction of the robustness of the ordering of the intermediate compounds of the C-A
alloy for the sets of parameters labeled 2 in Table 1. Energies and temperatures are in units of 1 =

(antpgice 1.
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FIG. 9. Depiction of the trend towards randomization of the intermediate compounds of
the A-8 alloy for the sets of parameters labeled 2 in Table I. Energics and temperaturcs
are in units of 1 = (1441p50cc )3

This choice of parameters yield properties demonstrated in Figs. 7, 8, and 9. In Fig.
7. one sees the solubility gap of the B-C alloy shrinking and vanishing with increasing

temperature.
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In Figs. 8 and 9, one sees fully ordered structures in both C-A and A-B atzero
temperature, and both begin to approach random configurations with increasing
temperature, the C-A alloy — because of its larger heats of formation — doing so more
slowly.

The implicatons for the full temary alloy (1/3 : 1/3 : 1/3) are presented if Fig. 10. As
one can sce, the zero-temperature probabilities are divided among the three compounds
AC3 ., ABj, and A;B; in the ratio 4:2:3, respectively. A very low temperature rise in
AB,C is noted, and is attributed to it being only marginally unstable at 7 = 0. The other
compounds experience rises in probability distributed over almost two decades of
temperature.

The final case, number 3 of Table I, follows Robbins and Falicov!2 in taking the
@'s as the tabulated bandwidth ratios!:2 and fits the s as close as possible to those
given by the ionization energies. The freedom with which the latter was chosen in this
contribudon reflects the authors' belief that the ionization energy may not be an adequate

measure of the occupation energy. The input values were: f 4,4, = 1.09 €V, 1 4,4,

1.0leV,rcycy = 117 eV, Epy = 922 eV, Eqp= 740 eV, and Ec,

-8.27 eV. Real temperature predictions can now be made. The result is a Cu-Ag

analogue which desegregates at kgT ~ 103 eV; a Au-Cu analogue with only Au; Cuj and
Au3Cu stable, which disorders at kgT ~ 2.5x10-2 eV, i.e. above room temperature and a
Ag-Au analogue, in which the intermediate compound AuAgj is also missing at 7 = 0 and
which randomizes at kgT =~ 10-3 V. Although many qualitative features of the real

systems are reproduced, the agreement is far from satisfactory.

Y. Conclusions

A model for binary and ternary alloy formation has been examined, one which seBks
to overcome the difficulties presented by previous methods. It is remarkable that such a
simple model should produce such a wide range of alloying behavior, with a very sensitive

dependence on input parameters. It also shows the deficiency of an independent-electron
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picture; many-body correlations are necessary to allow for such diversity. The widely
varied behavior of the copper-silver-gold system is most probably caused by such subtle
many-body effects, and the consequent sensitivity of the alloying properties to minute
differences of the one-electron parameters.

The model does suffer, as yet, in its ability to ranslate the experimentally derived
parameters of the pure metals into a truly predictive theory of alloy behavior. It is the belief
of the author that this is caused partly by the extreme sensitivity to the one-electron
parameters and by the too coarse sampling of the electron band structure inherent in a
small, four-site cluster approach.22 Furthermore, it is thought that an eight-atom cluster,
otfers many intriguing possibilities. First, it allows a more balanced sampling of the band
structure; second, it allows more configurational possibilities, and furthermore, it allows
second-nearest neighbor interactions to be included.23 This larger cluster may produce a
true qualitative distinction between silver-gold and copper-gold alloys : the former, with a
range of solid solutions, should have all seven intermediate clusters stable, while the latter

should have all but the intermetallic structures AuzCu, AuCu and AuCug unstable.
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Chapter IV. Heavy
Fermion System: an
Exact Many-Body
Solution to a Periodic-
Cluster Huhbard Model

I. Introduction

Heavy-fermion systems have been of great experimental and theoretical interest over
the past few ycars.l-s The narrow-band phenomenon has been found associated with
superconductivity, both normal and re-entrant, intermediate valence, large heat capacities,
and the Kondo problem of isolated magnetic impurities, with much of the responsible
mechanisms still subject to debate. It is thus instructive to investigate models from which
one might gain insight into the problem.

The tcchniqucs‘uscd in solving strongly interacting, and in particular heavy-fennion

systems, have included variational, perturbative, diagrammatic and Monte Carlo

approachc:s.6-11 Typically, Monte Carlo approaches involve approximate solutions of small
clusters, with accuracy depending on the statisdcal sample. As the scope of the problem
grows exponentially with the size of the cluster, this approach rapidly becomes the only
feasible one. However, the notion of reducing the computational overhead by use of
~roup-theoretical techniques, allowing exact solution of moderate-size clusters, has not, as
far -.s the authors are aware, been otherwise attempted.

This exact small-cluster approach has been used successfully in scenarios where local

many-body effects have shown themselves to be important: a four-atom cluster Hubbard
12 13 14,15
model , photoemission behavior  in Nickel, intermediate-valence behavior in
16 17
Cerium, magnetic behavior in Iron, as well as for thermodynamic properties  and

18
valence-bond formation. It has also been used to study alloying in the Copper-Silver-

19
Gold system.  The experience has shown that single-site and short-range correlations are
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well taken into account, though not longer-range ones. Thus, phase transitions do not
occur, though indicatdons of where and how they might occur have been clearly obtained.
This chapter addresses the questions of the nature of the heavy-fermion state as a
function of band structure and band filling, and of the interplay of the various one-electron
and many-body effects. It also discusses the implications for spin-fluctuation and electron

transport,

II. The Hamiltonian

Consider an infinite face-centered-cubic (fcc) lattice of atoms, with one fully
symmetric orbital per site, each being cither spin up or down, denoted with subscript ©.
Using second-quantization notation, one has the creation (destruction) operator on site i
written as ¢t; o (¢; o ). One can write a Hamiltonian for this system, following

Hubbard20, as :

H = H + H + H 2.1
Inn | 2nn C
where
+
H = -t ¢ ¢ . @
Inn PR ic ja
t.].0
<i j>inn
f
H =-1> "¢ |, a3
2nn ic jo
i.j:o
<ij>2nn
+
H = U z ¢ ¢ P (2.4)
4 it ar id id

These terms are:
(a) a band "hopping" interaction (2.2) between conduction states on nearest-neighbor
sites, with ransfer integral 7,

(b) a band "hopping" interaction (2.3) between conduction states on next-nearest-
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neighbor sites, with transfer integral T,

(c) an on-site electron-electron Coulomb repulsion, U, (2.4).

In heavy-fermion systems U is considerably larger than the other parameters and
could, for all practical purposes, be taken effectively to be infinite. In that case, no on-site
double occupation of electrons is allowed and thus the maximum band-filling is one-half,
one electron per site. In the half-filled band situation, Anderson21 pointed out that one
could canonically transform (2.1)-(2.4) to a basis of states with sites all singly occupied,
with the simultaneous introduction, as a first-order correction in l/U, of an
antiferromagnetic Heisenberg superexchange mechanism:

H = z J § -8 (2.5)
H iy ij o j .

t J
i #f

where the coupling parameters J ; j are:

2
oc t 1 U if i, J nearest neighbors

= 2
J = <« T /U ifi,j next-nearest neighbors (2.6)

0 otherwise

This interaction amounts to a hopping of an electron onto an atom already occupied by a
second electron, which costs a virtual energy U, which is then more than repaid in band
energy by having this second electron hop into the first electron's original place. Wolff,
Schrieffer and others22.23 went on to show that, in the general filling case, (2.5) would be
supplemented by more complicated three-atom hopping processes, which will not be
considered here.

The method used in this contribution to solve the model consists of choosing a
symmetric small set of points in reciprocal space and, within that set, of treating the many-

clectron states exacely. This approach is equivalent to taking a small crystal, ie. a small
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FIG. 1. The eight-atom cluster in the fcc lattice. With periodic boundary conditicns this
cluster, which fills the entire bulk crystal, is t:rtamount to sampling the Brillonin zone
at the points ', X and L. In this scheme, the twelve nearest neighbors of each atom are
of six distinct types (each type contributing two neighbors), and the six the second-nearest

neighbors are all of the same type.

cluster of sites and periodic boundary conditions. The cluster under consideration here is
comprised of eight atoms, and forms a double-length unit cell of the fcc structure. If
repeated via periodic boundary conditions with an fcc lattice of twice the original lartice
parameter, the original fcc lattice is obtained (see Fig. 1). The eight sites in the cluster are
labelled i=0,1,2,...,7. In this case, the Hamiltonian becomes:

H=H +H + H + H |, 2.7)
lnn 2an Hl H2

where now
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+
H = -2t Z c ¢ . (2.8)
inn .o i j @
i,j =0.7 0 J
<ij >lnn
+
H == Y ¢ ¢ . @9
2nn Lo . io jo
i,j =070
<ij »2nn
H =7 Y S-S 2.10)
Hl ij=0.7 ¢ J
<ij »inn
H =73 §-5 @11
H2 ij= 0.7 ¢ J
<ij »>2nn

Several points should be noted here:

(i) the sums on the sites are restricted to the eight-atom cluster;

(ii) the 12 nearest-neighbors of each atom are, in the periodic cluster, two each of six
of the other seven atoms (c.g. the twelve nearest neighbors of atom O are two each of the
atoms 1, 2, 3, 5, 6, and 7); therefore the parameter in H;,, is 2 instead of 7 ;

(ili) the 6 second-nearest neighbors of each atom are all the same, and equal to one of
the other seven atoms (e.g. the six second-nearest neighbors of atom 0 are all atom 4); as a
consequence the parameter in H,,, is 6T instead of T ;

(iv) in this contribution only the case of scven electrons in the eight-atom cluster will

be considered, i.c. only the states which are eigenstates of the number operator

N = 2 clr c . (2.12)

with eigenvalue 7 are included
<N > = 7; (2.13)

(v) the term My, can be easily taken into account by subtracting J ' from J in

Hy, and adding a term similar to Hyy; with a coefficient J ' instead of J ; this last term,
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added to Hy3, can be casily diagonalized by means of a sum rule derived from the

expansion of the square of the total spin operator,

J’ 22,7Si'sj = J7 [§( +1)-2l/4], (2.14)
0

%

iy
i

where S is the total spin of the cluster state, and (2.14) is valid for seven electrons which
interact via a constant, uniform exchange J ' with each other;

(vi) even though it is trivially easy to include second-nearest-neighbor Heisenberg
exchange, since J ' is proportional to T 2/U, and T is in general much smaller than 7,
the coefficient J ' will be set equal to zero;

(vii) as a consequence of (vi) the Hamiltonian (2.7) is reduced to three terms, and there
are in the problem three energy parameters ¢, T, and J, such that

b >» (T 1t >»J (2.15)

(viii) the properties of the system are strongly dependent on the sign of ¢; this is a
consequence of the structure of the fcc lattice which, on account of the miangular rings of
nearest neighbors, exhibits an asymmetry between top and bottomn of the electronic band as

well as frustration for states with alternating phases between nearest-neighbor sites.

IIl. Methos of Calculation

The Hamiltonian presented above, for the cight-atom cluster, exhibits many
symmetries and constraints which can be exploited to reduce immensely the computational
demands of the problem.

With sixteen orbitals, the number of many-body states for N electrons is 16! / (16-
N)! N!, which in the case of seven electrons (nearly-half filled band) amounts to 11440.
An infinite on-site repulsion reduces the number of states to only 2V 81/ (8-N)! N,
which is only 1024 for seven clectrons, a sizable reduction. Furthermore, these 1024 states
separate, according to spin, into 64 octuplets, 288 sextets, 448 quartets and 224 doublets.

There is also a space-group decomposition.
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TABLE I. The character table of the eight-atom-cluster space group. There are 24 operations in the
point group, the identity E , six fourfold rotations, C 4 » three associated twofold rotations C 4- .
six other twofold rotations C 20 and eight threefold rotations C 3 - There are eight translations,
the zero translation 0, the six nearest neighbor translations 7 , and the single second-nearest-
neighbor translation 8 . The 7 's are alternatively classified as to whether they are perpendicular
(r N ), parallel (7 i ), forming an acute angle (z _ ) or obtuse angle (7 ), or simply at an angle
(T , ) to a given rotation axis.

1 6 24 12 32 6 6 12 24 24 1 12 32
E ¢}/ ¢, ¢, ¢, E ¢}/ ¢} ¢ ¢ E c C
08 091:_L O‘E" 01:> T T, T, T (3] e:l 61:<
rftr 11 1 1 111 1 111
r,f1 1t 1 <1 1 1 1 1 1 -1 1 -1 |1
r,Jz 2 o0 o a1 2 2 2 0 0 2 0 -
r]s 4+ 1t 1 0 3 -1 -1 1 1 3 -1 0
rz's 3 41 <1 1 0 3 -1 <1 -1 1 3 1 0
x, /3 3 1 1 0 a1 1 a1 a1 1 3 1 0
Xx,|!3 3 a1 a1 0 -1 -1 a1 1 1 3 -1 0
X,| 3 24 1 1 0o a1 3 a1 1 -1 3 1 0
X,/ 3 14 1 a2 0 1 3 a4 a1 1 3 a1 0
x,|6 2 0 0 0 2 2 2 0 0 6 0 0
L, {4 0 0 2 1 0 0 0 0 0 4 2 -
L, |4 0o 0.2 1 0 0o o0 0 0 4 2 -
L,|8 o 0o o -1 0 0 0o 0o 0 8 0 1

The cubic point group has 24 proper operations (48 if inversion and improper
rotations are included, but these yield no additional information for spherically symmaetric
s-orbitals). The eight-atom cluster has 8 translations, which yield a space group of 24 x 8

= 192 operations. This space group possesses 13 irreducible representations with the



Chapter 4. Heavy-Fermion System. an Exact Many-Body... 66

following degeneracies : I’y (d=1), I'z (d=1), T'12 (d=2), T'15 ' (d=3), Iz5 ' (d=3), X
(d=3), X, (d=3), X; (d=3), X, (d=3). X5 (d=6), L1 (d=4), L3 (d=4) and L3
(d=8). These I, X and L representations, labeled by the translation-group k
vectors,correspond to the eight points of the fcc Brillouin zone?4 (one T, three X, and four
L) which constitute the finite sampling of reciprocal space inherent in the periodic-cluster
approach. The character table of the group?4 is presented in Table I.

With all these symmetries taken into account the largest block to diagonalize is 5x5,
a considerable reduction over 11440x11440, or 1024x1024, or cven 448x448. These
block sizes are presented in Table II. There is, in addition, an extra "hidden"” symmetry in
the Hubbard model12:20, which (as secen below) causes additional “accidental”
degeneracies. That extra symmetry, in this particular cluster, reduces the 5x35, and all 4x4
and 3x3 blocks to 2x2 and 1x1 blocks, so that the model can be solved in a completely

analytical manner.

Table II. Sizes of the blocks of the various representations

1—l rz rlz 15 rzs Xl XZ X3 X4 Xj Ll L2 L3

s =m2| 1 1 1
sz |1 1 12 1 1 12 2
32 |1 2 1 203 : 2 1 3|3 1 s
2 1+ 1 1 2|3 2 2 1 3|4 2 4

It is instructive, at this point, to discuss ihe band-structure of the infinite crystal, and
compare it with the finite sampling considered here. The density of states of an fcc tight-
binding, single-band structure, for ¢ > 0, starts at its minimum energy value with an M0
van Hove singularity at T, rises to an M/ singularity at the L energy, and then progresses
to a divergent, one-dimensional-type of singularity as the energy reaches its maximum

degenerate value all along the X-W line of the Brillouin Zone square face. The situation
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is reversed for 1 < 0, with a one-dimensional-type singular minimum along the X-W
line, an ordinary M2 van Hove singularity at L, and a regular M3 van Hove maximum at
I'. In other words, for ¢+ > 0 there is a "pile-up" of one-electron states at the top of the
band which should produce interesting effects for almost full bands; for ¢ < 0 the “pile-up”
occurs at the bottom of the band and should be of importance only for very low electron
occupancies. ‘

In the finite, eight-point sampling of the eight-atom periodic cluster there is one level at
I (Yg), four levels at L ({ ;5 ); i =1,2,3,4), and three at X (x; 4; i=1,2,3). One can
make the wansformation between (Wannier) one-electron localized states ¢; g, and Bloch
states (referred to collectively as @ ; ) by:

2 = - M -c G.1)

7

where the eight-component column vectors a and ¢ are connected by the 8 x8 Wannier-

Bloch matrix, M :
[1 1 1 1 1 1 1 1

3.2)
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Table III. Many-body energies for 7 electrons in the non-interactingl/ =/ = 0, limit.

Occupation ﬁergy -Degencracy Notes

Yx

240 -24¢r +18T 56 ground state (¢ >0)

241 20t 46T 420 lowest one-clectron excitations, ¢ >0)
232 -16t  -6T 840
223 -12r 18T 560

160 -12r +30T 56 one-electron excitations, ¢ >0)

214 -8r -30T 120

151 -8 +18T 672 highest one-electron excitations, ¢ >0)
205 -4r 42T 6

142 -4ar  +6T 2100

133 -6T 2240

070 +42T 8

124 4r -18T 840

061 4r +30T 168

115 8¢ -307 96 highest one-electron excitations, ¢ <0)
052 8r +18T7 840

106 12¢ 42T 2 one-electron exciiations, ¢ <0)

043 12: +6T 1400

034 160 -6T 840

025 20¢ -18T 168 lowest one-electron excitatons, ¢ <0 )
016 24 30T 8 ground state, (¢ <0)

total 11440

These one-clectron orbitals v, x and /, have symmetries 2I}, 2, and 2L,

respectively, and one-electron encrgies:
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€ = =12t - 6T , (3.3)
Y
E = 0t + 6T , (3.4)
I

and
E = 4@ - 6T , (3.5)

x

respectively. Notice that the bandwidth is (47 - 6T) - (-12r - 6T) = 161. With these

results, one can easily write down the non-interacting 7-electron energies. These are shown

in Table III.

IV, RESULTS
A. Many-body spectrum of states

With nearly-half-filled bands (7/8 clectron per site) and infinite interaction U, the
" two cases ¢ < 0 and 7 > 0, represent two entirely different physical situations. A negative
! represents a system with one-spin states filled almost to the M0 van Hove singularity at
I', while a positive ¢ has the Fermi level falling near the divergent singularity of the X-W
line. Their ground states have energies corresponding to the last and first lines,
respectively, of the list the many-body 7-elecron, U — oo, energies presented in Table
Iv.

One can see that the ground state for ¢ < 0 is non-degenerate, with energy £ = (-
12lel + 6T + 9/ /2), and with spin 7/2. It is thus ferromagnetic and fully saturated. In
other words, one-electron, band-structure effects overwhelm the antiferromagnetic-
superexchange mechanism and produce ferromagnetic ordering. Neither heavy-fermion
behavior nor superconductivity can occur under these circumstances. (A simple Hartree-
Fock state, with all electrons with parallel spins, would yield the correct ground state in

these conditons).
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Table IV. Many-body energies of the various representations

for 7 electrons in the infinitel/ limit.

Energies States Symmetries
-6t +6T -3 14 2r22X1 2Xz
-6t +6T -2/ 16 2L3
-6t +6T —%I 32 : 12 X 4X2
61 +6T - 16 L,
6t _+6T +J _ 18 6X:

—t _,/ (3t +6T +J 2V +8 7 24 4X5

2 +%1 V6T +ini+a®  ag 61‘3

-;" '\/(—2: +6T +J72) +161° 12 2r2'52X3

2 ‘%‘\/(—2! +6T +J12) +36: 8 21‘1

—4r +6T + -g-J 24 sxl

-t o (o 6T I s’ a8 ‘L, 'L,
2,_%/ _J 6T +12 3t 12 X

5/ - (6T 4?12’ 8 L,

I -J(r +6T +J2) +40 24 41'2'5 4X3

2 --;.J -J(Z: +6T +J2) v200% 24 2L1 2’-3

3 -0 (3 +6T +InFr20? 3 ‘L,

4 *‘;J ’\/(4t +6T +J /20 +28 2 24 6Ll

-2t -6T -2 24 zl_ls 2X4 X s
-2t -6T -J 16 L,

-2t -6T --;-J 8 41‘;5 X, 4Xs
-2 - 6T 6 ’x,

-2 - 6T +%J 32 ‘L,

2% -6T +2J 36 °x
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-2t +6;' +J 36 81"l 1"12 X1
6T + = 32 L
6T —-;-J 24 *x %,
3 , 2 2 6
-2t +-£J ++f (<2t +6T +J2) +4 48 L3
6-'6
2t -6T +2J 36 I‘25 X3
2 2 4, 4
-t -J +J(—t +6T +J/2) +8 48 Ll L3
2 +6T -3J 6 T, r,
o+ Bre6T IR ue 24 xg
TR I RITRITE 8 i,
4 - 6T + 1 16 4
3 2 2 21..'1 2
—2J+J(—2t+6T +J/2) +16¢ 12 25X3
6t —6T 2’
6t +6T -3/ 2 X%,
5 2 2 2, 2
2t -?I + (2t +6T +J/2)° +20r 24 Ll L3
2 2 2
Z:-EJ +J(6T+J/2) + 32 12 X5
- 3 4.~ 4 4
8¢ *5’.’ -T‘I 24 I'l I'12 Xl
u -3 +f (<2t +6T 477272 + 361 2 8 L,
3 —J +f (3 +6T +J2) + 242 2 ‘L,
2 2 4. 4
13 +\/(x +6T +J/2) +40¢ 24 L)X,
10t +6T +J 18 6X
3 1
4t +§J +J(4t +6T +J/2)° +28: 24 61‘1
12t +6T + %I 8 8l'l
total 1024 69




Chapter 4. Heavy-Fermion System: an Exact Many-Body... 72

For 1 > 0 a completely different picture emerges. For / = 0 one can see a large
number of states present in the ground-state manifold, of energy E = -6¢ + 67T, with
symmetries 2T, 2X, 2X5, 2L3, 2T2,4X, 4X5, 4Ly and 6X;. Ninety-six of the
total 1024 possible states, a surprising 9.375%, are in the ground-state manifold. This
huge "pile-up” of many-body states at the lowest energies is, in fact, the single most
characteristic property of heavy fermions, the feature responsible for the extrernely large
electronic specific heats reported in such systems!. It should be noted, for comparison,
that the non-interacting, U = 0, case for the same cluster contains 56 out of 11440 states in
the ground-state manifold, a paltry 0.49% ; the lowest excited states are (4 — 12T) higher
in energy]. It can be thus said that, at least for this model, heavy-fermion behavior is a
consequence of both, large electron correlations (the infinite U term) and band structure
effects. It is indeed very surprising that the very simple Hubbard model, for the same
crystal structure and the same occupancy, can yield both a simple, fully saturated
ferromagnet and a richly structured, complex heavy-fermion system depending onl;, upon
the change of sign of a single band-structure parameter.

As one would expect, the introduction of a finite J splits, albeit partially. the g sund-
state manifold. The spin-doublets retain the lowest energy, followed by the spin-quartets,
with the sextet X having the highest energy. For a given spin, the T and X states are
lower than the corresponding L states. The manifold has a total superexchange bandwidth
of 4/.

It has been repeatedly suggested8:10.25 that, at least for heavy-fermion systems, the
“true” ground state of the system can be adequately represented by selecting one of the
possible ground states of the non-interacting system and projecting out of it all components
with two electrons per site, retaining only that part with site occupations of either zero or
one. [t can be seen from the present calculation that that procedure is, at best, an uncertain
one, and at worst, plainly wrong. One should bear in mind that the projection process,
because it is applied to alf sites simultaneously, is a completely symmetric one, and it does
not change the space-group symmerry of the state.

In this context, one may first consider the case of + < 0. Under such conditions the
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non-interacting manifold has a ground state of energy E = -24Izl - 30T (see Table III),
which corresponds to a fillirg f the x-shell ( 3x2 = 6 elecrons) and a lone /-electron,
and thus has spin 1/2. The complete x-shell is fully symmetric, and has a global 1T
symmetry, whereas the [-electron has, of course, 2L1 symmetry; the resulting seven-
electron state must have an overall 2| symmetry, i.e. spin 1/2. Censultation of T:ble IV,
however, reveals that the ground state of the strongly interacting case is 8T}, the saturated
ferromagnet (spin 7/2) described previously, which has both the wrong spin and space
symmetries. At E = 12 + 6T + 9J/2, the 8T} state is considerably lower in energy that
the lowest 2L, state, which has an excitation of the order of (3t I). It may be argued that
the previous procedure is not app'icable to the ferromagnetic case because a phase transition
(spin-symmetry cross over) has taken place, with a consequent breakdown of the
projection technique. But, as seen below, that is also the situation for the heavy-fermion
case.

For the case ¢t > 0, one has a non-interacting ground-state manifold of 56 states and
energy E =-241 + 187, as listed in Table III. These 56 states span four rcprcsentations:
4L, and 2L, once, and 2L3 twice. The lowest state of the strongly interacting heavy-
fermion system of 2L, symmetry has an energy of order (21) greater than the true ground
state. The other 1wn symmetries do appear in the ground-state manifold for / = 0, but as
the latier symmetry, 2L3 appears twice in the non-interacting case, it is always possible to
find at least one combination of the two corresponding wavefuactions guaranteed to be
orthogonal to the ground state When antiferromagnetic superexchange is included, the
states with the lowest energy, E = -6¢ + 6T -3/, have symmey 215, 2X|, and 2Xs.
and cannot at all be attained by the projection technique. It is therefore obvious that such
technique cannot be considered to be a sound one.

It is interesting to note that the ground-state manifold has an echo at £ = -21 - 6T,
which corresponds in energy to a promotion of one electron from the /-levels to the x-
shell, uf the non-interacting picture. Moreover, this family and the ground-staie manifold

are the only accidental degeneracics partially removed by the antiferromagnetic interaction.
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B. Fermi Surface behavior

With an eight-atom cluster providing reciprocal-space sampling at the I', X and L
points of the Brillouin Zone, one may ask: in these heavily correlated systems, is it
meaningful to speak of a Fermi surface, and if so, how are the usual notiors modified by
the many-body effects? The question should be faced with extreme care, since the sampling
technique provides information not on the one-electron continuum, as the notion of Fermi
surface implies, but only on a small, discrete set of one-electron energy states.

The non-interacting electron picture is one where one-electron energy levels are
occupied with unit probability, up to the Fermi level, and higher =nergy one-electron states
are unoccupied. The pioneering work of Luttinger®? and others8:3.25, has shown that, in
the regime governed by perturbatively small electron-electron interactions, even though the
occupation probabilities are finite throughout and no longer constrained to be zero or one,
there is still a finite jump discontinuity at the Fermi level, i.e. the Fermi Surface still exists.
The exact nature of the occupation profile has been shown to be very model dependent.

In the context of the finite-cluster model, one can discuss the occupancy of the one-

clectron states by finding the following expectation values:

t t
<a'a >=3 M M <c' ¢ >, (@

where the matix elements M; ; are given by (3.2).

Results are shown in Table V for the heavy-fermion (U = o; t > 0), and the
ferromagnetic (U = oo; 1 < 0) cases, together with the isolated at;)m and the non-
interacting states. For the various ground states of the heavy-fermion case, 2[5, 2X,
2X,, the occupation probabilities are distributed in various ways among the one-electron
orbitals of each shell, but the average occupation of each shell is the same in all cases. This
is easily understood: even though the system is always perfectly correlated and the
electrons rigorously avoid each other at each site, the total energy is (except for the small
antiferromagnetic superexchange contribution) exclusively band energy; therefore two

states with the same total encrgy must have the same band energy, i.e. the same occupation
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of the one-electron energy shells.

Table V. Orbital occupation probabilities

State Y ! X

isolated-atom (¢t =T =0) 7/16 7716 7/16

heavy fermion (U =it >0) 9/16 172 5/16

ferromagnetic (U = ooz <0) 0 172 172
non-interacting ({/ =0;¢ >0) 1 5/8 0
nonsinteracting (U/ =0;7 <0) 0 1/8 1

The non-interacting free-electron cases show the usual step-function occupations. The
isolated-atom limit has, at most, one electron per atom, with no correlation between the
atoms, and thus all k-states are occupied with equal probability.

The ferromagnetic case shows an occupation of one half for the lower-energy orbitals,
and zero for the highest ones. This is the well kniown Stoner state, with spin-up and spin-
down electron distributions split by the interaction: an ordinary Fermi distribution and
Fermi Surface in the "majority” spins, and "minority" spins states completely empty. The
extrapolation to larger clusters and the infinite crystal (full Brillouin Zone sampling) is
straightforward: the Fermi Surface of the non-interacting case (U = 0; ¢ < 0) splits into
separate sheets for up- and down-spins, with one sheet vanishing (shrinking down to
zero), and the other becoming a small closed surface of holes around the point I' of the
Zone.

The heavy-fermion case is much more difficult to interpret and to generalize. What can
clearly be seen is that the occupation probabilities for that system have a profile closer to the
flat one of the isolated-atom picture, rather than the sharp drop-off of the non-interacting
picture. There is, however, a monotonic drop-off from ¥, to /, to x, and it is not unlikely

that larger clusters may produce the ever sharper decreases which, in the infinite-cluster
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limit, could yield the expected Fermi Surface discontinuity. There is no indication however
that, in the continuous k-space-sampling limit, the discontinuities in the occupation
function will or should take place at exactly the same locus of points where it occurs in the
corresponding non-interacting limit. In fact experience with many other strongly interacting
problems points out to drastic changes in geometry and topology of the Fermi Surface with
changes in interaction parameters. Even though the volume of the Fermi Surface is a
conserved quantity5.?, similarities berween non-interacting or mean-field (calculated?”) and
strongly interacting (measured?8) heavy-fermion Fermi Surfaces should, at this point, be

censidered fortuitous.

C. Spin-Wave spectrum

With double-occupancy forbidden on any given site, the consequences for
redistribution of energies involved in a spin-flip on a giver. atom is of great interest. It
amounts to exciting all the possible spin waves; in this case waves with the periodicities of
I', X and L. One can project the spin-flipped state onto the whole manifold of many-body

states and obtain thus a spectrum:

aaz (.0 ic GS GSz M

1 2
F £;0) = ka:s s 1 | : I -(e -
L, (E59) g‘z @ ' 1Gs:s s >I8e-(e-e))

(4.2)

where GS represents the ground state, with energy &4 spin magnitude Sgg. spin z-
component Sgs,, and the index o refers to any given state of the manifold. It is

straightforward to show the following sum rule holds in the heavy-fermion limit:

+ o
ZJF (e;o)de=N =7, (4.3)
sw
g0
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Table VI. Spin-wave spectral features for the ferromagnetic
(U =0 ; & <0)ground state 8I“l . The state is spin-
maximally aligned (i.e.S, = 7/2). The parameters are

—t = 10T =100/ . Energices are given in units of ¥ |.

Final State Symmetry  Excitation Energy Spectral Weight

’r 0.000 0.875
5L 1.083 3.354
by 1.965 2.571
°L, 10.800 0.071
L 13.657 0.075
' 16.000 0.053

The spin-wave spectrum of the ground state of the ferromagnetic case (I =; 1<
0), is presented in Table VI for the specific case of - = 10 T = 100 J. A simple fcc
Heisenberg ferromagnet, should exhibit a spin wave structure with one mode per point in
the Brillouin Zone. In particular — and given the normalization of (4.2) — a zero-frequency
mode at T, with weight 0.875, four modes at L, with symmetry 6L; and weight 3.500,
and three modes at X with symmetry 6X; and weight 2.625. The data of Table VI clearly
show that the Heisenberg model for this very itinerant model works reasonable well, that
the first two excited states of this case are indeed almost exclusively spin-wave modes, and
that the spin-wave-spin-wave interaction, as well as the itinerant character of the states,
impart partial spin-wave characteristics to three other staxcs."!‘hc spin-wave character is,
however, very small, and each of these additional states has a spin-wave weight smaller
than 0.08. From Tables VI and IV it can also be inferred that this itinerant ferromagnet has,
for spin one-half, an effective exchange interaction29 equal to (-Ir /8 + 7J/i6), i.e. an

interaction whose dominant term is of the order of Iz | and not of the order It 12 /U.
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F1G. 2. Spin-excitation spectra for the heavy-fermion ground states 2l‘2. ZX] and 2X,

are shown for parameter values ¢ = 10T = 100/, with energics in units of ¢. Notice the
overwhelming weight attached to the zero-energy peaks, indicating great zero- and low-
temperature spin fluctuations. The peaks are antificially broadened for clarity.
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For the ground-state manifold of the heavy-fermion case (U = o¢; ¢ > 0), namely
the states 2T, 2X, and 2X,, the spin-wave spectrum, as evaluated for ¢ = 10T =
100/, is shown in Fig. 2. One can compare this with the structure of the ferromagnetic
case discussed above (Table VI), and with the non-interacting spectrum, (U = 0; ¢ > 0),

which is presented in Table VII.

TABLE VII. Spin-wave spectral weights for the non-interacting (U = 0;
t > 0) case. States are spin-maximally aligned (i.e. S Z=S ).

Excitation Energies
Spin Flip 0 4: - 12T 12t +12T 16
32 + 32 32 3/8 3/8
- 0 3/8 0 3/8
1/2 + 3/4 9/8 1/4 3/8
- 1/4 ) 3/4 1/8 3/8

The non-interacting case has considerable weights at all band excitation energies. The
heavy-fermion system, by contrast, has almost its total weight at zero energy (see Table
VIII). Furthermore, the total sirength of the spin-wave spectrum is greater in the heavy-
fermion case because, as can be shown, the sum rule in (4.3) is diminished by the presence
of on-site electron-electron pairing. Thus, one can surmise that the heavy-fermion state is
indeed characterized by enormous zero- and low-temperat«< spin fluctuations; i.e. there is
much freedom to flip spins around, and yet remain within the ground-state, or at most

reach the low-lying, antiferromagnetically split excited states.
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TABLE VII. Spin-wave spectral weights for the heavy-fermion
(U = ; t >0 )case of Figure 2. The parameters are ¢ = 10T
=100/ . States are spin-up (i.c.5 = 1/2).

Symmetry Flip | Ground-State  Low-Energy Total
Manifold States * weight
T, + 0.000 2.667
- 1.805 2.693 5.360
2y , + 0.000 1.778
- 1.690 3.350 5.128
2y ) + 0.000 2.185
- 1.728 3.167 5.352

* Set of states with excitation energies of the order of J , including the ground-

state manifold.

D. Electron transport properties

It is also very instructive to see how the highly correlated electrons, in particular the
sluggish heavy-fermions, move about through the lattice. Within the context of this model,
it is possible to address the question of the hopping to both nearest and second-nearest
neighbors. In analogy with the spin-wave spectrum, one can define electron-hopping

spectra as:

t + 2
F (E;O):E lkw:S S lec ¢ (l-c ¢ )IGS:S § >
EH lnn2nn - a az o jo i-g -0 GS GS$:
ac<iy>

x 8(e-(€-€ )) (44)
a &S

where the additional (1 - ¢¥; .5 ¢; .g ) factor guarantees that all accessible states are, at
most, singly occupied. The sum <i j > is on neare:t and second-nearest neighbors for the

respective distributions. There is also a sum rule in place, in the U = = limit:
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ZJ.[F 0)+F €0 )de=N (8-N)=7. (4.5
o 5 EHim EH 2nn

The electron-hopping spectrum of the ground state of the ferromagnetic case (U = oo}
1 < 0) is presented in Table IX for the specific case of — = 10T = 100J. For the heavy-
fermion case (U =o0; ¢ > 0) and the specific value 1 = 10T = 100/, the nearest-

neighbor elecron-hopping specira are presented in Figure 3.

TABLE IX. Elecoon-hopping speciral features for the ferromagnetc ({/ = ;1 <0)
ground state 8[']. The state is spin-maximally aligned (i.e. S = 7/2). The parameters are
-t =107 =100/ and the energies are given in units of ¢ .

Final State Excitation Spectral Weight
Symmetry Energy Nearest-Neighbor ~ Second-Nearest-Neighbor
’r 0.000 0.750 0.125
%, 10.800 3,000 0.500
8
X 16.000 2.250 0.375

First of all, one may notice that the zero-energy contribution is much smaller than in the
spin-wave specua, with the weights being spread more or less throughout. Thus, since the
weight at zero energy is very small but not zero, one would expect these systems to be poor
conductors. There appears to be a sizeable cont;'ibution to the a.c electron hopping around
2.8 units, corresponding to the / ~»x electron promotion.

The second-nearest-reighbor electron-hopping spectra in Figure 4, display a different
situation again. Here the largest weights occurs at energies of 12 units or greater, and thus
electrically- and thermally-activated second-nearest-neighbor itops require considerable
activation. Also, this magnitude of energy indicates that the transition must have a

significant y —f character [(01 + 67) - (-121 - 67) = 12(1+7D).
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It should be noted that the structural make-up of all these spectra is rather robust to
changes of the parameters, and thus changing T by a factor of two or so with respect to
does not alter any of these conclusions. Also, one can see that the 21'2 spectrum is devoid
of minority-carrier contribution, leading one to conclude that vacancies in adjacent second-

nearest neighbors are completely blocked for that state.

VY. Conclusions

A Hubbard model for the fcc structure, in the infinite-U limit, and for an occupation
of seven-cighths of an electron per site was examined in the periodic small-cluster
approximation. Through careful use ¢f inherent symmetries the solution proved to be very
simple to obtain, but contained nonetheless some very rich structure reminiscent of real
systems. The most important result is that the nature of the ground state and the physical
properties of the system are very citically dependent on the details of the one-electron band
structure. In particular, if the top of the bana is an ordinary van Hove maximum (the
negative-r case), the ground state is an itinerant ferromagnet, in which the band-swructure
terms overwhelm the antiferromagnetic superexchangs unteraction. For a degenerate top of
the band (the positive-f case), on the other hand, the ground state is very highly
degenerate, with a complex and rich structure that describes well the heavy-fermion
behavior.

The ferromagnetic case exhibits properties which are essentially of textbook quality: a
non-degenerate ground state (except for spin), well behaved spin-aves, a relatively smali
spin-wave-spin-wave interaction (less than 8%), and low-energy excitations which can be
described in terms of spin waves and of conduction electrons which possess an ordinary,
single-spu, single-sheet Fermi Surface.

The heavy-fermion case, by contrast, has an enormously degenerate ground-state
manifold: in the cight-atom cluster and in the absence of superexchange interactions over
9% of the available many-body states belong to that manifold. This property yields an

unusually large electronic h=at capacity, which is the prominent feature of heavy-fermion
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systems. An analysis of the low lying states, based on spin-flip and electron-hopping
spectra, reveals that they consists many of spin degrees of freedom, but that the inherent
conductivity is very poor, once again in agreement with the properties of heavy-fermion
solids.

An analysis of the symmetries of the heavy-fermion ground-state manifold and of the
non-interacting (U = 0) limit clearly indicates that projection methods, based essentially on
the Guizwiller approach23, and consisting of projecting out states with multiple occupation,
must be taken with considerable skepticism, since in general they may provide states
considerably different in energy and structure from the true ground state(s).

Even though the analysis of the occupation probabilities and the Fermi Surface
discontinuity is very flawed in the small-cluster approach taken here, it was seen that in the
heavy-fermion situation the occupation probabilities are more reminiscent of the isolated-
atom system than of the step-function, non-interacting case. The Fermi Surface
discontinuity, which must exist because the system is metallic, is probably a very small
one.

Given the current interest in Hubbard models as related to high-temperature
superconductivity5-30-33, it will be of great interest to study the superconducting-fluctuation
properties of the system described in this paper, and to add to it the effect of the electron-
clectron interaction mediated by phonons. Some of the results are the subject of the
following chapter.

The eight-atom periodic cluster was just large enough for the first few tantalizing
picces of information about bulk heavy-fermion materials to emerge: the Fermi surface
structure, the spin correlations and the eleciron ransport. By way of improving the model,
the question could be asked: as the burden of computation in this case ‘sas lowered so
completely as to reduce it to analytic solution, could not the size of the cluster be scaled up,
with matnix sizes still within the range of present-day computers? The penalty of scaling is
enormous. As it turns out, the next larger size in the hierarchy of fcc cubic-symmemic

clusters has 32 atoms, and so the number of states to deal with, for an occupation of 7/8
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electron per site, increases from 2781/711! = 1024 to 228 321/2814! = 9.653 x 1012, which
even after heroic efforts to factorize by the 15 different spin multiplicities and the relevant
768 element space-group, faces daunting prospects for anything but statistical approaches.
As is, only the non-interacting and heavy-fermion limits of the system were studied
here. The model can, however, be readily extended to take into account finite U, and
reveal, for example, the nature of any intermediate symmetry cross-overs which must by

necessity occur.18
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Chapter V. Heavy-Fermion
System: Superconducting and
Magnetic Fluctuations within
a Periodic-Cluster Hubbard

Model

1. Introduction

Heavy-fermion materials, with their high heat capaciiies at low temperatures, exhibit
sometimes normal and sometimes re-entrant superconductivity. They have been a source of
great experimental and theoretical attentionl-4. This interest has been further fueled by early
experimental evidence showing a degree of similarity between these and the new high-
temperature superconducting ceramics, with many of the leading ideas for high 7,
mechanisms borrowed from heavy-fermion research5-9.

One direction in the incorporation of the large Coulomb repulsion between the f-
clectrons »f these lanthanide and actinide heavy-fermion materials has been the use of the
single-orbital-per-site Hubbard model19, or the twin-orbital-per-site Anderson model!l, in
order to make the non-neglible many-body effects more mathemarically tractable.

The current work focuses on the Hubbard model, wherein the computational overhead
is further reduced by a small-cluster approach which incorporates periodic boundary
conditions. This method!2 has been applied to various problems: photoemission!3.14,
intermediate-valence!4.15, magnetic!6, thermodynamic!?, resonating-valence-bond!8 and
alloying behavior!9. These papers have shown the approach to be good for explaining
uniform and short-range correlation properties and, although incapable of exhibiting phase
transitions, it has shown indications of possibie mechanisms involved in them. In the
previous chapter20 the author has explored the Fermi surface, spin-wave and transport
properties of the an cight-site, seven electron fcc cluster, which proved to be similar to real

heavy-fermion systems. In this chapter the small-cluster model, with various occupations,
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is analyzed for the superconducting-fluctuation behavior, to investigate possible
mechanisms for superconductivity.

The lattice in the model is face-centered-cubic, a three-dimensional array of riangular
rings, whicl: is the classical example of an antiferromagnetically spin-frustrated system.
This idea of electrons having to alternate between forming spin;singlct states with all
adjacent electrons is the basis for Anderson’s concept?! of Resonating-Valence-Bond
(RVB). Thus, one way to address the relevance of the RVB approach, in the context of
high-T, superconductivity, is to examine an extreme case, such as the present one.

Section II reviews the Hamiltonian employed. Section III examines the nature fo the
ground and low-lying excited states, as well as the suitability of the Guizwiller projection
approach. Section IV examines the superconducting correlations, in terms of the
anisotropy, degree of spontancous-symmetry breaking, the relative strengths of various
spin-coupling mdoes. The relation between the BCS predicted ground-state wavefunctions
and the actual ones are also examined, and finally, the magnetic correlation behavior is

studied.

II. The Hamiltonian
20
The Hamiltonian is thoroughly discussed in the previous chapter . The limit of large

22-24
on-site Coulomb repulsion, U — ©2, reduces it to the form:

H = H + H + H , 2.1)
Inn 2nn AF
where
+
H =-u Z c ¢ , 2.2)
Ian i.j=0.1,0 10 0
<ij >Inn
+
H = 6T Z c c , 2.3)
2nn i,j=0.1,¢g 'O JO

<ij >2nn
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represents second-nearest neighbor hopping, with transfer integral 7, and

H
AF

=J

i, j= 0.7
<ij >1Inn

..S *

(2.4)
J

is a Heisenberg interaction where J is the antiferrornagnetic coupling of order (¢ %, U).

TABLE I. Many-body of the low-lying states for 6,7 and 8 electrons in the infinitesimal
and infinite-U  limits.

Energy States Symmetries
6 electrons - small U \ 3 5
-24¢ + 12T +5U f8 16 r_x_ Tr
1 1_2l Zl 2 3. 3 3
241 +12T +9U /8 57 r x_ x_ r’'x x 'x
125,73, 75 15 5
24t +12T +13U R 6 r r_x
1 12 1
large U
12t +12T -11J /4 2 lr12
“12i +12T -7J /4 9 x,
12¢ +12T +J f4 -"rz
7 electrons - small U
241 +18T +5U /4 2 L,
241 +18T +7U 14 % 2,0,
large U
6t +6T -37 14 2 lezxz
2
61 +6T -2 16 2,_3
61 +6T -3J P2 32 ‘r ‘xl‘xz
12
6t +6T -J 2 16 ‘Lz
61 +6T +J 18 °x2
8 electrons - small U
241 +24T +15U R 2% lrz',’xssxS
241 +24T +19U 8 4 'r;‘x1
large U
-4 J 3 ll" ]T
1 ! 312 3
-37 2 L, X, X
27 lr-2 le3 23L
2 3255 3SL25 }
-J 48 X. T°T “x
§ 131271
0 53 ’r] L,°L
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The eight-atom cluster in the fcc structure has the symmetry of a space group with 192
operations and 13 representations. These representations are: five at the I” point of the
Brillouin zone (referred to as l'l, 1'2, 1'12, 1'15' and 1'25'. with degeneracies 1, 1, 2, 3, and
3, respectively), five at X (X1 ) X2 , X3 , X4 , XS; degeneracies 3, 3, 3, 3, and 6,
respectively) and three at L (Ll’ L2, L3; degeneracies 4, 4, and 8, respectively); the
labels T, X and L refer to the overall k-vector of the many-body wavefunction. The
notation is the standard one of Bouckaert ef af 25.

This model has been solved exactly for occupations of 6, 7 and 8 electrons
(corresponding to 0.75, 0.875 and 1.0 electrons per site), and the relevant ground and
low-lying states are presented in Table 1. In addition the non-interacting ground and low-
lying states are presented, separated according to their first-order correction in Coulomb
energy, which is obtained by diagonalizing, in the U =0 ground-state manifold, the

operator :

t t
H = U Z c c c c . (2.5)
c i=0.7 T T id id

ITI1. The Gutzwiller-projected state

It is interesting at this point to examine the so-called Gutzwiller method9.26-29. The
approach approximates the interacting ground state by projecting out of the non-interacting
ground-state wave function any part that contains doubly occupied sites:

t t
I‘P>=H(l—c c c c YI¥ > 2.6)
G i it ot id il 0

where the product index i runs over all sites. The appeal of the approach is obvious from
its aesthetics to its relative ease of implementation. However, as shown before20 and here,

the pitfalls of such an approach become evident.
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w
c
N

excitation energy
c

u/2

small U <— energy scale — large U

FIG. 1. Schematic representation of the ground- and low-lying states for 6 elecrons. The
situation is rather straightforward: the symmetries at low-U carry over to the high-U

regime, with 210 cross-overs.

One sees the situation schematically in Figs. 1-3, depicting the ground- and low-
lying excited states for occupations of 6, 7 and 8 electrons, respectively. For 6 electrons, if
one follows the II‘l ) non-interacting ground state of minimal Coulomb energy, and
performs the Gutzwiller projection (2.6), one arrives, at infinite U, at the proper ground
state.

For 7 electrons, however, the small-U ground state, if projected, yields an excited
state of the heavy-fermion manifold, i.c. it is superseded by states of completely different

symmetry which correspond to highly-excited states for small U.
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3u/2

excitation energy
(s

u/2

smallU <— energy scale — large U

FIG. 2. Schematic representation of the ground- and low-lying states for 7 electrons.
Here, the low-U ground states form high-U excited states, with completely different

symmeiries crossing over.

The situation becomes even more involved for 8 electrons, with small-U ground
states becoming large-U excited states, and small-U low-lying excited states mixing with
highly excited ones (the 1I'l symmetry) to contribute to the large-U ground-state
manifold. 4

Figure 4 shows the temperature dependence of the contribution of the various
symmetries to the thermodynamic equilibrium state. It is seen there that even though the
2L3 symmetry ~ the one obtained from the Gutzwiller projection — increases it contribution
as temperature7” increases, the total spin of the cluster <§(S+1)> also increases, making
the system more magnetic and therefore less well represented by a projection of a

paramagnetic state.
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3u/2

excitation energy
(o

us2

P

smallU <— energy scale — large U

FIG. 3. Schematic representation of the ground- and low-lying states for 8 electrons.
The trend as for 7 electrons continues, with many cross-overs, showing the Gutzwiller-

projected states to be an inadequate description of the spectrum.

These observations lead cne to conclude that the Gutzwiller projection technique
alone-is inadequate, that one requires in addition the minimization of the Coulomb
expectation (2.5), but even so the description of the manifold of ground- and low-lying

states is inadequate with the projected states alone.
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FIG. 4. The competing effects of superconductivity and magnetism are most aptly
demonstrated by comparing the thermal probability behavior of the seven-electron

superconducting candidate, 2X ’ with the Gutzwiller-projecte d state 21_3. and the mean-

spin-squared <S(S+1)>. The two states do not mix 10 fcrm a broken-symmetry

superconducting complex, the 2X ; has a stronger correlation than the 2L3' and the

latter is washed out by an increasing ferromagnetic tendency.

IV. Results

A. Superconducting correlations

The ecight-atom cluster, a finite system, is unable 1o exhibit the infinite-range

correlation behavior of a superconducting transition, i.e. the important region in reciprocal

space, the small k region, is inaccessible in this treatment, and it is possible that the

finiteness might introduce artificial correlations30. However, it has been the belief of the

present authors and others?, that the study of the fluctuations towards superconductivity in

these small systems could yield clues to the real phenomenon. Along those lines, and

following the BCS formalism, one has an order parameter A(R,r), which corresponds to
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the system forming Cooper pairs, of the form
ARI) = <ARP>=<¥R+r/)¥R-r/2)>. (41
where the system has a pair of normal clectrons destroyed, with center of mass R and

separation r. Following Hirsch31, one may describe the correlation between the two

electrons taking place by one of several modes, the usual on-site (r = 0) spin-singlet

coupling (SP) of the form :
c c , 4.2)
it il
an extended-singlet pairing (SPX) :
c ¢ - ¢ c , 4.3)
it il il i+rd

and a (necessarily) extended spin-triplet pairing, as in liquid He3, with components

referred to as TPT (triplet parallel, S, = 1), TPO (antiparallel, S, = 0), and TP! (S, = -1)

of forms : »
c c , 4.4)
it i+t
¢ ¢ + c c ) 4.5)
it isrd id  i+rd
c c , (4.6)
id i+rd

respectively. In uniform systems the position R within the crystal has no intrinsic

impontance32. One may proceed directly 1o reciprocal k-space via Fourier transform:

1 ik-R 3
A(k,r)=aje AR,r)d R ; @7

In finite systems, one may study the order parametcer fluctuation,
A At
S (k. r)= <A(k,r) A(k,r)>, 4.8)

which may be considered as a susceptibility to Cooper pair formation, i.e. the amount of

phase space available to such a possible condensation process. The dependence on r yields
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information on the spatial distribution of the correlation; the k-dependence yields the
transport and coherence properties. As the object S(k,r) is related quadratically to the
order parameter, one may not speak of the spatial distribution of superconducting
correlations, but only of the square. Thus triplet-spin pairings, which necessitate odd-parity
(p, ectc.) spatial wavefunctions, would have (s,d, etc.) even-parity S(k,r)
distributions, as do singlet pairings.

The quantity S (k,r) is in fact the pair susceptibility defined by Lin er al 39'40,
reformulated for the zero-temperature case when the ground-state is degenerate. The results
reported here are the eigenvalues of the pair susceptibility within the ground-state
manifoldal.

In the present context, with an eight-atom crystal, there are correspondingly 8 k-
vectors in the Brillouin Zone, one at I' (written as v ), three at X (xl, xz, x3), and four

atL (11, 12, 13, 14 ). It can be shown then that the SPX and TP0 correlations, written in

the k basis a , take the form: °
xo
A 2 ik-r
LY (k,l‘)=7(lic JIN =n

SPXITPO
i(Kq=x )T ¢ +
+E [ 1 2) a a a a ]
I .t ekl x+rkd
x5 2 "N
4.9)

One can immediately see that the pre-factor (1 1 ¢! X7} forces the correlations of rhese
two forms to take on non-zero values in complementary parts of k-space, as the
exponential term for this cluster takes on only values * 1. Similarly, one can establish the

expressions for the parallel wriplet forms :

A 1 i k- i(kq-Ko)T ¢ +
s (k,r):—(l—c‘ I-)[ZN--3r|+Z¢= 1 2)a a a a
TPo N g x g xlcr x2+kc x ko
12
.(4.10)
where non:fers to the number of electrons aligned with ¢.
There are six distinct first-nearest neighbors in this model (cach represented twice, 10

give the 12 nearest neighbors of the fcc structure) and thus the information provided by
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the six S(k,r = 1), T, T3, T5, Tg, T7), where the T; 's represent the associated
displacement vectors, is just sufficient to expand unambiguously the spatial dependence in
terms of the s and the five d functions zx, yz, xy, x2 — y2 and 3z2 —r2. Within a
normalization factor of [(2/+1)/4n}1/2, the expansion coefficients can be given as :

1

A (k)==[S (k,‘l:l)+S (k.‘tz)+S (k,13)+S (k.‘ts) +S (k.‘ts) +S (k.‘t7)]

4.11)

=)

1
A K=—[Skst l)—S(k.‘t:s)] 4.12)

7

1
A vz (k) =—:-5-[S (k,tz)-S (k. 1:6)] 4.13)

7

)
A, (k)=7_§-[5 kr)-Sk.t)] 4.19)

A, 2(k)=L3([S(k.‘tl)+S(k,‘l:s)]—[S(k,‘tz)+S(k,‘l:6)]] 4.15)

1y Vg

A322_’ 2(k) =% {S (k,tl) +S (k, ‘tz)-ZS(k, 13) +5 (k, 1:5) +S5 (k, 1:6)—25(k, 1:7) ]

4.16)

For an occupation of 7 electrons the true heavy-fermion ground-siate manifold -

comprising the symmetries 21'2. 2x ; and 2X2 — and the low-lying excited states of

symmetry 2L3, are allowed to mix by (4.9) or (4.10), and the patterns of mixing arc

presented in Tables IT and IV, with the actual values of the correlation matrices presented in

Tables III and V, respectively. Thus, any rends towards the symmetry-breaking of a
superconducting transition can be detected.

Qualitatively, the first thing to note is that the excited 2L3 states do not mix with any

of the ground-state symmerries for any of the spin-coupling modes. The only mixing

occurs between the three pairs of 2X 1 and 2X2.
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TABLE II. Correlation mixing pattern for the 7-electror: heavy-fermion ground-state manifold

singlet pairing uiplet pairing
Y[x X, X3 l1 !2 I L llx, x, %4 ll ol 1,
T IZI'2> r|r r r r r|lr r
2 2
lxl(a)>lzxz(a)> Agls o Ajall AJAgACA,
1%, 0>1"X,0>1B B B B} B |B B
+f + + l + -
1%, ©>X,0> B B _ B BJ B B |8 B
} - _—
152 I2F2> r r r r r r r r
X, @>%,@>{B| B B B (B, B B 3
2 2,,
1%, @>1°X,0>fA) A, ny Aollae Aore Ao
1%, ©>x,0>{B| B, B, B8, E B, B,
3 I21-'2> r r r.r ror r r
2
le(a)>lzX2(a)> B, B,] B,B, (BB, |B, B,
IX, ®>1'X,0> B B| BB BB |B
2 .
1%, ©>1%, 0> jA, Ajd  AA, , Ay A, . .
Ts |zr2> rl r r r | r r| r o r
%, @>1%,@>|AdA, Aok Aoho Aghyg
1, ®>1*x,»>]B B, B,B, B E, B B,
1%, ©>1%,©>|B_{B. B B i B_B_ B B
T |zr2> r r r r r r r r
%, @>%,@>B | B [B. B_ B Bj B B
2 2
X, >1X,0>A ) Ay JA, A, AL Ag AL A
|2X1(C)>|2X2(c)> B* B+ B+ B+ B+ B-e B+ B+
Ty 'zr2> r ry r rifr r ror
2
IXI(a)>l:X2(a)> . BB, B,[B, B, B,B,
1%, &>1°X, 0> 8 B|B BB B B B
2
1%, ©>1%,0> P, Al A, Afla, A, Ay A,




Chaptter 5. Heavy-Fermion System: Superconducting and Magnetic... 100

TABLE III. Values for the couplings of the heavy-fermion ground-state manifold

for 7 electrons.
coupling r A0 B:
BRI s 7]
7 3 4 =12
SPX ~
4 o B aZoou
i 12 | 712 6
[ 3 o | 5 2
PO 13 3 4 =36
12
41 7!2 19
| ®] [ 0w
[ 1 ) [ 1 2 1
- - +.
6 0 2 -9
TPT % 3
5
0 — 2 =
i 36 | fg 2
[ 7 T 3 7
7 §v) 0 4 *
TP 1—2 o 1 iﬂ 23
L ] 2 3 |

Quantitative results are given in Table VI. Here all correlation strengths are normalized
to one, i.c. divided by the maximal cigenvalue over all possible 11440 states. For SPX
coupling one notices a considerable enhancement from the almost non-interacting to the
Gutzwiller-projected state, but the enhancement from the latter to the true ground state - of
different symmetry - is approximately the same; in other words, the difference between the
non-inte:icting and true states is twice as large as the Gutzwiller method would yield. One
sees the same trend, albeit more weakly, for the wiplet TPO and TPT modes. They both
favor a broken-symmetry state. Because these correlations were calculated for the S, = +
1/2 stares — four electrons with spin up, three electrons with spin down — the TPL mode is

strongly disfavored, as-seen also in Table VI.
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TABLE IV. Correlation mixing pattern for the 7-electron Gutzwiller-projected manifold

in the large U limit.

singlet pairing

triplet pairing

12 13

X, Xz X3

T, 2L, @)
1L 4 c)>|21.3 @y
2L, &>1’L, ©
2L 3 (7))!2[.3 ®>

A

T2 |2L3(1)>|21.3(z)>l;A+
2L, B)>1°L, @y
2
1L 5 (9> L,(QT.?O
2
1%L , 0)>1"L ; ®)>

T, L 0> @)
2L, ®>1L, @y
1%L, ©>1°L,©
4L, 1L, ®> A

> W W
o>+w+w

T 1L,0>1%L,05
2L, G>1L, @y
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> > W w
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+
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+

+
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o
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TABLE V. Values for the couplings of the heavy-fermion Gutzwiller

manifold for 7 electrons.
coupling A A, By B,
2ol e B8 o[t &
SPX
17 19 19 ﬂ 49
0 = W3 X 0 = sl
- _:_g 0 ] L 12} | “0 30 |
- [ 1t 1T )
ﬂ 0 E +7 3 ﬂ 0 'ﬂ +£
12 15 ~ 60 60 15 T180
TPO
o Bl (W3 3| |o &L o
L ) [Te0 30 | L 3] |0 90|
Z o | & 22 R )
20 60 45 20 12 %0
TPT
19 71 73 79
0 = 243 JL 0 = 3 2
361 _" a5 180 180 9% 180 |
ol e iz 8 b
30 60 180 3 60 60
™ 77 11 £
0 e IHS 2 0 = 3 4
%] |*Ts0 36 15] "0 ®

The evidence appears to favor, in the large-U limit, the extended-singlet over the
triplet pairings, a result noted before in the literature31.33. However, the critical result here
is that the Gutzwiller-projected siate, has neither the correlation strength of the true ground
siate, nor in any way participates with the ground state 10 break symmetry and lead
towards Cooper pair formation. Having decided on the 2X 1 state in the 5PX coupling
mode as the leading superconducting candidate, one can now apply (4.11-.16) to describe
its s-d-decomposition, the results of which are presented in Table VIL One can sec quite

clearly the degree of anisotropy, both in real and in k-space.
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TABLE V1. Normalized maximal correlation values for 7-electron states at nearest-neighbor
separation.

Lype/# states SPX . TPO TP T TP
all stan
R 1.000 1.000 1.000 1.000.
11440
almost non-
interacting 0.281 0.172 0.167 0.479
U§g |2L3> '2’-3> 12L3> |2L3>
Guizwiller state
el 0313 0173 0.176 0.428
28 [2,> 1%, > %, > 2,>
Heavy-fermion
state 0.344 0.181 0.207 0.412
U oo x| > os16l% >  o79sl’ > osesl’x >

-o5ml% > coewl’%) > 05l >

Atomic fimit

1. T=0,U=oo  0.438 0.438 0.667 0.500
1024

TABLE VII. Unnormalized s and d expansion of correlations for the maximally-
correlatec * X 1 > state, polarized in the x-direction. The degree of anisotropy is quite
notable. :

) 1.750 0.917 0.417 0417 0.875 0.875 0.875 0.875

zx 0 0 0 0 [-1588 -1.588 1588 1588
yz 0 0 0 0o |02 o012 0722 o2
xy 0 0 0 o]0 o122 o072 02
2ytlime | 3175 1443 0 ) o866 0866 0866  0.866

2
3z -r "1.000 1.833 0.833  -1.667 0.500 0.500 0.500 0.500
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B. BCS wavefunction for a finite cluster
In 1957, Bardeen, Cooper and Schrieffer wrote their celebrated paper34 describing the

superconducting-state function:

t %
¥ >= (u + v a a 10>, 4.17)
BCS 1:1 Kk k kT -kl )

where the coefficients uy and vy are expressed as3s:

€
2
u =.l.[1+ k 1 4.18)
k 2 )
€2 +A
k
£
via Y- X 1 (4.19)
k 2 .
el +A
k

Here €y refers to the one-electron energy of k, measured from the Fermi energy, whereas
Ay represents the corresponding superconducting energy-gap parameter. Historically, the
fears that the BCS equation (4.17) (i) did not conserve the number of particles, and (ii) in
the thermodynamic limit the predicted wave function was orthogonal to the true ground
state, were eventually resolved and the approach has become the comerstone of the theory
of superconductivity.

Recently Gros36 has examined the consequence of projecting the BCS iate onto a
fixed number of electrons in a finite cluster, and then applying the Gutzwiller projection to
remove any doubly-occupied states. This approach has the advantage of allowing the
system in question to reveal its own preferred coupling mode, rather than attempting to
match the correlation to those of given models.

In the present situation, given the advantage of considering an even number of

electrons, it is convenient to choose the eight-site cluster with six electrons. Thus, the
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wavefunction of (4.17) would take on the (unnormalized) form:

4 >=Zv V VU u” u u u airafafa+ a?a? 10>
BOS ek, R T T T B T B A
(4.20)
where KO, Kl and Kz are the occupied electron-pair states and K3 through lc7 are the empty
one-electron states. Equation (4.20) is considered here in two limits: the almost-non-
interacting (small U) and the Gutzwiller-projected strongly-interacting (large U) extremes.
For U =0, there are 56 states corresponding to occupied triplets of k-pairs (3 chosen from
8), while in the infinite-U limit, the Gutzwiller projection (2.6) reduces these to 28
possible states.

For U vanishingly small, if one restricts the choices for the triplets of occupied k-
pairs to the y-pair, and two of the four / -pairs, then one obtains directly a state with

energy contributions from (2.3) and (2.4) of (-24¢ + 12T ), which corresponds to the

vanishing-U ground state. This is equivalent to setting

V =u =u =u =1, u'='v=v=v=0, 4.21)

which amounts to setting the energy-gap parameters, AY x. = 0. This leaves the four
i

(u ;v ;) pairs free to reduce the Coulomb energy (2.5).

Without the constraint of the BCS variational wavefunction, the six functions, denoted

by the (kT, ki) pairings y?/ ¢ ,yl I,yi 1, vyl {,yl I, ,and yI ., form
Y ) P 8712713714723724 Y34

representations of Iy, 1T, and IT5', with expectations, 13U/8, 7U/8 and 9U/8,

respectively. It should be noted that the T} and 1T, 5' states correspond exactly to those

listed among the low-lying states in Table I, while the 11'12 state overlaps only partially the

true ground state.

It can be shown that the Coulomb energy expectation value, with the BCS state, is

<H>U{1+-[(Zvvuu) ,lvllulzvlu

/Zv:v:u’zuj } (4.22)

where the summations are over the four /-states. This is not a simple problem in
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optimization. However, une can argue, by symmetry, that the optimum solutions will lie on
loci of high symmerry. If, for example, one sets all the u's and v's constant, which
would amount to s-wave pairing, one obtains precisely the 11'1 state. Thus, if one were to
use the BCS wavefunction for attractive potentials, where U < 0, one would obtain the
correct ground state.

To obtain the minimum of (4.22) for U > 0, if one calls this minimum yU, sets any
two pairs of the (4;,v; )'s equal (three such combinations, e.g. u, [H g Sy,
=u g, =uy and similarly for the v's), and introduces a variable x=u;v, /u,v;, one
obtains :

(1+x*)8 -9)-8¢ +rx)+x2(3y —44) = 0. (4.23)

Upon minimization with respect to y (4.23) yiclds an extremum with the unusual value

= %‘_3_9 =0.941987298 4.24)
3 _24

which is achieved for

x = i\/—g; - \/l—-i—_g = (-2.296630), (-0.435420) (4.25)

Clearly, this solution is 2 compromise. Although it minimizes the band energy, it does not
reach the minimum 7U/8 Coulomb energy accessible with the full BCS set (4.20). And in
fact it represents only a 59.15% overlap with the true 1l"12 ground-state, of expection
3uia.

For infinite U, the one-electron orbital energies cease to have meaning. However, if
one secks a solution with minimal nearest-neighbor band energy (2.2), then one finds a
minimal manifold corresponding to the choices for (4 ;, v; ) of (4.21). Without further
BCS contraints, this manifold has expectation values for (2.2) of (-32¢/5), (-96z/11) and
(272t /23) [equal to (—6.4r), (-8.7271), (-11.826r), respectively] corresponding

respectively to the symmeiries ll‘l. l1‘25' and ll"lz. This resvlts compares with the true



Chapter 5. Heavy-Femmion System: Superconducting and Magnslic... 1097

ground-state energy of (—12f). The minimization problem becomes somewhat more

complicated than for infinitesimal U, of the form :

2 2
23Zv Ve —S(Zv V.4, u ) +66u vl ul vl “l,vlg l,v14

2 2 2
17§v2v2u1. —3(§vvuu)+36u1v,ulvl Iv ulvl
f Y | 2

3

<H1 >=-8
nn

(4.26)
Again, as in the infinitesimal-U limit, the maximum ‘.rl value may be achieved in an s-
wave pairing. The minimal value possible, however, achieved for x =u;v, / uyv; = -1,
is (-7361 /63) {equal to (-11.683¢)].

To study the superconducting energy-gap parameters, onc may expand their
distributions, as a function of k, in terms of functions following the symmetries s, 4, etc.
[even parity only is considered with the singlet-spin mode of (4.17)]. With eight k-vectors
in this small cluster, one has a basis of 8 k-functions to work with, and one can obtain, as
Sigrist and Rice do37 for the high-Tc square lattice, the functions compatible with the
lattice. For the energy-gap parameters among the /'s, this amounts to the following

contributions of d-functions:

dxy = A,’ - A,z - A,3 + A 4.27)

d’z = A,‘ + A,z - A,’ - At‘ (4.28)

d, = A': - A,z + A,3 - A,' (4.29)
ard in addition the s-like function

s = Al' + Al2 + A13 + A,' (4.30)

Thus, one sees a definite d-character for the BCS state. However, it is an
unsatisfactory approximation, in both low- and high-U limits: the expectation values of the

total energy are nci close to the true ground-state energy.

C. Magnetic correlations

As the fcc structure is composed of triangular rings of bonds, the antiferromagnetic
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coupling (2.4) is frustrated in its attempt to saturate the system. Thus the interaction of the
band structure with the spin geometry, a possible resolution of the RVB proposal, is of
great interest. In this cluster, there are three reasonable spin-spin correlations to examine —

on-site, first and second neighbors — of forms
1 2
Ly=g XS5 @3
13

S..§5. (4.32)

iz  jz

L =

L

1
=Y 5.8, (433)
: N j>2nn e
respectively, N being the number of sites. It should be pointed out that, within the eight-
atom cluster, a sum rule exists,
L, + 2L, +2L, = S}’ 16 434)

where Sz is the z-projection of the spin. Furthermore, in the infinite-U limit, one has L
tending upwardly to n/4N, where n is the number of clectrons

The results for the ground- and low-lying states for 6,7 and 8 electrons in the small
and high U limits are presented in Table VIII, along with the extreme values possible for
each configuration.

Very clear trends can be gathered from the table. First, at both the low- and high-U
limits, the ground state is most strongly nearest-neighbor antiferromagnetic, with L,
increasing monotonically with excitation energy. The exact opposite can be said of the
second-nearest-neighbor behavior. Also, as a function of U, one sees that Lj and L,
increase, and L decreases.

Thus, the tendencies at both extremes is towards antiferromagnetism, and states which

at low-U may be the ground states, may find themselves overtaken, at high-U/, by

completely different electronic configurations which are more antiferromagnetic.
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TABLE VIII. Magneiic correlations for 6,7 and 8-electron ground and low-lying minimal-
spin states in the low and highU'  limits.

smalllU largeU

state(s) L 0 L 1 L 9 state(s) L 0 L . L 2
6 electrons
maxima 0.0000 -0.1563 -0.0938
minima 0.1875 0.4063 0.0938

‘I‘12 0.1484 -0.0859 0.0117 ‘I‘12 0.1875 -0.1146 0.0208
't kg lrg 01172 -0.0547 -0.0039
'r'lr ' 00859 0.0234 -0.0195

1 12 71

7 electrons
maxima 00313 -0.1875 -0.0313
minima  0.2188 0.5625 0.0938
%, 01367 00644 -00020 |’r, % ’x, 02188 -0.i250 0.0313
20,%L, ua211 -00508 -00098 | . 02188 -0.0833 0.0104
8 electrons
maxima  0.0000 -0.2500 -0.1250
minima 02500 0.7500 0.1250
T ¥ 01328 00547 00117 | T'r 02500 -0.1667 0.0417
T'X, 01016 00234 -00273| 'L, 02500 -0.1250 0.0000
1 1

1‘2'5 X 0.2500 -0.0833 -0.0417

IV. Conclusions

A model for superconducting and magnetic behavior in a heavy-fermion system, one
comprising an eight-atom cluster in the fcc structure with occupancies of 6,7 and 8
clectrons, was examined. A critique of ongoing work is obtained. Although too small a
cluster to observe the important long-range correlations present in superconducting

transitions, it is the opinion of the authors that this smallness, allowing a full description of
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the model system, more than makes up for this liability, while other approaches, such as
Monte Carlo9-36 may be leaving subtle gaps in the true picture.

It was observed that the Gutzwiller projection26, which obtains a heavy-fermion
wavefunction from the non-interacting function by projecting out any part containing any
doubly-occupied atoms, is an inadequate description of the ground state and low-lying
excitations. This inadequacy becomes more pronounced as one nears the half-filled limit,
which is where all the interesting heavy-fermion behavior occurs. The amendment to the
projection proposed here, that is, to take the linear combination of non-interacting ground
state wavefunctions which minimizes the Coulomb repulsion, acts to achieve the optimum
state from within that restricted manifold.

The mode! demonstrates a trend towards superconductivity which is of extended-spin-
singlet form and highly anisotropic, with significant s- and d-wave mixing. No
significant trends towards symmetry-bréaking was noted, indicating possibly that the large-
U Hubbard mechanism is not, of itself, responsible for superconductivity; rather, it might
be said that, at best, it makes phase space available for another mechanism, such as the
standard phonon coupling, to allow superconductivity to proceed. In light of recent
evidence denying any magnetic activity in the Yttrium compounds38, this may be an
optimistic assessment.

The BCS trial state, restricted to the small cluster, describes states of considerable d-
character, and was shown to be inadequate both in the small and large U regimes,
removed considerably from the true ground state. For small attractive U, however, the
BCS wavefuncﬁon comresponded exactly to the true ground state.

The magnetic correlations showed that this model is remarkabily good for
antiferromagnetic behavior, with strong antiferromagnetic ordering in both the small and
large U limi’s.

The author recognizes work criticizing the validity of calculations of short-range
correlations in small-cluster models, with errors induced by finite-size cffects30 Finite-size

effects may also account for a large measure of the discrepancy between the Gutzwiller-
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projected and the true ground state. It is possible that the projection process, applied to
increasingly larger clusters, may approach a total description of the ground-state behavior,
but this is a conjecture which should be scrupulously examined. In the: one-dimensional
casezg, the results indicate that the approach is not satisfactory in the atomic limit. The
present approach, as detailed in previous work20, does not scale well, so the question may

remain open for some time to come.
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