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I. INTRODUCTION

The acceleration of polarized proton beams has been done in a number of syn-
chrotrons such as at ANL, Saclay, BNL, and KEK. The theory and technique have
been well established up to the energy of a few tens of GeV; however, the same tech-
nique cannot be applied to an energy range of TeV as in the SSC. For such a machine
we need Siberian snakes. As for this clever scheme, however, nothing is known experi-
mentally and even theoretical knowledge is not enough to make reliable predictions for
the SSC. It is generally thought that the single and double Siberian snake schemes are
insufficient and that we need many pairs of double snakes. The point of controversy
now is how many pairs are necessary and sufficient.

A most drastic depolarization during acceleration can occur when the spin-orbit
resonance condition

u — m mivx-\-m2Vy-\-mzvs (1.1)

is satisfied. Here, v is the spin precession tune, vx,Vvy,vs are the horizontal betatron,
vertical betatron and synchrotron tunes and m'’s are integers. In planar rings, since
the spin tune is given by

I/ =7a = £/0.52335GeV (1.2)

to a good approximation, where 7 is the beam energy in units of the rest mass and a
is the coefficient of the anomalous magnetic moment, the spin tune varies over a large
range during acceleration, which makes resonances inevitable. The Siberian snake is
an idea to keep the spin tune at some value, usually 1/2, away from any resonance.
However, in very high energy rings, perturbations such as machine imperfections
and betatron oscillations may change the spin tune considerably so as to cause a
resonance. Also, even if the spin tune does not satisfy Eq.(l.1), we may have non-
resonant depolarization during acceleration.

In this paper we shall discuss this problem according to the following steps:

(a) The first question is whether or not Eq.(1.1) is satisfied at some energy. Ifyes,
we have a resonance crossing and have to follow the standard procedure: compute the
resonance strength (Fourier harmonic), put it into the Froissart-Stora formula, and,
if the resonance is neither strong enough nor weak enough, consider the cures. In
some cases further investigation is necessary for the possible overlapping resonances.
Obviously, however, we prefer the answer “no” for this first question, because in very
high energy rings we usually have a tremendous number of resonances which cannot
be cured in practice. Thus, the first question imposes a condition

\6vl = If — - (1.3)



(b) When the answer of the first question is “no,” we next consider the spin
direction. We express the perturbed spin motion at each fixed energy using action-
angle variables; i.e., decompose the spin vector s into its component along a vector
denoted by n and the precession around it. The projection of s onto n is the action
variable JJ. The vector n deviates from its unperturbed value no due to perturbation.
Then the second question is whether or not |n — no| | is satisfied at the final
energy. If not, there is no hope of polarization at that energy. Also, we ask whether
it is satisfied during acceleration.

(c) If not at some energy, it does not immediately mean depolarization. The spin
might come back to no after passing this region of energy. In this case we have to
consider the speed of acceleration. Since J is an adiabatic invariant, the polarization
will be restored if the acceleration is slow enough.

(d) The final question is the possible resonance overlap, as in the case of resonance
crossing. Especially when a very slow acceleration is required in (¢), the contribution
of another hamonic can be significant. But this question is beyond the scope of the
present paper.

In Sec.2 we shall develop basic formulae using perturbation theory. In later sec-
tions we discuss the above stated points (a) to (c) for betatron oscillations and machine
imperfections.

II. PERTURBATION EXPANSION

In this section we shall apply the well-known, old-fashioned perturbation theory
to find the spin tune and the spin action-angle variables for a quasi-periodic system
(i.e., in the absense of acceleration). There are several methods for this purpose.
The present method is not a smart one but seems to be the most familiar. The
spin tune will be given up to the second order of perturbation and the action-angle
variables up to the first order. The resulting formulae have been given by Derbenev
and Kondratenko.!

Let us start from the equation of motion

el (n0(6) + 81(6)) x s, (2.1)

where 6 is the generalized machine azimuth of the ring and the components of the
spin vector s are measured in the system (e”, sy. €z), ¢* being radial and e2 being
longitudinal unit vector. We assume the unperturbed spin angular velocity vector 170
is a periodic function of 6 with period 277 The perturbation 6/ may contain different
frequencies like the betatron tune.



The unperturbed equation
~ =mno(0) x s 2.2)

has three orthonormal solutions noi,no2,n03. The third vector n03, which we often
denote as no, is periodic in 0 and k0 = noi + mo has the quasi-periodicity

ko(0 + 27r) = e-2™oko(0), (2.3)
where 70 is the unperturbed spin tune. We introduce a complex periodic vector
ko(0) = eVoX(0). 2.4)

Then the general solution to the unperturbed equation can be written as

s = Jono(0) + y1i — J2 T&ie-"ko™)]. (2.5)

Here, Jo and >0 are the action-angle variables of the unperturbed system described
by the Hamiltonian 1/QJo-

The purpose of this section is to write the spin vector in the same form as Eq.(2.5)
in the presense of perturbation, which can either be machine imperfections or betatron
oscillations. Since the spin tunes of particles in a bunch have some spread normally,
one can assume the distribution of the angle variable is uniform except in transient
cases such as during resonance crossing. Therefore, the second term in Eq.(2.5) van-
ishes by average over particles and the degree of polarization is just the average of J.
(If no depends on particles as in the case of betatron oscillation which we shall see
later, one also has to average no.)

Now, consider the perturbed Hamiltonian

1J(Jo, Vo, $) — J-'0oJo + 6£1(6) * s(JQ, ipo, 0), 2.6)
with s given in Eq. (2.5). A generating function W(J,ipo,6) causes the canonical
transformation

aw
Jo— 2.7
dipo
aw )8
dJ (2.9)
Hr, w4 Um0 V<l = 5 rrerko sy + (2.9)
di'po dtpo diPo
Expanding W according to the order in as
W —VoJ + + A2 e 2.10)



we get, to the second order,

dw)\ dw)\

Hn voJ + - J<SN "no + V1 — /2 72%(e ““Oko + 8£1) +
<92/>0
dwl t dwi™ dwWl Tfe(e-'*>ko * <5fi) + ~_(2.11)
+i/oTTi—- 4. 1 nl

dipo
The first order Hamiltonian is
Hnew,i — J (no'* § (2.12)
where () is the long term average; i.c.,

</(«))= Hm = E72/(<)<.

2.13
T—%0o0 1 J-T 2 ( )

When 65~ contains the orbital oscillation, we can treat them as another degree of
freedom, by introducing orbital action-angle variables (/, ¢p). Then, the average would

" Ypp=h Cieh C ()

assuming / is periodic in ( and p>. However, since the influence of spin on the orbit
is extremely small, we may treat the orbital motion as an external force, i.e., treat p>
as an explicit function of 6. Then, the average takes the form (2.13).

The first order generator satisfies

U0 = + — = —J(mh+ SO — (0 + 60)) — vIT~rP72e(e-"ko + SU).
Ulpo Ou

The solution which has vanishing long term average is

(2.15)

=3 /% dO(mo1 81 — 0+ 8CI) — s/INPKe e-~V"W / e~Nco 1 80d0
J—-00 J—00
2. 6
We shall often encounter integrals from minus infinity. They are .to be understood
as the following. If the integrand is expanded into Fourier series, then

AtzO

/ do (2.17)

IK

term by term. (If the integrand contains a zero-harmonic, which can happen at
exact resonances, the integral cannot be defined.) This recipe can also be written by
introducing an infinitesimal damping factor, as

S8 f0)d0 lim ™ ecef(0)do. (2.18)

J—o0 e—>0+ J 00



If the integrand has the periodicity f(6 + 2T77) = e'af(6), then one can reduce the
integral to finite interval;

Y ¢
f6)d0 = lim V 7 etef(0)d0

eN—+"15 2ntl)Tr
r9+2

— hm ™ et [ etef(6)d6

1 /o0+27T

— (2.19)
’
Thus the new action-angle variables are found to be
awi
J Jo- .
dipo
J0+\1— qgpi giloetlonSC e-ilekl snde 2.20)
J—o0
N - dwi
= ipo
T ar

. [6 J —F) o*"0# mee :
fio = A6t — (0 6p) + 7 T SHEE T inws

Q21

up to the first order of perturbation.
We can define a new orthonormal basis (7% k,2m k, n) so that the spin component
seen in this frame is (\/1 — J2 cos >, /1 ~ J2sin?>, J). Comparing Eq.(2.5) and

s =Jn +v/T P e-"k), (2.22)
we get, to the first order of 617,
n = nl + 2In[k*e!lloe T 1 6f1d0]
J—00
= nl+2bi[k*/e ko-~dO] (2.23)
J—00
k = k0 - iko (n0 — (n0 6f1))d6 + inleifoB_Fr~ e~ko 1 6ftdO.(2.24)
J—O() J—O()

Now, let us proceed to the second order, for which we shall derive the spin tune
only. From Eq.(2.11) we get

J / dwi

Haew? — gy T7e(e0k0 + 612) (2.25)



since the term dwijdipoWo 1 SCI vanishes by the average over 0. Using Eq.(2.16) we
have

I/ J  e~ko Sfldd] Ke™Nc*160)

[-Iunew,Z

* i i r”
L7k _FU &xili$9ko 1 Sfldo'j . (2.26)

Thus, combining Eq.(2.12) and (2.26), we finally get the spin tune up to the second

order in
v — In+ Az/i+ AU 2.27)
Aur = (n0'6H) (2.28)
AUl = (k*01 6nei’e bt e-"koSUIO"

= mlKkl-snji kO-8Ude\. (2.29)

These formulae are entirely general but in the following we discuss the effect of
transverse displacement only, for which we have

<50 = R{™a + D(x"ey — y"ex). (2.30)

Here, a prime denotes the derivative w.r.t. the design orbit length s and R is the
average machine radius, which appears because our independent variable is not s but
6. Furthermore, we shall discuss only the case where no is vertical (up or down) almost
everywhere. (We do not discuss single Siberian snakes.) With these assumptions we
find that only a horizontal displacement contributes to the tune shift in first order
and only the vertical in second order;

Aui = R™a + 1) (nlieyx") (2.31)
AVv) = "~Rl(yd+ D2Im (korvexy”" J k0 exy"do6; . (2.32)

In passing, let us give explicit formulae of the vectors n) and k0 for our model
ring. If the ring is planar and the bends are distributed uniformly, they are given by

n0(#) = -ey (2.33)
k0(<9) = e~u/e(ex + iez) with fo = ya. (2.34)



The sign of nl is so chosen that the spin tune is +70 for our right-handed basis.
When we discuss Siberian snakes, we shall take the following model of the ring. The
ring has M sections, each of which consists of a first-kind snake, an arc, a second-kind
snake and another arc. The two arcs in a section must have the same bending angles.
We shall call this unit section a “snake period.” The number of snake periods, M,
must be odd in order to have /9 = 1/2. We do not take into account the details
of the snake structures and assume they simply rotate the spin by 180 degrees. We
denote the locations of the first kind snakes by #o(= 0), $2, #4, «> #2M-2 and those of
the second-kind snakes by #1, $3,...., The vector n0 is always vertical and given
by

no($) = (—1)Jey for # 1 <6 <6 (2.35)

If all the sections are identical, as we shall assume in most cases, 6/ is given by

0 =M i=0,1,....2M-1. (2.36)

and the bending angle of one snake period is 62. In the first snake period, the vector

k0 is

ko(0) = e-"ue(ex + iez) (0 <0 <0X
— et~ (ex—") (0i<0<02) (2.37)

and the periodicity
ko(0 + 02) = -ko(0) (2.38)

gives the values for 0 > 02.

ITII. MACHINE IMPERFECTION
TUNE SHIFT

In this section we discuss the depolarization due to machine imperfections. First,
consider the spin tune shift.
The first-order shift only comes from the horizontal closed-orbit distortion

1
= R(ja + 1)— (n0 + ey)x"oddd. 3.1

In planar rings this is exactly zero since no ' ey = | and a:Cod is in fact closed.
In the rings equipped with Siberian snakes, the first-order shift is

-ya 2M 1
A*. = E (-1 K,d(0,+.-) — <,<.(<;9)]. (3.2)
27t j=0



where the sign following 6 indicates just before or after a snake. In contrast to the
case of planar rings, this is not necessarily zero. If;ree>d is random, we have statistically
7a —+1
A ,rms — er \/4M cod,rms* (33)
At 20 TeV, “codrms  one niicroradian gives /S.ul ~ 0.01VVM. This is not important
unless M is of the order of 100. Also, even if Az7 is large, we can correct the orbit to
eliminate it, because the correction is independent of energy.
Next, let us estimate the second order shift. The expression Eq.(2.32) of AU2 can
be rewritten, using Eq.(2.19) and (2.3), as

| 1 P25 m0+27T
Al = - R2{™a+ D2 Tm , (3.4

where
/i(0) = k0 + enf). 3.5

This integral shows very different features between the cases with and without
closed-orbit correction. For simplicity let us assume that all M sections are identical
with respect not only to the snake scheme but also to the orbital optics.

If we do not correct the orbit, ycod is dominated by the Fourier harmonic close to
+vy + kM, k being an integer. Within a half snake period, between first and second
kind snakes, /(8) oscillates with the phase iqa#. Therefore, Az" can become very
large near the beam energy corresponding to 7a = +z/y + kM. 1t is not important at
other energies. This phenomenon may be called “local resonance.” It does not cause
infinity in the expression (3.4), for the effect does not accumulate over revolutions but
only within a half snake period. However, if the tune shift due to this local resonance
is large, it may cause a real resonance Eq.(l.1). In this circumstance the multiple
Siberian snake breaks the accumulation before it becomes large and cancels it with
that in the following snake periods.

On the other hand, if the orbit is well corrected, the spectrum of ycoa is white
and there is almost no correlation of ycoa between different snake periods unless, for
example, every FODO cell is equipped with snakes. There is no special value of
energy which causes local resonances. The tune shift can be equally important or
unimportant at every energy apart from the factor 7a -)- | in Eq.(3.4).

Let us estimate (3.4) when one Fourier harmonic X, an integer close to %uy + kM,
dominates;

"

y'a = + Y¥*e-tKe (3.6)



The phase of the integrand is either (K + ja)6 or (/c — 7a)¥#. When 7a = K, we can
ignore the former. For one pair of snakes M = 1, the integral is

/11 [40-{2Tr
/ dOh*y"od / dO'hy"oA
Jo Jo
£ \L e~M' + j£ (= JE " e———y«oid«
+ £ y2ir tiK(0"—2D) i iK(0"—2ir) rOSn Ja#A ,
) y'codM'
JN Jo JI* Jsir
i\ 27T )
/s [(N =y« + Fyy —«n] + /0y, [(2» = Qy; = Ny, = (« = Xjys]
Jo Jn
ANN5Y - n2)-

Thus we get
AN = +7-122(7a + D2 2m Y£. 3.7

This can be expressed by a more familiar quantity, the resonance strength often used
for planar rings;

<

e““=2Z F—k°wmnie e~n‘e”" M <3-8)

where, if 7a = K, the integrand is periodic. We take YK term only and get
ek = -R(7a+1DYK 3.9
Using e* we can write Eq.(3.7) as

Av2 = —TmeR. (3.10)

One can easily derive the tune shift for multiple snake case in the same manner with
the result
*

AN = 2 3.11
444%™ (3.11)

which agrees with the small X limit of the formula given by R.D.Ruth.? Thus we
find the multiple Siberian snake can reduce the spin tune shift as long as one single
Fourier harmonic dominates in yCod-

Next, consider the case with orbit correction. Since A(6 -f 271) = —h(6), we can
rewrite Eq.(3.4) as

Ary = A L P de )T 490d(6)y"0d(9, ) (0)h(6)sen.(9 — 9)  (3.12)

0TT Jo Jo



where sgn(:z:) = —1,0,1 for a2 < 0,= 0, > 0 respectively. Let us approximate y"odRd6
by thin lens kick angle <Jn, n being the sequential number of kicks. They can be due
to either errors or correctors. Then Eq.(3.12) can be written as

(70 +1)2 Ve |
AN — e e I Y_7 *mhnO‘)mO)nSgn(n - m); (313)

Tr m,n=0

where Nk is the total number of kicks and /4n is the value of /4 at n-th kick.

Now, estimate the expectation of after orbit correction. Since the correlation
of (pm with (pn is usually very small if |m — n| is more than a few, we may ignore the
correlation if the m-th and n-th kicks are in different half snake periods. When they
are in the same half snake period, the spin phase function in Eq.(3.13) is

= e+,7aA0mn in the same half snake period (3-14)

where 46mn is the distance between m-th and n-th kicks in machine azimuth and the
upper (lower) sign is to be taken when the kicks are downstream of first (second) kind
snake. Now, the expectation of Az" becomes

(Ma + iy2 ~-1
(A1) == — +sin(7alA6imn|)("mi>n)

m,n=0

= 0, (3.15)

because the plus terms and minus terms cancel each other within each snake period.
Thus we find that the expectation of Ai™ vanishes.

The next step is to estimate its standard deviation. For this we further simplify
our model, assuming that all kicks are equally spaced so that A6mn = 2ir(m — n)/Nk.
We introduce the correlation function of <

PmPn) — Clm—norms' (3.16)
From Eq.(3.13) we get
_|_
(A7) U?smzl Ky v hmhm) o bim )
(<pm<pn<pm><pn')sgn(n — m)sgn(n' — m"). 3.17)

Ignoring the four-point correlation, we decompose the product of ™’s into three terms,
{<Pm<Pn)(<pm'(pn’), {(pmfpml){(pn(pn') and (<pm<n')(<Pm'<Pnh The first one vanishes because

10



it gives (Ar/2)2- The third term gives the same contribution as the second. Thus, we
have

7a + 1)
Ay = 72FD hnha) (™ W, hn')

(S")2 m,n m\n'

»msC|m_m-|C'[n_n/|Sgn(n — m)sgn(n' — ")

2 12
Ta + 1R 27770,
(7a =ESsi

sin m —n
St gy HvT
27770
sm
and, approximating sin2 by 1/2 and sin cos by 0, obtain
70 12 27770 .
Ay 7O 12 cos (4 o pClil (3.18)

7=1

The factor ICil is usually about 0.5 or less and the rest are small. So, we estimate
the factor in the asolute sign to be about 2 at maximum. Thus, we have

70 + i NINA
Al rms — ( Mf;\ (3.19)

This formula is derived for a somewhat oversimplified model but is expected to apply
to more general cases apart from the factor 2 due to the residual correlation. In
general the factor ("Nk should be understood as the sum of 2.

The contributions to mainly come from three kinds of kicks, namely, the
off-centered orbit in quads, vertical kick (B due to the roll of bends (rotation around
longitudinal axis) and the kick <¢ by the correctors. The strength of each corrector
Oc is a sum OCB + “cq, where OcQ and OCB are the required strengths to correct
the effects of the misalignment of quads and the roll of bends, respectively. We may
assume that 0cQ and OCB have no correlation.

Usually, the correctors and monitors are placed close to quads and the origin of
the monitors are adjusted to the center of quads. Therefore, we have

NktLs — NQ ((gymon + 0CQ + ~CB)2) + NB (02) (3.20)
where ymon — vecod — vaus is the residual closed orbit distortion with respect to the

center of quads, s is the misalignment of quads, ¢ is the inverse focal length of the
quads and NQ and NVB are the lengths of a quad and a bend. The three terms in the

11



parenthesis have only small correlation to each other. As is shown in appendix A, we
statistically have

Nc (PcQ) ~  VQ {(5y,tu.,i2)
NO(™B) ~ IVB(4)- (3.21)

Also, note that <'B = 2118B/NB, 0B being the roll angle of bends. Therefore, Az".rms
can be estimated as
Av2irms ~ N N~ [NQ92ymon,rms + NO<I2yLs,rms + ~B,rms * /7NB] (3.22)

n=2 (JG/NB < 1) =1 (la/Ns = 1)

The factor n comes from the following consideration. We have estimated the spin kick
angle due to the roll of the bends by 7a + | times the orbit kick angle (B, However,
when 277T"a/NBi the precession angle in one bending magnet, is very large, the spin
kick due to the roll is much smaller than this estimation. Therefore, in such a case
the last term of Eq.(3.20) can be ignored. But the term of the same form coming
from <'CB through Eq.(3.21) still exists, giving rise to n = 1. Otherwise, both terms,
the direct term and “>CB term, contribute and give n=2.

When the roll angle of a bend is not uniform due to fabrication errors, we should
cut the bend into short pieces and treat each piece independently by using a larger
number for N5

Let us estimate the tolerance for the SSC. The upper limit of the tune shift that
does not cause resonance is not obvious, especially because we don’t know how high
an order of resonance can be significant, but here we assume up to =~ =0.15 is
tolerated and take three standard deviations as a safety factor because, as is seen in
Fig.2(b) to be described later, Nv is a very rapidly varying function of energy and the
condition of small Vv has to be satisfied at all the energies. Typical SSC parameters
[iIVQ(number of quads in the arc)=700, <7=0.01/m, AB=3800, 7a =38000 for 20 TeV]
and the condition Aryms ~0.05 lead to the tolerance of quadrupole misalignment
ymis.oms ~ 80 microns if the errors come from quadupole misalignment only. The
tolerance of closed orbit after correction is also ymCn,rms ~ 80 microns. The tolerance
of roll of bends is 0B,rms ~200 microns if the errors come from bends only, (n = 1 is
used since'7a/iVB = 10.) Each dipole magnet is about 16m long, which is too long
to consider to be uniform. If we assume four 4 meter long independent pieces, then
the tolerance becomes #B,yms ~400 microns. Bear in mind that these tolerances are
inversely proportional to the beam energy.

Figures | to 3 show an example of computer simulation. The adopted model is as
follows. The ring consists of JVc=330 identical FODO cells, each of which is 200m long

12



and consists of a pair of thin lens quads of equal strength and two bends. Monitors

are attached to all the quads and the correctors are located at the center of one of

the bends in each cell (one per cell). (This point is different from the above theory.)

The corrector strengths are determined by least square method. The Siberian snakes

are inserted equidistantly. Since Nc¢ = 330 = 2x3x5x 11, the possible numbers of

snake pairs are M = 1, 3, 5, 11, 15, 33, 55 and 165. Adopted parameters are:
quadrupole misalignment = =& 100 microns (uniform)

monitor error = & 50 microns (uniform)

tune iy = 53.213 (~ 58 degrees per cell)

roll of bends not included

Figure 1(a) shows the spectrum of y"od before correction. Clearly, it is dominated
by the harmonics, 330 — Vy, vy, 165 + vy and 165 — uy. The last two come from the
alternating sign of the quads. The r.m.s. cod is 1.2 mm. After correction it becomes
25 microns and the spectrum becomes as shown in Fig. 1(b). No particular structure
is seen.

The tune shift Au = v — 0.5 for one pair of snakes M — | before correction is
plotted in Fig.2(a) as a function of 7a for 37620 = 114 x A"c < 7a < 38940 = 118 x Nc.
(In this figure the misalignment is reduced by factor 10, since otherwise Av is too
large.) One finds sharp spikes due to local resonance. If we have M pairs of snakes,
the spikes become M times lower and M times wider.

Figure 2(b) is the tune shift after correction. No resonance-like structure is seen
but instead one finds a suppression of Av near 7a = 116 x Nc. This is due to our
oversimplified model for simulation. Since the location of every kick (by quads or
by correctors) is a multiple of 27r/(4iVc) in our model, the precession angle between
successive kicks is a multiple of 360 degrees when 7a is a multiple of 4 x A*c. There is
no net preccession. This effect can be explained, to some extent, by the cosine term
in Eq.(3.18), where C\ is usually negative. This effect will not be seen clearly in real
machines due to various asymmetries.

In the case of one pair snakes dnu is a rapidly varying function of 7a, as in this
figure. If we have M pairs, it is less rapid (Au/d'va ~ 1/M), but At/mns is still the

same.
SPIN PRECESSION AXIS

The next problem is the deviation of the precession axis n from n0; <5n = n — n0.
A large value of |<Sn in some narrow energy region during acceleration does not
immediately mean depolarization, because the spin direction might be restored after
passing this region. It can at least be said, however, that a large |<5n| at the energy
for experiments is fatal. One should also note that, if |[<5n| is large, our perturbation

13



approach fails.
From Eqgs.(2.22), (2.30) and (2.19) we have, for ull = 1/2,

8n{6) = Tm k*F(6) (3.23)

with I . LoJet2K
F(9) = -R(ia + i) Je Ke)y'ue)de. (3.24)
Since |™n|2 = \F\2, we have only to discuss the scalar function F(9). First, let us

estimate it in the case without orbit correction. When one Fourier harmonic domi-
nates one can easily integrate (3.24), ignoring the rapidly oscillating terms. At the
locations of snakes 0, defined in Sec.Il we have

772) 13[ i2(7a+1)|rK|cos(argy« +">+a+1)M)x { !_J_ZOJ; (3-25)

For 6j < 6 < 6j+Z, F(6) is on the line segment from F(6j) to F(6j+i) in the complex
plane. Therefore, the maximum of \F(6)\ never exceeds, and in fact is very close to,
the value given by replacing cos in Eq.(3.25) by 1. Thus, we get

|[<5njmax — 1-~ — Jy[ (3.26)

Comparing this expression with Az/2 in Eq.(3.11) we find that, in the case when ek is
large so that we need large M, |*n| is always much smaller than unity if 4v? is.

Now, consider the case with orbit correction. We can rewrite (3.24) as a sum over

Fin = —-APLER'< al)

where the summation is over the kicks between 6 and 6 + 21T Its square average is

. <z + 1x 2
@(iroTI2) = 22 ' Yy | hmhn(\jm(f)n)

+
: hn+jhnC\j\. (3.28)
nJ
With the same assumption as before we use Eq.(3.15) and obtain

(lff) _ 7a + l(ﬂr E i+aEcos (™) c, (3.29)
Jj=l K ivfe
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By estimating the quantity in the square brackets to be about 2 as before, we get
+ (3.30)

The last line comes from Eq.(3.19). Thus, we find, also in the corrected orbit case, that
if An is small, so is <>n. The depolarization due to the tilt of n is |*n|2/2 ~ 7rAn2)rms-

IV. BETATRON OSCILLATION

In this section we discuss the depolarization due to betatron oscillation. The
effects resemble those of the uncorrected c.o.d. in that they show the local resonance
when the sum of or the difference between the spin precession tune per snake period
ga/M and the betatron tune vy/M becomes an integer.

TUNE SHIFT

Obviously, the first order correction Aiq vanishes by the average over 8. Let us
consider An2. We can decompose  into two parts;

y'i(6) = ()W + V<->(0) 4.1)
so that W-) is the complex conjugate of W+) and has the quasi-periodicity
1 (£)(0 + 27T) = 2™y (+)(0) “4.2)

where vy is the vertical betatron tune. Then, using the quasi-periodicity of ko,
Eq.(2.3), we get

7 =0 "1 Z7z-h~YWde- <4'3>

By the average over 8§ the terms y(+)y'(+) and y( )y( ) vanish. The remaining terms,
y(Uy(=\ are periodic in 8. Thus, we obtain

A R\fa+ Dl 1 P geymmg) /" yrng8)as (4.4)
e2irt(+i/s-i/0) __ 1 27T J, Je

As an example, if the ring is planar, i.e., & = e na8, and consists of Nc identical
FODO cells with length Lc, this formula gives

A — WNc(Ga + 1) sm(ficy/2) sin(yc/2) cos(/ic/2) — cos2(/iCli/2) 4.5)
v = nLr. cos(ncy/2) sin2("¢/2) — sin2(ycy/2) '
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Here, W is the Courant-Snyder invariant of the betatron oscillation, /ucy = 2TTUy/Nc
is the phase advance per cell and [ic = 2T7"a/Nc. The focusing and defocusing quads
(thin lens) are assumed to have equal strength and the focusing effect of bends is
ignored. Near a resonance /9 = + k, k being an integer, the integrand of the r.h.s.
of Eq.(4.3) is nearly periodic. It determines the resonance strength

l0=K=<7y+k % (4.6)

The machine configuration stated above gives

m

As an example, let us take a machine with iVc¢=330, Lc=200m and /iCJ=60 degrees.
We get the resonance strength

E 1

M =2.1
20Tev V 10-6rad.m'

4.8)
where -yW is the normalized Courant-Snyder invariant. This is about the same as the
one estimated by E. D. Courant ef a/ 3 for a more realistic model of the SSC.

The integral in Eq.(4.4) can be expressed by this parameter near the resonance.
Then, we have

AU 1 N .
2 Vo TVyY — k

Since we are using a perturbation expansion, these formulae do not apply in the close
vicinity of resonances.

The formula (4.5) was checked by a computer simulation for a planar ring by
tracking a spin at fixed energy and by using Fourier transformation to find the spin
tune. The agreement was excellent.

For rings equipped with Siberian Snakes, AV] is zero if the following conditions
are satisfied.

(1) unperturbed tune 1Q is 1/2.

(2) betatron optic has the mirror symmetry so that 0) = FW(0).

(3) with respect to this symmetry point, ko ' er = is symmetric, i.e., 2(—9) =
h(6), which is satisfied in our model ring. (Note that 4 cannot be an odd function
since |*| = 1.)

16



Let us prove this. Using (1) and the quasi-periodicity of 1'd+) an(j one can
change the integration range (8,9 -f 217) in Eq.(4.4) to (0,271) as

Al = Ri(ya =+ Dl ae' (FCE)h) ¢ (y(£) h) & sSn(9 —9")exlysgn(#-07)
STT COS
(4.10)
If one replaces § and 9’ with — § and 27r — &8, respectively, the integrand becomes
(Y™ )N sgn(0' — oy™yVv"™o’-0)’
Using

YT -9) =
and A(2n — 9) = —h(—9) — —h(9), one can rewrite the integrand as
(y(F)/1*)e (U(F)/1)e/ sgn(0' — 0)ex™*ggn(<"-e).

By exchanging + and =p, one finds the same expression as Eq.(4.10) but the overall
sign is changed. Thus, we have Az" = 0.

This fact was confirmed by a computer simulation for the above simple model,
using Fourier transformation to find the spin tune. An interesting fact is that Ai/ = 0
seems to hold exactly not only to the second order of perturbation. Even when the
amplitude of betatron oscillation is so large that spectrum lines of very high orders
are seen, all the lines can be identified either as integer Xi™ or 1/2 — integer x vy. The
proof of vanishing Az" to arbitrary orders may not be easy but we can conclude that
the spin tune shift due to the betatron oscillation is very small. Therefore, there is
no real resonance.

SPIN PRECESSION AXIS

Next, consider the tilt of the precession axis <5n = n — nl due to the betatron
oscillation. By reducing the integration in Eq.(2.23) to a finite interval, we get

<5n(0) =:Zb?koF(0) (4.11)

with Plia 4+ 1
. =-E 62”[_;];[/0) ) TJ{w\I/V(O\h(Q)aré;. (4.12)
|<5n| = |.F| gives the magnitude of the tilt. For a planar machine near a resonance,

the function F’ is closely related to the resonance strength defined in Eq.(4.6) as

zre¥
\F\ = lanar ring). 4.13
sin 71(z/0 £ zq,) (P &) ( )
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For rings with Siberian snakes, /' is usually small except at the local resonance,
where the precession due to the betatron oscillation accumulate within a half snake
period. If the ring consists of Nc identical FODO cells, the local resonance occurs
when (7a &= uy)/Nc is an integer. If 7a is far from local resonances, the typical value

of F' is
|F| ~ (7a + Dg"JWf3y (4.14)

which is the precession in one quadrupole magnet. Here, ¢ is the inverse focal length,
W the Courant-Snyder invariant. An absolutely necessary condition to have high
polarization is that this precession angle be much smaller than one. But this does
not impose a severe condition in practice.

At a local resonance 7a ~ =+vy + kM = K, we can estimate F by the same
method which we have used in deriving Eq.(3.25) for the uncorrected c.o.d. By the

approximation
~YKeiK) + Y, e-iKe (4.15)

and by ignoring rapidly oscillating terms, we obtain

AL i) =
772) ]ZECOS ((|(e<;|r /M) cos(arg e« +J§7 +JN7) X cin/) j‘zz\:iiln (4.16)
(ek = R(Ga + 1DrK)
which is quite similar to Eq.(3.25) except for the extra denominator COSKTT/M) =
=+ cos(vyir/M). The physical meaning of this factor is that, if the betatron tune in one
snake period, Vy/M, is nearly one half, the effect of the next period adds up because
the snake causes another one half rotation. The factor can never be zero unless the
fractional part of the betatron tune is 1/2, which means a real spin-orbit resonance.
Nevertheless, it can still be very small for some combinations of vy and M. Therefore,
the improvement of polarization by increasing the number of snakes is not monotonic.
(In particular, this fact must be kept in mind for computer simulation.) However, by
carefully choosing vy and M, it is possible to make cos(/c7r/M) close to unity. Thus,
if Tre«
M

is satisfied, the depolarization due to the tilt of axis is small even at the local reso-

<1 “4.17)

nance.

However, this is not a necessary condition "to have high polarization. Even if the
Lh.s. of (4.17) is large, the polarization might be restored after crossing the local
resonance. We shall derive a more relaxed condition later.
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LOCAL RESONANCE CROSSING

So far, we have discussed the effects of the betatron oscillation at fixed energy.
If there is no acceleration, the spin motion can be written in the form (2.22) with
constant /. When the vector n is close to no, i.e., |*n| <C 1, the spin can remain
almost vertical in the presense of the betatron oscillation if it is initially.

J is no longer a constant of motion, however, when the beam is accelerated. We
shall now discuss the change of .J during the acceleration, in particular, during local
resonance crossing. Basically, since J is an adiabatic invariant, we may expect that,
if the acceleration is slow enough, J is almost conserved.

First, let us consider the case when the condition (4.17) is satisfied so that our
perturbation expansion is valid. As is shown in Appendix B, the depolarization due
to acceleration can be written as

AP=2 dsn dy (4.18)
o dj dé6 ‘
if the acceleration is slow enough. Using (4.11) and the fact k0'k0 = 0 and ko 'k* = 2,
the integrand can be rewritten as
d8n K F"— " KIFD) = -z dK
K0 . =kf - - © 4ko (4.19)
dj $7°

For our model ring, the vector k0 in Eq.(2.37) can be expanded in a Fourier series,

owing to the periodicity (2.38), in the form

Ko(0)= £ knelM'n+]"e (4.20)

TI——00

The coefficient is found to be

M -«7r[7a+A/(ra-f-1/2)J/A/ __ y

e,)- (4.21)
21T va+ Mm + \)

which is analytic w.r.t. 7a.
Putting all together we find that the integral in Eq.(4.21) can be written as

/ dofnx("va)el{£ y+Mm+\2)6 (4.22)
,  J—oo

where the function fni+ can be written in the form

(rational functionof ‘ya)e~lll'ya*M + (rational function of 7a)
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and is analytic in the entire complex 7a plane, i.e., the singularities of these rational
functions cancel each other. Let us assume a constant acceleration 7a = (7a)o-+a#/27r,
where a. is the increment of 7a per revolution. For each term of Eq.(4.22) we close
the integration path by a large upper (lower) hemicircle in the complex O-plane if
+i/y + M{n + |) is positive (negative). Then, if

a
< zuy+Mmn + - 4.23
oM y ( ) (4.23)
the contribution of the hemicircle vanishes and, since the integrand is free from sin-
gularities, the integral vanishes. If (4.23) holds for every n, or equivalently,

a: < 2M26uy (4.24)

where 8vy is the distance between vy/AM and the nearest half odd integer, the depo-
larization will be negligible.

This condition is in practice well satisfied even if M = 1, unless vy/M is very close
to a halfinteger. Thus, as long as the perturbation is small so that (4.17) is satisfied,
there is no depolarization due to acceleration.

However, this conclusion was derived within the framework of the perturbation
theory. We need a non-perturbative theory when (4.17) does not hold, in particular
near non-linear resonances.

Now, let us try a non-perturbative approach with a help of computer simulation,
for which we use spinor formalism. The same approach has already been developed by
S. Y. Lee and S. Tepikian.4 The equation of motion of the spin component Sj — s - n0j

is given by i .
s 1

0 . 1 n0k)si, (4.25)

tjki being the completely anti-symmetric tensor. This is equivalent to the equation
for a two-component spinor T

49 L, Yi'm ny rI<i’ (4.26)

with
sj = 4.27)

0j being the Pauli matrices. Near a local resonance we may approximate

80, = -R"~a + y"ex = (eKel9 + (4.28)

20



Using the explicit expression of k0 = n0i +*n02 in Eq.(2.37) we obtain the spin transfer
matrix for one snake period;

_e-J(-A(73+£«e, e20++h.c.)0ie-i(A<T3+£;(T++h.c.)eir,|'Q-j (4.29)

Here, A = 7a — K, (T+ = (ai % 1<72)/2 and h.c. denotes the Hermitian conjugate of
(j+ term. For the next snake period one has to use eKeKe} instead of el to take into
account the betatron phase advance.

In the above expression the basis (77¢ ko,2m ko, no) is used. One has to multiply
it by the rotation around the third axis by 180 degrees, ios, for using the periodic
basis (77¢k0, 2m kO, n0).

A computer simulation was done using this transfer matrix. Initially the spin
points to the third axis and A is a large negative value (typically —20). Every revolu-
tion A advances by a and becomes a large positive value (typically 20) finally. Several
particles are tracked with different initial betatron phase but with the same amplitude
and the final polarization is obtained by averaging them. There are four parameters,
namely the number of snake pairs M, the betatron tune i/y, the resonance strength
leKl and the acceleration rate a, but they scales w.r.t. M so that the independent
parameters are vv/M, lek! /M and a/M?2. Thus, simulations for M = 1 suffice.

Figure 4 shows the result of the simulation schematically in (vy, |eK|) plane for
fixed acceleration rate a. The shaded area is the depolarizing region. One finds that
around |e«| = | the beam is totally depolarized regardless of the tune. Larger ek is
even better but it cannot be accepted in practice because the resonance strengths
are different from resonace to resonance in real rings. The significance of the point
leK = [ has been pointed out by J. Buon.$

Figure 5 shows the final polarization as a function of the tune for seven values of
leK|, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5 and 2.0. All the resonances are identified as Vy/M =
1/2 — integer/(2/ + 1), or equivalently

\=n+21 + Iftr

spin tune per snake period (4.30)

n and / being integers. Figures 6(a) and 6(b) shows the relation between the final
polarization and the acceleration rate. In Fig.6(a) vv = 0.213 and |eK| = 0.2. The
vertical line is the onset of adiabaticity breaking predicted by the perturbation theory
Eq.(4.24). The slight depolarization below it is presumably caused by stepwise accel-
eration in the simulation. In Fig.6(b) a resonating value of tune vy = 1/6 is chosen,
where the perturbation theory fails in spite of small value of |eKl = 0.1. One sees
that a slower acceleration is even worse. The depolarization is proportional to 1/a:2.
Physically speaking, if the system is just on resonance, any slow perturbation cannot
be slow enough to be adiabatic, since the unperturbed system has an infinitely slow
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oscillation component. The phenomena found by J. Buonj was exactly this situation
since he used uy = 0.3 which is just on the 5-th order (/ = 2) resonance.

In Figs.7(a) and 7(b) the final polarization is plotted as a function of the resonance
strength. The parameters are uy = 1/6 [Fig.7(a)], 0.180 [Fig.7(b)] and a = 0.02.

One finds from Fig.5 that if the tune is carefully chosen, a relatively large value of
le*|, say 0.5, does not cause significant depolarization. Thus, we conclude, from the
simulation, that if

~ 0.5 4.31
v (4.31)

is satisfied the depolarization will be small. One may adopt a little larger value for
the r.h.s. at some more increased risk but it must never exceed 1. For the SSC, using
(4.8), we have |eKl ~ 5 for the normalized Courant-Snyder invariant GIT mm.mrad,
which corresponds to 95 percent emittance. Thus, we need M ~ 11 pairs of snakes
to avoid the depolarization due to betatron oscillation.

V. SUMMARY

We have discussed the depolarization in a large, high-energy proton ring equipped
with multiple Siberian snakes. Our main concern is the effects of machine imperfec-
tions after orbit correction and those of the betatron oscillation. They were studied
separately and turned out to be very different from each other. The betatron oscil-
lation causes strong resonances at the beam energy corresponding to 7a = kM =+ 1),
which can be cured by multiple Siberian snakes whereas the imperfection effects are
equally important at every energy and cannot be reduced by increasing the number
of snakes.

For the imperfection problem we employed the perturbative approach and found
that the spin tune shift is given by Eq.(3.22), which leads to the tolerance of the
misalignment of quads, the roll of bends and the orbit correction. For the SSC, we
have 80"m, 200/irad and 80/im (r.m.s.), respectively. Ifthe spin tune shift is small, the
tilt of the precession axis is small too, and the acceleration rate is not very important.

For the betatron oscillation we derived the required number of snakes, mainly
using computer simulations. The spin tune shift turned out to be unimportant. The
results are Eq.(4.30) which shows the betatron tune to be avoided and Eq.(4.31) which
gives the required number of snake pairs M, once the resonance strength is given. We
got M ~ 11 for the SSC.

There are still many problems to be discussed. For example, when evaluating
the tolerances, we put the criterion Aulms ~ 0.05 somewhat arbitrarily, thinking that
the beam will be depolarized if the spin tune becomes an integer (or maybe even
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integerii/jJ even at several standard deviation. But what happens in such a case is
nontrivial.

Another problem left open is the betatron oscillation in the presense of corrected
closed-orbit distortion. We can now estimate the required number of snakes and the
tolerances if we consider the betatron oscillation and the imperfection separately. Now
the question is whether or not we get more severe numbers when two effects interfere.

Also, we have to study design of snakes which we treated here just as points.

For the SSC, the obtained tolerances seem to be quite marginal. Thus, the next
thing to do is to refine our coarse estimation of tolerances and to consider the possible
cures.

The author would like to thank Dr. A. W. Chao and Dr. R. D. Ruth for helpful
discussions and comments. Thanks also go to Dr. T. Sun for his help on the computer
work and to Dr. S. R. Mane for the careful reading of the manuscript. The author
is grateful to Dr. M. Tigner and Dr. A. W. Chao for offering him an opportunity of
working at the SSC Central Design Group.
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APPENDIX A

In this appendix is discussed the statistical relation between the r.m.s. error kicks
and the corrector strengths

Nc C.rms ~ iVerr</>err,rms (A

which is used in Sec.3. Here, Nc is the number of correctors, <‘crms the r.m.s. kick
angle of correctors and NerT and “errrms are those of error kicks.

We use the following simplified model of a ring. There are many sources of error
kicks so that they are almost continuously distributed over the ring. The smooth ap-
proximation of the beta function is valid and the correctors are located equidistantly.
We determine the corrector strengths using the least squares method.

Let ((6) be the curvature due to error field at 8. The closed orbit at 6 due to this
error is written as i

Herr(8) = M@ - SR, (A.2)

where R is the average machine radius, and the response function M(§), which is
periodic in  is given by

R/
M{8) VH cos1T — 1) 0 <0< 271)
Sl[)”llru
oo -
im6 (A.3)
20T .o VI TIT

Let rja (a = 0,1,..Nc) be the kick angle of the corrector located at 0 = 0Q = 27ra.
The closed orbit due to the correctors only is
Nc-1
yeor(0) = £ M(0 - 0*>70. (A.4)
a=0
Using the Fourier transform, we can write the normal equation to minimize /027r(yerr +
y(0r)2d0 in the form

Nc—I 00 eim(0a-0)
£0 (V) -122)2. 122 (A.5)
(3=0

where the matrix A4 is given by

gim(6a—0p)

4m B (V) — m2)] (A-6)
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One can easily see that the inverse of 4 can be written as

| Ne-1 I R
A 1 _Lem(0a-") (A.7)

-~ n=0 Cn

where )
1

- £ A.8

f="00 [/\2 N(n + kNC)212 ( )

Thus, the least square solution is
Ne—l oo ko inBa—i~n+kNc )6

B E E 1 g A9
Va NC 9 t—o0 U o, W = (n + kNc)2] (A-9)

Now, let us estimate the square sum of rja statistically, assuming that the error
field £(#) at different 6 has no correlation;

{«)«»)) = C6(0 - «) (A.10)
where 6 is the Dirac delta function. It can be shown that, if the number of error
sources is finite but large, the coefficient can be related to the r.m.s. error kick
angle as

27TR Q — Aerr’err.rms- (AID)

After some manipulations using these expressions, we obtain

iVe—I
AWce ™ = £ v]) = A>, ACJAWL,, (A.12)

or=0

with
~"So0)= 1 "t Er—_i/iT-(nt+t~oN~

2 (A.13)
Ne "=° (Er™"1/I~—fn + McJT)

which does not have either zero or infinity as a function of u since the singularities
of the numerator are canceled by those in the denominator. K(u, Nc) is actually a
function of v/Nc only, when Nc is large, say > 10, which is well satisfied except for a
very small machine. It is plotted in Fig.8. Since, in practice, the ratio of tune to the
number of correctors, »/~No, is smaller than 0.3, we conclude

Nd>Lr o0.;LV,tro(rrrnlt (A.14)

as seen from the figure.
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APPENDIX B

We shall derive a general formula for the depolarization due to an adiabatic cross-
ing of a resonance which applies to local resonances as well. Suppose that the system
has a slowly varying parameter 7, which is not necessarily the beam energy so that
the vectors n and k are functions of § and 7. We assume that dn/d” can be large
only in some region of 7. We also assume that the depolarization is small.

Since 11(0,7) is a solution to the BMT equation (2.1) for constant 7, the equation
of motion of J for changing 7 is

2{; n(0,7) = s izr; ;Z — LZ-T2Re T K il’; ;’; (B.)
where we have used n ' dn/dj = 0. Similarly, the equation for ™ reads
dil> J dnd?7
d9 ¢ 57 do ®.2)

We have to solve these equations carefully, because they are singular at J = 1. We
can deduce from these equations

d . dn c27
SR V4 2eW-m) = .
where A
y»>@8) = ~ uds. (B.4)
Jo
With the initial condition / = 1 (0 —1 —00), we can approximately solve Eq.(B.3) as
= —eMe) I* dOe-"k (B.5)
J—00 do
assuming the change of J is small. Then the equation for J becomes
B.6
from which we get the depolarization in the form
1 S5n ("7
AP = AJ dOe-MO)k . B.7
2 E a” ds B.7)

This can be applied, for example, to the well-known adiabatic spin-flip problem. In
the present context of perturbation approach, we may replace u by 79 and k by k0 so
that e~tvk = k0. Since dn”Vd” = 0, we obtain

d8n dj

AP= 7
dOko dj 8 (B.8)
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Fig.2a. Spin tune shift due to imperfection without correction. Quadrupole mis-
alignment +£10"m (uniform).
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7750 8250 8500 8750

Fig.2b. Spin tune shift due to imperfection with correction. Quadrupole misalign-
ment £100pim (uniform) and residual ycod = 25/im.
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Fig.3a Vertical component of precession axis nv without orbit correction.
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Fig.3b Vertical component of precession axis ny with orbit correction.
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Fig.4. Schematic plot of depolarizing region due to betatron resonance.
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Fig.5. Polarization after passing betatron resonance as @ function of the tune for various values of [eK|.
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Fig.5 (continued.)
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Fig.6. Final polarization as a function of the acceleration rate a/M?

for (a) e« /M = 0.2, uy/M = 0.213 and (b) |e.| /M = 0.1, vy/M = 1/6.
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Fig.7. Final polarization as a function of resonance strength.

for (a) Uy/M = 1/6 and (b) uy/M = 0.180.
35



Fig.8 Function K(v,Nc) defined in appendix A for Nc = 50.



