
BNL--48446

DE93 007281

(DRAFT) COMMUNITY AIR POLLUTION AND MORTALITY:
ANALYSIS OF 1980 DATA FROM US METROPOLITAN AREAS

Frederick W. Lipfert
Analytical Sciences Division

Department of Applied Science
Brookhaven National Laboratory

Associated Universities, Inc.

Under Contract No. DE-AC02-76CH00016 with the
U_. Department of Energy

November 1992

Prepared for the
U_. Department of Energy

Office of Fossil Energy
Washington, DC 20585

Abstnet

1980 data from up to 149 metropolitan areas were used to define cro_-sectional associations be-
tween community air pollution and "excess" human mortality. The regression model proposed
by Ozkaynak and Thunton (1987), which accounted for age, race, education, poverty, and
population density, was evaluated and several new models were developed. The uew raodeh aho
accounted for migration, drinking water hardness, and smoking, and included a more detailed
description of race. Cause-of-death categories analyzed include ali causes, ali "non-external"
causes, major cardiovascular diseases, and chronic obstructive pulmonary diseases (COPD). Both
annual mortality rates and their logarithms were analyzed. Air quality data were ,)brained from

the EPA AIRS database (TSP, ,504 =, Mn, and ozone) and from the inhalable particulate network
M In • •0P |$, PM2 5 and 50.4", for 63 locattom). The data on particulates were averaged across ali

monstoring st'itions available for each SMSA and the TSP data were restricted to the year 1980.
The a._zciafiom between mortality and air pollution were found to be dependent on the
socioeconomic factors included in the modeL%the specific locations included in the data set, and
the type of statistical model used. Statistically significant associations were found as follows:
between TSP and mortality due to non-_.xternal causes with log-linear models, but not with a
linear model; betwe;e_nestimated 10-year average (1980-90) ozone leveh and 1980 non-external

LI] _ and cardiovascular del_ths; and between TSP and COPD mortality for both linear and log-linear

_._ _ modeh. When the sulfate contribution to TSP was subtracted, the relationship with COPD

o'_ _ mortality was strengthened. Scatter 0lots and quin,'le analyses suggested a TSP threshold forW , COPD mortality at around 65 ug/m J (annual average). S04 =, Mn, PMI5 , and PM2 $ were not
significantly as_!ated .with mortality using the new models. The report identifies a'number of

t_ O important uncer_amues an the analysh, including possible effects due to the 1980 h_t' wave. .... , _
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Executive Summary

Data from up to 149 metropolitan areas were analyzed in a study of the relationships between
communityair pollution and "excess"human mortality for the year 1980. Several socioeconomic
models, including the model proposed by Ozkaynak and Thurston (1987), were used in cross-
sectionalmultiple regressionanalyses to account for non-pollution effects such as age, race,
education, poverty, migration and smoking. Cause-of-death categories analyzed include ali
causes,ali causesexcept accidents-suicide-homicide (i.e., "non-external" causes), major car-
diovasculardiseases,and chronic obstructive pulmonary diseases(COPD). The patterns for the
first threegroupings were quite similar but differed markedly from the patterns of COPD mor-
tality. Regressionswere performed for thesecause-of-death groupings as annual mortality rates
('linear" models)a_ld as their logarithms ('log-linear" models).

Two different sources of air quality data were utilized: data from the EPA AIRS database (TSP,
S04", Mn, and ozone) and data from the inhalable particulate (PMIs) network; the latter data
(PMI5, PM2 5 and SOft from the IP filters) were only available for-63 locations. The data on
psrti'c'ulates'_Gere averaged across ali monitoring stations available for each SMSA and the TSP

• data were restricted to the year 1980. The associations between mortality and air pollution were
found to be dependent on the socioeconomic factors included in the models, the specific loca-
tions included in the data set, and the type of statistical model used.

For each mortality variable, a "parsimonious" model was developed that had statistically sig-
nificant coefficients for the non-pollution variables; most of these coefficients also agreed with
exogenous estimates of the "correct" magnitude. Using these models, statistically significant as-
sociations were found between TSP and mortality due to non-external causes with the log-linear

models evaluated, but not with a linear model. Sulfates, manganese, inhalable particles (PM I$),
and f'me particles (PM9 _) were not significantly (P _: 0.05) associated with mortality with any
of parsimonious models."

Statistically significant associations were found between estimated 10-year average (1980-90)
ozone levels and 1980 non-external and cardiovascular deaths, using log-linear parsimonious
models for 149 SMSAs. Ozone was just significant for major cardiovascular deaths using a
linear model. One-hour measured peak ozone data were available for 1980 for 72 SMSAs;
neither peak nor long-term average ozone was consistently significantly associated with mor-
tality with this data set. Scatter plots and quintile analyses suggested that the ozone dose-
response relationships were dominated by variations among the lower to mid-range ozone loca-
tions, rather than those at the upper end of the range. The regression results for ozone must be
considered problematic because of the unavailability of appropriate data on ozone concentra-
tlons.

Significant associations were found between TSP and COPD mortality for both linear and log-
linear models. When the sulfate contribution to TSP was subtracted, the relationship with
COPD mortality was strengthened. Scatter plots and quintile aqalyses suggested that a TSP
threshold might be present for COPD mortality, at around 65 ug/m" (annual average).

Additional major uncertainties remaining in this analysis include the type of regression model to
be used, relationships among those cities which have not been included in the analysis, and the
effects of weather, differences in life-style, indoor air quality and the use of air conditioning,
and differences in the age distributions among those 65 and over. Expanding the analysis to be
more inclusive might result in different conclusions regarding which types of models fit best,
the significance of air pollution, and the levels of air quality thresholds present (if any). In
addition, examination of additional causes of death might provide insight into the plausibility of
causal relationships. Finally, since 1980 was an anomalous year in several ways (drought, heat
waves, tnd a major volcanic eruption), extension of these findings to a more general case must
be considered problematic pending resolution of these uncertainties and testing of the models
against data from other years.
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INTRODUCTION

Control of air pollution in the United States is intended primarily to protect public health. This
goal has been supported repeatedly by public surveys and is reflected in the language of the
Clean Air Act, which mandates the achievement of health-related ambient air quality standards
without regardto costsof the pollution controls required to do so. In the 1970s, the costsof air
pollution control in the United States were estimatedat $500 million per year (Eisenbud, 19"/0).
The annual cost is now estimated to be about $33 billion; when the 1990 Amendments to the
Clean Air Act are fully implemented, this figure may rise to over $60 billion (Portney, 19<)0;
O'Neal, 1991). The total costs of health care, however, reached $620 billion in 1989, or more
than 11%of the grossnational product (Ginzburg, 1990); it is thus important to estimate the ex-
tent to which air pollution may contribute to iii health. This report usesannual mortality rates
as a measureof public health and attempts to derive statistical associationsbetween their spatial
patterns and the spatial patterns of air pollution. If reliable "dose-response"relationships could
thus be defined, they could be useful for estimating the external costs of the various sources
(anthropogenicand natural) that produce air pollution,

Objectivesof the Analysis_

The purpose of this report is explore the sensitivity of statistical mortality/pollution relation-
ships to analysistechnique, geographic scale, functional forms, and confounding variables, based
on cross-sectionalanalysis of SMSAs for the year 1980. lt is not intended to try to establish
"right" and "wrong"results or to attempt to establishcausality (which can never be done with
statisticsalone). The general technique is that of defining regressionmodels which explain the
spatial variability of mortality rates by incorporating variables for the known effects of demog-
raphy and socioeconomics,and testing for effects of environment. The successof such models
is judged by the statisticalsignificance of the independent variables, the plausibility of the im-
plied associations,and the robustnessto variations in model specification and data input.

PreviousStudiesof Air Pollution and Mortality

The literature on this topic extends back to the 1950sand earlier, beginning with accountsof
the major air pollution disasters(Lipfert, in press). These events remain the best evidencethat
air pollution can hastenmortality at levels then found in community air. Much of the literature
deals with the period before the 1970 Clean Air Act was fully implemented, and thus it is not
clear whether these findings apply to the cleaner urban atmospheres currently enjoyed in the
United States. Someof the more recent studiesdealing with air quality, ca. 1980, are discussed
briefly below.

Time-Series Studi_o Studies examining short-term (daily or weekly) mortality variations are
similar to those analyzing air pollution disasters in that both types of studies deal with the
timing of death. Table l summarizes time-series studies that have been published in recent
years for U_. cities; note that ali of the criteria pollutants except lead have been associated with
short-term fluctuations in mortality and that most of the studies include some measure of par-
ticulate air pollution. In contrast to cross-sectional studies (discussed below), no time-series
study has found a significant association with the sulfate fraction of suspended particulate mat-
ter (hereafter referred to as "sulfates" or SO4=).

Lipfert and Wyzga (1992) examined long-term temporal variability of mortality and air pollution
in New York City, Steubenville, Ohio, and Los Angeles, using a variety of methods to attempt
to control for exogenous trends. They concluded that the relationships deduced from long-term
trend analysis were consistent with those being reported from time-series and cross-sectional
studies, but that many important uncertainties remained.
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TAIILE I SUMMARYOFSELECTEDTIME-SERIESSTUDIES OF DAILY MORTAUTY AND AIR POLLUTION

Aulh_s (ref.) Locall(m Umeporlod control variables lpocleo coefllclenl elasticity lag
+1-sld err

Schwsd,t OoUoll 11)73-82 wealher,llme,yr dummies TSP+ 0.548+/-O.145# 0.040 1 day

(1991) (r._ wealher,llme,yr dummies 802 0.330+/O.I 2 0.010 1 day

8¢hwc_rtz&l)ockero Sloubenville,OH 1974-84 woslher,tlme,yr dummies TSP 0.381+/0.082 0.043 1 dey
(tH2a) (SIdSA) weather,tlms,yr dummies S02 0.40+/0.16 0.029 1 dey

W_ (1077) Pldladolphla 1957-414 season, heal waves, flu TSP 0.17+/-0.092 0.028 1 day+
(oily) winters daily temperature SO2 0.035+1.0.037 0.009

COH 0.35+/-O.12 0.044

NO 028+/_).09 0.022
NO2 0.20+/.0.10 0.013
HC 0.031+/.0.014 0.044

CO 0.0024+/.0.0018 0.021

khwadz&l)m:kero I:q_flaKlell:d'l_ 1073-80 wsathor,tlms,yr dummios TSP 0.641+/.0.131 0.051 0-1 day avg
(19921)) (cdly) weathor,lime,yr dummies S02 0.50+/.0.11 0.021 0-1 day avg

Dockery&SchwMlz SL Louis 9-1-85 lo weather, season dummloo, PM-10 1.50+/0.60 0.041 1,2 deyo
(fcxrtLhoomlng) (SMSA) 8-31-841 Interactions PM-2.S 1.7t +/.0.96 0.030

S04 1.08+/-5.77 0.049

F..Tonnooeoe 9-1-85 to weather, season dummleo, PM.lO 1.S0+/.1.49 0.048 1,2 dayo
(11 ¢ounlleo) 1-31-86 InterscUone PM-2.S 2.28+/-1.84 0.0441

504 1.0+/.12 0.070

Feldey SamJose, CA 1980-86 weather,tlme,yr dummleo COH 0.48+/.0.17 0.027 1-2 clayo

(1990) (SaintsCl,_rsCo,) (winters)

Pope oi t8. Prow),UT 1985.80 woather,Ume,yrdummies PM10 1.47+1-0.31 0.069 S-day avg
(1N_ (U_ Ct,.)

IGnnoy end LeDAngeles 1970-79 weather, day-of-week, ozone 0.040 1 clay

Ozl_yMk (oounty) Io_-t_rmwcnoe,yo_ro N02 (Detained)none
(11Hrl) smoke _ hone

Ilmnwvay oi oi. LogAngolao 1970-79 weather CO 0.044 weeldy
(+owW) HC 0.0414 dill

omoke 0.052

dPooeh'50Jo_8 amdold ooTo_ wo giver %r rolalh0e risk per mg/rn3
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Cross-Sectional Studies for 1980. Cross-sectional studies exanJine patterns in the places of
death. Ozkaynak and Thurston (1987) found associationsbetween mortality and various forms
of particulate air pollution in up to 98 U.S. metropolitan areas(SMSAs). They found that the
associationswere more statistically significant for sulfates and fine particl,s than for the coarser
particles and concludedthat this difference was consistent with causal respiratory mechanisms.
The authorstO&T) expressedcautions as to the limitations of their data base and the sensitivity
of the mortality/pollution relationship to model specification and the selection of locations.
Nevertheless,their resultshave been a candidate for the basisof calculations estimating the ex-
ternal costsof fossil fuel use. However, the O&T study has been criticized (Lipfert and Morris,
1991, ]992) on grounds that the statistical model used was not well established and that the
results did not clearly establish that the relationship for sulfates could be distinguished with
confidencefrom the relationshipswith other pollutants.

Lipfert e! ul. (1988) studied pollution, demographic and mortality data at the city level for over
900 cities for the 1980 time period. Their study included data on severn] additional
socioeconomicvariables, drinking water hardness, and cigarette consumption data at the state
level. Unfortunately, none of the air pollution variables they used was ideally suited to the
task. ]n an attempt to circumvent problems with some of the ca. 1980 measurements, notably
sulfates, they useddata from a long-range transport model to estimate city-wicle averagesfor

S04=,.SO2, and NO.,_. While these variables displayed statistically significant relationships with
czty mortality, subsequentanalysis employing more recent air quality measurements, including
some from researchcampaigns, shows that the computed air quality variables may have been
influencedby regional bias, which makes theseregression resultsdifficult to interpret.

Comvaris9n_f Time-Series and Cross-Sectional Study Results. Time-series studies cannot test
for the degreeof prematurity of death; Jt is possible that death may have been advanced by
only a few weeksor months, becauseof the genera] poor state of health of the decedent at the
time. Since cross-sectionalstudies deal with annual rates, they must include the annual (net)
sum of sh_rt-_erm variations, by definition. ]f a cross-sectionalstudy finds a weaker relation-
ship than round by the corresponding time-series study, it may indicate that the short-term
respo_ses_,_,ro prematureby less than one year. ]f it finds a strongerrelationship, it may indi-
cate the prc=¢nceof chronic effects which relate to pollution from earlier years. Of course, in
either case, such comparisonsbetween studies may also be affected by flaws in the various
studies. Unfortunately, neither of the "]980" cross-sectionalstudies used pollution data specific
to the year 1980, so that it has not been possibleto make suchcomparisonswith confidence.

Oreanizationof the Report

Introductory material continues with discussionsof epidemiologica] methods, statistical models,
s and measuresof risk. The variables used in the study are discussednext, with emphash on the

air quality data and the difficulties entailed in deriving representative values for 1980. The
regression anar!tysis begins with relatively simple models, including that used by Ozkaynak and
Thurston for sulfates and various particulate measures, and then proceeds to more complicated
models and additional pollutants. The findings are then summarized in a concluding discussion
and recommendations are offered for addressing the remaining uncertainties.

METHODS, VARIABLES, AND DATA

Evidemiolostical Methods (after Lipfert, in press)

Epidemiology differs from clinical medicine or biomedical research by virtue of its study of
populations rather than individual cases or specimens, in m_ny cases, this emphasis stems from
a fundamental objective of epidemiology:, to improve public health (Kieinbaum el al., ]982.)
However, the study of the effects of air pollution usually involves relatively subtle effects (i.e.,



weak Lssociations)that can only be observed in large populations, for which consideration of
individualcasesis clearly impractical.

For example, the daily mortality rate in a typical U.S. city of one million people is about 20
deathsper day. If this rate were to double for a few days due to an air pollution disaster,only
about 0.005%of the population would have been affected. Since we cannot identify those in-
dividuah most at risk a priori, a very large number of people would have to be monitored in
order to determinethe individual air pollution exposuresof the decedents.

PooulationConsiderationsand the E_ological Fallacy. Studies of population health responsesto
air pollution are thus necessarily observational, i.e., involving naturally occurring rather than
manipubted environmental conditions (Kleinbaum et al., 1982). Since the characterization of
individul environmental exposures is clearly impractical, such an epidemiological study is
likely to be ecological as well as observational, i.e., involving the study of groups rather than of
individuals(Piantidosi el al., 1988). According to Kieinbaum et al. (1982), the primary feature
of an ecologicstudy is the lack of knowledge of the joint distribution of the study factor (i.e.,
exposure to air pollution) and the disease within each group. The primary objections to
ecologicstudiesrelate to the lack of specificity of the affected individuals and the exposed in-
dividt_ls, becausegroups are used in the regressionanalysis. This objection is most valid when
the pollutantis very localized (such as emissionsfrom a toxic waste dump) or when the disease
is relativelyrare (such as leukemia). However, this objection diminishes for regional pollutants,
such asfine particles or sulfates, and for mortality from ali causesor from very commoncauses
(suchasheart disease).

Time-SeriesStudj._. For a time-series analysis,the group is the single city or other geographic
entity whosetemporal responsesare being studied and the "within-group" variation is temporal.
Sinceeachday a different subgroup is likely to respond (die, be admitted to hospital, etc.), the
ecologicalhypothesisis that the same set of air monitoring locations faithfully representsthe ac-
tual exposuresof these different subgroups, on ali days. The term "ecological fallacy" refers to
a situation where this hypothesis is not supported. The likelihood of such support depends
stronglyon the size of the area being studied and the spatial coverage of the air monitoring net=
work. Time-series studies vary substantially in the numbers of air monitors used to estimate
exposure;errors in exposure can affect the magnitudesand statistical significance of the regRs-
sion coefficientsderived.

Cross-SectionalStudi_s. For cross-sectional analyses, the within-group spatial variance is at
issue_ respectto the ecological fallacy. We desire that each of the cities or locations we are
studyieg have the same within-city spatial distribution of air quality (assuming that adequate
monitoring networks are not always available) and also the same within-city distributions of
potential confounding variables such as age, race, poverty neighborhoods, etc. This is not likely
to be Irue in general, but these considerations favor the use of the smallest possible units for
geographic analysis. As larger geographic units are used for analysis, for example, Standard
Metropolitan Statistical Areas (SMSAs), which are groups of counties surrounding a central city
of 50,000 or more, the representativeness of air monitoring is likely to diminish, especially
whea only one station is used, as many previous studies have done. Also, many of the in-
dividuah who succumb in a given year a_'e likely to have been hospitalized during the year or to
have been otherwise limited in outdoor activities, such that their primary exposure to air pollu-
tion may have been from indoor air pollution sources.

There can be important regional biases in the spatial distributions within SMSAs or counties.
Th_ lage urban centers of the Northeast and West Coast often contain contiguous SMSAs, and
they may be more homogeneous than the isolated SMSAs often found in other parts of the
counlxy. These characteristics are not independent of air pollution, which varies both regionally
(more sulfur in the East, more ozone in Southern California) and according to the economic ac-

, tivities of the area. Industrial SMSAs may have centrally located poor neighborhoods, while in
the South, poverty pockets are often found in the outskirts of cities. Some pollutants are higher
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in central cities (CO, particulates) while some may be higher in the suburbs (ozone, aerosol
acidity). Use of successivelylarger geographic units of analysis surrounding an air monitoring
station can create a bias since the population characteristics are averaged over the entire area,
but the air pollution data used in the analysis usually remain unchanged, as larger areas are
considered. Thus, the nature of the central city with respect to i',; suburbs is an important
parameter to considerwhen selecting the geographic unit of analysis. However, Cohen (1990)
argues that there is safety in numbers, i.e., that using large numbers of observations in a
geographicstudy reducesthe chance for serious ecological bias.

InteractionsBetwe©nAir Pollution and the Size of Geo2raohic Unit. The accuracy of estimat-
ing exposureto air pollution will also vary with the nature of the pollutant. Some primary pol-

lutants, suchas TSP, CO, and SO2, tend to be distributed very locally, and concentrationsmay
vary substantiallywithin a few cay blocks, in addition to varying between indoors and out-

doors. Secondarypollutants, such as NO2, oxidants, and sulfate particles, may exhibit lessspa-
tial variability, although ozone can be strongly attenuated locally by the presence of NOx
sources. Most cross-sectionalstudies have had to work with data from a few air pollution
monitors and have made arbitrary assumptionsabout the size of the area that each monitor is
assumed to represent. The lack of true representation of the air pollution exposure of the
population constitutesan important source of _rror in the independent variables for ecological
studies.

This sourceof error is also associatedwith the choice of th,_ type of political subdivision for the
observationalunit, since the larger its area, the larger the chancesfor errors in estimating true
population exposures(assuminga fixed number of monitors and that local pollution sourcesare
present). For example, assumethat there is a true relationship between particle concentration
and mortality (this need not _ _,:causal relationship, since there may be other aspectsof the
pollution sourceto consider,, _:.'_,as occupational factors). Often there have been available two
measuresof particle concentrati_,_ total suspendedparticulate matter (TSP), which tends to be
somewhat local becausethe measurement may include particles u;'0to 50 urn in diameter; and
the sulfate portion of the particulate catch, which is usually distributed regionally since the par-
ticles are much smaller and tend to travel further. Recently, particulate monitoring in the
United States has separated fine and coarse particles, initially by collecting particles with a
median diameter of 15 um (PMIs) and currently with a median diameter of 10 um (PMIo).
When relatively small areas (such-as cities or portions of cities) are used as the observatio6al
units, TSP exposures may be reasonably well-represented. On the other hand, if larger units are
used with the same monitoring network, such as entire counties or metropolitan conurbations,
any "true"TSP effect on mortality is likely to be masked by the exposure error, since many of
the people "assigned" to the TSP monitor live so far away that they are not actually exposed to
the pollution measured there. Now, if at the same time there is a regional trend towards higher
mortality in the region of high sulfates (or any other regionally-distributed pollutant), the
regional pollutant will become the significant variable. This result may _ppear to be a health-
based causal finding, since small particles can penetrate deeper into the lung, but, in this case,
the result appeared as a statistical artifa_.t because a regionally-distributed pollutant was
matched with a regionally-distributed mortality trend. An analysis based on large geographic
units is unlikely to capture local pollution effects, only regional ones, but a city-based analysis
should be able to detect either type. This distinction is similar to separating the high-frequency
(short-term) effects from the seasonal effezts in a time-series analysis. Richardson et al. (1987)
recommends checking the stability of results from ecological analyses in relation to geographic
scale.

However, mortality rates may be statistically unstable if the population base is too small. One
solution to this problem is to use small geographic areas (i.e., central cities) with data pooled
over several years, which will improve the stability of estimates of both mortality and air pollu-
tion exposure. If the analysis is intended for comparison with time-series findings, it is impor-
tant to maintain the matching between pollution and mortality data by year.
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_ r.OJl/.QJLDd]_,The termconfoundingrefers to the incorrectass;gnmentof an effect to sn agent
whenin facta third variable(the confounder)is responsible.Sucha situationrequiresthat the
confounderhavean effect on the outcomevariableand be correlatedwith the first agent, in
otherwords,a confoundermust have the propertyof different distributionsfor exposedand
nonexposedsubjects(Miettinen and Cook, 1981). A hypotheticalexamplemaim be s situation
in whacksmokersare more likel) _o be exposedto sir pollution becausethey work outdoors.
Accordbe8to Stellman(1987), confoundingis the "causeof great angstamongepidemiologists?
In ecologicalcase-controlstudiesof environmentalfactors, in which a singleexposedcity is
comparedto sn unexposedcity, the opportunity for confoundingis very largesincethereare
manyotherwaysin whlc_ two suchpopulationgroupsmay differ. As the numberof locations
or timeperiodsincreasesandmultiple regressionmethodscomeinto play, the opportunitiesfor
seriousconfoundingarediminished.

Populationmigrationpatternscan causeerrorsin estimatedpollution exposures,as wellascon-
foundingof regressionresults. Confoundingresults from either selectivemigrationof sick
peopleor of the more economimtllyadvantaged. For example, Bultena (1969) reportsthat
red:eesmovingfrom the Midwest to Florida andArizona tendedto be better educatedandhad
higherstatusoccupationsthan the average;in suchcases,the populationleft behind may be in
worsehealth,on average,than the populationsof the destinationcities (for reasonsthat have
nothing to do with air pollu'tion). Although there may be anecdotal reports of people with
respiratory ailments moving to the Southwest to seek improvements, we are aware of no analyses
of the actualextent of such migration, in either case, current (local) air quality may not repre-
sent the true long-te._mexposures of current residents; thus it may be unreasonable to try to in-
terpret the findings of cross-sectionalregressionsbasedon same-yearair qualityas representing
Ions-tem effects. Polissar (1980) gives some examples where migration biases the estimation of
cancerrisk based on geographic comparisons. However, Cohen (1992) recently estimated, based
on t telephonesurvey, that as t national average, people spend over 70% of"their lives within 25
miles of the location of death. These percentages are higher in the Northeast )up to 90%)and
lower beFlorida, California, and Arizona (mt. $0% in these high migration states).

Other problemscan aris_ when unadjusted total mortality data are used (ali causes, ages, races;
both sexes). Often, for smaller geographic subdivisions, only this type of data is available. Age
adjustmentis the r_ost important correction to make, since the probability of dying in a given
year increasesexponentially with age above about age 35. If mortality rates are available for
detailed age groups, they can be combined into one age-adjusted total rate by reference to the
age distributionof t sumderd population. If, on the other hand, only total deaths sre available
but details are available on the population's age distribution, then the expected total number of
deaths my be computed on the utme basis. In many cross-sectional studies, neither procedure
was followed, but surrogate age adjustments were attempted by using 8 population 88e descrip-
tor as un independent variable in the multiple regression or "model." "Percentageof population
aged 65 und over" is a common choice, for example. If MIpopulations have similar age dis-
tributions,such a choice my be acceptable, but simple algebra shows that the regression coef-
ficient for "Percentageof population aged 65 and over"should be numerically equal to the mor-
udity rate for this age group minus the rate for the under-.6$ group (Lipfert el a/., 1988).
Many studies do not meet this simple test, which suggests that the "Percentage of population
aged 65 und over" variable may have captured some other effects. Similar considerations apply
to otlmrexplanatory variables employing percentages of the population, such as "percent non-
white"er "percent poverty'. Such checks are tantamount to comimring the ecological regression
resuln with studies on individuals.

StatisticalModels

Some studies of air pollution health effects have been content to identify the existence of as-
1 sociatkms, primarily by means of calculating correlation coefficients. In general, bivarbetecor-

rehtLiom8re not only inadequate to define the relationships which 8re ultimately of interest,
they cun be misleadln8 because of confounding variables (Lipfert and Hammerstrom, in press).



Furthet,_ore,at this stagein our knowledgeof air pollutionhealth effects, in many casesthe
existenceof associationsis no longeran important issue. This report is thuslargely concerned
with establishingcons;stencyor coherenceandin estimatingthe relativemagnitudesof the im-
portantrelationships.

Whentemporalvariability is at issue,both confoundingvariables(suchu weatherpatterns)and
interveningvariables(suchu seasonalor day-of-week effects) must be t_ken into account in
ordertoderivethe true associationswith air pollution. Meteorologicalfactorscan confound be-
causetheycanaffect both health statusand air quality. For example, breathingcold air _n
pre¢ipiLtterespiratorydistressand viral infections are more common in winter; lower outside
temperaturescall for increasedspaceheating and pollutantemissions. Cold weathermay also
causesomepeople(especiallythosein poor health) to remain indoors, wheresome fraction of
t|,em maybe exposedto indoorair pollutionsourcesor to contagiousdisease.Similarconfound-
ing can occurin the summerwith heat wavedistressand increasedozone Seasonaland day-
of-week effectscanexert independentinfluenceson health(viral outbreaks)and on the report-
ing of health-basedevents(availability of clinics and physicians). Whenair pollution patterns
correspmdto theseexogenoustemporalpatterns,spuriouscorrelationsresult.

For spatialor ,:ross-sectionalanalysis,there are moreopportunities for confounding,sincethe
same sources that create more air pollution in a given location can hf..c__nanyother effects on
the population. Industrial neighborhoods are generally less desirable _or residential purposes;
henc¢ their populat'.,_.-.._may be less economically advantaged or educated. Many other life-style
differences accompany such socioeconomic gradients, including smoking, alcohol consumption,
diet, access to medical care, etc. On the other hand, industrial workers per se are often heal-
thier than _he general population, because of self-selection, lt should thrJs be evident that
analysisof air pollution health effects by means of spatial gradients must include many factors
in additionto the obvious demographic adjustments for age, sex, and race.

There can also be interactions between temporal and spatial factors. Those cities with older,
poorer, and more highly-stressed populations (including a higher percentage of smokers) would
be expected to exhibit stronger temporal effects of air pollution. Similarly, when comparing
gross cities for a specific year, short-term phenomena such as flu epidemics or heat waves,
which 4o not occur everywhere in a given year, could confound the spatial air pollution
relationships. For example, Mt. St. Helens erupted in May, 1980, and the resulting ash may
have been responsible for some of the high TSP levels recorded in the West for that year.

The ways in which a researcher chooses to deal with the need for multivariate analysis con-
stitutes bis/her statistical model. The literature varies greatly with regard to these methods and
models, and some data sets have been subjected to several different types of analysis. One of
the first decisions to be made is whether to pre-adjust for a potentially confounding variable
(this my _ thought of as two-stage analysis) or tO perform a multivariate analysis which al-
lows the _nfoundin$ variable to interact with the air pollution variables. This dichotomy oc-
curs u,ost often with time-series analyses and the need to account for simultaneous weather ef-
fects, H the data are pre-adjusted without recourse to exogenous data to define the adjust-
ments, _t_ereis a risk that some portion of the pollution effect may have been assigned to the
weather effe_ We may have more confidence in such procedures if the weather "adjustments"
are eomistent with known physiological responses.

For crees-sectional data, we must distinguish between the process of trying to define a model
tad that of estimating its coefficients. These two processes have often been combined unwit-
tingly, and it should be obvious that two independent data sets are required to do justice to
both ansi=. This is one of the motivations for quantitative comparisons of independent data
analyses. Since we have no basis for a "true"model of the spatial variability of health indices
(especially for mortality) and the data available for analysis are always limited, we must resort
to empirical"specifications"of the important terms, lt follows that there can be any number of
such m,dub, and the prudent researcher will investigate whether his/her findings of effects due
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to air pollutionare robust to plausiblevariationsin thesemodels. Further, he/she maywish to
testthedistributionsof residualsto determinewhether similar modelsresult in slatisticallysig-
nifican_differencesin their assignmentsof pollutanteffects (Lipfert et al.. 1988).

Researchersalsodiffer in the typesof multivariateanalysesconducted. Two-way contingency
tables were used to display the interactionsof variables in some of the earlier studies
(Winkehteinet al., 1967), but multiple regressionsseemto be the current methodof choice.
Someresearchersusestepwisevariableselectionmethods;someof thesearesensitiveto the or-
der of variableentry. Others have pre-defined their modelsand used "forced"variableentry.
In cross-sectionalstudies,modelswith up to ten variablesare not uncommonandcollinearity
can beveryimportantas the last few variablesenter. Suffice it to say that the burdenof proof
remainswith the researcherto show that his findings vis-a-vis air pollution and health are
robustto changesin modelspecificationsanddataset.

_eeiona:vs.Loc;LRelationshim

Time-seriesstudiesoften 8o to greatlengthsto separatelong-term (suchasseasonal)variability
from short-termvariability, reasoningthat mostseasonaltrendsare causedby factorsother than
air pollution,and that sharp(daily) mortalityincreasesand decreasesin phasewith air pollution
perturbations_remore likely to be causallyrelated. Similarproblemsexist with respectto the
spatialpattern_of interest to the cross-sectionalanalyst; regional trendsare _nalogousto
seasonalpattern,._and local variability to daily perturbations.

Figures ! and 2 showregionalpatternsin heart and respiratorydiseasemortality,for example.
Heart d_ase h highest in the East and Midwest, and COPD is highest in the West. We also
know from air monitoring data that sulfur oxides tend to be higher in the East and suspended
particulate matter in the West (much of it from fugitive dust). These regional trends will
prevail in a crc_s-sectional regression unless compensating factors interfere on the local level,
such as smoking, education, income, migration, for example. For this reason, models which
have not accounted for ali of the local factors will tend to associate all-cause and heart disease
deaths with SOft and COPD with particulates. The challenge to the analyst is to know when
his model is "complete"and not "over-specified." The approach taken in this report is to try ali
reasonablyconceivable variables (for which data are available) and then to t_'imdown to that set
of variables that are significant or nearly so. These trimmed-down models have been called
"parsimonious"(Mendelsohn and Orcutt, 1979). This analysis is concerned with spatial varia-
Lions;a similar approach was used by Schwartz and his colleagues to account for seasonal trends
and weathervariables in time-series analyses.

Measuresof Risk

Risk can be quantified as the probability of an event occurring within a given time. If ten
membersof a group of one thousand die within a year, the observed annual mortality rate is 10 _
per thousandpopulation, which is 8 statement that each person in that group had a 1% change
of dying in that year. Of course, we also know that the individual risk increases exponentially
with tie, above about age 35. The annual risk to those aged 65 and over is about 6_, for ex-
ample (Lipfert, 1978). In this report, we are primarily interested in how exposure to air pollu-
tion might also increase the risk within such a group.

For contributoryfactors like air pollution, we are interested in the incremental or "excess"risk
associatedwith given levels of ambient air concentrations. The fundamentals of excess risk
must be developed from various statistical measures of association, such as correlation or regres-
sion coeff'gients. The classicallinear regressionequation is given by

y-a o+ _.bix i+u (I)
t
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Figure la_ Observed/expected white male deaths due to acute myocardial infarction, 19"/9-85.
Data sours: National Longitudinal Mortality Study.

. Figure lb. Observed/expected ,tel cardiovascularcauses, white and females,
1979-85. Data source: National Longitudinal Mortality Study.
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Figure 2. Observed/expected white female from ali respiratory diseases, 1979-S$. Data sour¢_
National Longitudinal Mortality Study.



where the bi are the regression coefficients for the independent variables xi and u is the
residualerror. For a linear dose-responsemodel such as Eq. I, which is the simplest form, the
excessrisk (b.x. (where i refers to air pollution variables) may be expressedper unit of air con-! I
centration regardlessof concentration level. For example, some time series analyses have

derived daily risk factors for smoke exposure (b.smqk_) of about 4% excessdeaths per 100
ug/m" of smoke(Table 1). Thus, if the normal risk oz oying is 6% per year (0.0164% per day),

in a populationof 125,000 personsaged 65 and over, the expected d_th rate of this group is
about 20 per day. On a day with a smoke concentration of 125 ug/m", this rzsk would be in-
creased by 5%, so that one "excess"death would be expected on that day. This analysis
methodologypresumesthat the agents and exposures of concern have been identified (in this
case,smoke).

Since the regressioncoefficients in Eq. I must be expressedin units consistent with the depend-
ent and independentvariables, it is often difficult to assesstheir practical importance based on
numerical values. A useful concept is that of the elasticity (at the mean), a term taken from
economicsdefining a nondimensionalregressioncoefficient as

ei - b_i/y" (2)

Elasticities are often expressedin percent and offer another measure of attributable risk, based •

on the mean valuesof the xi. Elasticities for nonlinear models are discussedbelow. The elas-
ticity conceptbasedon mean values breaks down when independent variables are subjected to
certain transformationswhich alter their mean values. For example, adding (or subtracting) a
constantchangesthe means but not the standard deviations. The regressioncoefficients will not
changecorrespondingly(as they would due to a change in scale factors), so that the elasticities
are alsochanged as a result of the transformation, One must thus be careful in the application
of the elasticityconcept.

The absoluteexcessrisk in the above example is seen to be 1:125,000, but this figure depends
on the baselinelevel since the fundamental dose-response relationship was expressed as a per-
centageincrease. Obviously the absolute risk from air pollution is much less for a group of
healthy teen-agers than for a group of seniorcitizens.

Comoarisonof Models

A_ording to the exacerbationmodel of air pollution effects on health, air pollution seldom, if
ever, is the only factor contributing to the prevalence of a health effect. ]n the multiple
regressionmodel given above

y-a o+ _ bix i+u (1)
i

air pollution variables will account for only some of the xi .

If we desire to evaluate Eq. 1 for alternative pollutant species which are highly correlated, such
as smoke venus SO2, the only practical method is to evaluate the model for each species
separately, which may give rise to models which may differ very little from one another. There
is always a temptation to declare the model with the highest adjusted correlation coefficient (R)
value or the highest t statistic for the pollution variable as "best," however close its competitors
might be. This practice ignores the fact that a given data set represents only one realization
from the universe of possible data sets, and that its regression statistics thus ali carry confidence
limits. When alternative models are independent, the conventional confidence limits for R may
be used as u a guide towards defining statistically significant differences between models.
However, in the cases of interest here, models generally only differ in the pollution variables
chosen and thus tru not independent, and special techniques are required in order to test the
differences for statistical significance (Lipfert el a/., 1988).
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Dose,ResoonseFunctions

When quantitative estimatesof the effect of an independent variable are required, the regression
equation or some portion thereof becomes in effect a dose-response function (drf). The mathe-
matical form of such a function can be very important, especially when extrapolating beyond
the range of the originaldata (which is always dangerous).

For a simple linear regressionmodel, there are two parameters, the slope and the intercept, if
the x-intercept is positive (negative y-intercept), the function is said to have a threshold,
which, in the case of ambient air pollution, is a basis for air quality standards. Such a function
has a constantslope, but the elasticity is usually defined at the mean. Obviously, the function

e-dvx
dx y

takes on different values along the curve of y - mx + b if b is not zero. Thus two different
drfs having the same slope may have very different elasticities if the ranges of the x values are
greatly different.

Some investigators have found that logarithmic transforms provide a better fit to their data.
For the model

In(y)- m In(x) (3)

theelasticityis simplye - m -.._LY_&" d[In(vQ
dx y d[In(x)]

and is constantalongtheentire lengthof thedrf. Obviously,the slopeof Eq. 3 increasesnear
theorigin(in cartesiancoordinates).A modelwhich fits this definition providesthesameper-
centageresponseregardlessof theabsolutevalueof x and implies increasedtoxicity per unit of
doseat low doses, which seemsphysiologicallyimplausible. However, when dealing with
heterogeneouspopulations,applicationsof the conceptsof toxicologyderivedfrom relatively
uniformpopulationsmaynot be immediatelyobvious.

The final model paradigmconsidered here is the log-linear model

log y - ao + Z. bixi + u, or y = exp(ao +. 12._ixi + u) (4)
I I

ix which only the dependentvariable has been transformed to logarithms. The elasticity of this
model Js given by

tamm

ei , Bixi (5)

when natural logarithmsare used, and B.x./In (e) when base a is used; the logarithmic modelst_t a
employed in this report use base 10 Iogarsthms. The log-linear model postulates an exponen-
tially increasing effect per unit of increased dose, which is consistent with an increasingly sen-
sitive fraction of the total population, as concentration levels increase.

_

For data sets of limited range in x and small values of e, these three types of models may be es-
sentially equivalent. For data sets with substantial variability, plots of the regression residuals
may be required to establish the best form of model.

The Air Oualitv Data Base_

As discussed above, cross-sectional studies have usually been intended to study long-term dif-
ferences among Iocatiom. For this reason, it has not generally been regardedas particularly lm-



portant to use environmental data taken exclusively during the nominal year of study (1980, in
this case),althoughclearly this would be desirable From the standpoint of uniformity and in or-
der to deal with specific attributes of that year, including the heat wave that occurred in the
central and easternportions of the nation (Bair, 1992). Missing or incomplete air quality data
are a commonproblem with observationalepidemiological studies; for example, Mendelsohn and
Orcutt (1979) used ]974 air quality data in their study of 1970 mortality patterns, arguing that
the geographicpatterns were stable in time and that the later measurementswere more com-
plete. Others have averaged over several years in order to obtain more reliable long-term
averages (Lipfert, 1978; Lipfert el al., 1988).

Sulfate Aerosol Data. 1980 was an especially problematic year for particulate pollution
measurements. Size-classified measurements were being explored but the PM I0 network had
not yet been established; PMI5 data were being acquired on a research basis (Watson et al.,
1981). The glass fiber fiiteri-used in the routinely operated high volume samplers for total
suspended particulates (TSP) and their chemical constituents (SO4", NO3", etc.) were found to

, be unusuallyalkaline for the years 1979-81 (U.S. EPA, 1984). One of the well-known charac-
teristicsof suchfilters is their tendency to convert SO2 (gas) in the ambient air being sampled
to SO " particleson the filter (Stevens, 1981); this problem was thought to be especially acute
durin_ 1979-81. would beThe outcome values reported for TSP and SO4" that would be biased
high in locations with appreciable ambient SO2 levels.

For the present study, ali the sites assigned to a given SMSA, as defined by the 1980 Census,
were combined to provide SMSA-wide estimates. These data were retrieved from the EPA
AIRS data base (Link, 1991); AIRS is the successor to SAROAD. Annual median SO4" values,
which tend to run 10-20% lower than annual mean values, were used because of the typically
skewed frequency distributions and the relatively sparse frequency of measurement found in
most locations. Data were assembled separately by year for the purpose of comparison. The
following summary statistics were derived:

- Year No, 9f SMSAs Mean SO_'(uJz/m3)

1978 l II 8.95
1979 97 9.20
1980 95 9.80
1981 100 9.86
1982 38 9.17

However, the differences by year were more pronounced when compared for the 33 SMSAs that
had adequate data in each year, especially when the reduction in nationwide SO_ emissions is
taken into accounL Figure 3 plots the ratio of average median SO4" concentration divided by
anneal SO2 emissions in million tons (U.S. ]EPA, 1986). 1980 and19_BI stand out as higher than
the other three years, by about 1096. Since the suspect high-volume sampler filters were also
used in 1979, it is difficult to assign ali the blame to the filten. An alternative explanation is
the low rainfall that occurred in the summers of 1980 and 1981, since precipitation tends to

remove both SO2 and SO4" from the atmosphere. If meteorological factors are the main reason
for the high sull'ates recoi'ded in 1980 and 1981, then the data should be regarded as valid for
those particular years (but not necessarily representative of the long term).

Since one interpretation of a long-term cross-sectional study is that of the sum of short-term
effects (Evans eta/., 1984a), differences among years were explored further by regressing 1980
(crude) mortality against each of the five years, in turn. The slopes and correlations were
higher for the years 1979, 1980, and 1981, with the highest values occurring in 1981. The dif-
ference in slope between 1982 and 1981 was not quite statistically significant. Thus no special
relationsl_p was apparent for the 1980 measurements, leading to the hypothesis that artifacts
formed on the f'dters used in 1979-81 resulted in the improved correlation, rather than coin-
cidence in time.
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Figure 3. National average ambient SOft per million tons of SO2 emitted (33 SMSAs with
AIRS data in ali years). Data source: U.S. Environmental Protectton Agency.
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The sulfatedata used for multiple regressionsin the present study (149 locations) were then ob-
tained by averaging ali the observations available for the period 19"/8-82. Missing locations
(Chicago, Savannah,Eugene,OR, Chico, CA, Richmond, VA, Green Bay, Wl, Jackson,Mi, At-
lantic City, NJ, Augusta, GA, Macon, GA, Beloit, Wi, Rockford, IL, Wheeling, WV) were es-
timated either from nearby locations or from alternate time periods. Figure 4 plots the final
data set against the ]980 measurements. There is appreciable scatter but appears to be little
biu.

(also referred to
Other sourcesof sulfate air quality data include measurements from the PM I';he"l"as"I_, for inhalable particulate), and estimatesmade with computer models. lP data were

obtained with unreactive (Teflon) filters and are thought to be more reliable than data obtained
with high volume samplers using glass fiber filters; the correlation between the two measures
was 0.63 (Lipfert et al., 1988). The two SOft measures were related by

AIRS [TSP] SOft ,, 3.5 + (I.18 +/- 0.23) * [IP] SO4= (two-sigma CLs). (6)

Thus, the slope was not significantly different from unity, which implies that a single unit of
suifat_ had the same meaning in both measurement systems.* However, the AIRS data were 3.5
ug/m" higher: than the lP data, on average, presumably because of the filter artifacts. Equation
(6) i_plies that both measures should derive the same regression coefficient, and that the 3.5
ug/m _ intercept should not play a role in the effects attributed to AIRS sulfate. Thus, the in-
tercept should be subtracted from the AIRS mean value when estimating elasticities and previ-

ous estimates of air pollution effects based on SOft obtained from .hi-vol filters should be
reduced accordingly. The overall levels of the [IP] _O4- values were m better agreement with
SOft values obtained from various air quality research efforts carried out during this period
than the SAROAD values. In most cases, there was only one lP monitor per city.

Given the apparent superiority of the [lP] SO4" measurements, the regression given by Eq. 6
could also be used to estimate the variance due to measurement error associated with the ['[SP]
SOft data. The standard error of estimate from Eq. 6 provides such an estimate (2.28 ug/m").
Aocordin

g to Snedeeor and Cochran (196.7, p. 1_), a regression coefficient based on an indc-
pe,palest variable measured with error var|ante Su" will be biased low by an amount given by I+
st"/Sx". Although the formula given by Snedecor and Cochran is not strictly applicable to mul-
ti'pie regressions, it suggests that sulfate regression coefficients based on the [TSP] SOft

• measurements are likely to be biased low by as much as a factor of 1.4.

In their study of 1980 mortality and air pollution in U.S. cities, Lipfert et al. (1988) extensively
u._ed modeled ambient air quality values derived from a long-range transport computer model

(Shannon, 19.81). Modeled SO2, SO4", and NOx were ali found to be important predictors of
excess mortahty in that study oT about 900 locations. However, as mentioned above, subsequent
evaluations of these modeled air quality estimates cast some doubt on their validity. Scatter
plots against the IP data and against data from the SURE (Mueller and Hidy, 1983) show good
agreement within some regions but differences between regions. The correlation between com-
puted SOft and [lP] SO4" was 0.70. Since the long-range transport model is essentially a trans-
fer function between source emissions and ambient air, averaged over grid cells of about 120
km on each side, a correlation between health and computed air quality may also represent a
correlation with industrial activity and the various accompanying socioeconomic factors. The
computed SOft values are based only on combustion and smelter emissions, and thus do not in-
elude sulfates from natural sources or particles such as CASO 4. The grid-averaged values are
incapabte of reflecting local phenomena that might affect SO2 oxidation rates or local primary
emissions of SOft.

• A similar relationship was found by comparing SOft data from TSP filters with SOft data
obtained from PMI0 filters in New York State, on a temporal basis.
o ,m..m e ,az.,m.,aa,,m,o
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Figure 4. Comparison of SO4= data used in the regression analysis with the available S04= data
for 1980. Data source: U.S.Environmental Protection Asency.
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vbonmental Protection Agency.



Total SuspendedParti¢_jlateData. Lipfert el al. (1988) made only a Fewcursoryregressions
employingTSP. That database,consistedof 1978 and/or 1982valuesfor eachcity, with no at-
tempt to derivecity-wide averages. A similar approachwas usedby Ozkaynakand Thurston
(1957),in thata singlemonitoringsite wasusedto representeachSMSA.

]n an effort to improvethe estimationof actual exposuresto particulateswithin each SMSA,
data I'romthe EPA AIRS databasewere usedto constructspatialaveragesfor 1980. Ali TSP
monitorswith at least II observationsf,or 1980 were used; the annualmeanswere averaged
(withoutweighting)to providean SMSA-wide estimate. There were a few casesof source-
orientednetworksin the database(Granite City, IL [St. LouisSMSA]andnetworkssurrounding
someof theTVA powerplants). Thesesubsetswereaveragedseparatelyandthen enteredinto
thedatasetf,ortheSMSAin questionas a singleobservation,in orderto precludeundueweight-
ing becauseof the large numberof monitorsrepresentinga limited geographicarea. Separate
tiles wereconstructedtor the.pain central cities of each SMSA and the surroundingarea; the
overallmeanswere 72.5 ug/m" a_d 64.4 ug/ma f,or 112 SMSAs. City andSMSA averal_sare
comparedin Figure5. Thestandarddevsationof"the 112 SMSA averages_was14.9 ug/m"; this
compareswzththeaveragewithin-SMSA standarddeviationof 13.9ug/m", which suggeststhat
thereistypicallyalmostasmuchvariationwithin SMSAsasbetweenSMSAs.

Theoverallmeanfor 149SMSAswas68.4 ug/m3. A total of 1581 monitoringstationsw_ used
in thiseffort. The maximumannualmeanvaluefor an individual Iponitorwas280 ug/m a (East
Chicago,IN, neara car wash); the minimum value wa8322ug/m" (near Portland,OR). The
maximumS_SA averagewasin Spokane,WA (142 ug/m ); the minimumwas in Atlantic City,
NJ (41 ug/m").

Year-by-year TSP comparisons were made on the basis of the maximum annual means recorded
in each SMSA fez;the years 1978-82. The averages for 112 SMSAsdecreased from 90 ug/m" in
1978 to 69 ug/m" in 1982. However, when compared to the national estimates of' particulate
emissions (U.S. EPA, 1986), it appears that the ambient data for 1980 and 1981 were about 5q6
higher than expected. As was the case with sulfates, this could have resulted from either sulfate
artifacts on the f,iltersor from the low rainfall that occurred in those years (U.S. EPA, 1986).

Comoarison with the Air Oualizv Data of Ozkavnak and Thurston (O&T_. Ozkaynak and
Thurston (1987) did not tabulate the air quality values they used tor individual SMSAs in their
paper, but their plots of' mortality rates vs. TSP and SO4" (their Figures I and 2) provide this
information, albeit indirectly. ]:)atawere obtained f,rom these plots and compared to the inde-
pendent estimates used in this re-analysis (Figures 6 and 7). The major outliers (deviations
from the diagonal I:l line) were examined on a case-by-case basis.

For SO.I', major dif,f,erencesbetween O&T and the f.ive-year average SAROAD data were
found for Gary, IN, Wilmington, DE, Houston, Baltimore, Richmond, VA, and Toledo. Most
of these could be explained by O&T's use o£ incomplete seasonal dam; sulfate has a strong
seasonal cycle and it"either winter or summer data are missing, a biased estimate of the annual
mean will result. The high value that O&T used for Houston was not found among the 29
measuringstations listed in the AIRS data base for Harris County, TX, and thus could not be
explained.

For TSP, major differences between o&'r's data and the SMSA-wide averages were found f,or
Cleveland, Denver, Portland, OR (O&T values were high) and for Houston (O&T value was
low). The value they used f,or Houston was the lowest o£ the 44 stations that reported data in
that SIVA for 1980. The plots indicate that large dif,ferences can result f,rom selecting in-
dividui monitoring stations to represent an entire SMSA, as opposed to averaging them all

In assemblingtheir air quality data base for U.S. cities, Lipfert et at. (1988) limited the high
volumesampler-basedSO,I= data(which they labeled"SAROAD,') tO the years 1978 and 1982.
By individualcity, thesedataretrievalsrangedfrom singlemonitorswith as few as five obser-
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Fisur.e 7. Comparison of SO4= data used by Ozkaynak and Thurston (1987) with the SO4- data
used la the present study (98 SMSAs).
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rationsto Houston,TX, where30 monitorsrecordedover 5000 observationsduring this period.
The meanvaluesfor 1978 and/or 1982 for each samplerwere then avera8edby site, and the
medianof thesemeanswasusedto obtain an estimateof thecity-wide average.

OtherPollutants

Ozone(ppm):two separatesourcesof ozonedatawereutilized in this analysis.Peak I-hr values
were availablet'or 1980 For 72 SMSAs (U.S. EPA, 1984), which were generally the largest
SMSAsin the nation. Thesedatarepresentedthe highestreadingsfor eachSMSA, and are not
necessarilyrepresentativeof averageexposureacrossthe entire SMSA. Seasonalaverage8-hf
maximumvalueswere availableFor the entire data set, as obtainedFora smoothisoplethmap
basedoa interpolatedmeasurementstaken from 1980-.1990(Figure 8a), ca. 19"/8(McCurdy,
1992). Thesedata representthe averagefrom April to Octoberof the highest8-hr periodof
theday,regardlessof the time at which it occurred. However, the probabilityof outdoor ex-
posurevarieswith time of day, so that it is not clear that this is nn appropriatemetric for
humanhealtheffects. In addition, 1980 wasknown to be a high ozoneyearand the relation-
ship betweenannual exposureand these April-October averageswill probably vary with
latitude. The resultsfrom the long-term averageozone variableshouldthusbe usedwith cau-
tion.

Mostof theanalysiswas conductedtor the seasonalaveragedata set, becauseor its complete-
hess and the likelihood of better representing spatial averages acrosseach SMSA. However, it is
also possible that use of the same definition of "season"in ali locations, regardless of latitude or
climate, has created 8 bias with respect to the true annual average ozone level. On the other
hand, since most of the short-term peaks are likely to have occurred during these months, this
metriccould represent an operational average of peaks. Figure 8b plots peak values as obtained
from individual monitoring stations vs. seasonal average ozone levels for the larger SMSAs; a
reasonably-consistentrelationship is seen. Note also the large number of locations in violation
of the NAAQS.

Manliuese (ug/m3):. based on analysis of high-volume sampler filters. Data were estimated
from previousyears for several SMSAs.

\

Particle data from the dichotomous sampler (lP or P_ll__;)network (1979-83): Total mass and
fine particlemass, total sulfate, fine lead (Ph) (ug/m"); samples taken every 3 or every 6 days.
rP dm for SMSAs with more than one IP monitoring site were averaged over ali the sites in
that SMSA. The size-fractionated particulate (lP) data, described by Watsonet al. (1981), were
based on Teflon filters and show systematically lower sulfate values; these values are generally
regardedts the "true"sulfate measures. The differences between the two sulfate measures are
not consistent and presumably depend on a number of site-specific environmental factors.
These measurementswere replaced by PMI0, which bepn with a few sites in 1983, too late to
be usedwith the 1980 census and mortality data.

Other VariablesUsed in the Study

MortalityDam (dependent variables). Mortality counts were taken from Vital Sacristies, lP80.
Part li (Table 8-6), for which the SMSA boundaries were based on the 1981 definitions, which
is consistentwith the State and Metropolitan Area Data Book, from which population data were
taken. (In New England, death counts are liven only for Flew England County Metropolitan
Area (NECMAs), which sre comprised of whole counties. We therefore based our den_ographic
data for New England on NEC'MAs. New England SMSAs are comprised of cities and towns,
which are sometimes only parts of counties.)

Four different groupinp of causes of death were analyzed. Rates were computed by dividing
the numbersof deaths in each group for the calen4_" year 1980 (ali ages, races, both sexes) by
the populationestimatedby theU.S. Censusas ¢._'April I, 1980. Thus, smallerrorswouldbe
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entailed by any population changeswhich took piace during the year; an independent variable
for percentagepopulation chan8e was included in the regressions, in part for this reason.
Deathswere assignedto locationson the basis of usual residence rather than on the basis of the
locationat which the death actually occurred. In this report, the term "mortality" should be in-
terpreted ts the crude (unadjusted) figure, unlessotherwise specified.

The causesof death analyzed and their mean values and standard deviations (deaths per
thousandpopulation) are listed below, based on 149 SMSAs. ICD9 codesrefer to the Ninth
Revisions of the International Classification of Diseases. These selections were made to
eliminate causesof death which are unlikely to have resulted from air pollution (external causes)
and to specifically examine thosemajor causeswhich have previously been linked with air pol-
lution (heartand lung disease). No distinctions were made by age, race, or sex.

Non-external Ca,jses: ali causesless accidents, homicides, ,hd suicides(ICD9 1-800).
Mean - "/.82, standarddeviation - 1.48.

Major Cardiovascular Diseases:.includes acute heart attacks, chronic heart disease, hy-
perCension,and stroke(ICD9 390-448). Mean - 4.19, standard deviation - 0.95.

Chronic Obstructive Pulmonary Disease (COPD): Includes bronchitis, emphysema, and
chronic airways obstruction,but not acute respiratory disease, pneumonia, influenza, or
occupationalpneumoconiosis(ICD9 490-496). Mean - 0.25l, standarddeviation - 0.0"/5.

Ali Causes:included primarily to facilitate comparison with other studieswhich did not
removeexternal causesof death. Mean ,, 8.50, standard deviation - 1.48.

In terms of the coefficients of variation, COPD was the most variable grouping and all-cause
mortality w_s the least variable.

Demotrsohic/Socioeconomic Variables. Population descriptive data were obtained for 149 US
SMSAs from the 1982 State and Metropolitan Area Data Book (SMADB), as follows. A brief
rationale for each variable is also given• Variable names, as used below, are given in bold in
parentheses.

I. Percent of population 65 years of age or more (65+). Above about age 35, mortality
rates are exponentially related to age, but this variable is the only useful age statistic
available from SMADB. "Median age" was used by Ozkaynak and Thurston but tends to
be collinear with "percent > 65? Median age statistics add little new information where
it b most needed: the age distribution within the 6S-and-older group.

2. Racial and ethnic distribution: percent black (BLACK), percent other nonwhite
(OTHERNW: Asian, American Indian, etc.), and percent Hispanic (HISP)o Each of these

' groups tends to have mortality rates different from whites and thus cities with higher
than average percentages of these groups would be expected to have correspondingly
different mortality rates for the total population. Race was self-defined in the 1980
¢emu, which leach to a certain amount of confusion, mainly in heavily Hispanic cities
in the Southwest. We consider three groupings: whites, blacks, and others; they sum to
100q_ "Hispanics" are a separate grouping not defined by race. In most cities, the frac-
lion of "other" is small, but in El Paso, TX, it is about 3g%, apparently because many
Latiaos do not consider themselves white. However, the classification of deaths by race
uses a different criterion, since the 1980 deaths for El Paso were listed as 97% white.
This meant that death rates cannot be computed accurately by race for these locations.
Ozkaynak and Thurston used the combined nonwhite population percentage (NW).

3. Percent of individuals below poverty level (POOR). We feel this is a better income
variable than, my, median income, since if there is an effect of income on mortality, it



wouldbeexpectedto be mostobviousat the low end of thescale.

4. percent with four or more years or college (COLLEGE). Education may be a better
socioeconomic variable than income since some persons may have low income because
they have poor health, not vice versa. Educational attainment, as a socioeconomic in-
dicator, will not be changed by subsequent illness.

5. Percent population change since 1970 (CHNGT0). This variables is intended to
characterize population stability and migration, which can be important for several
reasons. First, cities with high rates or inmigration may attract healthy people looking
for better economic opportunities. A contrary effect would result if iii health were a
factor in the decision to migrate to a more favorable climate (or to return home where
family support may be available). Finally, long term exposure to air pollution would be
affected by migration.

6. Average annual heating degree days (HDD). This is essentially a climate variable
reflecting long-term rather than current weather conditions.

7. Population density (logarithm, LPD). Before the conquest or infectious diseases,
population density was an important determinant of mortality (Farr, 1885; Lipfert, in
press). When applied to county units or larger, this statistic is now of limited use due to
the heterogeneity of land use typically found in larger areas, and tends not to capture
the averagedensity at which people actually live. However, it is capable of distinguish-
ing the 100% urban SMSAs (such as Jersey City) from most of the others, which are
usually mixed urban/suburban.

Drinkine WaterOuality Data. Previous studies(Lacey, 1981; Lipfert, 1984) have implicated
soft water as a contributing factor in heart disease, primarily for males. Data on drinking
water hardnessin ppm (HARDNESS) were obtained from a data base compiled by the National
Institutesof Health(Feinleib et al., 1979). These data were for the ca. 1970 time period and
earlier, but it was felt that drinking water supply data would be reasonably stable over time.
The NIH data base was for cities rather than SMSAs; the value for the main city of each SMSA
was selected; no attempt was made to average over ali the component cities of an SMSA. Dam
were availablefor 144 SMSAs out of the above set of 149; the other five values were obtained
by telephone from the respective water supply authorities.

Data on SmokinRHabi,s. Cigarette consumption data have been estimated from state sales tax
dam for three time periods: 1955, 1969, and 1980 (Lipfert, 1978; Lipfert et al., 1988) The es-
timates are based on regression analysis on state level sales data (annual packs per capita for
the population aged 18 and over), using various economic and demographic variables as pre-
dictors. The presence of lower sales taxes in adjoining states was found to be an important
factor in explainingcigarette sales differences. These regression results were then used to pre-
dlct cigarette consumption in each state, lt was not possible to derive cigarette consumption
data at finer geographic resolution, and thus we are forced to assume uniform consumption
throughout the state with discontinuities at the borders. These errors are likely to lead to an
underpredictionof the effect of smoking on mortality, particularly for interstate SMSAs.

Earlier analyses of smoking patterns typically found large urban-rural differences, and it has
long been assumed that city people smoke more. In the study of 1980 smoking data, SMSA
tobacco sales data from the 1977 Census of Retail Trade were compared to state-wlde sales
data from the same source, and a consistent relationship was found, amounting to an annual
urban-statewide difference of about $ packs per year per person (out of 185). This small (but
still statistically significant) difference suggests that regional smoking patterns are now prob-
ably more important than urban-rural differences within regions, which supports the use of
state level data in the analysis of mortality effects.
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Finally, a comparisonwu made of our estimates of cigarette consumption with independent
state levelsurvey data on the percentage of people who smoke (smoking prevalence). The cot-
relation coefficient relating these two measures was only about 0.5 (explaining 25% of the
variance) for the 29 stateswhich had conducted surveys. Possibleexplanationsfor this rather
poor resultinclude variations in amount consumed per smoker and under-reporting by those
responding to the survey, We prefer to use consumption data rather than prevalence since
heavy smokershave a much higher relative mortality risk than light smokers, and since con-
sumption may reflect the possible effects of passive (involuntary) smoking. Cigarette con-
sumptionratesare analogousto air pollution emission rates, with respect to passivesmoking ef-
fects.

For an analysis of chronic health effects, it is not clear whether current cigarette smoking rates
or some time integral h the appropriate metric (the same question exists for air quality as weil).
For this reason, we considered two possible smoking vari_tbles:the 1980 data, as described
above,and 1969 data. Becauseof collinearity between the two (r=0.48), regression modelsare
limited to one or the other (or alternatively, the average (SMOKING78), which was used in the
regressionruns reported below).

LocationsStudied

This studyemploys Standard Metropolitan Statistical Areas (SMSAs) as the geographic unit of
analysis. The U.S. Bureau of the Census (]983) defines an SMSA as a group of counties (except
in New England; seebelow) having a total population of at least ]00,000 with an urbanized area
population of at least50,000. Two counties in Montana, with populations of 77,000 (Missoula)
and 34,000 (Silver Bow County, which includes the city of Butte), which do not qualify as
SMSA.t, were also added to the data set in order to take advantage of their air quality data.
ConsolidatedMetropolitan Areas, which combine several SMSAs, slzch as Los Angeles, New
York, or Chicago, were not used in this analysis.

The 112 SMSAs first studied by Lave and Seskin (1970) and later by Evans et al. (1984b) and
othen comprised the primary list of locations. These were originally selected on the basis of
the availability of air monitoring data, ca. 1960, but the actual geographic definitions in terms
of the counties included have changed somewhat over the years, as defined in each decennial
Census. In general, SMSAs are comprised of whole counties but include independent cities in
Virginia and portions of counties in New England (CT, MA, ME, NH, RI, VT). For com-
parability of mortality and socioeconomic data, New England County Metropolitan Areas
(comprising whole counties) were used in these six states.

t

Ozkaynk and Thurston (1987) selected a subset of 98 SMSAs from this list, based on
availability of ca. 1980 air quality data and conformance with their mortality model. Com-
parisma are presented below using this model and data set. They also defined a subset of 38
SMSAs which had air quality data obtained from the Inhalable Particulate (lP) Network, which
featured size-classified particle concentration data. In this report, we use the entire IP data set,
comprising 63 locations including the two Montana counties.

Further subsets of SMSA$ were defined on the basis of the availability of air quality data, as
discussed below. Mean values of ali variables are given in Appendix A.



REGRESSION ANALYSIS RESULTS,

Multiple regression analyses were used to deduce associationsbetween SMSA mortality rates and
variousair pollutants. These were performed using the algorithms of Quattro 9-Pro, a spread-
sheet analysisprogram (Borland International, 1989). Ali regressions were run with models
specified a priori; stepwiseregressionwas not used• The intent was to develop mortality models
which contain only those socioeconomic terms which are statistically significant (or nearly so)
and to evaluatethesemodelsusing various air pollutants. The two-sided 0.05 level was selected
as indicatingstatistical"significance."

RetressionResultsfor SO4"and TSP

The Ozkavnak and Thurston Model (O&TL Ozkaynak and Thurston (198"/) published the first
analysisof mortality gradients for the year 1980; their work has been widely cited and recom-
mended for use in cost-benefit analyses. They found sulfate to be the most important air pol-
lutant and assignedfrom 4-9% of U.S. total mortality to this cause. The range of recession
coefficients for SO4, was from 0.046 to 0.0"/5 deaths per thousand population per ug/m_, with
two-sigma confidence limits of about -/- 0.03 deaths per thousandpopulation per ug/m" ( p <
0.00l). in this sense,they confirmed the findings of previousanalyses dealing with air quality
from the 1960sand 1970s(Lave and Seskin, 1978; Chappie and Lave, 1982; Mendelsohn and
Orcutto 19"/9). However, each of these previous studies has been found to contain seriousflaws
(Lipfert, in press)and in particular, reanalysisof the Lave and Seskin work has produced much
lower (and even negative) estimatesfor the effects of sulfate on mortality (Evans et al., 1984;
Lipfert, 1980, 1984). For this reason, careful attention was given to the Ozkaynak/Thurston
(O&T) study.

O&T postulated that (crude) mortality rates in U.S. SMSAs could be defined using six
socioeconomicvariables:median age (MEDIAN), percentage 65 and over (65+), percentagenon-
white (NW), percentageclassified as below the poverty line (POOR), the log of population den-
sity (Li)D), and the percentagewith four or more years of college (COLLEGE). However, they
presentedno regressionresults for these variables and the variable they labeled as "COLLEGE"
appeared to be somethingelse, since its mean value did not correspond to either the 1970 or
1980 Censusdata for "percent with four or more years of college." Further, we could not be
certain as to the exact air quality data they used, since no details were given on the inhalable
particle data and the only available information on SO-" and TSP had to be read from the pub-
Ihhed Ipraphs. However, as discussed above, we did'_find a few important differences in the

SO4, and TSP data. These uncertainties, which undoubtedly resulted from the constrictions of
journal publication space, make detailed comparisons wzth the present work difficulL

Table 2 presents recalculation of regressions based on this model and set of locations, using the- p
input data developed for this study and al!-c,a.use mortality. The coefficients for SO4 and TS
check the O&T results qu,te weil, which 4ndzcate that they portray mainly resiona! rather.than
local effects. Note that O&T reported R'; values from 0.89 to 0.92; we derived shghtly hzgher
values, suggesting that the actual "COLLEGE" and air quality variables constituted improve-
taunts in fit. These differences not withstanding, Table 2 shows that we successfully replicated
the basic O&T findings, using their model and independently derived input data.

When sulfate waz entered as the sole pollutant (Regression 2.1), three of the six socioeconomic
variables failed to reach significance (MEDIAN, POOR, LI)D). When TSP was substituted for

SOA" (regression 2.3), MEDIAN became significant and LP.D nearly so, but TSP was highly in-
sig_ifksnt. These results indicate an interaction between the SO4- and socioeconomic variables.

Table 2 also shows results for 149 SMSAs using this model. The SOA" coeff!cient increased by
about 20% relative to the 9a-SMSA case and the TSP coefficient remained inszgnificant, but NW
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TABLE2

MULTIPLEREGRESSIONRESULTSFORTHEO&TMODEL
(Mortality fromIll Causes)

RegressionNo. 2.1 2.2 2.3 2.4

Variable NI Cause AliCause NI Cause NI Cause
II II

'%>. _ o._ o._o o_ o4_
(o) (o) (o) (o)

medianage 0.0716 0.131 0.0977 0.16Q
(0.10) (0.014) (0.04) (0.002)

%nonwhme 0.024e 0.OO72 0.02_ 0.0067
(0.0002) (0.28) (0.0009) (0.35)

%college -0.049 -0.049 -0.068 -0.081
(o) (0.0oo2) (o) (o)

%poor o.o148 o.oass o.oIg8 o._71
(0.50) (0.10) (0.41) (0.11)

togpopuiatlon 0.0383 -0.10S 0.179 0.106
denslty (0.74) (0.44) (0.14) (0.43)

SO4" _ 0.064 0.079 X X
(ug/m_) (0) (0)

particulat_,, X X 0.0002 -0.003
(TSP-uglm") (0.94) (0.26)

, _ 96 '"i49 98......" i49 "'

R2 0.933 0.879 0.919 0.856

siderrorof 0.352 0.550 0.387 0.579
estlmate

I I I

ValuesIn_ tablean)regrmdoncoeiflciera
() Indlcamprobablltythatthetruevalueiszero
X IndicatesthevariablewaznotInduded
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became insignificant and the 65+ coefficient decreased by 13-19%. There were important dif-
ferences in the coefficients for COLLEGE and 65+ according to which pollutant was included.

Regressions were also computed for the other three cause-of-death groupings using this model,
for both the 98 and 149 SMSA data sets (Tables 3, 4, and 5). For non-external causes, sulfate
was significant in both cases, but TSP nearly reached negative significance* for 149 SMSAs.
Wide fluctuations were seen in the socioeconomic coefficients. For cardiovascular causes, the
results were similarexcept that TSP was highly negatively* significant (p.-0.004) for 149 SMSAs
and NW, MEDIAN, and POOR were never significant. For COPD, TSP was significant (+) in

SO"both cases, and 4 was negatively* significant for 149 SMSAs. There were wide variations in
the socioeconomiccoefficients among the four regressions. The negative pollution coefficients
derived by the O&T model are counterintuitive and are indicative of incomplete or improper
model specification. Althoughthe pollutant regression coefficients checked well with the values
reported by Ozkaynakand Thurston (for the 98 SMSA case), taken as a whole, these results
suggest that the O&T mortality model is not completely specified and that the selection of loca-
tions for analysismay also be important.

The "Comolete*SocioeconomicModel. Since three of the six socioeconomic variables postulated
by O&T failed to reach significance, the next step in this process was to examine associations
between the three specific Cause-of-death variables and a larger suite of (non-pollution) inde-
pendent variables. (All-cause mortality was eliminated from the analysis at this point_ since ex-
ternal causesof death tend to be higher in the West and thus could confound results for any air
pollutants which also varied systematically from East to West, such as sulfates, for example.)
The iedepende=_variableswere selected from those that are known a oriori or suspected to in-
fluence spatial variationsin mortality rates and included: 65+, POOR, COLLEGE, LPD, per-
centage black (BLACK), percentage of Hispanic origin (HISP), percentage of nonwhites other
than blacks (OTHERNW),estimated cigarette consumption (SMOKING78), drinking water hard-
hess (HARDNESS), annual heating degree days (HDD), and percentage population change be-
tween 1970 and 1980(CHNG70). These variables had previously been investigated with respect
to city mortality rates (Lipfert et al., 1988). This analysis was limited to the 149 SMSA data set;
TSP and SO4" were each entered separately.

Table 6 presents these results. For non-external mortality and cardiovascular causes, neither
pollutant reached significance although for non-external deaths, ,04= was close and the coeffi-
cient for TSP was similar to values which have been reported for time-series analyses (Schwartz
and Oockery, 1992a,b). TSP was highly significant for COPD deaths, with about the same
regressioncoefficient is found with the O&T model. Among the other independent variables,
SMOKINGT$ was significant for non-external deaths and nearly significant for COPD and
majorcardiovasculardeaths. OTHERNW, I-liSP, HDD, and HARDNESS were never significant,
COLLEGEand CHG70were significant for cardiovascular and non-external deaths, and POOR
and LPO were only significant for COPD. BLACK. was significant (positive) for non-external
and cardiovasculardeaths, but significant (negative) for COPD. In general, we found that the
socioeconomic coefficients were not sensitive to which pollutant was entered, indicating that the
interactionsseen with the O&T model had been eliminated.

These results suggest that this model may be "overspecified." For example, the Hispanic
population tends to be higher in the Southwestern portion of the country where heating degree
days ate lot thus, only one of these variables should be entered. Since Hispanics have been
shown to have lower rates of heart disease (Rosenwaike, 1987), presumably because of dif-
ferenvm in diet, and since there is no currently operational hypothesis for an effect of space
. iii w1,111.ro.li., ,li

* negative coefficients, which imply that pollution prolongs life, if taken naively at face value,
indkzte that mortality rates for that disease tend to be lower in those parts of the country
where the pollutant in question tends to be higher; these are usually regional trends and may be
indicative of incomplete model specification.
ali ,li, a w, al,ill,li.
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TABLE3

MULTIPLEREGRESSIONRESULTSFORTHEO&TMODEL
(MortalityfromNon-ExternalCauses)

RegressionNo. 3.1 3.2 3.3 3.4

Variable NonExt NonExt NonEx_ NonExt
II U||l IIII II I | '1 ,I II III II II I

% > - 6G 0.564 0.503 0.534 0.445
(o) (o) (o) (o)

medianage 0.0479 0.0868 0.079 O.133
(0.26) (o.oe) (o.lo) (O.Ol)

%nonwhite 0.0153 0.0010 0.0151 0.0002
(0.017) (0.87) (0.04) (0.96)

%coueoe _.041e _.042s _.oeeo _.0e04
(0) (0.001) (0) (0)

%poor 0.01_ 0.0_ 0.01_ 0.0274
(0._) (0._1) (0._) (0.23)

logpopulation 0.224 0.0895 0.391 0.328
density (0.04) (0.49) (0,0013) (0.010)

" 0.077 0.0933 X X
S_/m3) (0) (0)

particulatese X X -0.002 -0.005
(TSP_g/m") (0.4a) (o.se)

R2 0.939 0.884 0.920 0.865

stderrorof 0.341 0.521 0.390 0.561
estlmate

III II I I III I I III II I II I I II I I I

ValuesInthlstableare_egressloncoel_clents
() IndlcatesprobabRythinthetreeval_ lazero
X Indkatu thevarlablewasnotInduded



TABLE4

MULTIPLEREGRESSIONRESULTSFORTHEO&TMODEL
(MajorCardlovncularDuth8)

RegressionNo. 4.1 4.2 4.3 4.4

Vadable MCV MCV MCV MCV
II

% > - 66 0.361 0.33) 0.340 0.2e_
(o) (o) (o) (o)

median_11 -0.011 0.0074 0.00_ 0.0386
(0.72) (0.83) (0.78) (0.29)

%_ 0.0057 .o.oo22 o.oos7 ,0.002s
(0.22) (0.64) (0.29) (0._)

%_lem -o.o397 .o.o,._6 ,0._ .0.o65
(o) (o) (o) (o)

%poor -0.014 -0.(X)84 -0.0122 .0.0082
(o.36) (o.se) (o.48) (o.eo)

logpopulation 0.219 0.130 0.330 0.267
density (0.007) (0.15) (0.0001) (0.002)

S04" ,_ 0.0514 0.05..q9 X X
(uglm") (0) (0)

particulates X X ,0.002 -0.005
(TSP.ug/m3) (0.36) (0.004)

f observations 98 1,L9 96 149

R2 0.922 0.862 0.902 0.849

81derrorof 0.249 0.363 0.279 0.380
estlmm

I

ValuesIn_is tableareregmssl_coelflclen_
() I,dlcam _hy thJ therue v_,e Iszero
X IndicatesthevariablewasnotIncluded



TABLE 5

MULTIPLEREGRESSIONRESULTSFOR THE O&T MODEL
(COPO Outhe)

RegressionNo. 5.1 5.2 5.3 5.4

Vadable COPD COPD COPD COPD

>. es .o.oo_ o.o1:_ .o.ooo6 o.o17o
(o.m) (O.OLO) (0.9o) (0.0oo7)

mecllanage 0.0147 0.0069 0.0136 0.0044
(0.006) (0,21) (0.009) (0.42)

nonwhte .0,0029 .0.0012 .0.003 ..0.0012
(0.0004) (o.07s) (0.0002) (0.09)

% college ,.0.9O01 "0 0.0012 0.0020
(o.m) (0.90) (0.29) (o.oe)

% poor 0.0075 0.004 0.008 0.0041
(0.004) (o,oe) (0.002) (0,07)

log population -0,022 -0,044 -0.027 -0.05
densZy (0.12) (0.002) (0.04) (0)

-0.003 -0.004 X XSO4= ,_
(ug/m_) (0,14) (0.03)

pmtlculates,_ X X 0.000e 0,0008
(TSP-ug/m") (0.015) (0.003)

#o_ 98 149 9B 149

R2 0.384 0.480 0.407 0.476

slderrorof 0.043 0,056 0.042 0,056
estlmate

Values Intns table are regreuJonoo_flo]en_
()Incncamswobablitythatthetruevalueiszero
X Incgcatesthevariablewas not induded



' TABLE li

MULTIPLEREGRESSIONRESULTSFOR THE "COMPLETE"MOOEL
(149 SMSA$)

RegressionNo. 6.1 6.2 6.3 6.4 6.5 6.6

Variable Non F..xl Non F..xl MCV MCV COPD COPD
I I

> - 65 0.557 0.552 ' 0.327 .... 0.322 0.0185 0.020
(o) (o) (o) (o) (o) (o)

% Hlspanlc .0.0343 .0.009O -0.0027 -0.9O32 -0.(XX)9 -0.0014
(0.51) (0.17) (0.54) (0.49) (0.028) (0.08)

% black 0.022 0.022 0.011 0.011 .0.0021 .0.0021
(0.034) (0.034) (o.03s) (o.03e) (oo33) (0.03)

% othernonw -0.032 -0.004 -0.002 -0.0030 0.0001 0.0003
(0.77) (0.65) (0.69) (0.56) (0.9O) (0.77)

% college -0.037 -0.042 -0.037 -0.042 0.0003 0.0017
(0.007) (0) (0.0002) (0) (0.81) (0.19)

%pop.change, -0.017 -0.02O -0.012 .0.013 0.0002 0.0004
19e0-1970 (o.ooe) (0) (0.0002) (0) (0.71) (0.52)

drinking .0.00064 .0.00065 .0.0004 .0.00038 3.6x10.5 3.6)(10.5
waterhardness (0.12) (0.12) (0.19) (0.19) (0.50) (0.49)

% poor 0.0195 0.0246 - -0.0019 -0.0028 0.0058 0.0069
(0.36) (0.26) (o.es) (0.65) (0.03) (0,01)

ckweee_es 0.0340 0.004s 0.0019 0.0022 0.00041 0.00042
(1970-80avg) (0.029) (0.009) (0.13) (0.084) (0.06) (0.06)

heating 4xi0"5 3x'lO"5 4xi0"5 4x10"5 "2x10"6 "Ixi0"6
degreedays (0,26) (0,40) (0,065) (0,11) (0,67) (0.79)

k_gpopu_Uon .0.0,_ 0.044 0.006 0._ -0.036 -0.0SS
(0.75) (o,71) (o.9o) (0.66) (o.o2) (0.Ol)

pantcu_o=o x 0.00= x -0.0008 x 0.00084
(l"SP.ug/m_) (0.24) (0.61) (0.006)

SO4" 0.031 X 0,0175 X -0.0025 X
(uglm3) (0.08) (0.16) (0.29)

_' obsewations 149 149 149 i49 149 149 '"

R2 0.920 0.920 0.907 0.906 0.488 0.510

std errorof 0.438 0.440 0.303 0,305 0.056 0.050
esSn_e

i IIII

ValuesInthistableareregrNsloncoeflk:_U
() _llcatesprot)eM_thatthetruevalueiszero
X kzJlcatesthe variablewasnot Included



,l

TABLE7

MULTIPLEREORESSIONRESULTSFORTHEPARSIMONIOUSMODELS
(Non.ExternalMobility)

Re0re.k_No. 7._ 7.2 7.s ?.4 T.s 7.e

va,,i_e......... Non_ N_' NonExi: Non_ ..... No_E_.... Non_ ....

I II I I III II II II I II '5_ I% > = 6S 0.SS0 0.SS0 0.r-_l 0,553 0.sS0 0.
(o) (o) (o) (o) (o) (o)

% Hlspanlc -0,0028 X .0.00S9 -0,0084 .0.00SS X
(o._ (o,ls) (o.oss) (o.so)

% black 0,0201 0,020 0.0212 0.0242 0.0232 0.0228
lo) (o) (o) (o) (o) (o)

% _ nonw ,,0.0077 -0,0099 X X .0,0070 -0.0112
(o_) (o.o9) _,o._) (o.oe)

%c_eoe ,,0,041 .0.(,40 -0.042 .0._._ ,0.044 .o.o44
(o) (o) (o) (o) (o) (o)

%;)cp.chan0e, -0.0'mS .0.01_ _.0197 .0.022 O.O222 0._
1_eo-197o (o) (o) (o (o) (o) (o)

ddrddng -0.0(X)68 .0.00089 .0,0006"_ -0,00071 .0.00071 .0.00073
watert_erd.u,s (0.0Ss (O.O9) (0._0) (_).0e) (OOe) (0.07)

ci0mae_es 0.00aS 0.00_4 0._ 0.004S O,OO42 0.0041
(1970,,80avg) (0,04) (0.046) (0.018) (0,004) (0.0!I) (0.014)

pmlludmm X X X 0.(X)26 0.0O2S 0.0018
(TSe_u_/ma) (0._) (O.SO) (0.44)

S04" 0.02S 0.028 0.024 X X X
(ug/m3) (0.14) (0.I_) (0.15)

--"dl_ _ II 14_ IIIII II I_ I III 149 II I_ II 149 [II 14_9 II I In III 149L II[II

R2 0._19 0.919 0.918 0.916 0.918 0.918

etdenorof 0.437 0.436 0.437 0.439 0.439 0.439

III I I IIIII III Ilrl III II I II roll ell I I I iiiiiii

Vdu_ Inthistablem reoreulonco_

X ___.es thevadebleis notIncluded
de
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TABLE I

PARSIMONIOUS MOOEL RESULTS
(MCVandCOPDMomW_y)

RegressionNo. 8.1 8.2 8.3 8.4

Varlable MCV MCV COPD' COPD

% • - 65 0.320 0.317 0.0177 0.0179
(0) (o) (0) (0)

%HIspanlio .0.0072 .0.0074 .0.0008 .0.0011
(0.014) (0.016) (0=7) (0.01)

%uack 0.oo56 0.0034 .0.002 .0.00'2
(o.ow) (o.cm) (O.Ol) (O.Ol)

%co,ege .0.os7 .0.o41 x x
(0) (0)

% poptdatimchange .0.0158 .0.017 X X
1980-19"/0 (0) (0)

ddnklngwater .0.00037 .0.0004 X X
_rUne: (.2o) (O.lO)

% poor X X 0.0361 0.0065(o.o17) (o.o11)
-

c_r_euJe, 0.0o26 0.0329 0.003_ o.oo04s
(1970.00Wg) (0.026) (0.011) (.0.04) (0.03)

p__ x x .0.04o5 .0.o_
_,n_y (o.031) (o.oo4)

TSP X .0.03O7 O.O007S X
(ug/m_) (o._ (o.ola)

" 0.0182 X X X

_o/m_ (us)
TSP.S94" X X X 0.o0o_
(uo/m") (o.o03)

• _ 149 149 149 149

R_ oJo= o._ o._ o.sol
,_,or,, o.aos -o._ o._ o._
emlnlm

I

vatu_Inth_tabteareregnm_eo*mdem
()_,cmmpmm_ thatthrmmvatue_zero
X_ ttmvarb_ w_ not Indud_
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heating,perse, on health°*, HISP wasselectedfor retention. A few additionalregressionswere
performedwith OTHERNW substituted for HISP. Similarly, becauseof ambiguities in racial
definitionsin the 1980Census, Hispanicsare sometimesindicated as "other"nonwhites; there-
fore, OTHERNW was dropped. The variablesfor educationand poverty were shown to be
somewhatcollinear;COLLEGE wasretainedsinceit wasusuallymoresignificant and an argu-
mentcouldbe made that educationis a morerobustmeasureof socioeconomicstatussincea
person'sclassificationwouldnot be affected by subsequentiii health (whichmay not be the case
with povertystatus).

Resultsfor "Parsimonious"Models. Basedon selectiveelimination of variables from the
"complete"model, as described above, 65+, BLACK, HI,SP, COLLEGE, CHGT0, and
SMOKING78 were highly significant predictorsof non-external mortality in 149 SMSAs;
HARDNESSwas nearlysignificant (Table 7). Ali of thesevariablesenteredwith the "correct"
sign. SOa- wasnearlysignificant, with u coefficientsimilar to that found with the "complete"
modelbui lessthanhalf of that found with the O/kT model. TSP wasnot significant, but its
coefficientswere similar in magnitudeto thosereportedfor time-seriesanalyses(Schwartzand
Dockery,199la,b).

For cardiovascularcauses(Table 8), ali of the samenon-pollution variableswere highly sig-
nificant usfor non-externalmortality; smokingwas slightly lesssignificant for cardiovascular
causes.NeitherTSP norSO4" wassignificantwith thismodel;TSP tendedto be negative. For
COPD,theTSPcoefficient was about the sameas with previousmodelsand was relatively in-
sensitiveto the inclusionof socioeconomicvariables. However, the SMOKINGT8 coefficient
lostsignificancewhencomparedto the "complete"model (Table 6).

ResultsUsineLoa-llnearRes_ressionModels. Many of the more recenttime-seriesanalysesof
therelationshipsbetweenair pollution and mortality useda Poissonregressionmodel, in which
the logarithmof mortalityis regressedagainsta suiteof (untransformed)variables. The formal
rationalegivenfor this choice is basedon analyseswheremortality is # relatively rare event
(Steubenville,Ohio, for example, with un averageof 3 deathsper day [Schwartzand Doekery,
1991a]),but it hasalsobeenextendedto largecitieslike Philadelphia(averageof 48 deaths/day
[SchwartzundDockery, 1991b]),where this refinementmay not strictly be needed. The log-
linear model essentially postulates an exponentially-increasing mortality response to linearly in-
creasing air pollution levels. LipFert (in press) has found that a log-linear model tits
mortality-airpollution relationships Fromeight major episodes in London From 1948-62, includ-
ing the nmjor 1952disaster during which over 4000 excess deaths were recorded.

The currentcross-sectional analysis is based on mortality rates, which are the ratios of' deaths to
populationund may tend to _8ry excessively among the smaller geographic entities, just because
of' randomness. Indeed, the highest (non-external) mortality rate was found For Silver Bow
County (Butte), MT, which hud it 1980 population of' about 34,000. Furthermore, the number
of annualC_3PDdeaths per SMSA was as low as 18, which suggests that 8 Poisson (lo8-11near)
model might be appropriate. Extending the analysis to include Iea-linear models also provides #
comparisonwith previous time-series analyses and checks on model robustness. In general, we
found that use of' Io8-1Jnearmodels yielded slightly higher correlation coefficients than the cor-
respondinglinear models.

Use of the log-linear model for non-external mortality (Table 9) showed only minimal changes
in signif'_ance for the non-pollution variables (HARDNESS lost significance but SMOKI_IG?$
,m,tm ewto,moO

**Neither the effects of climate or weather were considered in this analysis, owing in part to
lack of data on suitable measures describing known physiological effects. These effects may
include heat stress (notably, high temperature deviations from normal weather patterns), indoor
air pollution resulting from unrented or leaky heaters, und the indirect effects of crowding and
exposureto contagion indoors during inclement weather.
_ an.. an anoen
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TABLEIt

MULTIPLEREGRESSIONRESULTSFORLOG-UNEARMOOELS
(Non-ExternalDeaths)

RegressionNo. 9.1 9.2 0.3 9.4 9.8 0.6 mm,

NonExt NonExt NonExt NonExt Non Exl NonExt

18• ,, _ 0.02_ 0.0293 0.0300 0.0295 0.0296 0.0294
(o) (o) (o) (o) (o) (o)

18Hispanic -0.00087 X 0.0007 X -0.00034 -0.0010
(O.Ola) (o.oolS) (o._) (0.oo7)

18_ck 0.0018 0.0013 0.0016 0.0018 0.0018 0.0013
(0) (0) (0) (0) (0) (0)

18oth_nonw X .0.001lS X .0.0012 .0.0010 .0.00018
(O.O00S) (0) (0.009) (0.89)

18college .0.0027 -0.0025 -0.0026 .0.0024 -0.0024 -0.0025
(o) (o) (o) (o) (o) (o)

18pop.change, -0.0014 -0.0013 -0.0010 -0.0015 -0.0014 -0.0013
ImO-lO7O (o) (o) (o) (o) (o) (o)

dr_ "3xlO'G "3xlO'G "3x10"6 "3x10"6 "3x10"5 "3xlO'G
waterhardnem_ 0.18 (0.15) (0.14) (0.12) (0.13) (0.16)

dgareu sales 0.000_ 0.00028 0.00037 0.00030 0.00032 0.00029
(IO'n).eowo) (o.ooo2) (o.oo_) (o) (o.oooe) (o.ooo4) (o.oo19)

w,cu_u x x o.ooo2e o.ooo20 o.ooo_ x
O.Se_l,_) (o.oal) (o.o7o) (o.o37)

SO4" O.O00e 0.0007 X X X O.O00e3
(,m/ma) (o_s) (0.4_) (0.48)

# o_lelvatJorl 140 149 1,t9 148 148 149

Re o.se3 o._ o.ses o.9_e o.s2e o._

aide._ of 0.02_ 0.023a o.o'aas 0.0230 0.023o o.o23s
imbrme

VulueuInU'dslalJ arer_ _
() Indlca__ k_ themmval,eIszero
X Ino1(atesthevada_ weanotIncluded



gained), but made drastic changes for the pollution variables. SO4" became highly nonsil-
nificant and TSP became significant in two of the three cases. Table l0 shows that cardiovas-

cular causeswere associatedwith the same (non-pollution) variables; neither TSP nor SO4" was
s,$nifk_tnt;the TSP coefficients tended to be essentiallyzero. Drinking water hardness, which
had beenassociatedwith reduced heart disease in some previous studies (Lacey, 1981), was
highly non-significant with this model. TSP was a more significant contributor to COPD deaths
in the log-linear model than in the linear model. In general, the elasticities for the log-linear
modelswerehigher, in addition to usually being more statistically significant. For example, for
nonexternalmortality, the TSP elasticity increased from 0.023 to 0.043; for COPD, it increased
from 0.22 to 0.25.

ReeressionRuns Emolovinl_ Other Pollutants

Ozone. As discussedabove, two separate sourcesof ozone data were utilized in this analysis.
Peak l-br valueswere available for 1980 for 72 SMSAs (U.S. EPA, 1984), which were generally
the largestSMSAs in the nation. These data representedthe highest readings for each SMSA,
and axe not necessarily representative of average exposure across the entire SMSA. Seasonal
average values were available for the entire data set, as obtained for a smooth isopleth map
(Figure 8al, averaged over 1980-90 (McCurdy, 1992). Most of the analysis was conducted for
the seasonal average data set, because of its completeness and the likelihood of better represent-
ing spatial averages across each SMSA. The correlation between the two ozone measures was
0.75.

Table I1 presents regression results for non-external mortality and estimated seasonal average
ozone, using both linear and log-linear models. Ozone was only significant in the log-linear
models (149 SMSAs), regardless of whether other pollutants were included. However, including
ozone caused TSP to lose significance in both types of models. When both SO " and ozone. 4 .
were included in a linear model, neither was significant. Ozone was associated with deaths
from cardiovascular causes but was not associated with COPD deaths (results not shown).
Changingfrom linear to log-linear models caused the ozone elasticity for nonexternal mortality
to increasefrom 0.026 to 0.057; for major cardiovascularcauses, it increased from 0.033 (not
significant)to 0.092 (significant).

The regressionresults for peak ozone were largely non-significant, for both linear and log-
linew models, and for both non-external and major cardiovascular deaths. The results for los
majo¢ cardiovasculardeaths reached a p-value of 0.068, with an elasticity of about 0.035
(Regression11.4). The results for this subset of "/2 SMSAs using average ozone were slightly
better, reachingp,,0.047 and an elasticity of about 0.07 (Regression 11.6). However, this par-
ticular resultwas achieved with a non-optimum model, and it can be seen that in genera] the
resultsfor ozoneset were somewhatsensitive to which socioeconomicvariables were included in
the model Apparently, reducing the data set from 149 to 72 SMSAs had a major effect on the
robustnessof the ozone relationships. This precludesany firm conclusionsas to what the find-
lass might have been for peak ozone with the full complement of 149 locations.

Non-Sulfate TSP. TSP includes both sulfates and other types of particles, as collected (or
formed) on glass-fiber filters used in high-volume samplers. Subtracting the sulfate portion is
one way of accounting for some of the artifacts that may have been formed and of examining
the largely insoluble portion of the catch. A composition midway between ammonium sulfate
and ammonium bisulfate waz assumed in making these computations; the new variable was
labeled "NET TSP." Subtracting SO4= from TSP made little difference in the results; sig-
nificance declined slightly. When included with ozone in the same regression, there waz little
difference between the two TSP measures, indicating that the non-SO4 = portion may have been
the most "active" portion. This was also true for COPD deaths, except that statistical
significance improved when SOn= was subtracted. As mentioned above, the negative depend-
ence of COPD mortality on SO_= is viewed as a non-causal regional artifact, and removal of
this portion of TSP is tantamount to improving the precision of measurement.
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TABLE 10

REGRESSIONRESULTSFOR LOG-LINEAR MODELS
(Cardlovnoulsr and COPD modallty)

RegressionNo. 10.1 10.2 10.3 10.4
m..lulmnm.,i.n,m

Variable _ MCV ---'---" MCV _COPO COPD

% • = 65 0.0324 0,0323 0.0282 0.0286
(o) (o) (o) (o)

% Hlspanlc -0.0312 -0.0013 -0.0016 -0.0020
(o) (o) (o.14) (o.oe)

%uack o.031t o,o011 .o,oo33 .o,o031
(0.0301) (0.0003) (o.oos) (o,oo6)

%cortege .o,oo42 .ooo4o x x
(o) (o)

%populatl_change .0.0320 -0,0020 X X
i_eo-197o (o) (o)

ddnklng water X .2)(10"5 X X
hardness (0.80)

% poor X X 0.0088 0.0094(o.019) (o.o12)

clgar_e sales 0.03044 0.0(X)46 0.03086 0.00090
(19To-eoavg) (0.0031) (0) (0.036) (0.003)

_ popumuon x x .o.osl .o,o43
d_ty (o.oos) (0.02)

pa_ x _x_o-6 o.oo_ss x
TSP (ug/m3) (0.57) (0)

1,6)(10"5 X X X
S04" ,_-
(m/ro") (o.97)

TSP -Sp_I" X X X 0.03176
(uglm") (o)

R2 0.902 0.916 0.534 0.542

siden_ d 0.0306 0.0298 0,081 0.080
estinml

ValuesInthlstableareregeulonco_
() _dk:am__ thatthatr.e_.e b zero
X Irdcatm thevariablewasnot Included
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TABLE11

REGRESSIONRESULT9FOROZONE
(Log-linearModel)

RegressionNo. 11.1 11.2 11.3 11.4 11.S 11.6 11.7 11.8
M_'-_

Vadable NonExl NonExt NonExt MCV MCV MCV

% • ,, 65 0.0265 0.0268 0.0294 0.0276 0.028 0.029 0.0281 0.0319
(o) (o) (o) (o) (o) (o) (o) (o)

%Hlspardo X X -0.00035 X -0.0004 .0.0003 X .0.0008(0.21) (0.40) (0.44) (0.012)

%Uack o.0012 o.0012 O.OOla 0.00o5 0.00o9 0.00o870.000s 0.00079
(0.0006) (0.0006) (0) (0.21) (0.05) (0.05) (0.20) (0.002)

% othernonw .0.0014 .0.0013 .0.0009 .0.0019 X X -0.0018 .0.0014
(0) (0) (0.o2) (0) (0) (0.002)

%oc_ege .0.oo8 .0.oo26 _.002s .0.oo45 .0.oo52 .0.oo48 .o.oo43 .0.oo37
(o.o001) (o.oo03) (o) (o) (o) (o) (o) (o)

% pop.change, .0.004 .0.0015 .0.0014 -0.0019 .0.0020 .0.0021 -0.0020 .0.0020
Iseo-197o (o) (o) (o) (o) (o) (o) (o) (o)

ddnldng "1"5x10"s .1.8x10.6 .3x10.5 .3x10-5 .5x10"5 .5x10"6 .3x10"6 X
waterhardness (0.72) (0.67) (0.12) (0.52) (0.37) (0.33) (0.47)

dgarette_Jes 0.000_ 0.0001 0.00029 0.00o2 0.00042 o.ooo380.0002 o.ooo34
(1970,80m/g) (0.42) (0.44) (0.0009) (0.24) (0.017) (0.27) (0.25) (0.0015)

peakozone 0.067 X X 0.095 0.091 X X X
Copra) (o_I) (0.07) (o.ls)

Av0ozone X o.2_ o.soo x x 0.e11 0.429 o.els
Comn) (o.22) (0.014) (0.047) (0.11) (0.00t_)

, _kx, 72 72 140 7_ 72 72 72 1_

R_ o_ 0._ 0._ o.sm o_le 0._1 o.m o_

,_ errorof _ 0.o22 0.0_ o.o'a 0.o29 0.029 0.02s 0.0_
estlnla_

Valuesinthistablearemgressloncoeffk:_U
() IndlcatesixobabUythatthetruevalueIszero
X IrdlmteathevariablewasnotIncluded



i
t

lnhalable Particles (lP). Data were available on sulfates and on two size classifications of

suspended particle concentrations, PM_ ,i and PMIS, for 63 locations. Initial regression runs
showed Butte, MT, to be an outlier; it-F_sd the highest crude mortality rate in the data set, al-
though it was not an outlier in the context of ali 149 locations. Most of the regressions for lP
pollutants were thus conducted with only 62 observations (excluding Butte), in an attempt to
derive reasonablyrobust results.

Using the O&T model (Table 12), SO4" was significant for n-62, but not when Butte was in-
cluded (Regressions 12.1 and 12.2). The coefficients tended to be slightly higher than found for
SO4- measured on high-volume sampler filters. Fine particles (PM2 S) were also significant,
for both all-cause and external mortality, with a substantially to';v'ercoefficient. PMI$
(inhalable particles) were not significant. These results also pertained to major cardiovascular
diseases;for COPD, only PMI5 was significant (Regression 12.13). We also note that the coeffi-
cient for "65+"appeared to be sensitive to the inclusion of the sulfate variable, which suggests
interactionbetween socioeconomic and pollution variables with this model a_,ddata set.

With a log-linear version of the O&T model (Table 13), no pollutant was _gnificant for ali-
cause mortality when Butte was included (Regressions 13.1 and 13.2), but surfate was significant
in both cases for non-external mortality (elasticity about 0.05). (We ev.peck,a priori that a log-
linear model might be more tolerant of outliers than a linear model.) Fine particles had about
the same elasticity as SO4" but this pollutant did not achieve statistical significance for any of
the cause of death groupings with Butte included. The coefficient and significance for COPD
and PMI5 were also reduced with Butte included (Regression 13.11).

The results for an expanded model specification and IP pollutants are given in Table 14, for
linear models. No pollutant achieved statistical significance, but PM2 S was close for non-
external deaths (Regression 14.1, elasticity - 0.043). The elasticities for _'61fateand PMI$ were
0.02 and 0.027, respectively. Note that the results were considerably less significant for MCV,
whereas an improvement was expected due to consideration of a specific cause-of-death
category.

lt is also interesting to compare findings for the two sulfate measures and for fine particles.
The hypothesis advanced by Ozkaynak and Thurston (1987) is that the SO " ion is the "active"
ingredient in the particle mix. As discussed above, we expect that SARO4D sulfate consists of
a mixture of airborne sulfate and SO,t" particles formed on the filters, hence the substantially
higher mean values with respect to [lP] SO4" (obtained from unreactive Teflon filters). If this
were the case, we would expect to find the same regression coefficient in ali three cases, ac-
cording to Oct:T'shypothesis that only SO " affects mortality. However, we find that, while• 4
both sulfate variables yield"approx,mately the same coefficient (but not the same elasticities,
since the mean values differ), the coefficient for ali fine particles (which includes SO,t'), is
substantiallylower, with about the same or higher elasticity. This implies that there is nothing
special about the sulfate portion of fine particles and that ali three variables should be con-
sidered as indicators of fine particles.

Similarconsiderationsapply to the comparisons of COPD regression coefficients for TSP, PMI:_,
and PM2L5. .For the purpose of exploring COPD relationships further, a new fine-particle vars-
able was"(]efmed('non-S PM.2_') by subtracting the sulfate portion in the same manner as NET
TSP (described above). Thas"implicitly assumes that ali of the sulfate is in the fine particle
mode, which is usually the case. If only a specific fraction of particles were biologically active,
say the small particles, we would expect to see the same regression coefficient for ali three
measures. The results are as follows:



TABLE t2

MULTIPLEREGRESSIONRESULTS
FORTHE O&T MODEL WITH lP DATA

RegressionNo. 12.1 12.2 12.3 12.4 12.5 12.6 12.7

Vadable AliCauses NI Causes NI Causes NI Causes NonExt Non Exl Non F.xt
II

% > = 65 0.388 0.328 0.313 0.287 0.348 0.329 0.296
(o) (o) (o) (o) (o) (o) (o)

% medianage 0.228 0.241 0.265 0.288 0.204 0.233 0.260
(0.02) (0.0007) (.0002) (0) (0) (0.0011) (0.0004)

% nonwhlte 0.0162 0.0124 0.0156 0.0210 0.0018 0.0057 0.0117
(0.26) (0.22) (0.12) (0.04) (0.65) (0.58) (0.27)

% college .0.0927 -0.0877 .0.09,4 .0.1t8 -0.079 -0.087 ..0.114
(o.ooos) (o) (o) (o) (o) (o) (o)

% poor .0.016 .0.0008 -0.0053 -0.0184 .0.0016 .0.0040 .0.018
(o.71) (o._) (o.ee) (o.sT) (o.94) (o._) (o._)

IOg population .0.034 0.116 0.170 0.197 0.384 0.413 0.443
denslly (0.86) (0.43) (0.24) (0.19) (0.018) (0.005) (0.004)

lP.SO4 ,) 0.0568 0.0819 X X 0.0@73 X X
(.g/m_) (0.23) (0.013) (0.003)

PM-2.5_ X X 0.0252 X X 0.0293 X
(uo/m3) (o.o43) (o.o2)

PM-15 _ X X X -0.0029 X X .0.0026
(ug/m3) (0.60) (0.65)

I

dl observatlons 63 62 62 @2 (_ _ 62
"e

R so,. 0.870 0.923 0.920 0.915 0.925 0.921 0.914

sid en'orof 0.642 0.455 0.463 0.479 0.454 0.467 0.489
esSrmte

I
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TABLE 12 (cont'd)

MULTIPLE REGRESSIONRESULTS
FORTHE O&T MOOELWITH lP DATA

RegressionNo. 12.8 12.9 12.10 12.11 12.12 12.13

Variable _ MCV COPD COPD COPD

%>. e5 o.194 o.les O.lS8 O.OleO O.Ole2 O.Ole4
(0) (0) (0.0002) (0.014) (0.005) (0.003)

% medianage 0.108 0.122 0.137 0.0072 0.0045 0.0050
(0.028) (0.012) (0.0055) (O.32) (0.54) (0.47)

% nonwhite -0.006,; .0.(X)46 -0.0003 .0.0016 .0.0020 .0.0025
(0._) (0.52) (0.gS) (0.11) (0.047) (0.01)

% coaege -0.0_ .o.os_ .0.0se 0.0012 o.o02s 0.0042
(0) (0) (0) (o.s2) (0.17) (0.011)

% poor -0.017 -0.019 -0.02s o.ooeo o.oos7 0.0079
(0.43) (0._) (0.17) (0.049) (0.029) (o.ooe)

log population 0.364 0.40 0.41 .0.040 .0.04,5 -0.043
der_ (0.0004) (0) (0) (O.OOS) (0.0O2) (0.0o2)

lp-So4 ,, 0.0520 X X -0.0051 X X
(uglm_) (o.o2) (o.13)

PM-2.5_ X 0.017/ X X .0.0004 X
(ug/m31 10.041 10.76)

PM-15 _ X X .0.0032 X X 0.0011
lug/ma) 10.401 10.04,51

# ol_ervatk_s 62 62 82 62 62 62

R so,. 0.901 0.907 0.901 0.648 0.633 0.658

std erroroi 0.329 0.319 0.329 0.046 0.047 0.045
esZknate

ValuesInthlstableare regressioncoefl_Jen_
() Indlcatesprobablitymat_e truevalueIs zero
X IndlcatesthevadablewasnotIncluded
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/ TABLE 13

J MULTIPLEREGRESSION RESULTSFORTHE O&T MODEL(log.linear) WITH lP DATA

newessk_No. _s._ _S.2 _S.= _a.4 _3.s _3.e _3.7 _3.e

var_ue_o. _ Non_ N-'---_Ext MCV M_

% > ,, 65 0.0196 0.0185 0.0229 0.02O8 0.0216 0.0266 0.0255 0.0249
(o) (o) (o) (o) (o) (o) (o) (o)

%madtanage 0.011S 0.0129 0.00se 0.0102 0.0117 0.0072 0.00es o.01r_
(0.027) (0.012) (0.079) (0.042) (o.o36) (o.ao) (0.2o) (0.19)

.o_e 0.0013 o.o01s 0.000e 0.0007 0.0011 0.0003 o.ooos -0.0041
(o.oe) (0.04) (o.ao) (o.a4) (0.036) (0.TS) (0.58) (0.016)

cogege -0.oos2 -0.oose .o.00s2 .o.ooso .o.oos9 .0.0o79 -0.0084 0.0046
(0.0302) (0) (0.0005) (0.0002) (0) (0) (0) (0.10)

% poor -0.0002 -0.0026 -0.0024 .0.0018 .0.0028 -0.0056 ..0060 0.0107
(0.32) (0.25) (0.32) (0.39) (0.24) (O.05S) (0.04) (0.03)

logpopulation -0.0046 -0.0017 0.0087 0.014 0.0126 0.028 0.032 -0.084
density (0.67) (0.87) (0.45) (0.18) (0.27) (0.046) (.022) (0.0035)

lP'S04 ,l 0.0036 X 0.0050 0.0059 X 0.0053 X X
(ug/trt_ (0.14) (0.05) (0.011) (0.10)

PM-2.S X 0.00071 X X 0.0011 X 0.0015 X
(.g/m31 (o._) (o.24) (o._)

x x x x x x x o.oo,a,

# observations 63 63 e3 62 63 63 63 63

Rsq. 0Jm4 0.860 0.870 0.886 0.864 0.857 0.853 0.662

stderrorof 0.0334 0.0340 0.036 0.002 0.036 0.045 0.045 0.078
_e

ValuesInINst_e areregression
() Ind_es pro_U,tyn_ thetruevalueiszero
Ximlk_esthevariaUewasnotincluded



TABLE 14
i

' REGRESSIONRESULTSFOR THE COMPLETE MODEL WITH lP DATA
(n - 62, Butte deleted)

RegressionNo. 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8

Va_ble Non Exl NonExt Non Ext MCV MCV MCV COPD COPD

5_4 ' 0497 ............... .... ........ _os 0228'% > - 65 . . 0.496 0.273 0.268 0. 0. 0.0221
(o) (0) (o) (o) (o) (o) (o) (o)

% Hlspanlc -0.012 -0.013 .0.0142 -0.0125 -0.0013 .0.0014 X X
(0.37) (0.32) (0.29) (0.17) (0.14) (0.14)

% black 0.0186 0.0165 0.0192 0.0006 0.0048 0.0014 -0.0018 -0.0026
(o.oe) (0.15) (0.075) (0.92) (0.94) (0.65) (0,013) (0.001)

% othernonw 0.014 0.014 0.011 0.0077 0.0077 0.0071 X X
(0.59) (0.60) (0.67) (0.67) (0.6?) (0.70)

% coaege -0.056 -0.060 .0.060 -0.051 .0.055 .0.055 0.0011 0.0021
(0.0008) (0.0004) (0.0003) (0) (0) (0) (0.49) (0.20)

% pop.change, .0.020 .0.020 -0.022 .0.014 .0.014 .0.015 0.0007 0.0(X)4
1960-1970 (0) (0) (0) (0) (0) (0) (0.15) (0.40)

drinkingwater .0.0011 .0.0010 .0.0011 .0.00035 .0.0003 -0.0(X)3 X X
hardness (0.14) (0.20) (0.14) (0.49) (0.55) (0.50)

%poor 0.00_ 0.00_ 0.012 "0 "0 o.ooos x oo051
(._) (0.78) (0._) (0.9e) (0._) (0._) (0.03)

c_._e sins 0.00_ 0.00_ 0.00_ 0.0029 0.0031 0.0033 "0 0.0012
(197080 avg) (0.14) (0.13) (0.079) (0.086) (0.07) (0.051) (0.82) (0.67)

heatlng 3.73(10"5 2.6)<10"5 3)(10"5 2)(10"5 Ixi0"5 Ixi0"5 X X
degreedays (0.45) (0.60) (0.56) (0.72) (0.74) (0.72)

logpopulation 0.1s 0.15 0.17 0.22 v.22 0.23 .0029 -oo32
d_zy (o.27) (0.28) (0,_1) (0.020) (0.02) (0.015) (0.0,_) (0.04)

PM-2,5 0.0188 X X 0.010 X X X X
(ug/m3) (0.078) (0.18)

lP-S04,_ X 0.03_ X X 0.0112 X X X
(uolm") (o_s) (o.61)

PM-iS_ X x o.oose x x o.oo14e o.ooossx
(ug/m 3) (0.23) (0.65) (0.28)

NowS X X X X X X X O.O(X)_
PM-_.S(._/n_) (o_4)

'_ oi:)slm_tlom 62' 62.............. 62 62 62 62 62 ' 62

R2 0.gG3 0.952 0.952 0.944 0.942 0.942 0.661 0.683

sld errorof 0.378 0.384 0.384 0.260 0.264 0.264 0.045 0.044
_e

I I rl I IIII I I_ iii! I I iii i i i ml II i I II II i



' TABLE 16

REGRESSIONRESULTSFORCOMBINATIONS OF POLLUTANTS INCLUDING MANGANESE

Regreulon No. 15.1 15.2 15.3 15.4 15.5 15.6 15.7

VadaUe NonExt NonExl Non Exl Non Exl MCV MCV _'CV

% > - 65 0.522 0.532 0.535 0.537 0.301 0.303 0.301
(0) (o) (0) (o) (0) (o) (0)

% Hispanic .0.0051 X X X X X X
(o.41)

% bklck 0.018 0.0238 0.0220 0.0225 0.0062 0.0050 0.0045
(0.016) (0) (0) (0) (0,028) (0.09) (0,14)

%ochernonw .0.0082 X X X X X X
(o.m

%coaege .0.037 .0,038 .0.0,,_ .0,033 .0.036 .0.033 .0.034
(0.0003) (0) (0.0012) (0.0017) (0) (0) (0)

% pop. change, .0.0218 .0.024 .0.0223 .0.0227 .0.0189 .0.0178 .0.0172
198o-197o (o) (o) (0) (0) (o) (0) (o)

ddnldng water .0.00093 .0.0010 -0,0010 .0.0010 -0.0006 .0.0005 .0.00oe
hardness (0.O22) (0.013) (0.016) (0.017) (0.0,._) (0.059) (0.0,_)

% poor 0.020 X X X X X X
(O.34)

dgar_e sales 0.0042 0.0045 0.0041 0.0042 0.0030 0.0027 0.0026
(1970-80avg) (0.013) (0,004) (0.009) (0.0095) (0.005) (0.011) (0.014)

mjng _o _ x X x x x x
degreedays (O.gO)

log population 0.0156 .0.079 .0.111 .0.111 -0.044 .0.062 .0.063
(0.es) (0.44) (0.29) (0.29) (0.56) (0.38) (0.38)

i:__O X X X 0.0014 X X -0.0018(0.56) (0.29)

_(_g/nP) X X 0.022 0.022 X 0.014s 0.014e(0.18) (0.19) (0.19) (0.19)

z38 2.r_ zoe 1.76 1.49 1.17 1.56
(0.10) (0.07) (0.16) (0.26) (0.12) (0.24) (0.14)

, _ 138 138 138 138 138 138 138

R2 0.925 0.922 0.923 0.924 0.911 0.913 0.913

• Idderror of 0.4oe 0.408 0.407 0.408 0.277 0276 0.276
estkmm
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Reeression No. _ Variable Coefficient
5.4 O&T TSP 0.0008 0.003
6.6 Complete TSP 0.00084 0.0006
8.4 Parsimonious TSP 0.00074 0.007

12.13 O&T PMI5 0.0011 0.045
14.7 Parsimonious PMI_; 0.00056 0.28
12.12 O&T PM2"5 -0.0004 0.76
14.8 Parsimonious Non'5 PM2. $ 0.00084 0.54

We find that TSP and PMI5 have the same coefficients, within statistical tolerances, but that
PM2. 5 is different. How-e_,er, removing the sulfate portion of PM2 5 (u described above)
brinl_ the non-sulfate PM2 _ coefficient effectively into this comm_ range of coefficient
valua (0.0006-0.0011). Thl[" implies that ali of these particle measures exhibit the same effect
on mortality per unit of mass, and since the only particles common to ali of them are the non-
sulfate fine particles, we are led to the conclusion that this may be _he "biologically-active"
fraction.

This comparison would be more compelling if the particle variables other than TSP were also
statistically significant. The poor performance of these other variables may relate in part to the
smaller numbers of observations available for analysis or the fact that not ali of the observations
were taken in 1980. However, if we accept the hypothesis that only the small non-sulfate par-
titles ate biologically active, then the elasticity should be compute_l by multiplying the coeffi-
cient by the mean value of the non-S PM2. 5 variable (12.6 ug/m"), which would constitute a
major reduction in the estimated effect upon mortality. This would also apply to time series

studies. For example, Dockery et al. [in press] derived similar coefficients for PM 10 and PM2_
in SL Louis; however, only the PM It_ value was statistically significant (Table I). Neither SO4-
nor H+ came even close to statistica'l"significance !n that time-series study•

lt thus appears from the above considerations that the magnitude of the indicated effects on
mortality cannot be estimated with confidence for a pollutant with many constituents (such as
TSP or total oxidants) until the biologically active components of the pollutant have been iden-
tified. The regression coefficient may still be a valid measure of relative changes, but it will
not be possible to apply this slope to contributions from specific pollution source categorie_
without knowledge of the "active ingredients" of the TSP mix.

Mananese. In previous studies, iron (le) and manganese (Mn) have been found to be sis-
nif'gnat predicton of spatial variations in mortality (Lipfert, 1978; Lipfert, 1984; Lipfert et al.,
19811). However, these species are also markers for ferrous metal manufacturing activities,

, whkh may have other associations with health, either directly because of occupational hazards
or htdlrectly because of life-style differences. For example, Brackbill et al., (1988) found that
the metal industries were among the highest in terms of percentages of smoken. Lipfert (1984)

= found that Mn was only significant for males (65+), which suggests long-term occupational ef-
fe_ rather than community air pollution.

Table 15 presents regressions for Mn, as the sole "pollutant" and in combination with SO.4_ and
TSP, for the maximum possible data set of 138 locations. Mn was never statistically significant,
although it wa_ dme for non-external deaths, and its regression coefficient was about 1/4 of
that found for 1980 mortality in U.S. cities (Lipfert et al., 1988). This suggests that the effects
of Ma, whatever they may be, are experienced more in central cities than in the entire SMSAs
(which ate often largely suburbs), since the measurements for metals are usually made in central
locations. Comparing Tables 15 and 7 shows only minor interactions between other pollutants
and Mn, when entered in combination.



Dose-Response F_nctions

Two typesof modelshave beenusedin this regressionanalysis:linear models,whichassumea
straight-liner_latic,n_:,ipbetweenmortality and ali other variables(includingair pollution),and
log-linearmode!:,whichassumethat mortality ratesriseexponentiallyin responseto (ali of) the
independentvari'Ables,in, _ither caseis a thresholdare consideredfor ambient air quality; the
modelsassume:hat the typeof relationshipis independentof theabsolutelevelof air pollution.

This is in contrastto _hecurrent philosophyof air pollution control, which assumesthat safe
concentrationlevels exist for most community air pollutants, below which health effects are es-
sentiallyzero. These"no-effect" thresholdsand sn appropriatemargin of safetyare then used
to establishNationalAmbientAir Quality Standards(NAAQS), whichare to be met throughout
the count:y by controlling the responsible air pollutant emissions, lt is thus important to try to
reconcile the resultsof this study with this prevailing concept of NAAQS and the corresponding
no-effect thresholds. An important consideration in this regard is the extent to which a few
SMSAs with poor air quality, in violation of the NAAQS, may influence the outcomes of these
regression models. Three diffJ.rent types of analysis were performed towards this end; these
analyses were limited to the parsimoniouslog-linear models.

_W_J_P_]Im. The first technique _nvoived scatter plots in which an "adjusted"or residual value
of mortalitywas computed, accounting for ali variables in the regression equation other than air
pollution. These values were then plotted against each of the pollutants in turn, in order to
display which, if any, locations might be influential with regard to the regression slopes
Figures 9 to I1 present such plots for the log of non-external mortality. Against SAROAD sul- x

fate, Figure9, no relationship is seen, in keeping with the non-significant regressionslope. The
lowest "adjusted"mortality cities (Honolulu and Tampa), have measured sulfate values in the
mid-range, and the scatter of the remaining cities is spread more-or-less uniformly across the
entire range of SO4" values. Figure 9 is in sharp contrast with Figur_ ! of Ozkaynak and
Thurston, in whichcrude mortality was plotted against sulfate and a strong relationship was ap-
parent. The implication of this comparison is that the appa eat association between mortality
and sulfate displayed by Ozkaynak and Thurston appears to have been a relationship between
sulfate ud ali the other socioeconomic variables that also affect longevity.

Figure 10 plots the residual mortality data against SMSA-averaged TSP. A weak relationship is
seen, in pert because the lowest mortality SMSAs also have low TSP; however, there are also
low-TSP locations with high mortality residuals, but there are no high-TsP locations with low
mortalityresiduals. In that sense, the high TSP locations might be influential.

Averageozone levels are used in Figure I l; ozone has the strongest pollution-mortality associa-
tion of the three pollutants considered in this regression. The Honolulu and SouthernCalifornia
points would appearto be influential and _|nce ali of these locations have racial/ethnic popula-
lions thatdiffer from most of the rest of the country, correct lumdling of"these variables would
seem to be imporUmL

Additional scatter plots For non-external mortality and the various other pollutants which were
available in the database are presented in Appendix B.

LogarithmicresidualsFor cardiovascular mortality are plotted against average ozone in Figure 12
and peak ozone iu Figure 13. In Figure 12, the two highest ozone cities are Los Angeles and
San ]knmdino; the two largest positive residuals (cardiovascular mortality higher than predicted)
sre Columbia,SC, and Atlantic City, NJ, neither of which has any known attributes that might
explain their relatively high MCV mortality. Note that a log residual of 0.1 corresponds to
about 25%excess mortality. The dose-response relationship shown in Figure 13 for peak ozone
consbuof Jt cloud of data around the ozone NAAQS (0.12 ppm) and a Few higher 8nal lower
points tlmt form the tmsis for the nearly significant (p - 0.07) association. The four highest
residmb ht the data cloud are Orlando, PL, Austin, "IX, Jersey City, NJ, and New York City.
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Figure 9. Scatter plot of' residual Io8 non-external mortality rates vs. [TSP] S04".
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Figure I0. Scatter plot of' residual log non-external mortality rates vs. TSP.
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Figure I I. Scatter plot of' residual log non-external mortality rates vs. averase ozone.
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Figure 12. Scatter plot of residual log major cardiovascular mortality rates vs. averageozone.
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lt seemsclear that many more observations with both higher and lower peak ozone values would
be requiredto clarify this relationship.

COPD mortality is consideredin Figure 14; three high residuals(Butte, MT, Tucson, AZ, and
Albuquerque,NM) are seen to be influential, although the bulk of the data support a positive
relatiomhip. Explanationsfor the three high residualsinclude the mining industry in Butte and
the likelihoodof retireesin the Southwest with existing lung disease;deleting these three obser-
vationsincreasedthe TSP coefficient slightly. The highest TSP point is Spokane, WA, which
may have been influenced by the eruption of Mt. St. Helens; this datum is not remarkable,
given the general trendand level of scatter.

SufcessiveTruncation. The next technique involved droppln8 groups of the highest pollution
Iocatiom from the analysis, thus reducing both the range of the independent variable and the
number of observations.These _.'esuitsare presentedin Figures 15 to 20, for non-external mor-
tality andone pollutant at a time.

For TSP and non-external mortality (Figure 15), the regressioncoefficient r_emainsessentially
constantfor data setswith maximum TSP values from about 80 to 140 ug/m". The frequency
distribution of TSP in this data set is given in Figure ]_; ]09 of the 149 SMSAs have average
TSP levelswithin the former NAAQS for TSP (75 ug/m"). As seen in Figure ]7, the standard
errors of the regression coefficient increase monotonically as the number of observations
decreases;this square-root relationship is as expected from statistical theory. Thus, one may
concludethat the mortality-TsP relationship is not dominated by a few high TSP cities, and that

a coefficient of about 0.00033is the best unbiased estimate for data sets havin_ maximum TSP
locations from about 80 ug/m upward (SMSA averages). Below this value, this type of analysis
is indeterminate.

Similar data are presented for (average) ozone in Figure 18. The regression coefficient is essen-
tially constant for ali but the smallest data set considered (n - 40). However, the frequency dis-
tribution for average ozone is substantially skewed (Figure 19); only seven SMSAs exceed 0.06
ppm. Figure Sb showed that most of the SMSAs were in violation of the I-br standard in 1980.
The standard error of the ozone-mortality coefficient decreased monotonically with the number
of observations, as with TSP, but adding the last few high-ozone observations resulted in a dis-
proportionate decrease in the standard error (Figure 20). The regression coefficients themselves
were mt affected, however (Figure 18).

COPD mortality is addressed in Figure 21; as the high TSP locations are removed from the data
set_ the regression coefficient increases in value (but not _tatistically significantly so, because of
the widening confidence limits) down to about 65 ug/m , at which point it becomes negative
and the confidence limits expand greatly. This TSP level probably corresponds to the removal
(by tnt,cat]on) of the lowest of the three high residual points seen on Figure 14.

Ouintile Analysis. The final technique employed a dummy variable technique similar to that
use.d by Schwartz and Dockery (1992a,b). New regressions were run in which the continuous
pollutsat variable waz replaced by n-I dummy variables, where n=5 for the case in which the
entire data set h subdivided into quintiles based on ranked TSP values. The regression coeffi-
cient for each dummy variable represents the best unbiased estimate of the logarithm of mor-
tality for that quint]le relative to the lowest TSl' quintile (controlling for ali other variables).
When these values are plotted against the corresponding TSP values for each quintile, a
rudimentary dose-response function results. One expects some loss of statistical significance
with such an analysis, since the effect of the continuous variable is now being indicated by four
different variable,. The advantages of this approach are that linearity is not assumed a priori,
and that the entire data set is considered at once.

Figure 22 presents results for ozone and non-external and cardiovascular mortality. Slight
variatiem in the mn-pollution variables were exercised to determine sensitivity of the new
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Figure 14. Scatter plot of residual log COPD cardiovascular mortality rates vs. TSP.
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Figure 15. Reg_e,=ion coefficients/'or log non-external mortality on TSP for successively
smaller data sets, after deleting TSP values higher than the values plotted.
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Figure 16. Frequency distribution of 1980 average TSP for 149 SMSAs.
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Figure 17. Standard errors of regression coefficients in Figure 15 vs. number of remaining ob-
servations.
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Figure 19. Frequency distribution of 1980-90 average ozone for 149 SMSAs.
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Figure 20. Standarderrorsof regression coefficients in Figure 18 vs. number of remainingob-
servations.
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dummyvariablesto modelspecification,which is seen to be minimal. In bothcases,mostof
the"signal"appearsto be in the lowestthreequintiles, rather than in the highestozoneloca-
lions. Thus, althoughthe aqalysisconfirmsthat the high ozonelocationsare not unduly in-
fluential, the resulting"dose-response"functionsare not intuitive and suggestthat the model
maybe misspecified,especiallyfor non-externaldeaths.

TSP is consideredin Figure 23, for both COPD deathsand non-externaldeaths. Again, the
strongestrise in mortalityis in the mid-rangeof TSP values,althoughthe COPDrelationshipis
reasonablylinear. The coefficientsfor the highestthree TSPquintileswere ali statisticallysig-
nificant;the low coefficientand p-value (--0.70) for the secondlowestquintile suggeststhat a
thresholdmay be present.

Figure24 presentsresultsfor sulfate, which are presentedto check for data anomaliesthat
mighthaveinftuencedtheresults.The dose-r:sponsefunctionsare U-shaped,andeven if only
the right-handhalf wereconsidered,the excessrisk is small. Note that the maximumexcess
risk for non-externaldeathsexceedsthat for cardiovascularcauses.Normally,onewouldexpect
that a potentiallycausalrelationshipwould strengthenwhen one considersa specificcauseof
death(z_ in thecasewith TSPandCOPD, for example).

lt is of coursepossiblethat combinationsof pollutants,at different levels, may be involved,
especiallyfor non-ex.t,ernaldeaths,which representsthe sum of ali diseases.However,suchan
analysisdoesnotseempracticalwith only 149observations.

CONCLUDING DISCUSSION

This analysis has developed regression models which appear to offer substantial improvements
over previous studies of SMSAs (including that of Ozkaynak and Thurston [1987]), in that 92%
or more of the mortality rate variance has been "explained"and that most of the (non-pollution)
terms in_the regressions were highly statistically significant. Improvements in fit were made
when external causes were removed and when specific cause-of-death groupings were analyzed
(although the regressions for COPD mortality probably suffered from the small numbers of
deaths occurring in a |iven year in each location). Use of log-linear models, in which the
logarithms(base 10) of mortality rates were regressed against linear combinations of independ-
ent variables, also provided improved fits to the data.

Summaryof Rearession Results

Tables 2 to 15 presented selected regression results in their entirety, including regressioncoeffi-
cients for 811the independent variables. This degree of detail is useful in comparing model
specifications and in judging the validity of the overall approach. In contrast, Tables 16 and 17
sureintended to facilitate comparisons among diseases and pollutants. Regression coefficients,
their standarderrors, and significance levels are presented in Table 16; Table 17 presents com-
parable information based on elasticities. Statistically significant results (p :,- 0.05) are shown
in bold italic type, those values which failed to reach significance must be regarded as less
robust than the others and my be unreliable estimates of the true underlying relationships.
Furthermore,one must keep in mind that statistical significance alone is not sufficient evidence
that the "true underlying relationship"Ims indeed been identified; such a causal conclusion re-
quires plausible physiological mechanisms as weil. Evidence Of this truism is seen in the statis-
tically significant aeptlve entries in Tables 16 and 17 (imply|ng that air pollution prolongs life,
or, more likely, that the regression model hsincompletely specified).

Rezrmsiou Coefficients. One use for the regression coefficients is in comparing the contribu-
tions of a 8ivan pollutant to the variations in mortality rates for different diseases, based on the
same or similar models. Whileri8orous comparisons can only be made among those coefficients
that are statistically significant, eachof the coefficients in Table 16 represents the best Hnem"
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Figure 22. Relativerisk for major cardiovascularand non-externalmortalityasa functionof
ozone quintiles.
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Figure 23. Relative risk for COPD and non-externalmortalityas a functionof TSP quintiles.
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unbiasedestimatefor the data and models indicated. The numerical value of a regressioncoef-
ficient alsodependsdirectly on the mean values of dependent and independent variables; the
coefficients of the linear models have units of death rates per thai)sand people per unit of pol-
lution (the unitsoi' pollution include both ppm [ozone] and ug/m" [ali other species]). For the
Ing-linear models,the regressioncoefficients represent incremental effects on mortality ratios.

For the O&T model, Table 16 shows both positive and negative significant regressioncoeffi-
cients, which confirms the reservations expressed above about the adequacy of' the O&T
specification in controlling for non-pollution effects on mortality. Comparisonsamong pol-
lulantsanddiseaseswith the O&T model may thus be problematic.

The complete and parsimonious linear models show significant associations only for
ozone/cardiovascularcausesand TSP/COPD. The log-linear models confirmed these findings
and aim found significance with non-external causes for each of these pollutants. Since the
mortality grouping for non-external causes includes both major cardiovascular (MCV) end
COPD in addition to many other causesof death, it is of some interest to compare the pollution
effects on eachof these cause-of-death groupings. This may be done by directly comparing the
regressioncoefficients of the linear models, or by comparing the products of the log-linear
regressioncoefficients and the mean mortality values (given in Appendix A).

These comparisons(which are ali based on the 10-year average ozone variable) suggestthat the
associationbetween ozone and MCV can account for ali of the indicated association between
ozone and non-external deaths. Note that the estimates of the contributions of COPD to the
ozone/non-external death relationship are essentially nii. Further insights into the plausibility
of theseozone-mortality relationships require several avenues of investigation. First, long-term
averageozone data for the year 1980 should be used in lieu of the smoothed 10-year average
data from Figure 8; data on peak ozone valuesshould be extended to ali 149 locations. Then, if
the relationshipswith mortality persist, the components of MCV (heart attack, stroke, etc.)
shouldbeexamined individually with regard to physiological plausibility.

]n contrastto the ozone findings, the association between TSP and COPD appears to accountfor
only a'fracdon (about 20%) of the associationbetween TSP and nonexternal deaths, lt thus fol-
lows that someother diseasecomponents of non-external deaths (excluding MCV, for which the
bestestimateof the TSP contributions are nii) might be associated with TSP. ]f other associa-
tions betweenTSP and specific diseasescould be identified, the information might be useful in
assessingwhether any of the relationshipsshown in Table 16 might be causal or whether some
portionsappearto be artifactual. Note alsothat artifactual relationshipscould also be presentin
the extant indicated associationsbetween mortality and air pollution (see "Uncertainties," below).

With respectto the regressionsfor sulfate (both [TSP] SO,," and [IP] SO,,=), we note that the

resultsfor [IP] SO4" are consistently lesssignificant than th_osefor [TSP] S04", even though the

coefficientsare quzte similar (this was also the case when TSP SO_ was lira,ted to the 62 citieshaving lP data). As discussedabove, we expect that [IP] SOft the more reliable measure-
taunt, by virtue of the types of filters used, and that the ['TSP] SOft regressionresults may be
biasedlow by as much as 3096 due to the measurement errors; thesuperiority in fit shown by
[TSP] SOft in Table 16 was thus unexpected and suggests that the filter artifacts characteristic
of the TSP sampling technology may somehow be contributing to the apparent relationships with
mortality (which seems counterintuitive since filter artifacts are not inhaled:). We also note that
none of the sulfate results, using either measure, reached statistical significance with the com-
pleto or parsimonious models.

]_dJt_JlJ_ Since elasticities are dimensionless (Table 17), they may be readily compared among
pollutants, models, and diseases. For non-external mortality, there is a remarkable degree of
uniformity among the various pollutants, for the complete and parsimonious models (linear and

' Iog-lineaz). Elasticities range from 0.009 to 0.051; standard errors, from 0.006 to 0.024
(eliminating manganese from this comparison would narrow the range considerably). For TSP,
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ozone, and PMI_, elasticities are higher for the Ing-linear models than the linear models; the
opposite holds for sulfate, PM:__, and manganese. These tendencies probably reflect dif-
ferences in the relative contrib_'t_onsof high and low mortality locations. The uniformity
among elasticities for different pollutants does not hold for the specific diseasegroups; ozone
and PM2.5 show the largest elasticities for major cardiovascular diseaseswhile TSP and (to a
lesserextent) PM is show the largest elasticities for COPD. The standard errors of the elas-
ticities are larger For the specific diseasesthan for non-external mortality but differ much less
amongpollutants.

An interesting comparison may be made among the five models shown for sulfate, for non-
external and major cardiovascular deaths. As one moves d_wn the sulfate columns in Table 17,
from the O&T model to the parsimonious model, the elasticity drops markedly, but its standard
error decreases also. Thus the loss in significance for SO4" that resulted from using more com-
plete model specifications stems from the reduced values of the coefficients (which are the best
unbiased estimates in ali cases), not from increases in the standard errors. Since one of the
hallmarks of multicollinearity is an increase in the standard errors (variance inflation), these
results suggest that the drop in sulfate elasticity shown by the new models is due to better fits
and not due to collinearity, per su.

We note also that the five different model results shown for COPD and TSP are ali essentially
the same, showing a remarkable degree of uniformity independent of model specification. This
is also true,"to a slightly lesser extent, for major cardiovascular deaths with respect to ozone or

PM2.$.

Finally, given the large number of regressions shown in Tables 16 and i?, one wonders whether
the relatively few significant results that were found could have occurred due to chance. For
each model, there are three mortality variables and seven pollutants, giving a maximum of 21
results. We would expect to find one of these to be significant at the $% level, just due to
chance. Since there are two significant findings for the linear (parsimonious) model and four
for the Ing-linear model, two of which exceed the 0.001 level, we conclude that most of the
significant findings are not likely to be due to chance alone. This conclusion would be rein-
forced if manganese were not considered or if only one sulfate variable were included in the
comparison.

Discussion of Soecific Po!lu_ant.DiseaseAssociations

These elasticities also compare reasonably well with the time series results given in Table 1.
Kinney and Ozkaynak (1991) found ozone to be a slightly better predictor of daily cardiovas-
culm' mortality than for non-external causes in Los Angeles (1970-79); they used a linear model
and their elasticities are only slightly lower than the corresponding values given in Table 16.
We have no basis for comparing the ozone results for Ing-linear modeh, except that Schwartz
(1992) did not find ozone to be a significant predictor of daily mortality in Detroit. Ozkaynak
and Kinney did not find ozone or particles to be significant predictors of respiratory deaths in
Los Angeles, but Schwartz and Dockery (1991) derived a log-linear elasticity for TSP and COPD
in Philadelphia of about 0.14, which compares reasonably well with Table 14. No statistically
significant time-series associations have been shown for sulfate, although weak relationships
have been derived for SO2 (Table I).

The Ozon¢-MCV Association. The lack of consistent (i.e., monotonic) dose-response relation-
ships for ozone should be discussed and several possible explanations come to mind, other than
sta_tical variability or the effects of using inappropriate (long-term average) ozone data. First,
some people adapt to ozone and, since ozone levels have been improving in Southern California,
it is possible that the population is now less sensitive there. However, it is also possible that the
mM-range levels of (average) ozone, which occur in most medium to large U.S. cities, are

simply a surrogate for the mix of ozone precursors, including NO r For example, Kleinman
(1992) reports a strong correlation between values of ozone over background (about 29 ppb) and
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the difference between NOv and NOx. Compounds included in this increment include PAN,
HNO 3, and HONO. Finally, becauseof the severe heat wave that occurred in the Central and

, EasternU.S. in 1980, it is possible that ozone effects have been confounded with heat wave ef-
fects (seebelow).

Regional Dependenceof the TSP-COPD Relationshio. Although the associationbetween COPD
mortality and TSP appearsto be quite robust to changesin the model and data set, it is possible
that the relationshipis confounded by regional characteristics. For example, somewesterncities
have beennoted (anecdotally) as retirement destinations for people already suffering from lung
disease,which may have originated in other parts of the country. Some portion of the higher
TSP levels found in the west is regional in nature, having to do with lower frequencies of
precipitation and increasedlevels of windblown dust. Thus, the association between COPD and
TSP could be circumstantial, at least in part. We note that the migration variable (CHNGT0)
tends to be positive for COPD mortality, and one wonders whether the regressions are picking
up the individual characteristics of cities (east and west) or simply the characteristics of the
western region as a whole. An example of such regional dependence was seen in the relation-
ship between SOd" and all-cause mortality (as shown by Ozkaynak and Thurston, 1987), in
which the association is heavily dependent upon cities in Ohio and Appalachia.

Three additional regressionswere run to explore regional confounding with respect to COPD
and TSP. First, the ]49 SMSAs were coded as to location east or west of the Mississippi River
(St. Louisand Minneapolis were considered"east,"as was Honolulu; these assignmentswere not
critical to the outcomeof the analysis). Separate regressionswere run for each subset for the
logarithm of COPD mortality rate using the same model as for the entire data set. TSP was not
significant for either subset, although the regressioncoefficients were positive with abo_lt the
same values. For the "east"subset(n-10S), the TSP coefficient was 0.00094 (p-0.15); ali other
terms in the model remained significant except population density. For the "west" st,bset
(n-44), the TSP coefficient was 0.00064 (p-0.3), and the variables for poverty, population ¢Yen-
sity, andHispanicethnicity lost significance. Smoking remained significant in both subsets_vith
about the samecoefficient.

Next, a dummy variable was added to the model designating east-west location and a regression
was run for the combined data set. This variable was highly significant, reflecting th_ higher
COPD mortality rates in the West, but the TSP coefficient was only slightly reduced in mag-
nitude (0.0012) relative to Table 16 and remained significant (pm-0.006). The conclusion follows
that the COPD-TSP relationship does not appear to be confounded by regional differences.

Additional locations would be required to study the details of the relationship in the West. In
_;_ral, COPD mortality rates are higher in the West, hence the negative association with sul-
f_. TSP levels also tend to be high in some Western locations, presumably because of fugitive
dust but also because of forest slash burning and residential wood smoke. Volcanic ash is
another possibility, of course (Mt. St. Helens erupted May 18, 1980 and Spokane had the highest
TSP levels in the data set). lt is also noteworthy that COPD deaths have been rising nationwide
(presumably because of the delayed effects of smokinf ), while TSP levels have generally been
falling (presumably because of emissions controls). Cross-sectional analyses are incapable of
distinguishing whether an association represents a bona-fide cause and effect relationship, or a
circumstantial one: the selective migration of people with (pre-existing) respiratory problems to
locations which happen to be high in dust loading (see Figure 14 and the ensuing discussion).
While such a scenario would rule out a chronic relationship between TSP and COPD, it could
still be consistent with deaths from acute (daily) effects. This hypothesis could be evaluated
directly by performing a time-series analysis in a location with high fugitive dust levels, includ-
ing the year 1980.



PreviousFindines by Causeof Death

Support for these cross-sectional results is also found in the literature on various mortality
studieswhich also consideredseparatecauseof death groupings, in some cases,becauseof dif-
ferencesin study design, one can only note whether the relative effects are similar, i.e., ranking
of regressioncoefficients or elasticitiesor concordancein associationsof diseasesand pollutants.

Cross-sectionalStudies. Most of the extant cross-sectionalstudies suffered from incomplete or
flawed model specifications, and sometimes from problems with air quality data. Lip£ert's
(1978) studyof 1970 city mortality, which also considered county and state mortality, had some
of theseproblems also, but selectedresults by cause of death are presented here for reference.
Lipfert did not consider cardiovascularcausesper se, but did present results for deaths not clas-
sified asrespiratory, cancer, or external, most of which were cardiovascular. On average, over
70% of deaths were in this category, and the regressioncoefficients were very similar to those
for ali non-external causes(elasticities were higher). Typical elasticities (for TSP) were 0.054
for ali son-external causesand 0.065 for the unspecified (cardiovascular) category. (Lipfert did
not includedata for ozone in his 1978 analysis,but he found significant relationshipsbetween
ozoneand all-cause mortality in his 1984 studyof 1970 SMSA mortality.) The respiratory dis-
easegrouping used in the 197.8city study included asthma deaths and accounted for a total of
only about 1.7% of ali deaths. The respiratory diseaseregressionswere most successfulat the
state level, for which the TSP elasticity was about 0.2 I.

Time-Series Studies. Only a few of the many time series studies which have appeared over the
years have considered separate causes of death. Schimmel and Greenburg's (1972) study of
1963-611 mortality in New York City was one of the most thorough. They looked at nine

cause-of-death categories against SO2 and smoke (regressed jointly), for lags up to seven days,
controlling for temperature. R.esuits were presented for the entire city and for a smaller section
located around the air monitoring site. The elasticities were slightly higher for the smaller sec-

tion, ta might be expected, but mainly for SO2; .the smokeshade coefficients scaled ap-
proximately with the population. In their joint regressions on SO2 and smokeshade, smokeshade
accounted for 2/3 of the excess deaths for total,, respiratory and cardiovascular cause of death
groupialp (for the smaller district); the split for the entire city was weighted more towards

smokeshade because of the depression of the SO2 coefficients when city-wide mortality was
regressed against local SO2. Schtmmel and Greenb-urg used linear models and presented regres-
sion results for same-day-mortality and for deaths accumulated for seven days after the air pol-
lution measurement. The latter elasticities were about 0.025 for ali causes, 0.031 for cardiovas-
culm"muses, and 0.097 for respiratory diseases. These values are lower across-the-board than
the present cross-sectional results, but agree qualitatively.

Kinney and Ozkaynak (1991) did not find a stronger relationship for respiratory disease deaths
in their study of Los Angeles, which used linear models and lags up to one day. However, they
did not examine TSP or any other particle measures, for respiratory disease mortality. They
found relationships with ozone and NO2 (regressed jointly) for total mortality and cardiovas-
cular mortality, with combined elasticitiei of about 0.04 and 0.05o respectively.

Time-reties analyses of Philadelphia (Schwartz and Dockery, 1997.a), Utah County (Pope et ai., -
1992) and Santa Clara County, CA (Fairley, 1990) were ali limited to some measure of particu-
lates ht their investigations of specific causes of death. The elasticities found are given below:.

Elasticity
Cause of death Philadelphia Utah County Santa Clara County

MI(non-external) 0.051 0.072 0.030
cardiovascular 0.071 0.084 0.030

• respiratory 0.14 0. I? 0.13
cancer 0.028 -- 0.029
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These figures indicate reasonablequantitative agreement with the present cross-sectionalfind-
inis; however, the disagreementwith regard to associationsbetween particulate matter and car-
diovascularmortality is noteworthy and may indicale fundamental differences in the relation-
ships. For example, Jt is possible that the time-series relationship for cardiovascular deaths
reflects prematurity of death less than one year, so that it is not reflected in the annual rates.
Similarly, it is possiblethat the ozone-]vlCV associationreflects chronic eff'ects, at least in part,
so that it is not picked up by a daily mortality analysis. Of course, ali of"this speculation as-
sumesthat both types of analysesare not confounded by statistical or data artifacts of various
kinds.

Summaryof Non-Polluti0p Mortality Relationshiz)s

We choseto base our conclusionson the "parsimonious"models becausethey fit the data better
and had highly statistically significant coefficients for most of the terms, lt is thus also impor-
tant to examine these resultsin detail, since Jt has been shown that the extent to which "excess"
mortality is assignedto sulfate is strongly dependent on the way in which socioeconomicand
lifestyle variables are handled. The issue of regional vs. local effects was discussedabove.
Table IS compareselasticities for these variables. We see that using elasticities as a measure,
many of the non-pollution effects account For smaller fractions of mortality than we are cur-
rently est;matingfor air pollution. Note also that the values for smoking may be underes-
timates,especiallysinceofficial estimates tend to blame smoking for almost ali of' COPD deaths.
This may be an inappropriate comparison, however, since age is the overwhelming factor in
Table 18 and the effects o£ smoking per se are usually stated after age adjustments have been
made. Also, the smoking data used in the present analysis are "ecological" in that they are based
on entire statesand are not specific to deceden_ For particular causesof death. The ensuinger-
rors will tend to depressthe smoking regression coefficients.

We find that the factors associated with higher aU-cause (non-external) mortality rates in a
given area are age, percentage of blacks, poverty and smoking. Beneficial factors include the
presenceof Hispanics, of other non-whites, college education, drinking water hardness, and
in-migratio_ For cardiovasculardiseases, the age, education, smoking, and in-migration effects
axe increased;this shedssome doubt on the validity of the "soft-water" hypothesis, since it was
originally directed towards heart disease (Pocock, ]980). Ali the remaining trends conform
more-or-less to the "conventional wisdom." Note that poverty and education are strongly col-
linear in this data set and that independent estimatesof their separate effects may be unreliable.
For COPD, the findings are somewhat problematic, since population density is a strongnegative
predictor and we might have otherwise associatedrespiratory prod)]ems with crowded central
cites. This may indicate rural sourceso£ respiratory problems, s_¢h as farmer's lung, or perhaps
that wind-blown dust is more common in low-density areas in the West. The positive coeffi-
cient for in-migration may indicate that some portion of" elevate_ COPD mortality is due to
selectivemigration of personssuffering from the disease.

Table 19 presentsa listing of previous (some independent) estimates of regressioncoefficients
for some of the variablesused in this study. Agreement appears satisfactory, with the possible
exceptionof % • 65 and smoking. The uncertainties suggestedby these discrepanciesare dis-
cussedbelow.
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Table 18- Elasticities for Non.PollutantVariables

Non.externalCauses Major Cardiovascular COPD

variable linear' log-linear linear log-linear linear log.linear,lii ,J

%65+ 0.74 0.73 0.81 0.79 0.75 0.69

% black 0.022 0.033 0.015 0.038 .0.09 -0.08

% other non-white -0.004 -0.01 ....

% Hispanic -0.004 -0.005 .0.009 -0.015 - -

% with 4yr_llege -0.089 -0.095 .0.15 .0.16 - -

log pop. density .... -0.40 .0.29

cigarettesales 0.11 0.14 0.12 0.19 0.32 0.37

drnkgwaterhardness .0.01 .0.007 .0.01 .0.005 - -

% pop. change,1970-80 -0.033 .0.038 .0.049 .0.059 - -

% in noverW .... 0.27 0.23



Table 19. Independent Estimates of RegressionCoefficients

Results from this Study Rasults for 1980 Cttim

Est. Co, ff. (SMSAa) (Lipfert st a1.,1988)

Yluriabk (Exo(enoueData) Buis non-external causes ali causu
...*-. 0---*-.--.. * ... e .,=...,,,..,,-.--..---- ..--...-.... o ....-,...--* ..--*-..-.....me,e....... *.... ,D ... m.,,....*. ** ....

> eS 0.4es Difference in totad US inor- 0.|8 0,84

tadity ratt for _>4$ - _<88

5_Black 0.0:IS Difference In aq_e-adjusted 0.0S| 0.008-0.017
totLI US rntu, white-blm:k

Other MW -0.0S Difference in 1980 a|e-adjuJted totld -0.01

US ntu, white-'aJl other"
-0.0GIJ* bued on 1960 data

Xispsmk -0.017 Difference in age-adjusted -0.006 -O.04--0.0S

totad US r_tes, Mexican,

-_ Puerto Ricunor Cuban born,
ali whites + ali _l_cks

adjusted for poverty

Smokinlg 0.011 Railtive risk, by amount 0.004 0.008-0.018

smoked tauri. Ges. Apra)

Water -0.001| (Gr_at BrltLin) -0.0007 -0.007--0.06

-.,d_ .0.oa (Sr,y)
-0.004 (Great Britain)

Poverty 0.11-0.17 1970, citil 0.040 0.04-0.06

0.02"0.06 1970, SIViS_

0.034 1970 expected vsdue

CoLqp -0.0S lm 1970, citim -0.04 0 - -0.08
OraduNm -O.O9

-0.018 1960, lndividuM**

*from gitagawu tc'sdHauser (1973)

ComoarJson with Prtvious Fin_inRs for Cities and SMSAs

Since one of the ._mportantissues in the design of cross-sectionalstudies is the selection of"
geoipraphicunits I'or study, Jt is important to compare the present resultswith those of a similar
previousstudy basedon 1980 data for cities (LipFert ez al., 1988). That study found sllghtly
different combinationso£ demographic and socioeconomicvariables to be optimal, but did not
employlog-linear modelsand did not use city-wide averagesfor TSP. If' the model truly repre-
sents what it purports, we should Find the same regression coefficients For both cities and
SMSAs. If the variables are merely serving as surrogates, we might expect to find the same
elasticities. Table 19 indicates good agreement between regression coefficients in most cases.

Since there are no two cross-sectional studies in the literature which employed common analysis
methods and models, it is not possible to make definitive comparisons between 1970 and 1980,
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i.e., to examinewhether benefits in reduced mortality have accrued a; a result of the Clean Air
Act. Sucha comprehensiveanalysisshould be given a high priority.

Uncertsiqiiesl_t_maininl in the Analvsis and Recommendationsfor Their Resolution

The regressionresultspresented above comprise a reasonablycoherent picture, after sourcesof
confounding and error ,_re taken into account. However, many important uncertainties remain
and Jt is fair to assurer that. if they were ali accounted for. this picture would be likely to
changein ways that cannot now be predicted.

ARe Distributions. In spite of the appearance of consistency in these results, many important___

uncertainties remain, The lack of agreement with of the coefficient for 6S+ implies that use of
this simple metric may not be handling spatial variations in age distributions properly. To the
extent that systematic regional differences in the distributions exist within the 65 and over age
group, confounding could result. Note that use of "median age" by Ozkaynak did not seem to
help, presumably because the problem lies with the elderly, not with people around the median
age (30s). Either age-specific deaths should be analyzed (which are often problematic because
of the smaller counts involved), or the age distribution in each city should be used to compute
an "expected" death rate for each location ....

Weather/Climale Effects. Recent analyses (galkstein et al., 1991) have identified heat wave
mortality as more important than summer air pollution in some U.S. cities. 1980 was a severe
drought and heat wave year (Bait, 1992), but not _11locations were affected equally• Since
ozone also responds to sunlight, and TSP tends to be higher in the absence of precipitation,
weather variables should be added to the analysis• Evans et al. (1984b) and Mendelsohn and
Orcutt (1979) found that weather/climate variables could make significant contributions to
cross-sectional mortality regressions. In may be important to include departures from normal
conditions and durations of hot spells in such formulations.

Indoor Air Pollution. While Lipfert and Wyzga (1992) found that indoor and outdoor air quality
for respirable particulates tended to be highly correlated in time when averaged over a com-
munity, this will not be the general case for spatial comparisons. Some communities have more
air conditioning, which protects against heat and outdoor air pollution, and some locations use
more unrented indoor heaters and wood stoves, which are important sources of indoor air pol-
lution. Variables describing the prevalence of heating and air conditioning equipment should be
addedtotheanalysis.

Smokint and Life-Style. The lack of agreement for the smoking variable in this study was also
disappointing and deserves further study. The raw data should be examined for outliers (New
Hampshire is a candidate, because of the high levels of out-of-state sales). Data on smoking
,trevaleuce from surveys should also be evaluated, along with other data on personal risk factors
such as exercise, obesity, alcohol use, etc. The "pace of life" has been shown to vary substan-

s ti_lly across the nation and may be a contributor to differences in heart disease.

Chronic_vs. A_;ute Effects. As discussed earlier, cross-sectional regressions may reflect either
phenomena that occurred during the year of study or the sequelae of trends that built up over a
long time. lt is important to try to reconcile this uncertainty, which might be approached by
exzmi,_m8 mortality for 19"79 and 1981 (with regard to 1980 air pollution, heat waves, flu
epideat_s, etc.). TSP data c_uM also be compiled specifically for these years. There are also
uncertainties as to the correct pollution dose metric, with regard to both chronic and acute
responses. Cross-sectional analyses tend to use long-term averages; time=seri_ sD,dies use daily
averages or peaks. The duration of peak periods is often neglected by both ty__s of studies.

Other Causes 9f Death. Etiological insights might be gained by examining both causal and
non.causal hypotheses (controls). Additional causes of interest include various cancers, in-
fluenza, and pneumonia; control causes might include diabetes or urinary disorders, for example.

m



The componentcausesof death comprising "major cardiovascular" (heart attack, stroke, chronic
ischemi¢heart disease,etc.) should be investigated individually in order to further explore the
findingswith respectto ozone.

Concludinl Assessment

"Ibis studybroke new ground in its treatment of the air quality data for SMSAs and in its ex-
ph)ration of h)8-11nearregressionmodels. Both of these developments turned out to be very
important and suggest that 811previous (national-level) cross-sectional studies of mortality
should be re-examined in these contexts.

Although the previous finding of Lipfert el al., (1988) was confirmed, that mortality from ali
(non-external) causes may be associated with any of several pollutants with an elasticity around
0.05 (and that it is difficult to separate the effects of different pollutants), two specific
pollutant-disease associations were also identified: TSP-COPD and ozone-cardiovascular. The
latter association was judged to be problematic because of flaws in the ozone data used and the
appearance of the apparent dose-respoJltse relationship, but the ozone findings appear worthy of
further investigation, these defects notwithstanding. The TSP-COPD association survived ali at..
tempts to identify confounding or artifacts, but should be confirmed with data for additional
locations and time periods.

Finally, the study confirmed previous findings (Evans et al., 1984; Lipfert, 1978; Lipfert, 1984;
Lipfert et al., 1988) that the association between sulfate and ali-cause or cardiovascular mor-
tality is extremely dependent upon the extent to which non-pollution effects on mortality have
been controlled for. This characteristic stems from the regional nature of SO4= in the North-
eastern United States. Important variables include smoking, a detailed racial breakdown, and
population migration, lt was shown that the results of Ozkaynak and Thurston (1987) are not
robust, in part because of lack of consideration of these variables and in part because of their
failure to average air quality data across each SMSA.
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APPENDIX A

STATISTICSOFVARIABLESUSED

variable name IIobs mean mean sid der. max rain
(149) (98) (149) (149) (149)

TSP Jut/m3 ) 149 68.38 67.72 16.94 141.57 41.25
SO4 (uz/m3) 149 9.29 9.60 3.10 17.00 2.00
TSP-SO4 net 149 56.43 55.37 17.74 135.72 27.23
computed SO2 (uz/m3) 147 16.91 17.59 10.93 46.38 0.56
computed SO4 (u¢/m3) 147 6.66 7.04 3.90 13.86 0.44
coeputed HOx (u¢/m3) 147 15.08 16.14 8.57 46.98 1.44
1970 av'g ozone (ppm) 149 0.0494 0.0495 0.0095 0.0990 0.0130
1980 peak ozone (ppm) 72 0.158 - 0.0575 0.44 0.04
manpnese (ug/m3) 138 0.0357 0.0365 0.0265 O. 1930 0.0086
PH-2.5 (u¢/m3) 63 17.62 - 5.96 37.14 7.21
PH-15 (uz/m3) 63 38.48 - 12.22 60.64 21.91
IP-S04 (us/m3) 63 4.27 - 2.46 12.32 1.03
IP-Pb (ug/m3) 63 0.203 - 0.12 0.62 0
population count 149 928330 1091937 1289727 9120346 38092
population density 149 596 673 1174 12108 29
log pop. density 149 2.52 2.59 0.43 4.08 1,47

white 149 84.57 83.60 10.79 98.80 33.10
I; black 149 11.14 12.77 9.66 39.90 0.10

other nonwhite 149 4.29 3.63 6.84 64.70 O. 30
X nonwhite 149 15.43 16.40 10.79 66.90 1.20
median age 149 29.77 29,82 1.94 38.40 25.00

65 and over 149 10.60 10.47 2.17 21.40 6.20
_; pop, change,1970-80 149 12.83 11.62 14.96 69.45 -9.30
saokiq (1980) 149 186.84 186.97 24.16 324.55 125.21
snoktq (1970) 149 191.30 191.03 21.09 303.00 115.00
smokina,avl 1970,1980 149 189.07 189.00 22.70 299.20 121.75
Z 4 Fr college (1970) 98 11.27 11.27 3.42 23.40 5.10
_; 4 yr college (1980) 149 16.58 16.85 4.43 32.00 8.00
_l belcm poverty 149 11.14 11.24 3.01 21.70 6.60
S gispanio 149 5.30 4.55 9.I1 61.90 0.30
Drnk¢ mater hardness 149 107.05 97.46 94.23 484.00 0.00
heatlnql delree days 149 4733 4592 2083 9901 0
deaths (all causes) 149 7963 9330 11924 95550 487
deaths less external 149 7334 8589 11065 89675 425
deaths (cardiov.) 149 3912 4573 6056 50279 217
deaths (COPD) 149 218 250 277 1771 18
mort rate(ali causes) 149 8.502 8.531 1.486 13.704 4.907
mort rate (nonext) 149 7.826 7. 650 1. 485 12. 899 4.377
mort rate(cardlov. ) 143 4. 193 4. 201 0. 950 7.686 2.027
mort rate (COPD) 149 0.251 O.241 0.075 0.683 0.122
1o¢ mort rate (ali) 149 0.923 0.925 0.076 1.137 0.691
Icl mort rate(nonext) 149 0.886 0.888 0.083 1.111 0.641
log mort z'a_e (CV) 149 0.6_1 0.613 0.100 0.888 0.307
log mort r_te (COPD) 149 -0.616 -0.629 0. 116 -0o 166 -0.914
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Appendix B Additional Scatter Plots for Non-External Mortality

Figures B-I to B-9 present scatter plots of these residuals against the additional pollutant vari-
ables which were not specifically considered in these regressions. NET TSP appears similar to
TSP (Figure B-I). PM-IS (Figure B-2) has one high-value influential observation (San Ber-
nadino, CA); the fine particle plot shows three such points (Figure B-3). Manganese in TSP
shows a positive relationship (Figure B-4) in that ali of the Mn values above 0.05 h_ve have
positive residuals, but there is no apparent effect of dose. Mn may thus be acting u sn in-
dicator variable for ferrous metal manufacturing operations, rather than as a pollutant, per se.
Both 504" (Figure B-S) and Pb (Figure B-6) from the inhalable particle samplers show scat-
tered relationships with little trend.

Figures B-7 to B-9 present plots of these residuals against three variables derived from a long-
range transport model for air pollution (Shannon, 1981). Only the values intended to represent
NOx (Figure B-9) suggestany kind of trend.

i
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Figure B-]. Scatter plot of residual 1o8 non-external mortality rates vs. the TSP-SO4 = dif-
ference.



FigureB-2. Scatterplotof residuallognon-externalmortalityratesvs.PM I$.
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Figure B-3. Scatter plot of residual log non-external mortality rates vs. PM2.$.
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Figure B-4. Scatter plot of residual Io8 non-external mortality rates vs. manganese in TSP.
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Figure B-$. Scatter plot of residual Io$ non-external mortality rates vs. liP] SO4".



P

-0.1
0 0.2 0.4 0.6 0.8 1

Pb fromdiohotsampler(ug/m3)

Figure B--6. Scatter plot of residual log non-external mortality rates vs. lead in inhalable par-
ticulate.
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Figure B-7. Scatter plot of residual log non-external mortality rates vs. 502 computed from the
ASTRAP long-range transport model.
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F'tzure B-8. Scatter plot of residual Io8 non-external mortality rates vs. SO4- computed from
the ASTRAPIona-ranse transport model.
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• Figure B-9. Scatter plot of residual log non=external mortality rates vs. NOx computed from
the ASTRAP Ions-range transportmodel.






