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Abstract

To implement, an efficient data-paralle] program on a non-shared memory MIMD

multicomputer, data and computations must be properly partitioned to achieve good

load balance and locality of reference. Programs witt_ irregular data reference patterns

_ often require irregular partitions. _Clthough good partitions ma), beeasy t_" determine,

ii they can be difficultor impossibletoimplenmnt inprogramming languagesthatprovide
only regulardata distributions,such as blockedor cyclicarra,ys.We are developing

' Onyx_ a programming system that provides a shared memory model of distributed

I data structures and extends the concept of data. distribution to include irregular and

dynamic distributions. This provides a powerful means to specify irregular partitions.

Perhaps surprisingly, programs using it can "also execute efficiently. In this paper, we
describe and evMuate the Onyx implementation of a model problem that repeatedly

executes a_ irregular'but fixed data reference pattern. On an NCUBE hypercube,

the speed of the Onyx implementation is comparable to that of careful]), handwritten

message-passing code.

Keywords' non-shared distributed memory, Onyx, finite element method, NCUBE,

repeating data referen_.e patterns.
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1 Introduction
p

i
! ,N0n-shared distributed memory multicomputers such as MIMD hypercubes are a,ttractive| _
]

, architectures on which to implement parallel a,pplica,tions. In contrast to shared memory
[ ,architectures, distributed memory syst,ems, devote less hardware to interprocessor :commu-
i nica.tion. Potentially, this allows better price/performance and scala.bility. However, ii, is
i more difficult, to write a,n efficient program for a distributed memory system, beca.use more

attention must be paid to keeping communication costs low.
In the past, efficient distributed memory applications tiave been coded by hand a.sexplicit

message-passing progra, ms. Unfortuna,tely, such programs are longer and more complex
than uniprocessor or sha,red-memory programs to do the same job. Severa,1 research effort,s,
including our own, are working on language design and compilation techniques to make it
easier to write programs for distributed memory ma.chines.

We are currently developing Onyx, a programming system targeted for scientific appli-
ca,tions. Our goal is to allowprograms to be written easily and concisely, then compiled to
run at a rate comparable to that of a.hand-written message passing program. In this paper,
we show that this goal is feasible for programs with irregular data, reference patterns tha,t
a,re executed repea.tedly,

The Onyx programming model supports da.ta-paralleI programs with a, shared memory
model of distributed data structures. Data parallel means that algorithms are expressed in
terms of operations applied simultaneously to many elements in a collection of logically sim-

'ilar da,ta objects. A disl.ributed data structure is any collection of data that can be referenced
by a single name, even though it is physically distributed across multiple processors, and
shared memor'9 model means that distributed data structures can be a,ccessed with the same
syntax and semantics as conventional non-distributed structures. For example, programs
using distributed arra.ys can be written in terms of fetches and stores, using convem, iona]
subscripts that can be computed freely.

, Systems providing a shared memory model of distributed data structures ha.re been
described by several other research efforts targeting scientific applica,tions [11, 8, 10, 3, 9].
However, prior work ha.s considered only distributions that are sta.tic and regula.r, such
a.5 blocked and cyclic a,rra,ys. Onyx extends the concept, to include i?reg_.Iczrand d_/7_am'ic
distributions In the extreme case, every element of a.n a,rray can be individually assigned 1o
a specific processor at run time, then moved to different processors to maintain loca.lit,y as,
the computa, tion progresses.

This flexibility provides a powerful wa.y to specify the par_igio'r_in9 (distribution of da.ta
and computa.tions) for programs with irregular data reference patterns. However, accessing
data. that is distributed arbitrarily a.t runtime seems certain to be more expensive than
accessing data, tha.t has a regular and static distribution. In this paper, we show tha.t the
difference can be ma.de surprisingly small in some important cases.

This pa.per focuses on compilation and runtime techniques for programs tha,t require irreg-
ular partitions and that execute each unique data reference pattern many times. Our model
program is extra.cted from a rea,l-world finite element application using irregular meshes, such

, .... , rl_
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Figure 1' A portion, of the irregular triangul_r mesh used by our model progr_mq. (Mesh

courtesy Dimitri Ma,vriplis of NASA/ICASE).

as Shown in Figure 1, This application is typical of man.), scientific codes, in thai, its pa.ttcrns

of data. references are repeated many times in t,he course of a. single . executior_. ]:,a,ch pa.ttern
is irregular and dependent on input da,t,a, but, once established, it is execul, ed many times.

Onyx exploits this beha.vior to a,chieve low a,vera.ge access cost, The first time ca,eh pa,l,tern

occurs, ii, is interpreted using a relatively expensive procedure tha, t tr_ms]a,l,es references l,o

distributed da,ta structures into combinations of local memor)' references, a.nd com.munica-

tions. This informa, tion is ca,ched for use with subsequent occurrences oi"the sa,me pat, i,ern. lt

turns oul, that this a,pproa,ch elimina,i, es almost al] of the overhea, d for subsequent, itera.tions.

The overa,ll result, is tha,i, execution speed of _he Oi._yx implemeni, a,tion is comp_ra,ble l,o that

of ca.reful]y h._md-writ, i,en code.

z In fol]owing sections, we discuss i,hese issues in more del.a.il. Section 2 gives _ brief

I o\,'erview Of l,he Onyx ])rogra, lTi!lq_iI-lg model. Secl, ion .3 describes tl_{-:n-]odel prol-,len] a]_dpre>poses; la,nEdtlage constructs l,o program it. ,_qection ,t de,scribes our t:)_sic in_plemenl.,_tl, ioll

I,<,chniques, focusing on the trea,l, men l, of distribut,ed sha.red da, l,a., Section 5 discusses c,achilig

for repea,ted pa,tt,erns, Section (; presents and discusses performa,nce da_,_:t,.Seci,ion T co\'ers
rela, t,ed work, and Section S summarizes and discusses future dire,ct,ions,

2 The Onyx Programming 5¢odel

Onyx is t,argeted for date,-para.llel scientit:ic al)plice_,tions inr,ended l,o run on distributed men>
orr multicomputers. Its progra, n-_ming model includes the following fe_tures:
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• Explicit data, parallelism. Onyx provides an execution model with a single thread of

control, whose operations are performed in p_rallel in each of many logical]3, similar

data. objects. The programmer is expected to choose algorithms for which this model

is appropriate, and t.o write code in which the data parallelism is clearly indicated.

Tt_e examples in this paper are written in a dialect of Pascal augmented by a, fora!l

statement. This choice was made solely for clarity of presentation, based on the fact.

that Pascal has a record declaration whose syntax and semantics a,re familiar t,o most,

rea,ders. The same functionality clearly could be achiei, ed with other base languages,

by augmenting the syntax or recognizing data parallel Code fragments through control

and dataflow analysis. 1

' • Distributed data strv.ctuT'es with a _m,@r'm name space. Collections of da,ta elements,

such as arra,ys, can be physically distributed across processors, but programs reference

data elements by name and subscript without regard for where they physically reside.

• Shared mem, or_ data model, Access to distributed data structures is done with the same

language constructs and semantics as for non-distributed data. That is, the sta, tement

a[i] = b[j [i]] is valid and does the same thing regardless of whedler a, b, and j are
distributed, and if so, how.

, Partil.ioTz-indepen, deTzgcodin, 9 an,d resv.lts. Onyx assumes responsibility for transforming
loop hea.ders, creating processor-local data structures, synchronizing, and communicat-

• ing as required to implement whatever partitioning is specified. Computational code,

as written by the programmer, is i_dependent of the partitioning, and programs pro-

duce the same results regardless of how the partitioning is changed, 2 This allows a

program t,o be tuned for maximum performance without altering its correcu_ess.

• Explicit partigioT_,in 9. The underlying machine topology and a,tt,endant conmmnica.i,ic, n

, costs are exposed t)7 allowing (but not, requiring) the programmer to explicitly assign

. da,t,a, and computations 1.o pa,rticular processors. Aga,in, this a,ssignment, is a. ma.t,l,er of

tuning for performance and does 1lot affect computational code or resu]ts. Onyx wi]l
I

I provide defaults for any partitionings tha, t, are not specified, based on heuristic analysis
I o'f control a.nd d&t,alqo\v.

i
[]

I 3 Programming the Model Problem

Our model problem is extracted from an application tha,t solves for a.ir flow over a wing,

using an irregular tria.ngular mesh like tlJe one shown in Figure 1. One portion of tha.l

In fact, we ant, icipm,e that, most of our fut, ure work will be based on Fortran beca.use of the availa.bilikv
of application codes already writ, ten in that language.

'This restrict, ion may be relaxed in deference _,oefficiency, when dealing with cert, a.in operat, ions tha,t are

t,echnically non-associative, such as floating-point, addition,

!
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var
v: array [I..MAXNODES] of float; /, node values */

vnew array [i. MAXNODES] of float; /* _emporary new values */
nnbr: array [I..MAXNODES] of integer; /* number of neighbors */

nbr: array [i, .MAXNDDES,I,,MAXNEIGHBDRS]; /* indices of neighbors */

c: array [i .MAXNDDES,I..MAXNEIGHBORS]; /* multiplying constant */
inr nnodes; /* actual number of nodes */
t: float;

SmoothNodes ()
{ for i = I _o nnodes { ,

t, = 0.0; "

,t += c[i,j] * vEnbrEi,j]];

vnew[i] = t;
,, ,

for i = 0 to nnodes '
v[i] =. vnew[i]; ' '

}

Figure 2: Conventionalserialcode forthe smoothing calculationon an irregularmesh.

application executes a. smoothing calculation that simply replaces each node with a, weighted

average of its neighbors, We choose that function for our model program,

For a Uniprocessor, the c_.lculation might, be expressed _s shown in Figure 2.. Note that

the dat_ reference pattern of this program is both irregular and repeating. It is irregular
because the mesh topology is determined by arbitrary indices contained in the nbr array (as

opposed to h_ving a parametric form), and it is repeating because those indices don't change
between executionsof SmoothNodes.

To parMlelize this program requires two tasks. First, a good partition must be detcr-

miT_.ed, i.e., data nodes (array elements) and computations must be assigned to processors.

!i so that, as far as possible, neighboring nodes reside in the same processor and ali processors
have an equal amount of work. In this application, there is a natural spatial relationship

i
! between interacting nodes, so it is relatively ea.sy to determine a good partition. 3 Second, the

partitioning must be irn,plemcr,,ted, i.e., each processor must be loaded with data structures
that represent the partitioning, and with a program that can use those data structures to ef-

ficiently perform the required computations and communica.tions. In many cases, efficiently

implementing the partitioning is more difficult than determining it.
With programming languages that support only regular distributions, the two partition-

ing tasks (determining and implementing) are intertwined. For example, arbitrary partitions

cannot be specified in a system that supports only blocked and cyclic arrays. Given that

limitation, one is forced to renumber data elements in subtle ways so that a, regular distri-

: bution can be tricked into producing something close to the desired result. In general, it is

ii not possible to achieve optimum partitioning using regular distributions. Blocked and cyclic

distributions, for example, require that the number of array elements in each processor be the'

I awe used recursive bisection [5]in the experiments reported here,

4
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type nodeT' = record {
v: float ; /* node value */

vnew: float; /* temporary new value */

nnbr: integer; /* number of neighbors */

nbr: array [I..MAXNEIGHBORS] of integer', /* indices of neighbors ,/
c: array [I..MAXNEIGHBORS] of float; /* multiplying constant */

procID: prodID_T; /* processor iD (for partitioning)
,

var

node: 'array [I..MAXNODES] of nodeT distributed arbitrarily ;

nnodes: in15eger; /* actual number of nodes */

InitiallyMoveNodes '() /* partitioning -- ons time only */
{ forall i = l..nnodes

node[i].MoveToProcessor (node[i].procID);
}

SmoothNodes () /* executed many times ,/

{ forall i = 1..nnodes on owner(node[i]){
wi_h node[i] do {

var I;: float;
I: = 0.0;

forall j = l..nnbr {

+= c[j] * node [nbr [j]] .'v;
}
vnew = V ;

- }}
forall i = l..nnodes on owner(node[ii)

with node[i] do v = vnew;

Figure 3: The smoothing calculation in Onyx, using an arbi!rary assignment of arra,y ele-
ments to processors.

same, give or ta.ke one element. However , a good p_.rtition may pla.ce many more elements
in some processors than in others, if those elements are easier to process. (Boundary nodes,
for example, usually are ha,ndled differently from internal nodes.)

I contrast, Onyx provides a separation between partitioning
In clean the two tasks. Deter-

mining a.good partition is declared to be outside the scope of the language, and is expected

! to be done with some application-specific tool. Onyx then concentrates on making it ea,sy t,o
specify any chosen partition and to implement it efficiently. In the case of our model prob-

'i lem, we simply retain whatever node numbering the programmer or user finds co_venient.,

ii and specify the partitioning by individually assigning array elements to processors.An Onyx program using this approa, ch is shown in Figure 3. This Onyx program closely

I resembles a Pascal program to do the same job, and for the most part it can be underst, ood

to have Pascal's sema.ntics. However, there are some features that require explanation.
%

• forall denotes a data, parallel piece of code. Conceptually, the body of the forall is

!! executed simultaneously for each different value of the control variable.

1 5

,,v



• distributed arbitrarily declares that any element of'the array can be.associa.ted

with any processor. There is no parametric relationship between subscript and proces-
sor number.

• node[ii .MoveToProcessor(ID) i.s an intrinsic function that causes the array element

node Iii tobe relocated onto processor ID. That processor becomes it;s owner. Note

that since all the MoveToProcessor calls are embedded in a forall, the relocations

are done in parallel. (Again, the processor ID's are expected to be determined hs'

some application-specific partitioning tool, We use a stand-alone partitioner, a,nd read

processor ID's from an input file. They inight, equally well be computed on the fly,)

• on owner(node [ii ) causes the body ot' the forall, for each different i, to be executed

] on whichever processor is currently the owner of 'node[ii. This is an example of
explicitly partitioning the computation, In this case,, the explicit specifica.tion just

echoes the default, which is to assign each instance I',o whichever processor appears

to have fastest access to the required data, based on compile-time analysis. In other

cases, it ma.5, be better to perform a computation on some other processor, perhaps to

improve load balance a,t the expense of extra communication.

To implement this program, the Onyx compiler must transform it into a runtime form.

that efficiently iterates over local data structures and provides efficient comrnunicat;]on for

references to remote data. These topics are the subjects of the next two sections,

4 Distributed Shared Data

Onyx provides a, s/_,aT"eddata model, i.e,, distributed data, can be accessed fl'om e,,ny processor

simply by matting a reference to it. Ali communications are implick; the programmer's view

is tha.t array elements are simply fetched and stored. This model could be imp]emented in

a variety of ways, differing especially in how much ha,rdware support is used..For flexibilil;y

and portability, we use a purely software-based system tha.t requires no memory manageme.nl

ii hardware a,nd tha.t maintains a dense a.ddress space on each processor.The programmer specifies array references in terms of an array identifier and global in-

dices. Translation from global indices to processor number and local addr,. :s is specified by

a ma,pping function or table that describes how the array is distributed. Onyx supports sev-

eral styles of distribution, chosen somewhat arbitrarily by rna.tching application requirements

against the possibility of efficient implementation. A distribution ma,), be full), parametric,

such a_s a regular blocked or c:yclic distribution, lt ma.y be piecewise para,metric, such a.s an

irregular blocked or rectangular decomposition, Or it ma,5, be fully enumerated, in which case

any arra,y element can be assigned to ans' processor arbitrarily., In this paper, we evaluate

only the fully enumerated option. , I,

At runtime, each arra.y element may occur on only a single processor or may be replicated

(copied) on several processors. In either case, each element is uniquely associated with one

processor called its own, ct, The owner is responsible for keeping a master copy of the element

|



and making sure that replicates are updated a,s required. If an element '_.owner naa5' change
at, runtime, as in our example, the distribution is said to be dvnam,/ . In that case,' the
element is also statically assigned a forwarder processor, whose job is simply to keep track of
who the current owner is and relay requests to it. The combina, tion of owners and forwarders
essentially comprise a distributed directory for dynamic 'distribution mappings,

In general, the system works as follows. To fel,ch an arra,y element, a processor first checks
to see whet,her a local cop3, exists, either because that processor owns the element or because
it has been locally replicated. If not, it allocates space for the elemen_ and sends a request l,o
that element's owner 0r forwarder. The owner responds by sending badk the requireddata
and making a rJ0te to itself that the replicate exists. The local copy, pre-ex_.tlng or newly
created, can then be accessed with just a local memory fetch. To update an _m'a,y element,
a message containing the new value is sent, to that element's owner, which changes its cop3'
and propagates the update as required, Ra.ce conditions are precluded t)3' the da,ta-para, llel
semantics of Onyx, so no mechanisms are required for mutual exclusion.

There are several obvious improvements to the basic scheme. First, remot, e references
occurring in parallel code (forall's) can be processed in batches. This allows multiple
requests to be bundled into a single message to amortize startup costs. In a hypercube or
other.multipath network_ bundling can also/educe routing overhead. Second, as in our model
program, it, is often practical to partition the computation so that, all work needed to update
an element is done by that element's owner. When this can be done, it avoids the necessity
of collecting contributions from several processors, which allows one set of messages to be
eliminated. Third, repetition can be exploited to reduce communications requirements, by
sending data directly to where it is known to be needed. This avoids explicit request messages
and the forwarding associated with them for dynamic distributions.

To exploit, the repetition, we use a variation of the inspect,or/ezecutorapproa.ch introduced
by Crowley et.al.[4]. The first time a data, reference pattern is seen, it is processed by the
iT_,spector,a relatively long and slow code that resolves all the references, figures out. how
to handle the replication, and builds tables to describe tl_e required actions. Subsequent
occurences of the pattern are handled by the czecut:ov, a. short fast, code driven 1)3,the tables,
Bot,h the inspector and the execut.or are generat.ed by the compile,r from the same source
program.

This approa,ch results in compiling the procedure Sraoothlgodes inl,o a piece of code thai,
" works a.s shown in Figure 4. The exa.ct code a,t. points A and B depends on the replication

policy. In most circumstances, the best approach probably is to create replicates the first
time the pattern is encountered, and use them repeatedly through subsequent iterations.
We call these per'sisie_,t replicates. With persistent replicates, the code at point A will be
executed only once,and the code at point B will be executed each iteration. If some of the

replicated cells can be reused without updating, this approach will reduce data traf-l:ic, In
the applications we have studied, opportunities for reuse appear frequently. In other circum-
sta.ncec, it may be better to use l,rttTzsien_ replical, es that are discarded immediately aft,er the,
computation. This might be appropriate, for example, if memory were very restricted and

7
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inspector . '

if (this data reference pattern is not known) then
for i such ithat '.his processor owns node[ii and i is in 1..nnode

determine which nodes [node[i] ,nbr[j]], etc. have a remote owner

. and therefore need tobe replicated '
endfor

cooperate with'other processors so that owners know about

all the required replicates
de'termine and remember Which processors have replica, tes of nodes

. that this processor owns and needs to update'

remember that this pattern has been seen
endif

-- ezecu_,or

(A) ---, if required, create replicates

-- ' for i such that this processor owns node[ii and i is in 1..nnode
transla, te all node[node[ii .nbr[j]] into local memory addresses

and perform the computation

(B) ,-v if required, propagate upda.tes

Figure 4: Basic implementation of distributed data. references in the Onyx program, The

code at points A and B depends on the replication policy, as described in the text.

the replicates might ha,re to be discarded after updating but before they could be reused. 4
In terms of the volume of data transfer and number of synchroniza.tion points, this type

of executor is as e_cient a,s if the programmer coded the communications explicitly. As

Mehrotra. points out [8], unnecessary messages and synchronization are elin_nated, since

after the first execution of a pattern, each processor knows exactly wha, t data must be

exchangedwith which other processors.
In terms of instructions executed, however, this type of executor still imposes overhea.d.

- Each array r'eference requires a. conversion from globa ! indices to local memory address, and

ii remote references also require searching a directory of replicates. The impact of this overheadii

ii varies with the style of distribution and the amount of computation per reference. For simple

computations and complex distributions like our model problem, the overhead is likely to be

I several times the computational cost. This would be unacceptable practical use. ]n the
for

next section, we will discuss modifications to the inspector and executor th_.t can virtually
" elimina, te this overhead.!
i lt is important to note tha,t overhead of this type cannot be seen in experiments that,
.I
!11 4The Kali implementation of Koelbel and Mehrotra [7] essentially implements transient replicates, de-

,_. scribing them in terms of "communication buffers".
.I

!I
8
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-- inspect, or
for i such that node[ii iS local and i is in 1, .n_node

translat'e node[i] into a local address and save it in table T

savenode[i] .nnbr intableT

forj - I,,nnbr

translatenode[node[ii ,nbr[j]] intoa localmemory a,ddress
and save it in table.T

endfor

I endfor_

-- execut, or

while (table T is not empty)
retrieve np = address of node [ii from Table T '
retrieve n = nnbr[i] from table T

t =0,0

for j = I, .n

retrieve onp = address of node[node[i] .nbr[j]] ft'on] table T

t += np-+c[j] * onp-_v /* pointer references */
endf0r

np-.vnew = t
endwhile

Figure 5: Using address ca,ching to improve execution speed for repeated patterns of refer,.
ences to distributed data.

: merely vary the number of processors. Since all processors do similar amounts of overhead
work, the overhea, d exhibits perfect, speedup. The program runs more slowly with any number

of processors, but the speedup curves look better, To see the overhead, one must compar e

against an alternative implementation that doesn't, ha,ve it.

i|
| 5 Caching the Data Reference Pattern

There is a, general rule for making programs run fast: don't recompute what you cantabulate. In our case, the inspect.or follows tt_is rule by carrying its symbolic execution all

":i the down to the level of computing local a.ddresses, and saving these for use by
Way memory

the executor _,nd communication routines.

The exact code depends on the policy for handling replicates. The simplest situation is'
: when replicates retain their absolute addresses between iterations. In that case, to continue

our example, the inspec.tor and executor contain code that works 'as shown in Figure 5.

9



Note that essentially all tile overhead costs have been moved into the illspector, which is

executed only once per pattern. This includes not only the reference resolution., but, also

whate\,er time Inay be required for each processor to determine which computations ii, has

been assigned (i.e., to execute the code described by "for i such that..." in Figure 4).

The remaining proceasor overhead is primarily due to the need t,o determine whether tlle

data reference pattern is already known. In general, this requires a combination of compile

i time dataflow analysis and runtime checking. In our example, dataflow analysis indicates

that the pattern depends on the distribution of node and the values of nnbr and nhr at

each node. In the context of our model problem, it, is easy to determine tha.t these do

not change a,fter initialization. Realistic situations will be more complicated, especially 'if

I procedure parameters are involved, We anticipate that an adequate solution can be obtained
by having the runtime system combine scalar values and structure upda,te times into a unique

'. key that is associa,ted with the pattern, but this issue requires further study. In any case,

I the cost of determining whether the pal;tern has been encountered before is amortized over

all the calculations done by the executor.

This executor's computational loop is quite efficient. 'In fa.ct, it is essentially identical
to what one would get, by repla,cing the nhr indices with direct pointers to the referenced

nodes. We generate similar executors for packing, Unpacking, and routing communication

buffers needed to create or update replicates. '
L

6 Performance

We ha,re hand-compiled the Onyx program discussed above, implemented it on an NCIiJBE'"

hypercube mu.lticomputer, and measured its performance. These measurements include sep-

i!l ara.te timings for computation, packing and unpa.cking message buffers, and communica_,ion.

Communication is'further broken down into system primitives and user-mode message rout,-

ing. (Our NCUBE is a first-generation machine with software routing, and we use the Caltech

"crystal router" stra,tegy [5] to a,void forwa.rding at the operating system level,)

ii' As a standard of comparison, we also implement, cd a high]y optimJzed uniprocess0r ver-
! sion in the C language, and ran ii, on a single node of the NCUBE. This standard is as

stringent as we could make it, - "highly optimized" means coding loops with pointers and

register variables, applying induction optimizations by hand, examining the object code to

see what the compiler was doing, and refining the uniprocessor code until we could get no
further improvement, s

}l,esu]ts are shown in Figure 6. There are several interesting features of these numbers,

• The Onyx executor performs the computa.tion fasger than the hand-optimized C code.

This ma.5, be surprising, but it is easy t,o explain - pointers are faster than index-

iII ing.' The relatively large difference (14%) is apparently a quirk of the NCUBE com-

| piler/hardwa, re combina_tion. V_rhen we repeat, ed this comparison with other compil -_

SWe did not, however, explicitly convert the nhr arrays from numeric indices t.opointers. That is essen-

!i tially what Onyx does, and there seemed little point in comparing an apple toitself.
10
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]
ized ,3 On;'x I

Processors, Pn 1 1 2 4 8 16 32

Times (1)

Computation 0.435 0,373 0.1907 0.0955 0.0483 0.0246 0.0127

Message Packing - - 0.0029 0.0025 0.0030 0.0021 0.0024
Communications

routing - - 0.0017 0.0027 0.0049 0.0038 0.0062

sysl/O(2) - - 0.0042 0.0053 0.0075 0.0096 0.0118

phy I/O (3) - - 0.0012 0.0009 0.0013 0.0007 0.0008

' Total per iteration,

T_ (4) 0.435 0.373 0.2011 0.1075 0.0653 0.0423 0.0363

Inspector Setup -- 0.577 (5) 2.212 1.233 0.932 0.595 0.541

Kelative speed, S_ (6) 0.86 1 1.85 3.4'7 5.71 8.82 10.26

E_ciency, E_ (7) - 100% 92%, 86% 71% 55_ 32%

Notes:

(1) Times for individual steps are reported as the maximum seconds used by any processol
for that step.

(2) Time spent in system I/O primitives, including buffering and message startup, but

excluding physical I/O time.

(3) Physical I/O time, estir,_ated from transfer byte counts and published link speed.

(4) Total wall clock time per iteration. May not equal the sum of times for steps because
of measuremerit uncertainty.

i (5) This inspector was customized for standard array storage and no remote references.
(6) Relative speed is defined as S_ = T1/T_, where T1 is the 1-processor Onyx time. See

text for the reasons behind this definition.

i (7) Efficiency is defined as E, : S_/P,, for P_ processors and a relative speed of S,.

Figure 6: Measured performance for the smoothing calculation on a small irregular mesh of
-iii

•_i 1854 nodes, average 5.7 neighbors/node.
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ers and processors (Encore, Sequent, VAX, DECStation), the hand-optimized C was
almost equal to Onyx. Beta.use of these results, we have chosen to use the single-
processor Onyx time as a reterence in table 5. It is appealing to use the C time, since
this would further improve the Onyx performance numbers, but we believe this would
be misleading.

• The time spent in software routing is roughly equal to that spent in system-level com-
munication primitives. Both of these are much higher than the data transfer time
based on the link speed. This means that the Onyx implementation could greatly ben-
efit from hardware routing and reduced message startup cost. It also means that there
is very little to be gained from attempting to overlap communication and computation
for this application.

• Setup cost for the inspector is in the range of 11-15 iterations of the computation, for
all grain sizes tested. This time could undoubtedly be reduced, considering that little
effort has been spent on optimizing the inspector. However, it is important to note
that even the current setup time would be a small fraction of total run time in typical
applications with hundreds or thousands of iterations. In addition, the calculation in
our model program is lightweight- only two floating point operations per (potentially)
remote data reference. The heavier calculations found in realistic applications would
further reduce the relative setup cost.

We believe that these results also indicate that the Onyx implementation is competitive
with a handwritten message passing code, for this simple model program. Our performance

results indicate that the Onyx executor can compute over local data structures faster than
the conventional indexing code tha_a huma:n would write. Similarly, the executors produced
for message packing, unpacking, and routing are also as good or better than a human would
write, and there is no unnecessary data transfer or synchronization. For more complex'
applications, the Onyx approach remains to be tested. We have no data, for example, on
how well the Onyx approach will detect opportunities to reuse data instead of transferring
it, which is a common optimization in hand-written programs.

7 Related Work

The techniques discussed in this paper are most closely reh.ted to thos(, of Mehrotra [8, 7].
Koelbel and Mehrotra [7] discuss using a regular blocked distribution to address problems
like our model. However, that work does not identify the need for irregular (arbitrary)
distributions, and the performance statistics it reports were obtained fl'orn a. model problem
with a rectangular grid pat, tern, where regular distributions (blocked or cyclic) are well
known to be optimal. This paper extends their work by addressing distributions that are,
irregular and specified at runtime, and by introducing the concept oi' persistent replicates.
It also differs in using a truly irregular pattern for evaluation and in comparing performance
against the standard of a "best uniprocessor program".

12



Our address caching stra.tegy is similar to that described by Crowley eL.al. [4], who use
it, to implement a matrix solution iteration. We generalize that work .by using the strategy
to implement application-independent parallel a,ccess to distributed arras's. Our executors

are also somewhat faster because all distribution checking code is moved tothe inspector.
(Crowley et.al. [4] report a 10% penalty, compared to conventional indexing; ours runs faster
than conventional indexing.) However, we do not attempt to parallelize a computation
expressed in serial form, which is Crowley's major point [4].

Our concepts of data distribution and replication, particularly the use of persistent repli-
ca,tes, also borrow much from Emerald [6], Bal's Orca [1], Munin [2], and other efforts

designed to provide the functionality of shared data while running on distributed syst,ems.However, our language model and implementation techniques are substantially different, and

! none of those systems have a.t,tempted to provide efficient execution of the sort of problemwe have addressed here.

i 8 Summary and Conclusions

\'Ve have discussed the efficient implementation of a model program with irregular but re-
peating data reference patterns. This example requires an irregular partitioning, which is
easily specified in the Onyx system in terms of moving data elements t_ospecific processors.

Onyx exploits the repetition by caching information from the first iteration of each pattern,in order to make subsequent it,erations as fast as possible. The model program has been
hand-compiled and implemented on an NCUBE rnulticomputer, and its performance has
been measured.

The computational loops of the Onyx program were found to be as fast as hand-optimized
uniprocessor code, and its communication requirements w_re as low as could be a.chieved
by hand-coding. This suggests that the approach is well suited toprograms in which the

}1 repetition count is rela,tive]y high and for which there is enough memory to allow ca,thing its
I =

1 pa,tterns.Further work is required in severa,] area.s. For pa,tterns which are regular or nearly so,

such a.sgrid algorithms on domains with irregular boundaries, it should be possible to greatlyreduce ca.ciae sizes hS' compressing them, perha.ps using linear sequence techniques. This
t] approa.ch could be especially effective in combination with compile-time replication, which

i would allow owned and replicated da.ta, to be placed in the natural a.ddressing relationships
of non-distributed arrays. More attention must be paid to the issue of how one detects

_il repeating referen ce patterns in programs of realistic complexity. Finally, the entire app,:oa.cli

-i
must be evalua.ted against a wider range of applications, again using programs of realistic

I complexity.
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