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Electronic Behavior of Highly Correlated Metals 

Ariel Reich 

ABSTRACT 

This thesis addresses die question of die strongly interacting many-body problem: that 

is, systems where the interparticle correlations are so strong as to defy perturbative 

approaches. These subtle correlations occur in narrow band materials, such as the 

lanthanides and actinides, wherein die /-electrons are so localized that a variety of new 

phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As 

well, one has the alloying problem, where local interactions are paramount in determining 

the overall behavior. The technique employed in dealing with these systems is the Small 

Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms, 

coupled with periodic boundary conditions, is solved exactiy. This is tantamount to solving 

a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical 

overhead is funher reduced by employing die full space group and spin symmetries. By its 

very nature, the Small Cluster method is well able to handle short-range interactions, as 

well as the combinatorial complexity of the many-body problem, on an equal footing. The 

nature of long-range order and phase transition behavior can not be incorporated, but 

sometimes clues as to their origin can be discerned. The calculations presented include: a 

two-band Anderson model for an interrr^diate-valence system, wherein photoemission and 

fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, 

such as copper-silver-gold; and a Hubbard model for a heavy-fermion system, wherein 

Fermi surface, transport, magnetic and superconducting properties are discussed. 
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Chapter I. Introduction to 
Highly-Correlated 
Electronic Systems 

I. Introduction 

There was a saying, something to the effect that "You cannot change one thing in the 

Universe without affecting every other." This is the statement of the many-body problem -

a problem at the heart of modem physics - to take into account, in some consistent manner, 

the intricate correlation between die panicles in a system. This notion pervades every scale 

of the quantum world, from condensed matter, to nuclear, to particle physics. 

In terms of the low-energy excitations of a many-body system, one may speak of 

quasiparticles and collective excitations. When the interactions act to merely dress the 

particles, with effective masses, charges, etc., then one is talking about quasiparticle 

excitations. When particles respond in concert, as for example in a plasma oscillation, then 

one is referring to a collective excitation. 

One of the surprising aspects of many-body physics is that initially strong interactions 

acting between die particles of a system sometimes can be renormalized as weak residual 

interactions acting upon quasiparticles. An example is Coulomb screening in a solid. 

Therein, a negatively charged electron repels others until the positively charged shell built 

up around the electron effectively screens out its charge. This screened entity then interacts 

quite weakly with other such quasiparticles, and may act in concert to build up collective 

excitations: plasmons. 

The notion of quasiparticles is thus an inherently perturbative notion. Systems where 

perturbation theory applies are therefore referred to as "normal". However, as Pines1 states 

quite clearly: "It would seem that nature does not believe in power-series expansions in the 

many-body problem." In the case of superconductivity, at the temperature where 

perturbation dieory breaks down, one sees the instability to Cooper pair formation, i.e. a 
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phase transition takes place. Any approach based on normal one-electron states is doomed 

to failure unless carried to all orders simultaneously. In this new superconducting phase, 

however, one may speak of the quasiparticles as electrons with long-range order whose 

energies are modified from the non-interacting case by a gap energy. The collective 

excitations correspond to excitons, formed by pairs of quasiparticles, and almost 

unmodified plasmons. 

There are, of course, die "abnormal" systems where many-body effects are non-

perturbatively strong, and it is incumbent on the physicist to seek new tools with which to 

describe the related phenomena. This diesis deals with one method in particular, the Small-

Cluster Method. 

The purpose of this chapter is: (i) to. survey the physical properties of the heavily-

interacting systems under study, (ii) to give an account of other theoretical methods, 

employed in dealing with these systems, (Hi) to give an exposition into the workings of die 

Small-Cluster approach, and (iv) to summarizr the nature of the various calculations 

reported in this diesis.. 

II. Physical systems with large many-body correlations 

Most condensed-matter systems do not present very strong correlation effects, luckily 

so that modern physics can avail itself of very powerful methods, such as the ab initio 

pseudopotential approach, to describe a wide variety of physical systems. Simple metals, 

compounds, and especially semiconductors are all finding adequate description through the 

band-structure picture, with each band corresponding to a set of quasipanicle excitations. 

There are regions of the periodic table mat still elude such approaches. Most notably, 

there are the lanthanides and actinides, at the bottom of the table, whose occupation of the 

/-levels represents the extreme limit of electron localization and correlation. There is also 

die metallic alloys, which represent me two-headed problem of configurational statistics, 

and electronic band structure. 
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A. Heavy-Fermion and Intermediate-Valence Behavior 

The phenomena of heavy fermions and intermediate valence are related and should be 

considered as part of a spectrum of behavior, which ranges in one extreme from the 

almost-completely uncorrected s-band metals, such as the alkalis, to p-band materials 

such as semiconductors, to the increasingly narrow-band transition metals, until finally 

arriving at the lanthanides and actinides, where die 4/ and 5/ electrons come into play 

(see Fig. 1). 

uncorrelated 
electrons 

simple metals 
•»• semiconductors 

transition metals 

localized 
electrons 

heavy-fermion 
regime 

4f 

5f S 
intermediate valence 

Iregime 
i i i . 

U / bandwidth C O 

FIG. 1. Following Fulde el. al. , the spectrum of metal behavior is presented as a 
function of the intra-orbital Coulomb repulsion £/, for various band metals. This 
diagram does not include the factor of band occupancy: heavy-fermionic behavior resulting 
from near-half filling of the/-band, intermediate valence occurring at lower fillings with 
the /-electrons hybridizing strongly with the conduction band. 

As one could easily guess, one of the chief determining factors of this spectrum is the 

occupation of orbitals of higher and higher shells, and larger angular momentum. In the 

d- and/-band metals, the filling of these multiply-degenerate levels compete quite closely 

with an outer j-orbitai. In the crystal lattice, this outer j-orbital overlaps the most with 

adjacent atoms and forms the widest bands, while the d- and/-bands are each narrower in 
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turn, and are mostly due to hybridization with the s-band. There is another feature to this 

localization, and that is the increase in electron-electron correlation. As two electrons in the 

same orbital would spend much time close together, they would exact a large Coulomb 

repulsion penalty, U. The many-body interactions thus become quite strong, resulting in 

many new subtle effects coining into play. One may therefore classify electrons as being 

itinerant (easy to hop from atom to atom), such as the rf-band electrons in the transition 

metals, or localized, as for solid molecular oxygen. In die rare earths, one may have a 

coexistence of both extremes. 

The itinerant electrons of the d-band transition metal series may interact to form 
3 

paramagnetic (normal), ferromagnetic aiid antiferromagnetic structures . The latter case, as 

occurs in chromium, is perceived as being the result of band structure and Fermi surface 

effects, which results in a spin-density-wave instability, with the separatin? of part of the 

Fermi surface and a lowering of the overall energy. As for the other merals, there is an 

intra-site exchange interaction favoring the parallel alignment of spins, the so-called Hund's 

rule, competing with the assignment of energies according to the band dispersion' The first 

effect is to favor ferromagnetic order, the second paramagnetic. It is in iron, nickel and 

cobalt where ferromagnetism wins out. Place nickel with oxygen in nickel oxide, however, 

and the resulting structure is antiferromagner.:. Here, Hund's rule assures the strong local 

moment on the nickels remain, but the presence of the paramagnetic axygw. between the 

nickels prevents electronic exchange in anything but an antiparallcl configuration. Thus, the 

system is insulating with a residual, band-structure induced, antiferromagnetic interaction. 

One sees the large Coulomb repulsion from a magnetic ion leading to an interaction 

which is ferromagnetic in some instances, antiferromagnetic in others. In the free-electron 

model, a similar phenomenon occurs and it is known as the Ruderrnan-Kittel-Kasuya-

Yosida (RKKY) interaction. It is the result of a second derivative singularity in the 

magnetic susceptibility of the free-electron gas, and is oscillatory with period 2kf (thus 

alternately ferro- and antiferromagnetic), and decreases asymptotically with distance as 

1/r3. The idea of the magnetic/-electrons interacting indirectly through the almost-free 

conduction electrons is the mechanism for making elements such as gadolinium indirect 
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ferromagnets. It also leads to complicated spin arrangements in other rare-earth elements. 

The intermediate-valence systems, such as cerium, represent a competition between 

two /-orbital configurations, all others inaccessible due to the large Coulomb repulsion in 

these localized orbitals. The/-electrons participate only indirecdy, through hybridization, 

in the conduction process. In the heavy-fermion materials, such as UBe , 3 . this/-electron 

transport is somewhat less difficult, the large band masses resulting in a large electrical 

resistance and heat capacity, and the residual antiferromagnetic interactions yield 

susceptibilities far larger than ordinary metals. The large scaling differences between 

heavy-fermion, intermediate-valence and conventional metals is demonstrated in Table I. 

Table I. Experimental evidence attesting to the qualitative difference between heavy-
fermion, intermediate-valence and conventional metals. 

Heavy-Fermion Materials 

super magnet normal 
conductor 

UPt 3 U 2 Z n n CeAl3 

Intermediate 
Valence 

Ce 

Conventional 

Pd Ag 

Specific Heat 
coefficient 

7(0) , 
mJ/mole-F? 

450 400 1600 12.8 9.4 0.6 

Magnetic 
Susceptibility 

X(0) 
memu/mole 

7 12 40 2.4 0.8 

Room-
Temperature 
Resisitivity 
\i -ohm-cm 

150 110 170 77 20 2 

There have been a variety of simple models introduced to shed light on the competition 

between band structure and correlation effects. This simplification is necessitated by the 

enormous combinatorial difficulties presented by full, rather than mean-field averageable, 

many-body interactions. Kondo modeled dilute magnetic alloys by coupling a conduction 
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band with a sole magnetic impurity. In this way, the spin compensation of the conduction 

electrons near the magnetic ion could be described. Straightforward as this model may 

seem, it took the advent of renormalization group techniques to account exactly for the 

transition to Kondo behavior. At the other extreme, Hubbard proposed a single-band 

model with on-site Coulomb repulsion, a model whose rich magnetic structure and metal-

insulator transition behavior seems to belie its simple form. In order to answer the question 

of the interplay of the s and d bands (or for that maner, s and/) Anderson proposed a 

two-band model, with which questions of moment formation, magnetic quenching and 

charge fluctuations can be addressed. 

B. Alloy Behavior 

The problem of predicting alloy properties between unlike metals has been a daunting 

task for condensed-matter physicists. Depending on concentration and temperature 

conditions, one may find solid solutions, component segregation, ordering of compounds, 

structural transformations, etc. (See Figure. 2). One may pursue die problem by one of two 

tacks: a classical statistical approach or quantum mechanical one. Either limit has proven 

satisfactory in some physical situations; but a fully predictive theory where both statistical 

and band structure considerations come into play still eludes physicists. 

© o © © o o 
o o o © o o 
©_©_© 0_©_0 
«o«o^o^©_©_© 
W © W o 
W o W o W o W o © o o © o o 

Ag-Au 
solution 

FIG. 2. An example of the rich structure of alloy systems. The three metals copper, silver 
and gold are so much alike, yet as alloys, Cu-Ag segregates almost completely, Au-Cu 
orders in specific ratios, and Ag-Au forms the almost prototypical solid solution. 
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Cu-Ag Au-Cu 

segregated ordered 
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In the former, one creates a phenomenological theory where all the quantum mechanics 

is embodied into effective pair-pair interactions (or even higher order groupings) and then 

classical statistical mechanics calculations yield the configurational entropy. 

In the simplest example, following Kittel and Kroemer8 , one ascribes binding 

energies between nearest-neighbor atoms of types A-A, B-B and A-B binding energies 

u. ,, ugB and w._, respectively. In a crystal structure with p nearest neighbors, and x 

the concentration of element B, it can easily be shown that the mixing energy, u , obeys: 
M 

UM = -JPX{X-X)[UAB -^UAA +UBB)]- ( 2 1 ) 

The mixing entropy per atom is: 

oM = - [ ( 1 -x ) log ( 1 - x ) + x logx ] . 

The free energy of mixing can be expressed as fu = uu - TO",- with x the reduced 

temperature. A system is said to segregate in a composition range where the free energy 

has negative curvature, since the system would find segregating into a linear combination 

of various constituents outside of this range more energetically favorable. This region is 

known as a solubility gap. Bearing this in mind, one can establish an upper limit for the 

onset of the gap at a temperature of: 

XM =1P^UAS-^UAA+U3B^' ( 2 .3 ) 

which aptly demonstrates the competition between binding like and unlike species. 
q 

A variety of approaches have been proposed to handle alloy behavior . They proceed 

from two tacks: local or band pictures. In the local picture, where short-range interactions 

can be best handled, one has the cluster-variation method ' (CVM), wherein one can 

extend the above model to include second-nearest neighbor interactions, effective three-

atom (ring) interactions, and even four-atom (tetrahedron or square) interactions. By virtue 

of all the adjustable parameters involved, they are set to fit best the experimental phase 

diagrams. 

The other limit is to consider the alloy amenable to band description. The question at 



Chapter 1. hioducton to Higbty-Cornkted EbcUonk: Systems 8 

hand is which quantity, relevant to the pure metals, must be suitably averaged. In the 

virtual crystal approximation, one assumes the overall potential to be the weighted average 

of the pure metal constituents. In the Coherent Potential Approximation (CPA) introduced 
12 by Soven and by Velicky et.al. , wherein the self-consistent band energies are acquired 

by assuming all atoms scatter independently, an averaging of the pure metal Green's 

functions. 

In die limit of very dilute alloys, one can appeal to perturbation theory to treat the 

impurity atom as a perturbing potential, whose effects are screened quite effectively past a 

distance of one lattice unit . The other extreme, taken up by Terakura et. al., is to 

perform ab initio Local Density Approximation (LDA) calculations on a few selected 

ordered compounds, compare the relative energies of formation, and extract effective 

"forces" from them. 

There have been attempts to connect the bandrstructure and cluster expansions ' , an 

example being the Cluster-Bethe lattice approach. The Bethe lattice, which is coupled here 

to a central cluster whose configuration is varied, forms a branching ringless tree, which 

though unrealistic, provides an easily handled continuum and represents some extension 

over no band structure at all. 

The Small Cluster approach, described below, offers a compromise between statistical 

averaging and band structure, offering a little of both. 

III. Survey of theoretical approaches to many-body systems 

The .Tmion many-body problem is very much a problem onto its own and has 

occupied a lot of the literature . Perturbation expansions, based on Feynman diagrams and 

Green's function approaches, are usually straightforward to carry out, though the question 

of convergence can be quite difficult to answer. 

For example, consider a Hamiltonian H = H. + V, where H is the one-electron 

part and the interaction,V, is bilinear in the fermion fields. The one-particle Green's 

function, C(k,i), being the probability that a quasiparticle, at time r, will have 

wavevector k, can be shown to obey: 
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<<D \T(c . ( t )c!(0)S )I<D > 
G (k,r ) = - i 2 5 5 2_ 

«D |5 | « > 
0 ° (3.1) 

where I <t> > is the ground state of Hn , T is the Wick time-ordering operator, and the S-

matrix is given by: 

S - 2 , ^ 1 - \ d t l -dtnT {Vi.t,)V(t2)...VUn)), 
~ — (3.2) 

This of course assumes that there is no symmetry cross-over from the non-interacting to the 

interacting ground state, and that the series converges. One can see that only in the regime 

where (3.2) can be expanded unambiguously does the quasiparticle picture have meaning. 

Beyond that, one must resort to different approaches. 

Without the conventional tools in hand, some theorists have sought to exploit various 

properties of these heavily-interacting systems. For the actinides and lanthanides, the large 
18 multiplicity of the/-orbitals has encouraged some to examine UN expansions , where 

N is the number of orbitals per site. That is to say, seven orbitals is "close enough" to an 

infinite number of degrees of freedom that one can expand about the infinitely degenerate 

state, an analytically soluble limit 

With the very large Coulomb energies effectively forbidding double occupation within 

a site for the heavy-fermion materials, a new statistics is suggested which is even more 
19 

restrictive than fermionic. With this in mind, Coleman and others have pursued the 

slave-boson approacn, wherein a fictitious boson is introduced to satisfy the book-keeping 

of single electron occupancy, and together, the bosons and electrons can yield to 

conventional field-theoretic approaches. The problem is that subsequent application of 

mean-field theory to the bosonic degrees of freedom can lead to nonsensical results. 
20 

A similar tack is the projection process first proposed by Gutzwiller , which is to take 

the non-interacting many-body wave function, that is to say, the produci of one-electron 
functions up to the Fermi level, and men project out any pan containing doubly-occupied 
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sites. 

Others have elected to run simulations on small clusters of atoms. This includes the 

present author, and the details of the method are the subject of the next section. There is 

however, in addition to the exact diagonalization approach, a Monte Carlo technique first 
2122 23 

introduced by Scalapino et at. ' . They use the well-known Metropolis algorithm to 

evaluate numerically the action integral within the field-theoretic context. Hirsch was able 

to refine the technique for the Hubbard model, by mapping the d-dimensional fermion 

quantum problem onto a (d + l)-dimensional Ising problem, whose updating procedures 

in a Monte Carlo scheme are much more well-defined. 

III. Small Cluster approach 

The small cluster approach proceeds from the premise that working with a crystal of 

N-atoms, with periodic boundary conditions imposed, is equivalent to solving a bulk 

crystal, sampled at N points of the Brillouin Zone. If this mini-crystal preserves the full 

symmetry of die lattice environment, then the sampled points will be points of high 

symmetry. The cluster hiearchy in the face-centered-cubic (fee) structure is illustrated in 

Figure 4. One can see the logical progression, as more and more atoms are added, to 

eventually saturate the entire Brillouin Zone, starting at the points of high symmetry and 

working inwards. 

In the context of the many-body problem, the advantage is quite clear. In order to treat 

electron-electron interactions non-perturbativcly, one must take into account each n-

electron configuration explicitly, a problem whose scope grows exponentially widi n. 

Without a statistical approach, such a problem becomes intractable for all but small n. 

The advantage of this sampling technique is fully realized when examining physical 

features that depend on the high-symmetry points of the crystal, as is often the case for 

electron band edges. Also, the small cluster size can model short-range interactions quite 

effectively. Conversely, long-range phenomena, and in particular phase-transition 

behavior, can not be modeled, but the underlying mechanisms can sometimes be discerned. 
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FIG. 4. The Small-Cluster approach hiearchy for the fee (face-centered-cubic structure). 
Maintaining cubic symmetry imposes the requirements that the possible cluster sizes are 
N - 1, 4, 8,16, 32... atoms, which corresponds to an equivalent number of points in the 
Brillouin Zone. Notice that the 8-atom and 16-atom clusters have inreconcilable k-vector 
samplings, i.e. one is not the subset of the other. 
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Although the solution of simple two-atom clusters formed the work of Falicov2 5 and 

Harris in 1969, and Lin and Falicov in 1980, the method really came into its own in 1984 
27 with the solution of a four-atom tetrahedral-cluster model by Falicov and Victora. This 

work is notable in its full utilization of group theory to factorize the Hamiltonian matrix into 

smaller Jordan blocks corresponding to the different irreducible representations of the 
28 

underlying space group. Since then a whole series of works have been published , 

covering such diverse behavior in metals as photoemission, magnetism, thermodynamics, 

valence fluctuations, superconductivity, phonon processes, etc. 

A. Space group symmetry 

Each crystal environment presents a set of symmetry operations which leaves it 

invariant. These operations include the identity element, operational inverses, exhibit 

associativity, in other words, have all the properties of a group. While this is not meant to a 

treatise on group theory, and while the author strongly recommends acquaintance with texts 

such as Falicov2 9 or Tinkham , a few concepts should be elaborated here. 

In solid state physics the space group contains operations which involve both point 

and translational operations. The point operations consist of the various rotations and 

reflections the crystal admits about a given basis point. The periodicity of the lattice is 

revealed by its translation group. A space group is called symmorphic if it consists only of 

point operations taken about a basis point. Non-symmorpbic groups, which are not 

considered in this thesis, include operations such as screw axes and glide planes which do 

not fall into the previous categories. 

A Hamiltonian which purports to describe a system with a given group symmetry, 

must itself preserve the symmetry of that system. Therefore, wave functions following one 

particular representation of that group can only mix with wave functions of that same 

representation. 

A familiar example from atomic physics are the spherical harmonics, Y. , which 

follow the representations of the full rotation group, i.e. s, p, d,f, etc., corresponding to 
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/ = 0,1,2,3, etc. Group theory says that only functions with the same {l,m) can mix, and 

imposing a Coulomb potential yields radial eigenfunctions, which are the Laguerre 

polync.-nials in the hydrogen atom. 

1. A Four-site fee crystal example 

A case more in line with the work in this thesis is to illustrate the results of Falicov and 

Victora wherein they solved a four-atom tetrahedral cluster Hubbard model. Using the 

second-quantization notation where c. ( c . ) represents the destruction (creation) of 

an electron on site i, and spin <7, the following Hamiltonian was imposed: 

H =H + H 
' U (3.1) 

where 

», = -t y , c1 c. 
t *^ l<7 JC 

<ijxy { 3 2 ) 

is the nearest-neighbor hopping, with hopping integral t, and 

i- i 4-HU - U S c i \ ci T c i i 
1 (3.3) 

is the on-site electron-electron Coulomb repulsion of strength U. 

The nature of the relevant space group and its representations is presented in Chapter 

II, Section III. The salient feature here is that this problem can be mapped isomorphically 

onto the problem of solving an isolated tetrahedral molecule, which is governed by the 

Tetrahedral group, T.. The group has five irreducible representations: r , T , T , V , and 

T and consists of 24 operations: the identity (£), 3 two-fold rotations (CA 8 three-fold 

rotations (C,), 6 reflections (a) and 6 improper four-fold rotations (S ), which are 

written in cycle notation in Table D. 
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Table n. The action of the T. group operations on the four-atom cluster. 

14 

( 1 )( 2 )( 3 )( 4 ) 

( 1 2 )( 3 4 ) 

( 1 3 ) ( 2 4 ) 

( 1 4 )( 2 3 ) 

( 2 3 4 ) ( 1 2 4 ) 

( 2 4 3 ) ( 1 4 2 ) 

( 1 3 4 ) ( 1 2 3 ) 

( 1 4 3 ) ( 1 3 2 ) 

With this table, and the character table (Chapter 2, Section HI, Table I) one can immediately 

write the (unnormalized) projection operator for the T representation, say: 

S P R ( r V = 1 - U 2 X 3 4 ) - ( 1 3 ) ( 2 4 ) - ( 1 4 ) ( 2 3) 

- ( 1 2 ) - ( 1 3 ) - ( 1 4 ) - ( 2 3 ) - ( 2 4 ) - ( 3 4 ) 

+ ( 1 3 2 4 ) + ( 1 4 2 3 ) + ( 1 3 4 2 ) + ( 1 2 4 3 ) + ( 1 2 3 4 ) + ( 1 4 3 2 ) 

(3.4) 

From (3.4) it is immediately straightforward to isolate the states for, say, four electrons 

following the I" representation. Starting from some simple four-electon states such as: 

c I c ] c I c I , it li 2t 3t ' 
c + c f c f c f 
c i T c 2 i C 3 T c 4 t 

t t t t and c *. c , c » c » 1 T ll 2T 4? (3.5) 
one can form a basis for the T" (spin triplet) representation by projection thus: 

' V - I P R ^ N W W W T 
/ t t t t t t t t „ t t t t t t t t \ 

( t t t t t t t t t t t t t t f t \ 
C | T C . i C 2 T C 3 t + C 4 T C 4 i C 3 T C 2 T - C 3 t C 3 i C 4 t C , T " C

 2 T C 2 l C ,T C 4 t ) 
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(3.6) 

'V-IPR^c^WWt R 

w t t t t t t t t „ t , . t „ t „ t t t t t \ 
= T ( c l T C 2 i P 3 T C 4 T + c

4 T C 3 l C 2 T c , T - C 3 t C 4 i c i t C 2 T - C 2 T c , l C 4 T C 3 T ) 
(3.7) 

^ 3 > - I P R ( r 5 ) c

I

t T c

I V 2

1 T C 4 t T 
K 

_ ! / t t t t t t t t - t t t t t t t t 
" y f ( C l T c i A C 2 T C 4 T + C 4 T C 4 A C 3 T c , T - C 3 t C 3 i C 4 T C 2 T - c

2 T c

2 A c

1 T C 3 T 

c t c f, c I c .V - c lc \ c * c t + c , t

t c , t

l c f

t c * t c J f * : i T c i i c

3 T V " c

4 T C 4A C 2T C l T T V 3T"3 l f c l T t o 2T ^ 2 T ^ 4 ^ 3 T 
(3.8) 

(It is implicit that the creation operators are acting upon the vacuum, I 0 > ) Applying the 
Hamiltonian (3.1M3.3), one can therefore show the following relations hold: 

H l«F > = -Z/2t W > + U W > 

) 

(3.9) 

H \*¥> = 2-Jlt W„> 
2 3 (3.10) 

3 W l ^ 2 3 (3.11) 
which, by solution of the secular equation, yields the energies as roots of the cubic: 

E3-2UE2 + E (C/ 2 - 16r 2 ) + 8f 2U = 0 

B. Spin symmetry 

In this thesis, all models considered are of a basis of singly degenerate, spherically 

symmetric orbitals, i.e. f-orbital like. Thus, the angular momentum of the many-body 

wavefunctions are pure spin, with no orbital angular momentum coming to play. 

It is rather straightforward to arrange to isolate states with a given z-projection of 

angular momentum, i.e. separating the wavefunction according to the different values of 

"f - "J, = 2 J . To exploit the full spin symmetry, a bootstrap process is employed. 
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Denoting the angular eigenvectors for one spin 1/2 particle as 
1 -1 . 1 1 

• = - . • = • > = l + > 2 2 2 2 (3.12) 
31 it is straightforward to show that additional particles can be added on in the following 

manner 

i s+ i , s + i > = IS ,S>®I + > 
2 2 

. /2S+1 
I S . S - 1 >® l + > 

(3.13) 

where IJ , J > refers to a state with total angular momentum J, and z-projection J . 

Table in. The number of representations of a given spin for 1-8 spin 1/2 particles. 

N S 0 1/2 2 3/2 2 5/2 3 7/2 4 

1 1 

2 1 1 

3 2 1 

4 2 3 1 

5 5 4 1 

6 5 9 5 1 

7 14 14 6 1 

8 14 28 20 7 1 

As one can see from equation (3.13), a state of spin J = S for N particles gives rise to 

states of spin J = S -1/2, S + 1/2 for N+1 particles. This procedure results in a multiplicity 

of angular eigenvectors as prescribed in Table ID. With the multiplicities roughly doubling 

with each additional particle, one sees that this method becomes quite cumbersome for all 

but a small number of particles. 
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IV. Summary of Thesis 

In Chapter 2, an exact solution of a four-site tetrahedral crystal model, the smallest 

face-centered cubic crystal, is presented in the case of an intermediate-valence system. The 

model consists of: (a) one extended orbital and one localized orbital per atom; (b) an 

interatomic transfer term between extended orbitals; (c) an interatomic hybridization 

between the localized and extended orbitals; (d) strong intra-atomic Coulomb repulsion 

between opposite-spin localized states; and (e) intermediate-strength intra-atomic Coulomb 

repulsion between the localized and extended states. These competing effects are examined 

as they manifest themselves in the intermediate-valence, photoemission, inverse 

photoemission and thermodynamic properties. 

In Chapter 3, an exact solution of a four-site tetrahedral crystal model with periodic 

boundary conditions, the smallest face-centered cubic crystal, is presented in the case of 

binary and ternary alloy systems. The model consists of (a) a single s orbital per site with 

nearest-neighbor-only hopping (b) a Coulomb repulsion-between electrons on the same 

site; and (c) a single electron per atom. The model, which represents Cu, Ag, Au, and their 

alloys, shows all the segregational, solutional, and compound-forming tendencies of the 

real systems. Such characteristics are absent in non interacting independent-electron 

approaches. Calculations demonstrate extreme sensitivity to the input one-electron 

parameters, with minor differences resulting in widely different alloying properties. 

In Chapter 4, an exact solution of an eight-site crystal model with periodic boundary 

conditions, a small face-centered cubic crystal, is presented for the case of a heavy-fermion 

system. The model consists of: (a) a single, fully symmetric orbital per site, with nearest-

neighbor and second nearest-neighbor hopping; (b) an infinite Coulomb repulsion between 

electrons on the same site; (c) antifcrromagnetic superexchange interactions; and (d) a 

nearly-half-filled band (7/8 electron per site). Application of group-theoretical techniques 

yields a set of energies which are at most (analytic) solutions of quadratic equations. 

Depending on the sign of the nearest-neighbor hopping parameter the ground state exhibits 

either a huge accidental degeneracy (the heavy-fermion case), or simple, uniform, saturated 
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itinerant ferromagnetism. The model is, at once, easy to handle and yet rich in structure. 

Fermi surface, spin-wave, and electron transport properties are investigated, and 

consequences for real systems discussed. 

In Chapter 5, the model of the previous chapter is further explored. Band fillings near 

half-filling (six, seven and eight electrons per cluster) are examined. Superconducting and 

antiferromagnetic correlations arc studied and compared with the predictions of 'he non-

interacting limit. The suitability of various approximations (the so-called BCS and 

Gutzwiller ground-state wave functions) are quantitatively estimated. 
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Chapter II. Calculation of 
Fluctuations and 
Photoemission Properties in a 
Tetrahedral-Cluster Model for 
an Intermediate-Valence 
System 

I. Introduction 

The lanthanides present an interesting physical situation in which the/orbitals, lying 

close to the Fermi level, can interact strongly with the conduction bands, the phenomenon 

being known in the literature as Intermediate Valence. This situation arises when two 

electron configurations, (4f)tt and (4 / ) " + , are very close in energy, but differ greatly 

from any other due to strong Coulomb electron-electron repulsion. These/-orbitals can, 

however, hybridize with completely delocalized conduction states. 

The many-body aspects of the electronic structure of cerium have been investigated by 

many groups ' . In its fullest sense, these effects cannot be derived in a Local-Density 

Approximation (LDA), although calculations incorporating various screening effects on the 

•*/electrons have been published . It is therefore a challenge to include more throroughly 

the many-body effects. The approach taken here is the exact solution of a limited-size 

crystal with all many-body interactions. 

The crystal under consideration here is a tetrahedral grouping of only four atoms with 

periodic boundary conditions, which is the smallest non-trivial fee crystal, the structure of 

a- and ^cerium. This small-cluster approach, used successfully before to explore 
9 HI 

photoemission behavior in the transition-metal nickel, was applied by Parlebas et. al. 

to the present problem. The extent of their investigation was only to map out the rather 

large phase space offered by the choice of coupling parameters, and the results indicated a 

model dominated by one-electron effects. 
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The calculation on this small cluster is exact, but the Brillouin Zone is restricted to four 

points 1 1 , the center of the zone, I", and the centers of the three square faces, X. This 

approach yields good results for uniform and very short-range correlation behavior, and is 

therefore meaningful for photoemission and inverse-photoemission processes. The 

bandwidth is one of the adjustable parameters, and can be chosen to fit best the 

experimental data. 

The model is inadequate, however, in its treatment of the conduction band, since it 

yields a series of distinct and disconnected levels, whereas cerium is known to have a wide 

s - d band, with 4f electrons located near the Fermi level . With only nearest neighbor 

interactions coming into play, phenomena depending on intermediate and long-range forces 

are poorly mimicked. Thus, one would not expect to see phase transitions, although one 

might see indications of how they might occur. 

In diis chapter, the behavior of the tetrahedral cluster with total populations of three, 

four and five electrons is analyzed. Four electrons in the crystal correspond to one electron 

per atom, a situation similar in some sense to cerium, which has one of its four outer 

electrons participating in hybridization. In this approach, one can study the value of the 

intermediate-valence, photoemission spectra, and thermal properties. 

I I . The Hamiltonian 

The tetrahedral cluster has four sites labeled 1=1,2,3,4. Two types of orbitals are 

proposed, each being either spin up or down, denoted with subscript o~. The creation 

(destruction) operator for an extended conduction-like state is written as c ( 0-( c i 0 - ) 

and that for a single/-like state, denoted b y / J O ( / l ( T ). The latter is a localized state, 

but is not a true/-state, since it has positive parity and a degeneracy of one. This feature 

makes the problem tractable. The Hamiltonian is composed of five parts: 

H =H + H + H + H + H (2.1) 
c / kyb f-f c-f 
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where 

^ + (2.2) 

(2.3) 

H = -t £ cf c 
c i . j ; o i a >° 

i *i 

f 
i a 

H 
hyb 

< * > 
i a j a 

H 
f - f i i f it 

f ' f 
a i i 

H 
c-f 

= G X c f c / + f 
i a i a 

(2.4) 

(2.5) 

(2.6) 

These terms are: 

(a) a "hopping" interaction (2.2) between conduction states on adjacent sites, with 

transfer integral t; 

(b) an occupation energy (2.3) for the /-orbital, whose strength E. is measured with 

respect to the center of gravity of the conduction band states; 

(c) a hybridization interaction (2.4) between the conduction and/-states on adjacent 

sites (crystal symmetry usually forbids on-site mixing ), with strength dependent only on 

M, as shall be shown; 

(d) an/-/on-site (intra-atomic) Coulomb repulsion (2.5), with U > 0; 

(e) the c -/on-site Coulomb repulsion (2.6), with G > 0. The model presents some 

limiting cases which permit analytic solution. If (2.5) and (2.6) are neglected, the 

Hamiltonian becomes that of a one-electron problem; (2.2), (2.3) and (2.4) can be 

diagonalized simultaneously to yield two singlet and two triplet one-electron orbitals with 

energies: 
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E = 1 [ E - 3t ± / (E +3t ) 2 +36 v2 ] (2.7) 
1± 2 o V 0 

and 

l I 2 7" 
E = - [ £ + t ± / ( £ - t ) + 4v ] (2.8) 
3± 2 o \ 0 

respectively. These orbitals can be occupied independently. If (2.4) and (2.6) are 

neglected, the conduction and/-states decouple. The conduction states are extended one-

electron orbitals [a singlet at (-3r) and a triplet at t ], and the/-states produce a collection 

of atomic configurations of energies 0, £ f l , and 2E-+U, corresponding to zero, one and 

two /-electrons per site, respectively. If (2.2) and (2.6) are neglected, the problem 

becomes atomic-like, i.e. is decoupled into four sites, with a straightforward assignment of 

energies. 

The parameters were chosen as follows. 

(a) The transfer integral t is set to be positive and equal to 1 eV (bandwidth 4 \t I = 4 

eV); because f is positive the singlet lies below the triplet, and the conduction-band states 

"pile up" at the top of the band; 

(b) The/-orbital energy is set at E. = 0.75 eV, so that it lies close to the conduction 

band triplet, allowing sizeable hybridization to take place; 

(c) The s t rong/ - / repuls ion , which is effectively infinite for ground state 

configurations'*, turns out to be at least an order of magnitude greater than the bandwidth, 

and so was taken arbitrarily to be U = 25 eV. 

(d) The choice for the hybridization and the c -/Coulomb repulsion is a much more 

subtle question; both parameters have been left as varying. 

III. Method of Calculation 

The Hamiltonian presented above (2.1)-(2.6) has many symmetries to exploit, thus 

permitting group-theoretical techniques to reduce greatly the size of the problem. 
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First of all, the number of electrons, N, is a good quantum number. There are sixteen 

orbitals to be occupied, with simple combinatorial arguments predicting 16! / (16-W)! 

AM states for N electrons. In the absence of spin-orbit coupling, the total angular 

momentum and its z-projection, (/, J2 ), are good quantum numbers as well. 

The fee structure with four sites (four lattice translations) spans a space group with 

192 operations. This group contains the inversion and has 20 irreducible representations1 * 

(ten at T and ten a tX) with the following degeneracies: T , T ', T , T ' (d=l); T , 

1 1 2 2 12 

r . 2 ' W = 2 ) ; r . 5 ' r i 5 ' r 2 5 ' r 2 5 ' ' XvXl',XrX2\XrX2;Xi,X4 (rf=3); 

and X,., X' (d=6). For spherically symmetric atomic orbitals (even parity) only five 

representations remain: T , T , T , X and X.. These representations transform, under 

the operations of the full tetrahedral group, T . at the center of the tetrahedron, like the 

five traditional representations given in Table I. 

TABLE I. Character Table of T . 
d 

* 

1 3 8 6 6 
E C2 

cs a S 
4 

r . 1 1 1 1 1 

F2 
1 1 1 -1 - 1 

F3 2 2 -1 0 0 

F4 3 - 1 0 1 - 1 

r 5 3 - 1 0 -1 1 

The T . notation is retained, with associations: T = T ; r = T ; r = T ; T = X 
d 1 1 2 2 3 12 4 1 

and r = X . A left superscript, 25+1, as in 2 5 + 1 r j , refers to the spin degeneracy. For 

example, the the one-electron energies presented in (2.7) and (2.8) correspond to 2 r t , and 
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2 r 4 , respectively. These energies are depicted in Figure 1. 

4 

> 
3, 0 
CD 
C 

- 4 • 

0.0 0.2 0.4 0.6 0.8 
hybridization "v" (eV) 

1.0 

FIG. 1 One-electron energies (without many-body effects) for ( = 1 eV, E = 0.75 

eV. The hopping term (2.2) breaks up the four c-staies into a lower T . singlet and an 
2 upper T 4 triplet.Hybridization (2.4) breaks up the/-states analogously, and mixes them 

with the c-states. 

TABLE II. Size of blocks of the various representations. 

N Spin Fl F2 F3 F4 F5 

3 3/2 2 4 4 6 8 
1/2 12 2 14 26 16 

4 2 2 8 6 6 10 
1 14 16 30 46 50 
0 23 7 33 48 32 

5 5/2 2 4 4 6 8 
3/2 14 32 40 54 72 
1/2 46 34 86 132 120 
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The multi-dimensional representations of T . - T , T and T - yield another quantum 

number: the index of the function within the representation. With the use of all these 

symmetries, the problem factorizes into much smaller sets as shown in Table II. Thus, 

group-theoretical techniques bring the size of the largest block to be diagonalized down to 

132 x 132, a considerable reduction from 4368 x 4368 for the five-electron problem. It 

should be noted that these blocks, when diagonalized, represent exact solutions of the 

Hamiltonian (2.1). 

IV. Results 

A. Valence - "f'-occupancy 

Intermediate-valence properties of this model were investigated first, as a function of 

the various parameters. The/-occupancy, for N electrons, is defined simply as: 

» = T < i F I £ / * / I V / > ( 4 1 ) 
/ * AG ,- ; o i a i a NG 

where f is the N-electron ground state. For the sake of comparison, cerium has four 
NG 

electrons per atom in its outer shell; its valence is defined as 4 - « , . The experimental 

values of the valence are somewhat controversial 2 ' 1 4 , 1 5 , 1 6 , and have been quoted to range 

from 3.3 to 3.7 (nf = 0.7 to 0.3) for cc-cerium, and between 3.0 and 3.1 (n, = 1.0 to 

0.9) for Y-cerium. 

Results for four electrons in the cluster (one electron per site) are presented 

graphically in Figure 2. In the absence of hybridization, nf = 0.5 (2 electrons in the low-

lying conduction state singlet, two in the /-states) for small G values. Large values of G 

favor promotion to the higher lying conduction-state triplet, yielding n. = 0.25 for 

intermediate values, and n. = 0 for large G values. As hybridization blurs the distinction 

between the conduction and/-states, a smooth variation between the two extreme n. 

values, for finite v, is not surprising. 
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0.0 0.2 0.4 0.6 0.8 

Coulomb repulsion "G" (eV) 
1.0 

FIG. 2 Contour plot for the /-orbital occupancy, for varying values of the on-site 

Coulomb repulsion C, and hybridization v, with other parameters taken as: (= 1 eV, 

EQ = 0.75 eV, V = 25 eV. Singularities occur at v = 0 , G = 0.50 eV and G -

0.55 eV. where there are promotions of electrons from the /-levels to the conduction-

state triplet. 

Further inspection *hows the contour corresponding to n= 0.33 passing through 

G = QeV, v = 0.5 eV. The value of nf is not a monotonic function of v for small G. 

B. Intra-atomic charge fluctuations 

With a two-orbital per site and four-electron per cluster configuration, there are finite 

probabilities for the occupation, at each site, of zero, one, two, three and four electrons. It 
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can be shown that these probabilities, P , are related directly to the one-,two-, three- and 

four-electron correlation functions by: 

P = 1 - N + N - N + N (4.2) 
0 1 2 3 4 

(4.3) 

where 

p = 
1 

N 
1 

- 2N 
2 

+ 3N 
3 

- 4 N 
4 

p = 
2 

N 
2 

- 3N 
3 

+ 6N 
4 

P = 
3 

N 
3 

-AN 
4 

P = 
4 

N 
4 

(4.4) 

(4.5) 

(4.6) 

N = X " < 4 - 7 > 
/ M 

N = ^ n n (4.8) 
2 n < v ' " ' v 

N 
3 

= 2mi i n n 
H<v<p if 1 v 1 p 

(4.9) 

4 
n n n n 

c 1 T ell f i t fl I 
(4.10) 

and the number operators rt/„ (p. = c t, c 

There is no loss of generality with such a choice since the states are fully symmetrized. 

The results for the T 3 ground state are plotted in Figures 3 and 4. These plots 

show, respectively, the cases without and with hybridization. For v = 0 eV, a double-

step function in the/-occupancy of Figure 2 is more clearly seen, with two transitions, 

corresponding to successive/-electrons being promoted to the higher conduction-triplet 
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states. For finite v, the transition is once again smooth. 

T 

28 

0.0 0.2 0.4 0.6 0.8 1.0 
Coulomb repulsion "G" (eV) 

FIG. 3 Plot of the electron-occupation probabilities for 0, 1, 2 and 3 electrons, for I = 1 

eV, E = 0.75 eV, v » 0 eV and V » 25 eV as functions of the c -f Coulomb 

repulsion. Note the successive steps, corresponding to/-electrons being promoted to the 

conduction states. 

Table III shows the values of Pn for various limiting cases ( Eg « -3f, U » 

t, the atomic/-level case; Eg » t, the pure conduction-band free-electron case; v = C 

= 0, U »t, the unhybridized juxtaposition of free conduction-band and/-electrons: 

and, a typical intermediate-valence case). It can be seen that the results of Parlebas et. ai.10 

can now be more easily understood. TTie structure is dominated by one-electron terms 

because the main effects of the U and hybridization terms are to reduce P$ and P4, which 

are already small numbers in the free-electron case. In particular, a large U makes P4 =0. 
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FIG. 4 Plot of the electron-occupation probabilities for 0,1,2 and 3 electrons, for t = 1 

eV, E = 0.75 eV, v = 0.5 eV and U » 25 eV as function of the c - / Coulomb 

repulsion. The steps of the v * 0 eV plot (Figure 3) are here smoothed out. 

TABLE m. Electron occupation probabilities. 

Atomic 

E « -3r 
o 
U » t 

Free electron 

o 

No hybridization intermediate 
strong Coulomb Valence 

repulsion at the Fermi Level 

v =0eV 
C = 0 

U = 25 eV 

v =0.5eV 
G =0 

U = 25 eV 

Po 0 0.316 0.281 0.267 

p 1 0.422 0.469 0.492 

p 
2 

0 0.211 0.219 0.215 

P 
3 0 0.047 0.031 0.026 

P 
4 

0 0.004 0 0 
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The four-electron probability is identically zero for Tj symmetry, as the states 

containing terms with electrons in each of the four orbitals of one site must be of' I "3 or ' T 4 

symmetries. The Coulomb repulsion G favors the many-body states being more extended, 

and thus the decrease of Pg, P2 and P3 in favor of that of Pj is not surprising. 

C. Thermodynamic behavior 

In order to compensate partially for the small size of the cluster, thermal properties of 

the system were investigated via a grand canonical ensemble, wherein four-electron states 

are allowed to come to equilibrium with three- and five-electron states. Having set the 

average occupancy, <N>, to four electrons, a straightfoward analysis 1 7 would show the 

chemical potential \i to obey: 

X = e = Z I Z (4.11) 
V 3 5 

where Z# is the canonical partition function for N electrons. 

The behavior for a typical set of parameters is shown in Figure 5. There are three 

characteristic temperatures that appear, all arising from transitions that have analogs in 

atomic physics: configuration, inter-cluster (charge transfer) and term fluctuations. 

The highest characteristic temperature, Tg, at about 0.3 eV, is caused by a 

configuration fluctuation and is a purely one-electron effect. It corresponds to the energy 

required to excite an electron to the next highest one-electron orbital. As this energy is 

usually sizeable (see Figure 1), Tg is accordingly large. 

At TQP - 2 X 1 0 ' eV, there is a rise in the charge fluctuation, <N2>-<N>2, 

due to many-body effects. It corresponds to the energy to transfer an electron from one 

tetrahedral-cluster to another 1 8. This can be seen from the following argument. The 

thermodynamic weighting or probability of three and five electrons can be shown to satisfy: 

pO)=p (5)=U<N 2 > - <N > ) = i / ( 2 + - = S — ) (4.12) 
2 [ZZ 

V 3 5 
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FIG. 5 Grand canonical ensemble average as a function of temperature for the internal 

energy; the /-occupancy; the mean spin-squared per cluster, S(S+1); and the mean charge 

fluctuation, <N 2> -<N>2, The parameter values are: / = 1 eV, E = 0.75 eV, v = 

0.5 eV ,V = 25 eV, G = 1 eV. The characteristic fluctuation temperatures, TE, TSF 

and Tcp are indicated. 
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The rise is fully consistent with leading term behavior e ' "TCF t where T^p ~ 1/2 ( £3 

+ 65 )-e 4 , and ZN is the /V-electron ground-state energy. In the non-interacting one-

electron picture, one should expect T^p to be identically zero, as the four-electron case 

would truly be an average of the three and the five. The intra-site electron-electron 

Coulomb repulsions, therefore, cause significant, albeit small, alterations to the ground-

state energies. 

The lowest temperature rise. T$p — 2x10"^ eV, occurs in the expectation value of 

the spin squared, S(5+l), for four electrons. It is also a many-body effect, its low 

temperature caused by the presence a very low-lying excited state, of symmetry T 5, 

relative to the T 4 ground state. This close concordance occurs over a wide range in 

parameter space. It is thus a term fluctuation, die phase space being large enough for four 

electrons to accomodate the spin-flip without adding a large intra-atomic Coulomb energy 

from (2.5). « 

Another question is whether this model can, in any way, address the question of the a 

to 7 -cerium phase transitions. As this transition involves a change in lattice constant, from 

4.85 A to 5.16 A , respectively, one might expect that, as a consequence of the transition, 

the hybridization, v, might decrease effectively, wirh a much less marked decrease in t. 

This is because the overlap between two c-states making up the extended conduction states 

should be less sensitive to the increased separation than that between a c-state and a more 

localized /-state. That being the case, then from Figure 2, one can see the parameter values 

proposed in Section 4.1 are justified. In that parameter region, nf increases with 

decreased v, while elsewhere it decreases. It must be stressed that this is not, in any way, 

being proposed as a mechanism for the transition, but rather a consequence of it. 

D. Photoemission and Inverse-Photoemission results 

Photoemission (inverse-photoemission) spectra were calculated by the instantaneous 

removal (addition) of an electron from (to) the four-electron ground state, with the 
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distribution among the three-electron (five-electron) states then analyzed. These processes 
2 2 

involve destruction (creation) operators with the one-electron symmetries Tl and I"4. 
With a four-electron ground state of syrnmetry r , , group theory predicts that the only 

2 
possible accessible states, for both three and five electrons, must have symmetries Hj, 
2 2 
r \ , and 1%. Examples of the calculated spectra are found in Figures 6 and 7. 
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FIG. 6 Spectrally-resolved photoemission distribution, shown for: t = 1 eV, E = 0.75 
eV, v = 0.5 eV ,V = 15 eV. C « 1 eV. For each spectrum the symmetry and band 
("c" » conduction and "/" for/-state) of the emitted electron is shown. 

An examination of the photoemission and inverse-photoemission results show clear 

twin-peaked distributions. They arc, in some way, reminiscent of the broad two-peaked 

distribution of real cerium, although they arise for different physical reasons. The 
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calculated inverse-photoemission spectrum also has a moderately-sized peak, of energy U 

greater than the other two. 

Total 

8.0 16.0 24.0 32.0 40.0 
energy (eV) 

FIG. 7 Spectrally-resolved inverse photoemission distribution for t = 1 eV, E = 

0.75 eV, v = 0.5 eV ,11 * 25 eV, C = 1 eV. For each spectrum the symmetry and 

band ("c" « conduction and "f for/-state) of the absorbed electron is shown. To be 

noted is the minor peak, of energy V greater than the other two, corresponding to double 

/-occupancy. 

Thus, except for this latter peak being displaced relative to the other two by t h e / - / 
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Coulomb repulsion, both distributions are dominated by one-electron effects. The picture, 

neglecting hybridization, is one of transitions to either a given/- or conduction state. It is 

still very much in evidence with the hybridization, and even the many-body repulsion 

terms, added. The point to note, however, is that if the distribution is resolved spectrally 

into the/and conduction electron contributions, a clear dependence on the hybridization is 

seen. With increasing G, the height of the second peak decreases, as subsidiary peaks gain 

in strength. The varying peak composition is presented in Figures 8 and 9. 
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V. Conclusions 

A model for intermediate valence has been examined, which although too simple to 

mimic cerium, exhibits many interesting properties in its own right. It shows low-

temperature spin and charge fluctuations, which reveal much about the phase space and 

many-body aspects of the model. The spin fluctuations point to very-low-temperature 

magnetic behavior, while the charge fluctuations suggest an intermediate-valence system 

bordering on heavy-fermionic; in other words, the/-electrons participate in conduction at 

modest temperatures. The model also suggests that experimental work should be 

implemented in intermediate-valence solids to analyze spectrally the photoemission 

processes, which would reveal the nature of the hybridization- and the electron-electron 
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repulsion contributions. 

Although the importance1 9 of incorporating an on-site c -/Coulomb repulsion (2.6) 

in representing real systems has been discussed, it appears that for this mode the addition 

is not crucial, in view of the evidence from the valence, thermodynamic and photoemission 

properties. 

An extension of this model to represent more accurately metallic cerium obviously 

suggests itself. Although not suspected as being a relevant improvement alone by the 

author, the inclusion of seven /-orbitals presents daunting problems. Such action brings 

the number of one-electron sit.tes to consider up to 64 which, which for the four electron 

problem, offers 64!/60!4! = 635,376 combinations. These states would be either even or 

odd under inversion, thus bringing in the full set of twenty representations of the space 

group, rather than the present five. 

Of considerably more importance is the broadening of the conduction states into a 

continuous band 2 0 responsible for transport effects. This non-negligible feature is not 

compatible with a small-cluster approach. 
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Chapter III. Many-Body 
Tetrahedral-CIuster 
Model for Binary and 
Ternary Alloys 

I. Introduction 

As viewed from the perspective of the constituent elements, the alloy phase 

diagrams of copper, silver, and gold should be very simple and straightforward. These 

elements are, after all, 1" 5 simple s band monovalent metals, with a full d band 

(configuration (vd) 1 0 [(v+1) s ] 1 ) , crystallize all in the fee structure and have topologically 

identical and quantitatively very similar Fermi surfaces. The question is then, how is it that 

die alloying behavior between these three metals are completely different: copper-silver 

alloys show an almost complete tendency to segregate, silver-gold alloys form an almost 

perfect solid solution throughout the concentration range, whereas gold-copper alloys form 

intermetallic compounds with only specific ratios - corresponding to the formulas AU3CU, 

AuCu, and AUQ13. Different approaches to study this problem have been taken, 6 ' 7 most 

notably calculations by die cluster-variation mediod, 8 , 9 the cluster-Bethe-lattice10"12 and 

local-density-approximation (LDA) methods,13 but all these methods have their drawbacks. 

While cluster expansion methods are able to account well for the configurational entropy, 

they fail to take account of die actual band structure, and while die LDA is much better for 

electronic calculations, it is only •good for ground-state properties. The approach taken here 

is to obtain exact solutions of a limited-size crystal with all many-body interactions, or 

equivalendy, to solve exacdy a many-body problem with limited sampling in k space. 

The small crystal approach has been used successfully to solve the Hubbard 

model 1 4 " 1 6 , to explain photoemission and thermodynamic properties 1 7- 1 8 in nickel and 

iron, and to get insight into the intermediate-valence behavior 1 9- 2 0 of cerium. It has proved 

to be very good at determining uniform and short-range properties in crystals. In the 
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context of alloying, it is felt that the method should also prove useful and informative. 

Random groupings of atoms do not have long-range order and, because of the short-range 

order character of the interatomic interactions, a given atom only interacts with a local 

environment of the surrounding atoms. This is precisely the setting for a small cluster 

approximation. Thus, one might see the trends of order-disorder transition, though not the 

actual abrupt changes of phase caused by the long-range-order correlations. 

II. The Hamiltonian 

The tetrahedral cluster used here has periodic boundary conditions and four sites 

labeled (=1,2,3,4. There is one s orbital per site, each being either spin up or down, 

denoted with subscript o. The creation (destruction) operator is written as c*,- ff ( c,- a ). 

The Hamiltonian, essentially based on the Hubbard model, 1 4 is composed of three parts: 

H = H + H + H , (2.1) 
band occ jnany 

where 

H = - Y t c + c , (2.2) 
b m d i.j.a i J i a '" 

' " J 

H = T E c + c , (2.3) 
< K C

 i ; a ' ia ia 

H = Y U c f c c f c (2.4) 
»<&>> j ' it it i i il 

These terms are : 

(a) a band "hopping" interaction (2.2) between conduction states on adjacent sites, 

with transfer integral t . equal to t if both sites i and ;' are atoms of type A and t 
i j AA 

if one is of type A and the other B; 
AB 

(b) an "occupation" energy (2.3) for the /-th atom, whose strength E is 
i 

measured as an offset between unlike atoms, equal to £ for atom A, E for atom B; 
A B 
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(c) an on-site (intra-atomic) Coulomb repulsion (2.4) for site j , with U > 0, 
i 

which takes value U , or U , etc., depending on the type of atom. 
A B 

It is a common, well established and good approximation12 to assume that the 

hybrid hopping element / is 

r = ft T~" (2.5) 
AB \J AA BB 

i.e. the hopping parameter for two different atoms is the geometric mean of the two 

identical-atom hopping elements. It follows straightforwardly from many physical models 

and can be seen to be, loosely, the result of the overlap of the exponential tails of the two 

wave functions. The decay constants average arithmetically and thus the total overlap 

averages geometrically. This approximation is independent of the size of the atoms and of 

the spatial extent of the wave functions. 

By means of a virial-type argument, the t 's being considered as a measure of 
ij 

the electron kinetic energy, and the U 's as a potential energy, one establishes a 
i 

proportionality between them: 

U = / t (2.6) 
i i i 

where/is a scaling factor, of the same order of magnitude as that employed by Robbins 

and Falicov.1 2 The required magnitude of/implies a many-body interaction too strong to 

be handled perturbatively. The large value is necessary to keep charge fluctuations within 

the cluster realistically small, yet it must not be so large, in comparison to the bandwidth, to 

produce metal-insulator transitions, ferromagnetic and antiferromagneric behavior, and 

other broken-symmetry effects. 

A simple assumption of setting a constant, species-independent U was soon 

dismissed, because it does not produce the wide range of alloying behavior encountered in 

nature. A possible consideration of setting the Coulomb repulsion inversely proportional to 

the atomic size was also abandoned based on the author's previous experience. 
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FIG. 1. The tetrahedral-cluster method as employed in the context of alloying. There are, 
topological^, four different types of clusters, repeated indefinitely throughout the crystal 
by periodic boundary conditions : A4, the pure metal; the binary intermediates A3B and 
A 2^2 ; and the ternary intermediate A2BC. 

For a binary alloy A-B in the tetrahedral-cluster approximation the following five 

compounds must be considered: A , A B, A B ,AB , and B . In this case, the 
4 3 2 2 3 4 

Hartultonian (2.1)-(2.4) has only two relevant parameters, 8 and e, defined by 

6 = /~t Ti ' (2.7) 
y AA BB 

and 

£ = ( £ - £ ) / 8r (2.8) 
A B AB 

It should be noted that the substitution 9-* 1/6, e —»- e, is equivalent to interchanging 

A and B. For ternary alloys, there are 15 compositions, the five above plus A C, 

ABCAC^.ABC.ABC .AC ,BC,BC.BC , and finally, C (see Fig. 1). 
2 2 2 2 2 3 3 2 2 3 4 

There are also, as discussed below, four independent Hamiltonian parameters. 
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III. Method of Calculation 

The Hamiltonian presented above (2.1)-(2.4), for the four-atom cluster is 

computationally very simple. With eight orbitals, the number of many-body states for N 

electrons is 8! / (8-N)! Nl, which in the case of four electrons (one per site) results in 70 

states which separate, according to spin, into 1 quintuplet, 15 triplets, and 20 singlets, 

regardless of atomic composition. 

With the many-body repulsion (2.4) neglected, the remaining one-electron terms can 

be diagonalized analytically. For A , the one-electron energies break up into a singlet of 
4 

energy 

and a triplet 

E {A ) = E - lit , (3.1) 
1 4 A AA 

E (A ) = E + M , (3.2) 
3 4 A AA 

The bandwidth in this model is therefore 16r for the pure metals. Furthermore, it should 
u 

be noted that the A cluster can be solved analytically, with the many-body terms included, 
4 

by judicious use of group theory.'5 For A B, the four one-electron states are a doublet 

with energy (3.2), and two singlets: 

E (A B ) = ! ( £ + £ )-4t 
1 ± 3 2 A B AA 

•u (£ - £ - 8r ) + 192r t (3.3) 
A B AA AA BB 

For A B , there are four singlets: one with energy (3.2), one (its mirror image) with B 

replaced by A throughout, and two additional ones with energies: 

E (A B ) = I ( £ + £ ) - 2 ( r + t ) 
I ± 2 2 I A B AA BB 

U ( £ - £ + 4f - 4f ) 2 + 256r / 
A B BB AA AA BB , , 4 < 

Finally, for the ternary compound A BC there remains a singlet of energy (3.2), plus three 
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singlets which are the solutions of the cubic equation: 

E3 + [ 1 6 / ^ -(EA+EB +EC )]E2 + 

lEA EB + EB EC + EC EA ~ 4tAA & B + EC > " 3 2 « AA ' BB + ? BB ' CC + ' CC ' AA ^ 

+ W'AA 'BB EC + ?BB CCC EA + lCC lAA EB ) 

+ l92tAA 'BB 'CC + 4tAA EB EC ~EA EB EC = °- (3.5) 

IV. RESULTS 

In a 9-e plane (Figs. 3 and 4), one can establish triplets of points, one each 

corresponding to the binary a^oys A-B, B-C and C-A, subject to the straightforward 

constraints: 

a e e = I (4.i) 
AB BC CA 

and 

AB 

6 
BC 

6 
CA 

1/3 

+ e 
BC 

e 
CA 

e 
AB 

1/3 

£ 
CA 

AB 

e 
BC 

1/3 

= 0. (4.2) 

Ideally, one would want to be able to input appropriate parameters, either obtained from 

first-principles band-structure calculations or experimentally derived. In other words, one 

could take the known bandwidth and ionization energy, say, and associate them with the 

relevant parameters 6 and e. 

Thus, the approach taken here is to determine whether triplets of binaries can exist 

with the properties of the copper, silver and gold systems. 

A. Zero-temperature results - compound stability 

The first property that was investigated was the zero-temperature segregation-solubility 

tendencies. In deciding on the stability of a particular compound at zero temperature, one 
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must consider all possible decompositions into other compounds which yield the same 

global concentrations. The lowest-energy decomposition will be the one selected by nature 

- this is just a restatement of the fact that the free-energy curves as functions of any 

parameter, e.g. composition, must have non-negative curvature everywhere. 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

-0.05 +0.05 

FIG. 2. The independent-electron picture of binary-alloy formation. For modest bandwidth 
ratios and occupation offsets only three possibilities appc«r the fully concave phase (speckled 
region), the phase with A3B absent (cross-hatched region), and the phase with AB3 absent 
(striped region). 

For binary alloys, only the ground-state energies of all five compounds A4.,fin, n = 

0,1,2,3,4, are necessary to determine the stability at zero temperature. One must, of 

course, have the pure metals appearing with 100% probability at the concentration end 

points, so it is a maner of deciding on the stability of the intermediate compounds at all 
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other concentrations. It turns out that there are eight different topological possibilities. The 

first case is that in which no intermediates appear, i.e. there is complete segregation, as in 

copper-silver alloys. There are three cases of only one intermediate appearing, and three of 

all but one appearing. Finally, there is the case - here called the fully concave solution -

where the three intermetallic intermediate compounds are stable. This is the case for both 

the complete solid solution, as in silver-gold alloys, and the three truly stable intermetallic 

compounds - CU3AU, CuAu, CUAU3 - of copper-gold. Five of the eight cases - those that 

occur at reasonable values of the parameters - are illustrated in the inset of Fig. 2. 

-0.05 0.0 +0.05 

iog 1 c p 

FIG. 3. A many-body picture of binary-alloy formation. Coulomb faclor/= 5.0. Here, a 
segregating phase (white region) has opened, bordered by a phase of A2B2 stability 
(thick striped region), and situated amazingly close 10 a triangular-shaped phase region of 
fully concave alloys, demonstrating the extreme sensitivity of alloy behavior to one-
electron parameters. (For a full explanation of the various shadings, see inset in Fig. 2.) 
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As mentioned previously, one can reduce the specification of a binary alloy to two 

parameters, the bandwidth ratio 6 and occupancy-energy offset e, keeping the Coulomb 

factor/fixed. Three plots of stabiliity regions in the 8-e plane arc presented for various 

/ , i .e . / = 0.0 (the independent-election picture), 5.0, and 6.0 (in Figs. 2, 3, and 4, 

respectively). 

FIG. 4. A many-body picture of binary-alloy formation. Coulomb factor/= 6.0. Here, 
the segregating phase is more stable and the fully concave region lying nearby has 
increased in size. (For a full explanation of the various shadings, see inset in Fig. 2.) 

What is most evident from the independent-electron picture (Fig. 2) is its simplicity 

and lack of structure. Only three of the eight stability regions appear, and none of them is 



Chapters. Many-Body Tetrahadral-Clustar blodaltorBinary... 48 

the fully segregated case. What happens when the Coulomb repulsion is turned on, 

however, is that a wedge appears between two of the regions, opening up, literally, a 

solubility gap (Figs. 3 and 4). In addition, a triangular island of fully concave alloys is 

created, in close proximity to the fully segregated alloys. That leads to the most important 

conclusion of this work : when realistic many-body effects are taken into account small 

changes in the one-electron parameters cause enormous changes in alloying behavior. 

In ternary alloys, the degrees of freedom are many more, with scenarios where the 

ternary intermediates A2BC, AB2C, and ABC2 may or may not participate. Determining 

this generalized global stability is a simple problem in linear programming, and it results in 

the separation of the ternary concentration graph into triangular regions. Within each 

triangle, a point determining the nominal concentration of the alloy yields a decomposition 

into three phases with concentrations corresponding to the corners of the triangle and with 

relative abundance inversely proportional to the distance between the point of nominal 

concentration and the relevant comer of the triangle. 

B. Thermodynamic behavior 

With the entire multiple composition, many-body energy spectrum determined, it is 

straightforward to predict thermodynamic behavior for this model by carrying out the 

appropriate Boltzmann statistics. With three types of atoms, A,B, and C, there are three 

corresponding atomic chemical potentials, m - HB, MO D U t a s t n e number of atoms in 

the cluster is fixed at four, that leaves the potentials overdetermined; thus, one introduces 

relative potentials; 

fi = (i - H , n = n - n , (4.3) 
1 A B 2 B C 

and the Gibb's sum, from which all thermodynamic behavior is derived, is defined simply 

as21 
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G = T e ' 2 Z (ji ) , (4.4) 
f t >* 

os; +* s4 

where /? is the inverse temperature, and Z,^(/J) is the canonical partition of the cluster 

with j atoms /4, k atoms S (and 4-j-JI: atoms C.) 

For a given temperature and concentration, the probability of finding a given clustery 

k is given by 

p U 11 + kn ) 
P = e ' ' Z (P)/G (4.5) 

jk 

whereas the chemical potentials are determined so that 

;* 

i £ ", (4.6) 

0S> +* £4 

and 

y = I £ kP^ (4.7) 
OS; +* £ 4 

where x is the concentration of A,y is the concentration of B (andz = 1-jt-y is the 

concentration of C). 

In the infinite-temperature limit, the partition functions tend to the multiplicities of each 

cluster, which is 41/jlkl (4-j-k)\, with a resulting trinomial probability distribution of 

' , . ( X ' y ) - J 1 * 1 ( 4 - J - * ) 1 X V ( 1 - X - y > 4 " ' ~ ' ( 4 ' 8 J 

In the zero-temperature case the problem reduces, as mentioned above, to finding the 

minimum of a linear function (the weighted energies) on the surface of a polyhedron -

formed by connecting the ground-state energy of every one of the 15 clusters to that of 

every other one. This construction results in phases represented by triangular planar 

sections, in which a system at a given concentration, (x,y), has the properties of the 
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weighted average of the sectional end points. 

FIG. 6. Graphical representation of the ground-state energies and the zero-temperature 

triangular segrcgauonal regions for the set of parameters labeled 2 in Table I. Energies are 

in units of I = ('AA'BB'CC ) 1 / 3 * 1 0 ' 6 . The energies represented by stripes do not yield 

stable configurations at 7" = 0. 

Three cases have been selected for the purpose of illustration. The corresponding 

parameters are displayed in Table I. The first case - labeled number 1 in the Table I and 

presented in Fig. 5 - demonstrates the extreme behaviors very well. In this situation there 

exists, for the given set of parameters and in a range of temperatures [kgT = 0.0016 

( ; AA f BB f CC ) ^ "•> F'g- 5], one binary alloy possessing an intermediate, ordered state 

(Fig. 5, C-A), one rapidly approaching the infinite temperature binomial distribution (Fig. 

5, A-B), and one almost completely segregated into the pure metals (Fig.5, B-C). 

TABLE I. The input parameters for the three cases considered. 

6 e 9 E e e / 
AB BC CA AB BC CA 

1 1.000 0.938 1.066 0.025 0.125 -0.148 6.0 

2 0.944 0.915 1.099 0.095 0.160 -0.248 5.0 

3 1.039 0.929 1.036 -0.217 0.100 0.105 6.0 
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RG. S. An example of a ternary-alloy system in which the three binary pairs are such that 
one has a fully ordered A2C2 phase (C-A), another exhibits almost complete random solid 
solution (A-B). and the third almost completely segregates ( B - C ) . The parameters for this case 
correspond to those labeled 1 in Table I at a temperature kgT » 0.0016 ('AA'BB'CC ) 1 / 3 -
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For this temperature range one could say that C-A forms the CA intermetallic compound, 

A-B forms a complete range of solid solutions, and B-C completely segregates into its 

constituent elements. 

S3 .Q 

f ° 
K3 
© 

8 
o 

T = 0.001 

T = 0.002 

T - 0.003 
0.00 0.25 0.50 0.75 1.00 

100% "C" concentration 100% "B" 

FIG. 7. Depiction of the desegregation of the B-C alloy with temperature, for the sets of 

parameters labeled 2 in Table I. Energies and temperatures are in units of t = 

('AA'BB'CC ) l / 3 -

The second case, its ground-state energies, and the triangular phase regions are 
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presented in Fig.6. One can see that two edges, A-B and C-A, have fully concave profiles 

(the latter has for all compounds larger heats of formation) while the third, B-C has 

unstable intermediates, i.e. all intermediates have positive energies relative to segregation of 

the pure metals. Also, the fully intermediate ternaries, A2BC, AB2C, and ABC2 are all 

unstable. 

d 

$ ° 
m 
C\J 
0 

8 
o 

T = 0.000 

T = 0.001 

T = 0.005 
0.00 0.25 0.50 0.75 1.00 

100% "A" concentration 100% "C" 

FIG. 8. Depiction of the robustness of the ordering of the intermediate compounds of the C-A 

alloy for the sets of parameters labeled 2 in Table I. Energies and temperatures are in units of i = 

('AA'BB'CC ) 1 / 3 -
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FIG. 9. Depiction of the trend towards randomization of the intermediate compounds of 

the A-B alloy for the sets of parameters labeled 2 in Table I. Energies and temperatures 

are in units of l • (IM'BB'CC > I / 3-

This choice of parameters yield properties demonstrated in Figs. 7, 8, and 9. In Fig. 

7, one sees the solubility gap of the B-C alloy shrinking and vanishing with increasing 

temperature. 
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1/3 ternary alloy for the sets of parameters labeled 2 in Table I. Energies and temperatures 
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In Figs. 8 and 9, one sees fully ordered structures in both C-A and A-B atzero 

temperature, and both begin to approach random configurations with increasing 

temperature, the C-A alloy - because of its larger heats of formation - doing so more 

slowly. 

The implications for the full ternary alloy (1/3 : 1/3 : 1/3) are presented if Fig. 10. As 

one can see, the zero-temperature probabilities are divided among the three compounds 

AC3 , AB3 , and A2Bi in the ratio 4:2:3, respectively. A very low temperature rise in 

AB2C is noted, and is attributed to it being only marginally unstable at T = 0. The other 

compounds experience rises in probability distributed over almost two decades of 

temperature. 

The final case, number 3 of Table I, follows Robbins and Falicov12 in taking the 

d's as the tabulated bandwidth ratios1-2 and fits the e's as close as possible to those 

given by the ionization energies. The freedom with which the latter was chosen in this 

contribution reflects the authors' belief that the ionization energy may not be an adequate 

measure of the occupation energy. The input values were: t A u A u = 1.09 eV, t A g A g 

= 1.01 eV, t C u C u = 1.17 ffV, EAu * -9.22 eV, EAg = -7.40 eV, and ECu 

= -8.27 eV. Real temperature predictions can now be made. The result is a Cu-Ag 

analogue which desegregates at kgT- 10"3 eV; a Au-Cu analogue with only AU2CU2 and 

AU3CU stable, which disorders at kgT" 2.5xl0"2 eV, i.e. above room temperature and a 

Ag-Au analogue, in which the intermediate compound AuAg3 is also missing at T = 0 and 

which randomizes at kgT - 10"3 eV. Although many qualitative features of the real 

systems are reproduced, the agreement is far from satisfactory. 

V. Conclusions 

A model for binary and ternary alloy formation has been examined, one which seBks 

to overcome the difficulties presented by previous methods. It is remarkable that such a 

simple model should produce such a wide range of alloying behavior, with a very sensitive 

dependence on input parameters. It also shows the deficiency of an independent-electron 
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picture; many-body correlations are necessary to allow for such diversity. The widely 

varied behavior of the copper-silver-gold system is most probably caused by such subtle 

many-body effects, and the consequent sensitivity of the alloying properties to minute 

differences of the one-electron parameters. 

The model does suffer, as yet, in its ability to translate the experimentally derived 

parameters of the pure metals into a truly predictive theory of alloy behavior. It is the belief 

of the author that this is caused partly by the extreme sensitivity to the one-electron 

parameters and by the too coarse sampling of the electron band structure inherent in a 

small, four-site cluster approach.22 Furthermore, it is thought that an eight-atom cluster, 

otfers many intriguing possibilities. First, it allows a more balanced sampling of the band 

structure; second, it allows more configurational possibilities, and furthermore, it allows 

second-nearest neighbor interactions to be included.23 This larger cluster may produce a 

true qualitative distinction between silver-gold and copper-gold alloys: the former, with a 

range of solid solutions, should have all seven intermediate clusters stable, while the latter 

should have all but the intermetallic structures AU3G1, AuCu and A11CU3 unstable. 
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Chapter IV. Heavy 
Fermion System: an 
Exact Many-Body 
Solution to a Periodic-
Cluster Hubbard Model 

I. Introduction 

Heavy-fermion systems have been of great experimental and dieoretical interest over 

the past few years. The narrow-band phenomenon has been found associated with 

superconductivity, both normal and re-entrant, intermediate valence, large heat capacities, 

and the Kondo problem of isolated magnetic impurities, with much of the responsible 

mechanisms still subject to debate. It is thus instructive to investigate models from which 

one might gain insight into the problem. 

The techniques used in solving strongly interacting, and in particular heavy-fermion 

systems, have included variational, perturbative, diagrammatic and Monte Carlo 
6-11 

approaches. Typically, Monte Carlo approaches involve approximate solutions of small 

clusters, with accuracy depending on the statistical sample. As the scope of the problem 

grows exponentially with the size of the cluster, this approach rapidly becomes the only 

feasible one. However, the notion of reducing the computational overhead by use of 

.Toup-theoretical techniques, allowing exact solution of moderate-size clusters, has not, as 

far '.s the authors are aware, been otherwise attempted. 

This exact small-cluster approach has been used successfully in scenarios where local 

many-body effects have shown themselves to be important: a four-atom cluster Hubbard 
12 13 14,15 

model , photoemission behavior in Nickel, intermediate-valence behavior in 
16 17 

Cerium, magnetic behavior in Iron, as well as for thermodynamic properties and 
18 

valence-bond formation. It has also been used to study alloying in the Copper-Silver-
19 

Gold system. The experience has shown mat single-site and short-range correlations are 
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well taken into account, though not longer-range ones. Thus, phase transitions do not 

occur, though indications of where and how they might occur have been clearly obtained. 

This chapter addresses the questions of the nature of the hcavy-fermion state as a 

function of band structure and band filling, and of the interplay of the various one-electron 

and many-body effects. It also discusses the implications for spin-fluctuation and electron 

transport. 

II. The Hamiltonian 

Consider an infinite face-centered-cubic (fee) lattice of atoms, with one fully 

symmetric orbital per site, each being either spin up or down, denoted with subscript O". 

Using second-quantization notation, one has the creation (destruction) operator on site / 

written as c^ J 0 - ( c i 0 - ). One can write a Hamiltonian for this system, following 

Hubbard 2 0, as : 

H = H + H + H (2.1) 
Inn . Inn C 

where 

H 
Inn 

- r J c * c , (2.2) 

<i i >Inn 
to jo 

H = - r 
2nn 2 c.f c > < 2- 3> 

t . j : a 
< i j >2 

lO JO 
nn 

H = U T , c + c c f c (2.4) 
C ; it it ii H 

These terms are: 

(a) a band "hopping" interaction (2.2) between conduction states on nearest-neighbor 

sites, with transfer integral t, 

(b) a band "hopping" interaction (2.3) between conduction states on next-nearest-
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neighbor sites, widi transfer integral T, 

(c) an on-site electron-electron Coulomb repulsion, U, (2.4). 

In heavy-fermion systems U is considerably larger than the other parameters and 

could, for all practical purposes, be taken effectively to be infinite. In that case, no on-site 

double occupation of electrons is allowed and thus the maximum band-filling is one-half, 

one electron per site. In the half-filled band situation, Anderson2! pointed out that one 

could canonically transform (2.1)-(2.4) to a basis of states with sites all singly occupied, 

with the simultaneous introduction, as a first-order correction in \IU, of an 

antiferromagnetic Heisenberg superexchange mechanism: 

H = y \ J S • S (2.5) 
H ij ij i J 

where the coupling parameters y,y are: 

~ t I U if i,j nearest neighbors 

•^ . = « T I U ifi.j next-nearest neighbors ^ ^ 

0 otherwise 

This interaction amounts to a hopping of an electron onto an atom already occupied by a 

second electron, which costs a virtual energy U, which is then more than repaid in band 

energy by having this second electron hop into die first electron's original place. Wolff, 

Schrieffer and others 2 2 - 2 3 went on to show that, in the general filling case, (2.5) would be 

supplemented by more complicated three-atom hopping processes, which will not be 

considered here. 

The method used in this contribution to solve the model consists of choosing a 

symmetric small set of points in reciprocal space and, within that set, of treating the many-

electron states exactly. This approach is equivalent to taking a small crystal, i.e. a small 
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FIG. 1. The eight-aiom cluster in the fee lattice. With periodic boundary conditions this 
cluster, which fills the entire bulk crystal, is tantamount to sampling the Brillouin zone 
at the points r,X and L. In this scheme, the twelve nearest neighbors of each atom are 
of six distinct types (each type contributing two neighbors), and the six the second-nearest 
neighbors are all of the same type. 

cluster of sites and periodic boundary conditions. The cluster under consideration here is 

comprised of eight atoms, and forms a double-length unit cell of the fee structure. If 

repeated via periodic boundary conditions with an fee lattice of twice the original lattice 

parameter, the original fee lattice is obtained (see Fig. 1). The eight sites in the cluster are 

labelled i=0,l,2 7. In this case, the Hamiltonian becomes: 

H = H + H + H + H , (2.7) 
Inn 2nn HI H2 

where now 
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# =-2( J c f c • < 2 - 8 ) 
'"" >.;• =0...7; o , < J > CT 

< ij > Inn 

H = -6T ] £ c f c , (2.9) 
= 0...7; 

< i y y 2nn 
2"n i.j -O . . . 7 ;o , < T > " 

// = 7 > 5 • S , (2.10) 
" ' i ; - 0...7 i > 

< i ; >Jnn 

W = / ' > S • S , (2.11) 
«2 i.j= 0...7 

< iy > 2nn 
; 

Several points should be noted here: 

(i) the sums on the sites are restricted to the eight-atom cluster 

(ii) the 12 nearest-neighbors of each atom are, in the periodic cluster, two each of six 

of the other seven atoms (e.g. the twelve nearest neighbors of atom 0 are two each of the 

atoms 1, 2, 3, 5,6, and 7); therefore the parameter in Hlnn is It instead of t ; 

(iii) the 6 second-nearest neighbors of each atom are all the same, and equal to one of 

the other seven atoms (e.g. the six second-nearest neighbors of atom 0 are all atom 4); as a 

consequence the parameter in / / 2 / w is 67 instead of T; 

(iv) in this contribution only the case of seven electrons in the eight-atom cluster will 

be considered, i.e. only the states which are eigenstates of the number operator 

N = 2rf c f c , (2.12) 
i = 0...7; o i C i a 

with eigenvalue 7 are included 

<N > = 7; (2.13) 

(v) the term Hu2 can be easily taken into account by subtracting J ' from J in 

/////, and adding a term similar to H//j with a coefficient J ' instead of J ; this last term. 
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added to tf//2> c a n be easily diagonalized by means of a sum rule derived from the 

expansion of the square of the total spin operator, 

/ ' V S S = J' [5 (5 + 1 ) - 21/4], (2.14) 
i.j = 0...7 '' 1 

i *J 

where S is the total spin of the cluster state, and (2.14) is valid for seven electrons which 

interact via a constant, uniform exchange J' with each other; 

(vi) even though it is trivially easy to include second-nearest-neighbor Heisenberg 

exchange, since J ' is proportional to T 2/U, and T is in general much smaller than r, 

the coefficient J' will be set equal to zero; 

(vii) as a consequence of (vi) the Hamiltonian (2.7) is reduced to three terms, and there 

are in the problem three energy parameters t, T, and J, such that 

1/ I » \T I ; If I » J ; (2.15) 

(viii) the properties of the system are strongly dependent on the sign of t; this is a 

consequence of the structure of the fee lattice which, on account of the triangular rings of 

nearest neighbors, exhibits an asymmetry between top and bottom of the electronic band as 

well as frustration for states with alternating phases between nearest-neighbor sites. 

III. Method of Calculation 

The Hamiltonian presented above, for the eight-atom cluster, exhibits many 

symmetries and constraints which can be exploited to reduce immensely the computational 

demands of the problem. 

With sixteen orbitals, the number of many-body states for N electrons is 16! / (16-

N)\ N\, which in the case of seven electrons (nearly-half filled band) amounts to 11440. 

An infinite on-site repulsion reduces the number of states to only 2^ 8! / (8-/V)! N\, 

which is only 1024 for seven electrons, a sizable reduction. Furthermore, these 1024 states 

separate, according to spin, into 64 octuplets, 288 sextets, 448 quartets and 224 doublets. 

There is also a space-group decomposition. 
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TABLE I. The character table of the eight-atom-cluster space group. There are 24 operations in the 
point group, the identity E , six fourfold rotations, C4 , three associated twofold rotations C4 . 
six other twofold rotations C , and eight threefold rotations C3 . There are eight translations, 
the zero translation 0, the six nearest neighbor translations X , and the single second-nearest-
neighbor translation 6 . The r 's are alternatively classified as to whether they are perpendicular 
(T ), parallel (r ), forming an acute angle (z < ) or obtuse angle (T > ), or simply at an angle 
(T ) to a given rotation axis. 

1 6 24 12 32 6 6 12 24 24 1 12 32 
E c! C4 c2 

Cs £ cl cl c4 
C2 E C2 C3 

oe 09T 
X % Ox 

> 
T X 

± ^ Z 
0 9x 

j . 
8 T < 

r . 1 I 1 1 1 1 1 1 1 1 

^ 1 I -1 -1 1 1 1 1 -1 -1 1 -1 1 

r n 2 2 0 -1 2 2 2 0 2 0 -1 

r

1 5 

3 -1 -1 0 3 -1 -1 -1 3 -1 0 

F * 3 -1 -1 1 0 3 -1 -1 -1 3 1 0 

* 1 3 3 1 0 -1 -1 -1 -1 -1 3 1 0 

x2 3 3 -1 -1 0 -1 -1 -1 3 -1 0 

x2 3 -1 -1 1 0 -1 3 -1 -1 3 1 0 

* 4 3 -1 -1 0 -1 3 -1 -1 3 -1 0 

X 5 6 -2 0 0 0 -2 -2 2 0 0 6 0 0 

* 1 4 0 0 2 1 0 0 0 0 0 -4 -2 -1 

L 2 4 0 0 . -2 1 0 0 0 0 0 -4 2 -1 

h 8 0 0 0 -1 0 0 0 0 0 -8 0 1 

The cubic point group has 24 proper operations (48 if inversion and improper 

rotations are included, but these yield no additional information for spherically symmetric 

i-orbitals). The eight-atom cluster has 8 translations, which yield a space group of 24 x 8 

= 192 operations. This space group possesses 13 irreducible representations with the 
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following degeneracies : Tj (d=l), T 2 (d=l), T 1 2 (d=2), r , 5 ' (d=3), r 2 5 ' (d=3), X! 

(d=3), X2 (d=3), X3 (d=3), * 4 (d=3), X (d=6), Lx (d=4), L2 (d=4) and L? 

(d=8). These I", X and Z. representations, labeled by the translation-group k 

vectors,correspond to the eight points of the fee Brillouin zone 2 4 (one I~, three X, and four 

L) which constitute the finite sampling of reciprocal space inherent in the periodic-cluster 

approach. The character table of the group24 is presented in Table I. 

With all these symmetries taken into account the largest block to diagonalize is 5x5, 

a considerable reduction over 11440x11440, or 1024x1024, or even 448x448. These 

block sizes are presented in Table II. There is, in addition, an extra "hidden" symmetry in 

the Hubbard model 1 2 - 2 0 , which (as seen below) causes additional "accidental" 

degeneracies. That extra symmetry, in this particular cluster, reduces the 5x5, and all 4x4 

and 3x3 blocks to 2x2 and lx l blocks, so that the model can be solved in a completely 

analytical manner. 

Table II. Sizes of the blocks of the various representations 

r , r 2 F , 2 r ! 5 r 2 5 * t * 2 * 3 * 4 XS Lx L l L , 

S =7/2 1 1 1 

5/2 1 1 1 2 1 1 1 2 2 

3/2 1 2 1 2 3 J. 2 1 3 3 1 5 

1/2 2 1 1 1 2 3 2 2 1 3 4 2 4 

It is instructive, at this point, to discuss the band-structure of the infinite crystal, and 

compare it with the finite sampling considered here. The density of states of an fee tight-

binding, single-band structure, for r > 0, starts at its minimum energy value with an M0 

van Hove singularity at T, rises to an Ml singularity at the L energy, and then progresses 

to a divergent, one-dimensional-type of singularity as the energy reaches its maximum 

degenerate value all along the XW line of the Brillouin Zone square face. The situation 
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is reversed for t < 0, with a one-dimensional-type singular minimum along the X-W 

line, an ordinary M2 van Hove singularity at L, and a regular Mi van Hove maximum at 

T. In other words, for t > 0 there is a "pile-up" of one-electron states at the top of the 

band which should produce interesting effects for almost full bands; for t < 0 the "pile-up" 

occurs at the bottom of the band and should be of importance only for very low electron 

occupancies. 

In the finite, eight-point sampling of the eight-atom periodic cluster there is one level at 

T (y 0), four levels at L ( / , 0 ); i =1,2,3,4), and three at X (xia; i'=l,2,3). One can 

make the transformation between (Wannier) one-electron localized states Cj 0 , and Bloch 

states (referred to collectively as a, c ) by: 

a = -L & • c (3.1) 

where the eight-component column vectors a and c are connected by the 8 x8 Wannier-

Bloch matrix, M : 

(3.2) 

1 

1 

1 

-1 

-1 

-1 

-1 
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Table in. Many-body energies for 7 electrons in the non-interactingi/ =J = 0, limit. 

Notes 

ground state (r > 0 ) 

lowest one-electron excitations, If > 0 ) 

Occupation Energy Degenen 
yix 
240 -24r +187 56 
241 -20f +67 420 
232 -16f -67 840 
223 -12r -187 560 
160 -12r +307 56 
214 -it -307 120 
151 -St +187 672 
205 -4r -427 6 
142 -4f +67 2100 
133 -67 2240 
070 +427 8 
124 4f -187 840 
061 At +307 168 
115 8f -307 96 
052 8r +187 840 
106 12; -427 2 
043 12/ +67 1400 
034 16/ -67 840 
025 20f -187 168 
016 24r -307 8 

one-electron excitations, If > 0 ) 

highest one-electron excitations, If > 0 ) 

highest one-electron excitations, { < 0 ) 

one-electron excications, (t < 0 ) 

lowest one-electron excitations, (r < 0 ) 

ground state, ( t < 0 ) 

total 11440 

These one-electron orbitals y, x and /, have symmetries 2 T i , ^X\, and 2L\. 

respectively, and one-electron energies: 
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e = -12 / - 67 , (3.3) 
r 

E = 0/ + 6T , (3.4) 

and 
e = 4r - 67" , (3.5) 

respectively. Notice that the bandwidth is (At - 67") - (-12f - 67") = 16r. With these 

results, one can easily write down the non-interacting 7-electron energies. These are shown 

in Table III. 

IV. RESULTS 

A. Many-body spectrum of states 

With nearly-half-filled bands (7/8 electron per site) and infinite interaction U, the 

two cases / < 0 and t > 0, represent two entirely different physical situations. A negative 

t represents a system with one-spin states filled almost to die MO van Hove singularity at 

T, while a positive t has the Fermi level falling near the divergent singularity of the X-W 

line. Their ground states have energies corresponding to the last and first lines, 

respectively, of the list the many-body 7-electron, U -» °°, energies presented in Table 

IV. 

One can see that the ground state for K 0 is non-degenerate, with energy £ = (-

12lrI + 6T + 9J12), and with spin 7/2. It is thus ferromagnetic and fully saturated. In 

other words, one-electron, band-structure effects overwhelm the antiferromagnetic-

superexchange mechanism and produce ferromagnetic ordering. Neither heavy-fermion 

behavior nor superconductivity can occur under these circumstances. (A simple Hartree-

Fock state, with all electrons with parallel spins, would yield the correct ground state in 

these conditions). 
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Table IV. Many-body energies of the various representations 
for 7 electrons in the infinite /̂ limit. 

Energies States Symmetries 

-6/ + 6 7 - 3 / 14 V*, 2x 2 

-6r +67 -27 16 \ 
-6t +67 - h 

-6f +67 - 1 / 

32 *r *x 4x -6t +67 - h 

-6f +67 - 1 / 16 \ 
-6r +67 + / 18 6 * a 
-r --J (-3i +67 -t -y/2) 2 + 8r 2 24 4 * 5 

-2r +4/ --J (~2t + 67 +y/2) 2 + 4f 2 48 ' * , 
JLj -J (-2t +67 

2r - j - V (-2r + 

• +y/2) 2 + i6r 2 12 V*> JLj -J (-2t +67 

2r - j - V (-2r + 67 +y/2) 2 + 36r 2 8 ^ ! 
-4 /+67 + | y 24 

t 

48 

' * , 

-r - / -yj(-t + 67 +y/2) 2 + 8f 2 

24 
t 

48 
2,-^7 -7 (67 + y/2) 2 + 32t 2 12 2 * 5 

- | / -<J (6T +7/2) 2 + 12r 2 

3f -J (t +6T +//2) 2 +40f 2 

2r _^/ -J (2t +6T +J/2)* + 20t2 

8 ' * , - | / -<J (6T +7/2) 2 + 12r 2 

3f -J (t +6T +//2) 2 +40f 2 

2r _^/ -J (2t +6T +J/2)* + 20t2 

24 

24 

V 4x 
25 3 

2t -J -J (it + 67 +y /2 ) 2 +24r 2 32 \ 
4f +-^/ - V ( 4 f +67+7/2) 2+28f 2 24 \ 
-2» - 6 7 - 2 / 24 W*, 
-2f - 6 7 -J 16 \ 
-It - 6 7 - i y 8 4 r i 5 X 4 * 5 

-2/ - 6 7 6 2 * . 
-It - 6 7 + i y 32 \ 
-2f - 6 7 +2/ 36 6*s 
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-2f +67- +J 36 6r 6_ 6 V 

1 12 1 

-67- +p 
67" -lj 

32 

24 

48 

8 

V* 2 

-It +jf +J(-2t + 67 + y / 2 ) 2 + 4 f 2 

32 

24 

48 6h 
2f - 6 r +2J 

-t -J + J (-t +67 + / / 2 ) 2 + 8f 2 

36 

48 

6 r ' 6x 
'25 * 3 

^ 1 ^ 3 2f +67 - 3 7 6 

24 

2 2 
1 1 12 

-* +J (-31 + 67 + / / 2 ) 2 + 8r 2 

6 

24 4 *s 
- i y + V < 6 7 + / / 2 ) 2 +12f 2 

2 y 
4r - 67 + 1 

- | y +-V (-2f +67 + y / 2 ) 2 + 16r 2 

8 * , - i y + V < 6 7 + / / 2 ) 2 +12f 2 

2 y 
4r - 67 + 1 

- | y +-V (-2f +67 + y / 2 ) 2 + 16r 2 

16 

12 X 25 A 3 

6f - 6 7 2 * , 
6f +67 - 3 y 12 

24 

12 

• « ^ i 
2r - | y + V ( 2 < + 6 7 + y / 2 ) 2 + 2 0 ; 2 

2 / - | y +-J (6T + y / 2 ) 2 + 32f 2 

12 

24 

12 

2 2 

A 5 
8f +67 - ^ / 24 

8 

32 

W*, 
2f - ^ +J (-2t +67 + y / 2 ) 2 + 36r 2 

3/ - y + , / ( 3 r + 6 7 + y / 2 ) 2 + 24f 2 

24 

8 

32 
\ 
'^ 

3; + V < r +67 + y / 2 ) 2 + 40f 2 24 V 4v 
*25 A 3 

10/ +67 +y 18 \ 
4» + l y + V ( 4 f + 6 7 + y / 2 ) 2 + 28r 2 24 ^ 

z 9 
12f + 67 + y / 8 

8 r , 

total 1024 69 
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For t > 0 a completely different picture emerges. For 7 = 0 one can see a large 

number of states present in the ground-state manifold, of energy E = -6t + 67, with 

symmetries 2 r 2 , 2 X ] , 2 X 2 , 2 L 3 , 2 r 1 2 , 4 * i , 4 X 2 , 4 L2 and 6 X 2 . Ninety-six of the 

total 1024 possible states, a surprising 9.375%, arc in the ground-state manifold. This 

huge "pile-up" of many-body states at the lowest energies is, in fact, the single most 

characteristic property of heavy fermions, the feature responsible for the extremely large 

electronic specific heats reported in such systems1. fit should be noted, for comparison, 

that the non-interacting, U = 0, case for the same cluster contains 56 out of i 1440 states in 

the ground-state manifold, a paltry 0.49% ; the lowest excited states are (4i - 127) higher 

in energy]. It can be thus said that, at least for this model, heavy-fermion behavior is a 

consequence of both, large electron correlations (the infinite U term) and band structure 

effects. It is indeed very surprising that the very simple Hubbard model, for the same 

crystal structure and the same occupancy, can yield both a simple, fully saturated 

ferromagnet and a richly structured, complex heavy-fermion system depending onlj upon 

the change of sign of a single band-structure parameter. 

As one would expect, the introduction of a finite J splits, albeit partially, the g iund-

state manifold. The spin-doublets retain the lowest energy, followed by the spin-quartets, 

with the sextet 6 X 2 having the highest energy. For a given spin, the T and X states are 

lower than the corresponding L states. The manifold has a total superexchange bandwidth 

of 47. 

It has been repeatedly suggested 8- 1 0' 2 5 that, at least for heavy-fermion systems, the 

"true" ground state of the system can be adequately represented by selecting one of the 

possible ground states of the non-interacting system and projecting out of it all components 

with two electrons per site, retaining only that part with site occupations of either zero or 

one. It can be seen from the present calculation that that procedure is, at best, an uncertain 

one, and at worst, plainly wrong. One should bear in mind that the projection process, 

because it is applied to all sites simultaneously, is a completely symmetric one, and it does 

not change the space-group symmetry of the state. 

In this context, one may first consider the case of r < 0. Under such conditions the 
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non-interacting manifold has a ground state of energy E = -241/1 - 307 (see Table III), 

which corresponds to a fillir.^ if the Jt-shell ( 3x2 = 6 electrons) and a lone /-electron, 

and thus has spin 1/2. The complete x-shell is fully symmetric, and has a global ' T] 

symmetry, whereas the /-electron has, of course, 2L\ symmetry; the resulting seven-

electron state must have an overall 2Lj symmetry, i.e. spin 1/2. Consultation of T:.ble IV, 

however, reveals that the ground state of the strongly interacting case is *T\, the saturated 

ferromagnet (spin 7/2) described previously, which has both the wrong spin and space 

symmetries. At E = 12f + 67 + 97/2, the %T\ state is considerably lower in energy that 

the lowest 2 L| state, which has an excitation of die order of (3lr I). It may be argued that 

the previous procedure is not app'icable to the ferromagnetic case because a phase transition 

(spiii-symmetry cross over) has taken place, with a consequent breakdown of the 

projection technique. But, as seen below, that is also the situation for the heavy-fermion 

case. 

For the case r > 0, one has a non-interacting ground-state manifold of 56 states and 

energy E = -24r + 187, as listed in Table III. These 56 states span four representations: 
4Z,2 and 2^2 once, and 2Z-3 twice. The lowest state of the strongly interacting heavy-

fermion system of 2Li symmetry has an energy of order (2r) greater man the true ground 

state. The other two symmetries do appear in the ground-state manifold for 7 = 0, but as 

the latter symmetry, 2L$ appears twice in the non-interacting case, it is always possible to 

find at least one combination of the two corresponding wavefunctions guaranteed to be 

onhogonal to the ground state When antiferromagnetic superexchange is included, the 

states with the lowest energy, E = -6f + 67 -37, have symmetry 2 r 2 , 2X\, and 2X2. 

and cannot at all be attained by the projection technique. It is therefore obvious that such 

technique cannot be considered to be a sound one. 

It is interesting to note that the ground-state manifold has an echo at E = -2t - 67, 

which corresponds in energy to a promotion of one electron from the /-levels to the x-

shell, uf the non-interacting picture. Moreover, this family and the ground-state manifold 

are the only accidental degeneracies partially removed by the antiferromagnetic interaction. 
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B. Fermi Surface behavior 

With an eight-atom cluster providing reciprocal-space sampling at the I", X and L 

points of the Brillouin Zone, one may ask: in these heavily correlated systems, is it 

meaningful to speak of a Fermi surface, and if so, how are the usual notions modified by 

the many-body effects? The question should be faced with extreme care, since the sampling 

technique provides information not on the one-electron continuum, as the notion of Fermi 

surface implies, but only on a small, discrete set of one-electron energy states. 

The non-interacting electron picture is one where one-electron energy levels are 

occupied with unit probability, up to the Fermi level, and higher energy one-electron states 

are unoccupied. The pioneering work of Luttinger6-7 and others 8 ' 9 ' 2 6 , has shown that, in 

the regime governed by perturbatively small electron-electron interactions, even though the 

occupation probabilities are finite throughout and no longer constrained to be zero or one, 

there is still a finite jump discontinuity at the Fermi level, i.e. the Fermi Surface still exists. 

The exact nature of the occupation profile has been shown to be very model dependent. 

In the context of the finite-cluster model, one can discuss the occupancy of the one-

electron states by finding the following expectation values: 

7 
t V t 

<a a > = > MM < c c > , (4.1) 
> a i a ; . t « o ''' i ' * J a * a 

where the matrix elements M^s are given by (3.2). 

Results are shown in Table V for the heavy-fermion {U = °°; t > 0), and the 

ferromagnetic (U = «>; r < 0) cases, together with the isolated atom and the non-

interacting states. For the various ground states of the heavy-fermion case, 2 r 2 , 2X\, 
2X2, the occupation probabilities are distributed in various ways among the one-electron 

orbitals of each shell, but the average occupation of each shell is the same in all cases. This 

is easily understood: even though the system is always perfectly correlated and the 

electrons rigorously avoid each other at each site, the total energy is (except for the small 

antiferromagneiic superexchange contribution) exclusively band energy; therefore two 

states with the same total energy must have the same band energy, i.e. the same occupation 
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of the one-electron energy shells. 

Table V. Orbital occupation probabilities 

State 7 / x 

isolated-atom ( t = T = 0 ) 7/16 7/16 7/16 

1/2 5/16 
1/2 1/2 

5/8 0 
1/8 1 

The non-interacting free-electron cases show the usual step-function occupations. The 

isolated-atom limit has, at most, one electron per atom, with no correlation between the 

atoms, and thus all k-states are occupied with equal probability. 

The ferromagnetic case shows an occupation of one half for the lower-energy orbitals, 

and zero for the highest ones. This is the well known Stoner state, with spin-up and spin-

down electron distributions split by the interaction: an ordinary Fermi distribution and 

Fermi Surface in the "majority" spins, and "minority" spins states completely empty. The 

extrapolation to larger clusters and the infinite crystal (full Brillouin Zone sampling) is 

straightforward: the Fermi Surface of the non-interacting case (U = 0; t < 0) splits into 

separate sheets for up- and down-spins, with one sheet vanishing (shrinking down to 

zero), and the other becoming a small closed surface of holes around the point r of the 

Zone. 

The heavy-fermion case is much more difficult to interpret and to generalize. What can 

clearly be seen is that the occupation probabilities for that system have a profile closer to the 

flat one of the isolated-atom picture, rather than the sharp drop-off of the non-interacting 

picture. There is, however, a monotonic drop-off from y, to /, to x, and it is not unlikely 

that larger clusters may produce the ever sharper decreases which, in the infinite-cluster 

heavy fermion (£/=»;? > 0) 9/16 
ferromagnetic (U =oo;r < 0 ) 0 

non-interacting (U = 0; t > 0 ) 1 
non'interacting ( U = 0; t < 0 ) 0 
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limit, could yield the expected Fermi Surface discontinuity. There is no indication however 

that, in the continuous k-space-sampling limit, the discontinuities in the occupation 

function will or should take place at exactly the same locus of points where it occurs in the 

corresponding non-interacting limit. In fact experience with many other strongly interacting 

problems points out to drastic changes in geometry and topology of the Fermi Surface with 

changes in interaction parameters. Even though the volume of the Fermi Surface is a 

conserved quantity6'7, similarities between non-interacting or mean-field (calculated27) and 

strongly interacting (measured2") heavy-fermion Fermi Surfaces should, at this point, be 

considered fortuitous. 

C. Spin-Wave spectrum 

With double-occupancy forbidden on any given site, the consequences for 

redistribution of energies involved in a spin-flip on a given atom is of great interest. It 

amounts to exciting all the possible spin waves; in this case waves with die periodicities of 

T, X and L. One can project the spin-flipped state onto the whole manifold of many-body 

states and obtain thus a spectrum: 

F ( e ; o ) = ^ ^ k a : 5 S \c c I GS : S S > | 2 S( e - ( e - e )) 
SW cc cc z i • <T ia GS GSz n GS 

a ( 

(4.2) 

where GS represents the ground state, with energy EQS spin magnitude SGS, spin z-

component SQSZ> a n d the index a refers to any given state of the manifold. It is 

straightforward to show the following sum rule holds in the hcavy-fermion limit: 

+ •• 

y \ \ F ( e ; o ) d e = A/ = 7 . (4.3) 
*•* J sw a o 
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Table VI. Spin-wave spectral features for the ferromagnetic 
([/=<*>; t < 0 ) ground state r • The state is spin-
maximally aligned (i.e. S ̂  = 7/2). The parameters are 
-t - 10T = 1007 . Energies are given in units of If I. 

Final State Symmetry Excitation Energy Spectral Weight 

V 0.000 0.875 
6LX 1.083 3.354 

6 * . 1.965 2.571 

\ 10.800 0.071 

13.657 0.075 

•x, 16.000 0.053 

The spin-wave spectrum of the ground state of the ferromagnetic case (£/ = °°; : < 

0), is presented in Table VI for the specific case of -t = 10 T = 100 / . A simple fee 

Hsisenberg ferromagnet, should exhibit a spin wave structure with one mode per point in 

the Brillouin Zone. In particular - and given the normalization of (4.2) - a zero-frequency 

mode at T, with weight 0.875, four modes at L, with symmetry 6Li and weight 3.500, 

and three modes at X with symmetry 6X\ and weight 2.625. The data of Table VI clearly 

show that the Heisenberg model for this very itinerant model works reasonable well, that 

the first two excited states of this case are indeed almost exclusively spin-wave modes, and 

that the spin-wave-spin-wave interaction, as well as the itinerant character of the states, 

impart partial spin-wave characteristics to three other states. The spin-wave character is, 

however, very small, and each of these additional states has a spin-wave weight smaller 

than 0.08. From Tables VI and IV it can also be inferred that this itinerant ferromagnet has, 

for spin one-half, an effective exchange interaction2 9 equal to (-1/1/8 + 7J>i6), i.e. an 

interaction whose dominant term is of the order of If I and not of the order If I2 III. 
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FIG. 2. Spin-excitation spectra for the heavy-fermion ground states r , X and X., 
are shown for parameter values t = 107"» 100V. with energies in units of f. Notice the 
overwhelming weight attached to the zero-energy peaks, indicating great zero- and low-
temperature spin fluctuations. The peaks are artificially broadened for clarity. 
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For the ground-state manifold of the heavy-fermion case (U = <»; I > 0), namely 

the states 2 r 2 , 2 ^ i , and 2J?2' t n e spin-wave spectrum, as evaluated for t = 107 = 

100/, is shown in Fig. 2. One can compare this with the structure of the ferromagnetic 

case discussed above (Table VI), and with the non-interacting spectrum, (U = 0; t > 0), 

which is presented in Table YD. 

TABLE VII. Spin-wave spectral weights for the non-interacting (U = 0; 
r > 0) case. States are spin-maximally aligned (i.e. 5 =S )• 

Excitation Energies 
Spin Flip 0 4r -12T 12r + 127 16r 

3/2 + 3/2 3/2 3/8 3/8 

- 0 3/8 0 3/8 

1/2 + 3/4 9/8 1/4 3/8 

- 1/4 3/4 1/8 3/8 

The non-interacting case has considerable weights a: all band excitation energies. The 

heavy-fermion system, by contrast, has almost its total weight at zero energy (see Table 

VIII). Furthermore, the total strength of the spin-wave spectrum is greater in the heavy-

fermion case because, as can be shown, the sum rule in (4.3) is diminished by the presence 

of on-site electron-electron pairing. Thus, one can surmise that the heavy-fermion state is 

indeed characterized by enormous zero- and low-temperat—c spin fluctuations; i.e. there is 

much freedom to flip spins around, and yet remain within the ground-state, or at most 

reach the low-lying, annferromagnetically split excited states. 
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TABLE VIH. Spin-wave spectral weights for the heavy-fermion 
(U =«> ; t > 0 ) case of Figure 2. The parameters are t =107 
= 100/ . States are spin-up (i.e. 5 = 1/2). 

Symmetry Flip Ground-State Low-Energy Total 
Manifold States * weight 

\ + 0.000 2.667 

- 1.805 2.693 5.360 

2 * , 
+ 0.000 1.778 

- 1.690 3.350 5.128 

2 * , + 0.000 2.185 

- 1.728 3.167 5.352 

• Set of states with excitation energies of the order of J , including the ground-
state manifold. 

D. Electron transport properties 

It is also very instructive to see how the highly correlated electrons, in particular the 

sluggish heavy-fermions, move about through the lattice. Within the context of this model, 

it is possible to address the question of the hopping to both nearest and second-nearest 

neighbors. In analogy with the spin-wave spectrum, one can define electron-hopping 

spectra as: 

F ( e ; C ) - Y Y l< u:S S \c c (\-c*c )\GS:S S >\2 

EH Jnn/2nn **s^ a at i a ja i-a i-a GS GSz 
a <ij > 

x 5 (e - (e -E )) (4.4) 
O GS 

where the additional (1 - c\ . a c , . a ) factor guarantees that all accessible states are, at 

most, singly occupied. The sum <ij > is on neare;t and second-nearest neighbors for the 

respective distributions. There is also a sum rule in place, in the U = °° limit: 
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> \[F (e;o) + F (e;o)]de = N (8-/V ) = 7 . (4.5) 
* • * J EH Inn EH 2m 

o o 

The electron-hopping spectrum of the ground state of the ferromagnetic case (U = =>; 

/ < 0) is presented in Table IX for the specific case of -t = 107 = 1007. For the heavy-

fermion case (£/=<*>; I > 0) and the specific value / = 107 = 1007, the nearest-

neighbor electron-hopping spectra are presented in Figure 3. 

TABLE IX. Electron-hopping spectral features for the ferromagnetic ([/ =<*> ; r < 0 ) 
ground state T . The state is spin-maximally aligned (i.e. S = 7/2). The parameters are 
-t = 107 = 1007 and the energies are given in units of r . 

Final State Excitation Spectral Weight 
Symmetry Energy Nearest-Neighbor Second-Nearest-Neighbor 

8 r , 0.000 0.750 0.125 

*L , 10.800 3.000 0.500 

x i 16.000 2.250 0.375 

First of all, one may notice that the zero-energy contribution is much smaller than in the 

spin-*sve speci/a, with the weights being spread more or less throughout. Thus, since the 

weight at zero energy is very small but not zero, one would expect these systems to be poor 

conductors. There appears to be a sizeable contribution to the a.c electron hopping around 

2.8 units, corresponding to the / —wc electron promotion. 

The second-nearest-neighbor electron-hopping spectra in Figure 4, display a different 

situation again. Here the largest weights occurs at energies of 12 units or greater, and thus 

electrically- and thermally-activated second-nearest-neighbor hops require considerable 

activation. Also, this magnitude of energy indicates that the transition must have a 

significant y-W character 1(0/ + 67) - (-12: - 67) = 12(r+T)]. 
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FIG. 3. Nearest-neighbor electron-hopping spectra for the hcavy-ferrmon ground slates 
2 2 3 

r~ 2 > X . and X X , are shown for parameter values < • 107" » 1 0 0 / , with energies in 
units of I. Not ice the distribution of peaks throughout the energy range, and the relatively 
small weight at zero energy. There is a considerable build-up near 2.81 units, corresponding 
to an / - • i electron promotion, The peaks are artificially broadened for clarity. 
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FIG. 4. Second-nearest-neighbor electron-hopping spectra for the heavy-fermion ground 
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sutes r . X and X are shown for parameter values f * 107" * 100/, with 

energies in units of /. Th" peak distribution here has weight shifted towards much higher 
energies than for nearest-neighbor hopping, with a large contribution from the y -»I 
electron promotion. The peaks are artificially broadened for clarity. 
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It should be noted that the structural make-up of all these spectra is rather robust to 

changes of the parameters, and thus changing T by a factor of two or so with respect to t 

does not alter any of these conclusions. Also, one can see that the 2T2 spectrum is devoid 

of minority-carrier contribution, leading one to conclude that vacancies in adjacent second-

nearest neighbors are completely blocked for that state. 

V. Conclusions 

A Hubbard model for the fee structure, in the infinite-^/ limit, and for an occupation 

of seven-eighths of an electron per site was examined in the periodic small-cluster 

approximation. Through careful use of inherent symmetries the solution proved to be very 

simple to obtain, but contained nonetheless some very rich structure reminiscent of real 

systems. The most important result is that the nature of the ground state and the physical 

properties of the system are very critically dependent on the details of the one-electron band 

structure. In particular, if the top of the band is an ordinary van Hove maximum (the 

negative-r case), the ground state is an itinerant ferromagnet, in which the band-structure 

terms overwhelm the antiferromagneuc superexchaiig: interaction. For a degenerate top of 

the band (the positive-/case), on the other hand, the ground state is very highly 

degenerate, with a complex and rich structure that describes well the heavy-fermion 

behavior. 

The ferromagnetic case exhibits properties which are essentially of textbook quality: a 

non-degenerate ground state (except for spin), well behaved spin-v.-aves, a relatively small 

spin-wave-spin-wave interaction (less than 8%), and low-energy excitations which can be 

described in terms of spin waves and of conduction electrons which possess an ordinary, 

single-spin, single-iheet Fermi Surface. 

The heavy-fermion case, by contrast, has an enormously degenerate ground-state 

manifold: in the eight-atom cluster and in the absence of superexchange interactions over 

9% of the available many-body states belong to that manifold. This property yields an 

unusually large electronic hrat capacity, which is the prominent feature of heavy-fermion 
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systems. An analysis of the low lying states, based on spin-flip and electron-hopping 

spectra, reveals that they consists many of spin degrees of freedom, but that the inherent 

conductivity is very poor, once again in agreement with the properties of heavy-fermion 

solids. 

An analysis of the symmetries of the heavy-fermion ground-state manifold and of the 

non-interacting (£/ = 0) limit clearly indicates that projection methods, based essentially on 

the Gutzwiller approach25, and consisting of projecting out states with multiple occupation, 

must be taken with considerable skepticism, since in general they may provide states 

considerably different in energy and structure from the true ground state(s). 

Even though the analysis of the occupation probabilities and the Fermi Surface 

discontinuity is very flawed in the small-cluster approach taken here, it was seen that in die 

heavy-fermion situation the occupation probabilities are more reminiscent of the isolated-

atom system than of the step-function, non-interacting case. The Fermi Surface 

discontinuity, which must exist because the system is metallic, is probably a very small 

one. 

Given the current interest in Hubbard models as related to high-temperature 

superconductivity5-30-33- it will bt of great interest to study the superconducting-fluctuation 

properties of the system described in this paper, and to add to it the effect of the electron-

electron interaction mediated by phonons. Some of the results are the subject of the 

following chapter. 

The eight-atom periodic cluster was just large enough for the first few tantalizing 

pieces of information about bulk heavy-fermion materials to emerge: the Fermi surface 

structure, the spin correlations and the electron transport. By way of improving the model, 

the question could be asked: as the burden of computation in this case < /as lowered so 

completely as to reduce it to analytic solution, could not the size of the cluster be scaled up, 

with matrix sizes still within the range of present-day computers? The penalty of scaling is 

enormous. As it turns out, the next larger size in the hierarchy of fee cubic-symmetric 

clusters has 32 atoms, and so the number of states to deal with, for an occupation of 7/8 
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electron per site, increases from 278!/7!l! = 1024 to 2 2 8 32!/28!4! = 9.653 x 10 1 2 , which 

even after heroic efforts to factorize by the 15 different spin multiplicities and the relevant 

768 element space-group, faces daunting prospects for anything but statistical approaches. 

As is, only the non-interacting and heavy-fermion limits of the system were studied 

here. The model can, however, be readily extended to take into account finite U, and 

reveal, for example, the nature of any intermediate symmetry cross-overs which must by 

necessity occur.1 * 
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Chapter V. Heavy-Fermion 
System: Superconducting and 
Magnetic Fluctuations within 
a Periodic-Cluster Hubbard 
Model 

I. Introduction 

Heavy-fermion materials, with their high heat capacities at low temperatures, exhibit 

sometimes normal and sometimes re-entrant superconductivity. They have been a source of 

great experimental and theoretical attention1"4. This interest has been further fueled by early 

experimental evidence showing a degree of similarity between these and the new high-

temperature superconducting ceramics, with many of the leading ideas for high Tc 

mechanisms borrowed from heavy-fermion research5-9. 

One direction in the incorporation of the large Coulomb repulsion between the f-

electrons of these lanthanide and actinide heavy-fermion materials has been the use of the 

single-orbital-per-site Hubbard model1 0, or the twin-orbital-per-site Anderson model", in 

order to make the non-neglible many-body effects more mathematically tractable. 

The current work focuses on the Hubbard model, wherein the computational overhead 

is further reduced by a small-cluster approach which incorporates periodic boundary 

conditions. This method 1 2 has been applied to various problems: photoemission1 3-1 4. 

intermediate-valence'4-'5, magnetic'6, thermodynamic'7, resonating-valence-bond18 and 

alloying behavior19. These papers have shown the approach to be good for explaining 

uniform and short-range correlation properties and, although incapable of exhibiting phase 

transitions, it has shown indications of possible mechanisms involved in them. In the 

previous chapter20 the author has explored the Fermi surface, spin-wave and transport 

properties of the an eight-site, seven electron fee cluster, which proved to be similar to real 

heavy-fermion systems. In this chapter the small-cluster model, with various occupations. 
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is analyzed for the superconducting-fluctuation behavior, to investigate possible 

mechanisms for superconductivity. 

The lattice in the model is face-centered-cubic, a three-dimensional array of triangular 

rings, which is the classical example of an antifeiromagnetically spin-frustrated system. 

This idea of electrons having to alternate between forming spin-singlet states with all 

adjacent electrons is the basis for Anderson's concept2 1 of Resonating-Valence-Bond 

(RVB). Thus, one way to address the relevance of the RVB approach, in the context of 

high-7"c superconductivity, is to examine an extreme case, such as the present one. 

Section II reviews the Hamiltonian employed. Section III examines the nature fo the 

ground and low-lying excited states, as well as the suitability of the Gutzwiller projection 

approach. Section IV examines the superconducting correlations, in terms of the 

anisotropy, degree of spontaneous-symmetry breaking, the relative strengths of various 

spin-coupling mdoes. The relation between the BCS predicted ground-state wavefunctions 

and the actual ones are also examined, and finally, the magnetic correlation behavior is 

studied. 

I I . The Hamiltonian 

20 
The Hamiltonian is thoroughly discussed in the previous chapter . The limit of large 

22-24 
on-site Coulomb repulsion, U —> ° ° , reduces it to the form: 

H = H + H + H (2.1) 
Inn 2nn AF 

where 

H = -2r 
Inn 

* -J 
< ij > Inn 

- 0...7; o i a >° 

H = -67 ^ c f c , (2.3) 
2"n i . > - 0 . . . 7 ; o i a J° 

< i j > 2nn 
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represents second-nearest neighbor hopping, with transfer integral T, and 

H = J Y S • S , (2.4) 
A F i.j= 0...7 ' J 

<lj >Inn 

2 
is a Heisenberg interaction where / is the anuferromagnetic coupling of order (r / U). 

TABLE I. Many-body of the low-lying states for 6,7 and 8 electrons in the infinitesimal 
and infinite- U limits. 

Energy States Symmetries 
5 electrons - small U 

V 3x 5 r 
1 l? 1 2 1 2 3 • 3 3 3 r x x r x x x 
j 25j 3j 5 15 2 4 5 
r r x 

1 12 1 

-24 r + 127" 

-24; + 127" 

-24 t + 127" 
large U 

+ 5£/ /8 
+ 9£/ /8 
+ 13£//8 

16 
57 

6 

V 3x 5 r 
1 l? 1 2 1 2 3 • 3 3 3 r x x r x x x 
j 25j 3j 5 15 2 4 5 
r r x 

1 12 1 
-12/ + 127" 

-12; + 127" 

- 11 7 /4 
- 7 7 / 4 

2 

9 , ' r -
X 

2 -12i + 127" + 7 /4 5 * . 
7 electrons - small U 

-24 ( + 187 + 5U IA 32 

V', -24 ; + 187" + 1U /4 24 V', 
largeU 

- 6 ; +67" -

- 6 / +67" -

•37 

-27 
14 

16 

4V*A 2 
-6i +67" -
- 6 ; +67" -

• 37 n 
•7 P. 

32 
16 

4V*A 2 

- 6 / +67" + 7 18 

4V*A 2 

8 electrons - small U 
-24; + 247" 
-24; +247" 

+ 15U 1% 
+ 19 £/ /8 

24 
4 

1 • I 3 
F25 X 3 * 5 

1 1 
r 1 ' x 1 

largeU 

-A J 
-3 7 
-2 7 
- 7 
0 

3 
22 
42 
48 
53 

i i 
1 ' 3 1 2 3 
l t . 2 . X l 3 " f 2 3 

r s x 3 L2 L3 

3 x 5 V 5 r 5 x , •AY 2 

' , *"2 *-3 
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The eight-atom cluster in the fee structure has the symmetry of a space group with 192 

operations and 13 representations. These representations are: five at the T point of the 

Brillouin zone (referred to as T , T , T , T ' and T ', with degeneracies 1, 1, 2, 3, and 
1 2 12 15 25 

3, respectively), five at X (X , X ,X ,X ,X ; degeneracies 3, 3, 3, 3, and 6, 

respectively) and three at L (L , L ,L ; degeneracies 4, 4, and 8, respectively); the 

labels T, X and L refer to the ovsrall k-vector of the many-body wavefunction. The 

notation is the standard one of Bouckaert et al 25. 

This model has been solved exactly for occupations of 6, 7 and 8 electrons 

(corresponding to 0.75, 0.875 and 1.0 electrons per site), and the relevant ground and 

low-lying states are presented in Table I. In addition the non-interacting ground and low-

lying states are presented, separated according to their first-order correction in Coulomb 

energy, which is obtained by diagonalizing, in the U = 0 ground-state manifold, the 

operator: 

Z t t 

c c c c (2.5) 
.--0...7 i T i T '"J U 

III. The Gutzwiller-projected state 

It is interesting at this point to examine the so-called Gutzwiller method9-26"29. The 

approach approximates the interacting ground state by projecting out of the non-interacting 

ground-state wave function any part that contains doubly occupied sites: 

I f > = J T ( l - c + c c f c ) \x¥ > , (2.6) 
G j it it ii i i 0 

where the product index i runs over all sites. The appeal of the approach is obvious from 

its aesthetics to its relative ease of implementation. However, as shown before20 and here, 

the pitfalls of such an approach become evident. 
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U/2 

small U energy scale large U 
FIG. 1. Schematic representation of the ground- and low-lying states for 6 electrons. The 
situation is rather straightforward: the symmetries at k>w-{/ carry over to the high-t/ 
regime, with no cross-overs. 

One sees the situation schematically in Figs. 1-3, depicting the ground- and low-

lying excited states for occupations of 6, 7 and 8 electrons, respectively. For 6 electrons, if 

one follows the ' r non-interacting ground state of minimal Coulomb energy, and 

performs the Gutzwiller projection (2.6), one arrives, at infinite U, at the proper ground 

state. 

For 7 electrons, however, the small- U ground state, if projected, yields an excited 

state of the heavy-fermion manifold, i.e. it is superseded by states of completely different 

symmetry which correspond to highly-excited states for small U. 
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small U <— energy scale •* large U 
FIG. 2. Schematic representation of the ground- and low-lying states for 7 electrons. 
Here, the low-C/ ground states form high-t/ excited states, with completely different 
symmeiries crossing over. 

The situation becomes even more involved for 8 electrons, with small-t/ ground 

states becoming large-f/ excited states, and small-i/ low-lying excited states mixing with 

highly excited ones (the * V symmetry) to contribute to the large-l/ ground-state 

manifold. 

Figure 4 shows the temperature dependence of the contribution of the various 

symmetries to the thermodynamic equilibrium state. It is seen there that even though the 

^L symmetry - the one obtained from the Gutzwiller projection - increases it contribution 

as temperaturer increases, the total spin of the cluster <S(S+\)> also increases, making 

the system more magnetic and therefore less well represented by a projection of a 

paramagnetic state. 
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small U energy scale large U 
FIG. 3. Schematic representation of the ground- and low-lying states for 8 electrons. 

The trend as for 7 electrons continues, with many cross-overs, showing the Gulzwiller-

projected states to be an inadequate description of the spectrum. 

These observations lead one to conclude that the Gutzwiller projection technique 

alone-is inadequate, that one requires in addition the minimization of the Coulomb 

expectation (2.5), but even so the description of the manifold of ground- and low-lying 

states is inadequate with the projected states alone. 
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FIG. 4. The competing effects of superconductivity and magnetism are most aptly 
demonstrated by comparing the thermal probability behavior of the seven-electron 

2 2 

superconducting candidate, X , with the Gutzwiller-projecttd state L , and die mean-

spin-squared <5(5+l)>. The two states do not mix to form a broken-symmetry 
2 2 

superconducting complex, the X has a stronger correlation than the L , and the 
latter is washed out by an increasing ferromagnetic tendency. 

IV. Results 

A. Superconducting correlations 

The eight-atom cluster, a finite system, is unable to exhibit the infinite-range 

correlation behavior of a superconducting transition, i.e. the important region in reciprocal 

space, the small It region, is inaccessible in this treatment, and it is possible that the 

finiteness might introduce artificial correlations^0. However, it has been the belief of the 

present authors and others9, that the study of the fluctuations towards superconductivity in 

these small systems could yield clues to the real phenomenon. Along those lines, and 

following the BCS formalism, one has an order parameter A(R,r), which corresponds to 
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the system forming Cooper pairs, of the form 

A(R,r) = <A(R,r)> = <M'(R + r /2 )>F(R- r /2 )> . (4.1) 

where the system has a pair of normal electrons destroyed, with center of mass R and 

separation r. Following Hirsch31, one may describe the correlation between the two 

electrons taking place by one of several modes, the usual on-site (r = 0) spin-singlet 

coupling (SP) of the form : 

c c , (4.2) 
it ii 

an extended-singlet pairing (SPX): 

c c - c c , (4.3) 
it i+r I i i i +r i 

and a (necessarily) extended spin-triplet pairing, as in liquid He 3 , with components 

referred to as TPt (triplet parallel, Sz = 1), TPO (antiparallel, Sz = 0), and TPJ. (Sz = -1) 

of forms : » 

c c , (4.4) 
i f i +,• r 

c c + c c , (4.5) 
i t i+r i i I i+r X 

c c , (4.6) 
i I i+ri 

respectively. In uniform systems the position R within the crystal has no intrinsic 

importance32. One may proceed directly to reciprocal k-space via Fourier transform: 

1 f i k-R 3 
4(k, r) = — e XR, r ) d R ; (4.7) 

Q J 

In finite systems, one may study the order parameter fluctuation, 

S ( k, r ) = < A( k, r ) A+( k, r ) > , (4.8) 

which may be considered as a susceptibility to Cooper pair formation, i.e. the amount of 

phase space available to such a possible condensation process. The dependence on r yields 
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information on the spatial distribution of the correlation; the k-dependence yields the 

transport and coherence properties. As the object 5(k,r) is related quadratically to the 

order parameter, one may not speak of the spatial distribution of superconducting 

correlations, but only of the square. Thus triplet-spin pairings, which necessitate odd-parity 

(pj, etc.) spatial wavefunctions, would have (s,d, etc.) even-parity S ( k , r ) 

distributions, as do singlet pairings. 
39,40 

The quantity S (k,r) is in fact the pair susceptibility defined by Lin et al 

reformulated for the zero-temperature case when the ground-state is degenerate. The results 

reported here are the eigenvalues of the pair susceptibility within the ground-state 
41 

manifold . 

In the present context, with an eight-atom crystal, there are correspondingly 8 k-

vectors in the Brillouin Zone, one at T (wrinen as y ) , three at X (x ,x ,x ), and four 
12 3 

at L (1,1,1,1 ). It can be shown then that the SPX and TPO correlations, written in 12 3 4 
the k basis a , take the form: * 

KB 
A 2 i k • r 
5 ( k , r ) = — ( l ± e )[N-n 

SPXITPO " 

X i'K.-Kj-T t f 

c * a a a a ] 
K^K, 2 1 2 1 

(4.9) 

One can immediately see that the pre-factor (1 ± e ' k r ) forces the correlations of rhese 

two forms to take on non-zero values in complementary parts of k-space, as the 

exponential term for this cluster takes on only values + 1. Similarly, one can establish the 

expressions for the parallel triplet forms : 

5 < k , r ) = — ( 1 - e ) [ 2 W - 3 n + > e l 2 a a a a J 

"1̂ 2 
.(4.10) 

Tpir ^ * w ^™ K a K a K + k a i c ' -ko 
K,K, 2 1 2 1 

where n refers to die number of electrons aligned with a. 
o 

There are six distinct first-nearest neighbors in this model (each represented twice, to 

give the 12 nearest neighbors of the fee structure) and thus the information provided by 
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the six S(k, r = Xj, •£>, tj, x 5 , x 6 , x-j), where the x,- 's represent the associated 

displacement vectors, is just sufficient to expand unambiguously the spatial dependence in 

terms of the s and the five d functions zx, yz, xy, x 2 - y 2 and 3z 2 - r 2 . Within a 

normalization factor of [(2l+iy4n]lf2; the expansion coefficients can be given as : 

A ( k ) = i [ 5 ( k , t )+S(k,x )+S(k,x ) + S ( k , x J +S (k,T ) +S (k.x ) ] 
j 0 1 2 3 5 6 7 

(4.11) 

4 (k )= -L [S(k ,x ) - S ( k , x ) ] (4.12) 
" Jl ' 5 

4 (k)=-L[S(kr )-S(k r )] (4.13) 

A xy (k) = -L [S (k,x ) - S (k, x )•] (4.14) 
xy v? 3 

A 1 , 2 ( k ) = - L { [ S ( k . x i ) + S ( k , x J ] - [ 5 ( k , x , ) + S ( k , x j ] } (4.15) 

/I 2 2 ( k ) = - [ S (k.x )+S (k,x )-2S(k,x )+S(k,x ) +5 (k.x )-2S(k,x ) ] 
3z - r 3 1 2 3 5 6 7 

(4.16) 
For an occupation of 7 electrons the true heavy-fermion ground-state manifold -

comprising the symmetries 2 r 2 , 2 X l and 2 X 2 - and the low-lying excited states of 

symmetry 2 L 3 , are allowed to mix by (4.9) or (4.10), and the patterns of mixing arc 

presented in Tables II and IV, with the actual values of the correlation matrices presented in 

Tables III and V, respectively. Thus, any trends towards the symmetry-breaking of a 

superconducting transition can be detected. 

Qualitatively, the first thing to note is that the excited 2 L 3 states do not mix with any 

of the ground-state symmetries for any of the spin-coupling modes. The only mixing 

occurs between the three pairs of 2X, and 2 X 2 . 
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TABLE II. Correlation mixing pattern for the 7-electron heavy-fcrmion ground-state manifold 

singlet pairing triplet pairing 

Y 'l >2 '3 U x \ x2 x i ' l '2 ' 3 ' 4 

T, \ \ > r r r r r r r r 
|2X,(a)>l 2X 2(a)> Ao A o A 0 A 0 A 0 A 0 A n A „ 

| 2X,(b)>l 2X 2CD)> B 
+ 

B 
+ 

B B 
+ + 

B B 
+ + 

B B 
+ 

| 2 X 1 (c)>! 2 Y 2 (c)> B B B B B B B B 

h 'V r / • r r r r r r 

|2AT1(a)>l2X2(a)> B. B B B B B B 3 

| 2X 1(b)>l 2A' 2(b)> A 0 A o A , A „ 0 0 
A o A o A „ A „ 0 0 

| 2 X 1 (c)>l 2 X 2 (c)> B

+ 
B 

+ 
B B 

+ + 
B

+ * + B B 
+ + 

t 3 |V2> r r r r r r r r 
| 2 X 1 (a)>l 2 X 2 (a)> B 

+ 
B

 + 

B B + + B

+

B

+ 
B « B

 + 

| 2 X 1 (b)>l 2 X 2 (b)>|B_ B B B B B B B 

| 2 X 1 ( C ) > I 2 X 2 ( C ) > | A 0 A ° A „ A „ 0 0 A o A o A 0 A o 

T5 ' V r r r r r r r r 

| 2 X 1 (a)>l 2 X 2 (a)> A o A 0 A 0 A 0 A 0 A 0 
A c A o 

| 2 X,(b)>l 2 X 2 (b)> B 
+ 

B 
+ 

B B 
+ + 

B E 
+ + 

B B 
+ + 

| 2 X 1 (c)>l 2 Jf 2 (c)> B B B B B B B B 

c 6 \ > r r r r r r r r 

| 2 X ] (a)>l 2 X 2 (a)> B B B ' B B B B B 

| 2 X,(b)>l 2 * 2 <b)> A o A o A o A o A o A o A o A o 
| 2 X 1 (c)>l 2 X 2 (c)> B 

+ 
B 

+ 
B

 +

 B

 + 

B

 +

 B < B B 
+ +• 

c7 lV2> r r r r r r r r 
| 2 ^ 1 (a)>l 2 3f 2 (a)> 3 

+ 
B 

^ 
B B 

+ + 
B B 

+ + 
B

 +

 B

 + 

| 2 X,(b)>l 2 X 2 (b)> B B B B B B B B 

| 2 X ] (c)>l 2 X 2 (c)> A o Ao 
A „ A„ 0 0 A„ A„ 0 0 A o A o 
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TABLE III. Values for the couplings of the heavy-fermion ground-state manifold 
for 7 electrons. 

coupling r A„ B 

SPX 

TPO -r~ 

7 

11 
4 0 4 *2£ 

4 ~ 12 
4 

0 
19 
12 " 1 2 6 

13 
3 
4 0 ' £ +V2 

4 " 36 
12 

0 
41 
36 * 36 18 

1 
~6 

0 
1 
2 ~ 9 

TPT 1 
6 0 13 

36 
^ 

5 
12 

7 0 
3 

+ £ 
7 12 4 12 

TPJ, 
12 

0 
7 
9 k 23 

36 

Quantitative results are given in Table VI. Here all correlation strengths are normalized 

to one, i.e. divided by the maximal eigenvalue over all possible 11440 states. For SPX 

coupling one notices a considerable enhancement from the almost non-interacting to the 

Gutzwiller-projected state, but the enhancement from the latter to the true ground state - of 

different symmetry - is approximately the same; in other words, the difference between the 

non-inte:-acting and true states is twice as large as the Gutzwiller method would yield. One 

sees the same trend, albeit more weakly, for the triplet IPO and TP? modes. They both 

favor a broken-symmetry state. Because these correlations were calculated for the Sz = + 

1/2 states - four electrons with spin up, three electrons with spin down - the TPl mode is 

strongly disfavored, as seen also in Table VI. 
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TABLE IV. Correlation mixing pattern for the 7-electron Gutzwiller-projected manifold 
in the large U limit. 

singlet pairing triplet pairing 
Y - * 1 " *) *X / , l2 / , lA A i 0 ^ ' l <2 '3 '4 

|2L 3(D>I 2I 3<2)> 
|2Z-3(3)>I2L3(4)> 

| 2 L 3 (5)>I 2 L 3 (6)> 

| 2 L 3 (7)>I 2 L 3 (8)> 

A 0 
S 
B 

B. 

A o 
A o 
B 

B . 

A o A c 
A 0 A ( 

B B 

B . B . 

A o A o 
A « A o 
B B 

+ + 
B B 

+ + 

A o A o 
A (A 0 
B B 

+ + 
B B 

+ + 
|2£.3U)>I2Z,3(2)> 

|2L 3(3)>I 2L 3(4)> 

| 2 L 3 (5)>I 2 L 3 (6)5 

|2Z.3C7)>I2L3(8)> 

A + 

3 

% 
B + 

A + 

B 

A o 
B 

+ 

A + A + 

B B 

A „ A „ 0 0 
B B 

+ + 

A . A . 

3 • B • 

* o A o 
B B 

A . A . 

B B 
+ + 

A o A o 
B B 

|2L 3(1)>I 2L 3C)> 

|2L3(3)>I2Z.3(4)> 

| 2 £. 3 (5)>I 2 L 3 (6)> 

| 2L 3C7)>I 2L 3(8)> 

A. 

B 
+ 

A ( 

A. 
B 

+ 
B 

+ 
A o 

A. A 
B

 +

B • 
B B 

+ + 
A o A o 

A

+

A

+ 

B B 

3 B 

A 0 A o 

A + A + 

B B 
B B 

A o A o 

| 2 L3(D>I 2 L 3 C)> 
|2L 3(3)>I 2L 3(4)> 

| 2L 3(5)>I 2I.3(6)> 

| 2L 3<7)>I 2L 3<8)> 

B 0 
B o 
A 

A 

B 0 
B o 
A 

A 

B 0 B 0 
B o B o 
A A 

A A 

B 0 B 0 
B 0 B 0 
A A 

+ + 
A A 

+ + 

B 0 B 0 
B 0 B 0 
A A 

+ + 
A A 

+ + 
|2Z. 3(D>I 2L 3C)> 

| 2Z, 3(3)>I 2L 3(4)> 

| 2 L 3 (5)>l 2 L 3 (6i)> 

| 2L 3(7)>i 2Z- 3(8)> 

B

+ 

A 
B 0 
A 

+ 

A 
B 

0 
A 

+ 

B

+

 B

+ 

A A 
B B 

0 0 
A A 

+ + 

B. B. 
A

+

 A

 + 

B B„ 
0 0 

A A 

B. B 
A

+

 A

 + 

B B n 0 0 
A A 

| 2 L 3 (1)>I 2 L 3 (2)> 

i 2 L 3 (3)>l 2 L 3 (4j> 

| 2 L 3 (5)>I 2 L 3 (6)> 

| 2 £, 3 (7)>! 2 L 3 (8)> 

A 
+ 

A 
+ 

B 
0 

B . 

A < 
A 

+ 

B . B . 

A

+

 A * 
A A 

+ + 
B B 

o o| 

B

+

B

 + 

A A 

A A 

B B 
0 0 

B

+

B

 + 

A A 

A A 

B B 
0 0 
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TABLE V. Values for the couplings of the heavy-fcrmion Gutzwiller 
manifold for 7 electrons. 

coupling A 0 A+ B Q B i 

SPX 

TPO 

TPT 

TPJ, 

'i •' 7 20 
*33 
20 0 7 60 

,° 5 " 20 10 
0 21 

12 60 
49 
30 

'•!! o ' 
12 

ii 
15 60 

*67 
60 0 

2J_ 
15 180 

.° s. 60 
31 
30 

0 41 
3*. "180 

101 
90 

'i ' 29 
60 +2£ 

45 
"_9_ 
20 0 

_5_ 
12 JL 

90 

o -2 
36 

% 
." 4 5 

71 
180 

0 73 
180 9 0 

79 
180 

"il o' 
30 

r « 
60 

± i 3 £ 
180 

' 1 
I 0 

43 
60 60 

77 

. 0 » 180 
23 
36 

0 
15 60 60 

The evidence appears to favor, in the large-!/ limit, the extended-singlet over the 

triplet pairings, a result noted before in the literature31-33. However, the critical result here 

is that the Gutzwiller-projected state, has neither the correlation strength of the true ground 

state, nor in any way participates with the ground state to break symmetry and lead 

towards Cooper pair formation. Having decided on the 2Xl state in the SPX coupling 

mode as the leading superconducting candidate, one can now apply (4.11 -.16) to describe 

its s-^-decomposition, the results of which are presented in Table VII. One can see quite 

clearly the degree of anisotropy, both in real and in k-space. 
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TABLE VI. Normalized maximal correlation values for 7-electron states at nearest-neighbor 
separation. 

type/* slates SPX TP0 T P t TPi 

all states 
t.T,U = 0 

11440 
1.000 1.000 1.000 1.000. 

almost non-
interacting 
U *0> 

56 

0.281 
l 2 L 3 > 

0.172 
l 2 L 3 > 

0.167 

l 2 L 3 > 
0.479 

l 2 t 3 > 
Guuwiller state 

U = o o 
28 

0.313 
l 2 L 3 > 

0.173 
l 2 L 3 > 

0.176 
\2L,> 

0.428 
l 2 I 3 > 

Heavy-fermion 
stale 

U =oo 
14 

0.344 

l 2 x , > 
0.181 

0.81612x j > 
- 0.57712* 2 > 

0.207 
0.79312X j > 

•0.610| 2X 2 > 

0.412 

0.84512X j > 

- 0.536| 2

X 2> 

Atomic limit 
(, r=0. £ /=« 

1024 
0.438 0.438 0.667 0.500 

TABLE VII. Unnormalized s and d expansion of correlations for the maximally-
2 

correlated ' X 1 > state, polarized in the AT-direction. The degree of anisotropy is quite 
notable. 1 

Y X 
1 

X2 * 3 / 
1 

I 
2 

I 
3 4 

s 1.750 0.917 0.417 0.417 0.875 0.875 0.875 0.875 

zx 0 0 0 0 -1.588 -1.588 1.588 1.588 

yz 0 0 0 0 -0.722 0.722 -0.722 0.722 

xy 0 0 0 0 -0.722 0.722 0.722 -0.722 

2 2 1.732 3.175 -1.443 0 0.866 0.866 0.866 0.866 

- 2 2 
3z - r 1.000 1.833 0.833 -1.667 0.500 0.500 0.500 0.500 
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B. BCS wavefunction for a finite ctuster 

In 1957, Bardeen, Cooper and Schrieffer wrote their celebrated paper34 describing the 

superconducting-state function: 

I T > = TT(w + v a a ) I0> 
BCS J - k

J - k k kT - k i 

where the coefficients u^ and v^ are expressed a s 3 5 : 

(4.17) 

2 1 e 

u^ = - [ 1+ , k ] (4.18) 1777 
\J k k 

v'= i [ 1 k , ] (4.19) /7T7 
y k k 

Here e^ refers to the one-electron energy of fc, measured from the Fermi energy, whereas 

A k represents the corresponding superconducting energy-gap parameter. Historically, the 

fears that the BCS equation (4.17) (i) did not conserve the number of particles, and (ii) in 

the thermodynamic limit the predicted wave function was orthogonal to the true ground 

state, were eventually resolved and the approach has become the cornerstone of the theory 

of superconductivity. 

Recently Gros 3 6 has examined the consequence of projecting the BCS oiate onto a 

fixed number of electrons in a finite cluster, and then applying the Gutzwiller projection to 

remove any doubly-occupied states. This approach has the advantage of allowing the 

system in question to reveal its own preferred coupling mode, rather than attempting to 

match the correlation to those of given models. 

In the present situation, given the advantage of considering an even number of 

electrons, it is convenient to choose the eight-site cluster with six electrons. Thus, the 
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wavefunction of (4.17) would take on the (unnormalized) form: 

Z t t + * t t 
v v v u u u u u a a a a a a !0> 

B C S K ...,K *b K l "2 "3 K4 K 5 "6 K7 *tf Kjjl KjT î l T̂ ^J. 
0 ? (4.20) 

where K , K and K are the occupied electron-pair states and K through K are the empty 

one-electron states. Equation (4.20) is considered here in two limits: the almost-non-

interacting (small U) and the Gutzwiller-projected strongly-interacting (large U) extremes. 

For U = 0, there are 56 states corresponding to occupied triplets of k-pairs (3 chosen from 

8), while in the infinite-l/ limit, the Gutzwiller projection (2.6) reduces these to 28 

possible states. 

For U vanishingly small, if one restricts the choices for the triplets of occupied k-

pairs to the Y-pair, and two of the four / -pairs, then one obtains directly a state with 

energy contributions from (2.3) and (2.4) of (-24r + 127), which corresponds to the 

vanishing-i/ ground state. This is equivalent to setting 
v = K = u = u = 1 , u = v = v = v = 0 , (4.21) 

r x< xi xi 7 xi *2 *, 

which amounts to setting the energy-gap parameters, Ay = Ax = 0. This leaves the four 

(« ( ,v i) pairs free to reduce the Coulomb energy (2.5). 

Without the constraint of the BCS variational wavefunction, the six functions, denoted 

by the (kf, k i ) pairings Y / ' .Y ' ' <Yl ' • ll ' . 7 ' / , and Y / , , form 
1 2 1 3 1 4 2 3 2 4 3 4 

representations of ^ j , ' T ^ and 'T^', with expectations, 13t//8, 71//8 and 9£//8, 

respectively. It should be noted that the 'Tj and l r 1 5 ' states correspond exactly to those 

listed among the low-lying states in Table I, while the ' r ^ state overlaps only panially the 

true ground state. 

It can be shown that the Coulomb energy expectation value, with the BCS state, is 

<HC > = U { ! + £ [ ( £ V , M r " , > 2 - 6 M / , v i , u i 2

 v / 2

 ui, v i , u i 3

 v t 4 1 

where the summations are over the four /-states. This is not a simple problem in 
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optimization. However, one can argue, by symmetry, that the optimum solutions will lie on 

loci of high symmetry. If, for example, one sets all the w's and v's constant, which 

would amount to s-wave pairing, one obtains precisely the ^ j state. Thus, if one were to 

use the BCS wavefunction for attractive potentials, where U < 0, one would obtain the 

correct ground state. 

To obtain the minimum of (4.22) for U > 0, if one calls this minimum yU, sets any 

two pairs of the («,-, v,- )'s equal (three such combinations, e.g. u , =u • =Uj, u , 

=u i =«2> a n d similarly for the v's), and introduces a variable x=Uj\2 lt*2vl > o n e 

obtains: 

( 1 + x 4 ) ( 8 y -9)-8(x3+x )+jc 2 (32y -44) = 0 . (4.23) 

Upon minimization with respect to y (4.23) yields an extremum with the unusual value 

17-/3* - 39 y = 1LLL—_ =0.941987298 (4.24) 

8 ^ 3 - 2 4 

which is achieved for 

x = ± y l ^ Y ~ i J i + 2 =(-2.296630), (-0.435420) (4.25) 

Clearly, this solution is a compromise. Although it minimizes the band energy, it does not 

reach the minimum 7U/& Coulomb energy accessible with the full BCS set (4.20). And in 

fact it represents only a 59.15% overlap with the true T ground-state, of expection 

3C//4. 

For infinite U, the one-electron orbital energies cease to have meaning. However, if 

one seeks a solution with minimal nearest-neighbor band energy (2.2), then one finds a 

minimal manifold corresponding to the choices for (M ,, v , ) of (4.21). Without further 

BCS contraints, this manifold has expectation values for (2.2) of (-32r /5), (-96r /l 1) and 

(-272r/23) [equal to (-6.4r), (-8.7270, (-11.826f), respectively] corresponding 

respectively to the symmeEnes T , T ' and T . This results compares with the true 
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ground-state energy of (—12r). The minimization problem becomes somewhat more 

complicated than for infinitesimal U, of the form : 

<H, > = - 8 r 
Inn 

Z 2 2 2 2 ^T" 2 v v u u - 5 ( > , v v u u ) + 66u, V, U, V, U, V, U, V, P 1 r s v ^ r f p q r s' I, I, l2 1, !3 t3 l4 l4 

^ ^ 2 2 2 2 ^ ^ ? 
JL^ p q r s "^w p q r s' 'i 'i h h h l3 '< '< 

(4.26) 

Again, as in the infinitesimal-!/ limit, the maximum T. value may be achieved in an s-

wave pairing. The minimal value possible, however, achieved for x =UjV2 I u2Vj = - 1 , 

is (-736/ /63) [equal to (-11.683f)]. 

To study the superconducting energy-gap parameters, one may expand their 

distributions, as a function of k, in terms of functions following the symmetries s, d, etc. 

[even parity only is considered with the singlet-spin mode of (4.17)]. With eight k-vectors 

in this small cluster, one has a basis of 8 k-functions to work with, and one can obtain, as 

Sigrist and Rice d o 3 7 for the high-7" square lattice, the functions compatible with the 
c 

lattice. For the energy-gap parameters among the / 's, this amounts to the following 

contributions of d-functions: 
d = A, - A, - A, + A (4.27) 

xy i { ( 2 i } i 4 

"„ = \ " \ + \ " \ ( 4 2 9) 

and in addition the j-likc function 

s = A. + A, + A, + A, (4.30) 
' / '2 'l U 

Thus, one sees a definite (/-character for the BCS state. However, it is an 

unsatisfactory approximation, in both low- and high-f/ limits: the expectation values of the 

total energy are nci close to the true ground-state energy. 

C. Magnetic correlations 

As the fee structure is composed of triangular rings of bonds, the antiferromagnetic 
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coupling (2.4) is frustrated in its attempt to saturate the system. Thus the interaction of the 

band structure with the spin geometry, a possible resolution of the RVB proposal, is of 

great interest. In this cluster, there are three reasonable spin-spin correlations to examine -

on-site, first and second neighbors - of forms 

Lo'k^S^ ( 4 3 1 ) 

t 

Ll = W X Si:SJ, < 4 " 3 2 > 
<ij > Inn 

L 2 - £ • X S „ S J , <4-33> 
<ij > 2nn 

respectively, N being the number of sites. It should be pointed out that, within the eight-

atom cluster, a sum rule exists, 

LQ + 2Lj + 2L2 = S*/ 16, (4.34) 

where 5 is the z-projection of the spin. Furthermore, in the infinite-t/ limit, one has LQ 

tending upwardly to nIAN, where n is the number of electrons 

The results for the ground- and low-lying states for 6,7 and 8 electrons in the small 

and high U limits are presented in Table VIII, along with the extreme values possible for 

each configuration. 

Very clear trends can be gathered from the table. First, at both the low- and high-f/ 

limits, the ground state is most strongly nearest-neighbor antiferromagnetic, with L\ 

increasing monotonically with excitation energy. The exact opposite can be said of the 

second-nearest-neighbor behavior. Also, as a function of U, one sees that L0 and Li 

increase, and L\ decreases. 

Thus, the tendencies at both extremes is towards antiferromagnetism, and states which 

at low-{/ may be the ground states, may find themselves overtaken, at high-t/, by 

completely different electronic configurations which are more antiferromagnenc. 
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TABLE VIII. Magnetic correlations for 6,7 and 8-electron ground and low-lying minimal-
spin states in the low and high!/ limits. 

smallU 

state(s) L L} L 2 

largeU 

state(s) L. L L 

6 electrons 
maxima 0.0000 -0.1563 -0.0938 
minima 0.1875 0.4063 0.0938 

' r 0.1484 -0.0859 0.0117 
V lX^lX. 0.1172 -0.0547 -0.0039 
i 1 5 i 3 i J 

i 12 i ° 0 8 5 9 ° - 0 2 3 4 - 0 - 0 1 9 5 

l r n 0.1875 -0.1146 0.0208 

7 electrons 
maxima 0.0313 -0.1875 -0.0313 
minima 0.2188 0.5625 0.0938 

2L3 0.1367 -0.0644 -0.0020 
2L2

2L3 u.1211 -0.0508 -0.0098 
\ 2 X 1

2 X 2 0.2188 -0.1250 0.0313 
2 L 3 0.2188 -0.0833 0.0104 

8 electrons 
maxima 0.0000 -0.2500 -0.1250 
minima 0.2500 0.7500 0.1250 

l r

2 S ' ^ 3 0.1328 -0.0547 -0.0117 
r , X, 0.1016 -0.0234 -0.0273 

l r , l r , 2 0.2500 -0.1667 0.0417 
lL2 0.2500 -0.1250 0.0000 

l r ' ' x , 0.2500 -0.0833 -0.0417 
25 3 

IV. Conclusions 

A model for superconducting and magnetic behavior in a heavy-fermion system, one 

comprising an eight-atom cluster in the fee structure with occupancies of 6,7 and 8 

electrons, was examined. A critique of ongoing work is obtained. Although too small a 

cluster to observe the important long-range correlations present in superconducting 

transitions, it is the opinion of the authors that this smallness, allowing a full description of 
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the model system, more than makes up for this liability, while other approaches, such as 

Monte Carlo9-36 may be leaving subde gaps in me true picture. 

It was observed that the Gutzwiller projection26, which obtains a heavy-fermion 

wavefunction from the non-interacting function by projecting out any part containing any 

doubly-occupied atoms, is an inadequate description of the ground state and low-lying 

excitations. This inadequacy becomes more pronounced as one nears the half-filled limit, 

which is where all the interesting heavy-fermion behavior occurs. The amendment to the 

projection proposed here, that is, to take the linear combination of non-interacting ground 

state wavefunctions which minimizes the Coulomb repulsion, acts to achieve the optimum 

state from within that restricted manifold. 

The model demonstrates a trend towards superconductivity which is of extended-spin-

singlet form and highly anisotropic, with significant s- and d-wavc mixing. No 

significant trends towards symmetry-breaking was noted, indicating possibly that the large-

U Hubbard mechanism is not, of itself, responsible for superconductivity; rather, it might 

be said that, at best, it makes phase space available for another mechanism, such as the 

standard phonon coupling, to allow superconductivity to proceed. In light of recent 

evidence denying any magnetic activity in the Yttrium compounds38, this may be an 

optimistic assessment. 

The BCS trial state, restricted to the small cluster, describes states of considerable d-

character, and was shown to be inadequate both in the small and large U regimes, 

removed considerably from the true ground state. For small attractive U, however, the 

BCS wavefunction corresponded exactly to the true ground state. 

The magnetic correlations showed that this model is remarkably good for 

antiferromagnetic behavior, with strong antiferromagnetic ordering in both the small and 

large U limks. 

The author recognizes work criticizing the validity of calculations of short-range 
30 correlations in small-cluster models, with errors induced by finite-size effects Finite-size 

effects may also account for a large measure of the discrepancy between the Gutzwiller-
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projected and the true ground state. It is possible that the projection process, applied to 

increasingly larger clusters, may approach a total description of the ground-state behavior, 

but this is a conjecture which should be scrupulously examined. In the one-dimensional 
29 

case , the results indicate that the approach is not satisfactory in the atomic limit. The 

present approach, as detailed in previous work 2 0, does not scale well, so the question may 

remain open for some time to come. 
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