PNL-SA-17937

. /'/,, j),\f«"/;/ . 171

/

e

i
({

30

s
wlxnul -
L] =
,ww,.u ~ R
s .

o o [
) & ~
= N g =
= & v 3 3
— e) L o t -
— O M © {
8 g o
i = &
== AoA
T
Lan-any

International Conference on Parallel Processing
The Pennsylvania State University
99352
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

University Park, Pennsylvania

August 13-17, 1990
under Contract DE~AC06~76RL0O 1830

Pacific Northwest Laboratory

Submitted to the

Work Supported by

~the U.S. Department of Energy
Richland, Washington

PROGRAMS WITH IRREGULAR AND DYNAMICALLY
February 1990

EFFICIENT ITERATION IN DATA-PARALLEL
DISTRIBUTED DATA STRUCTURES

R. J. Littlefield

-joarayy Kouade Aue 10 JUSWUISACS) SIS Pt
2q3 Jo 950y} JO9[Jo1 IO 9elS AJLIESS302L JOU Op UIY passaidxs sioyine jo suowrdo pue
SMalA Y] "JoaIay AouoSe AU IO JUSWIUIAA0N $IIBIS PaNUM) 2 Aq Bullose) Jo ‘uohiEpUIW
-mo0o1 quaWasIOpus s) Ajdw 10 MNSUOD A[LIBSS309U 10U SO0P ISIMIBYIO0 10 ‘1Imoeinuent
‘yIewapen ‘sured apen} £q 391AIeS 10 ‘ssa001d ‘Jonpoid [enI1awwios sads Aue 03 ulasay 30U
-1950y SIy31s poumo Apreaud a3ulyul jou pirom asn SU 1By} sjuasaidar 10 ‘pasojosip ss:ooid
10 “onpoid ‘snjesedde ‘uonewojul Aue JO SSAUINJISR IO ‘ssauaja|dwod ‘£oeImsoe 3y 10 I
-1suodsa1 10 Anqiqer] 1eda] Aue sawnsse Jo ‘paydut Jo ssaidyd ‘fyueirem Aue sayed ‘saakojdwd
nayy Jo Aue Jou ‘jooalay A>uade Aue JOU JUSUINIIACY SIIBIS PIU[) Y1 ISIBN "JUIWUINACSH
sajB1S poNuf}) jo Aouafe ue £q parosuods YIOm JO JUNOODE UE SE paredaid sem j10da siyp

JINWIVTIOSIA

I P A NP 1P S A 1Y O Y R A -

.“_‘-.. . T)

A

T i N e

Efficient Iteration in Data-Parallel Programs
With Irregular and Dynamically
. Distributed Data Structures

Richard J. Littlefield *

February 6, 1990

Abstréct

To implement an efficient data-paralle) program on a non-shared memory MIMD
multicomputer, data and computations must be properly partitioned to achieve good
load balance and locality of reference. Programs with irregular data reference patterns
often require irregular partitions. Although good partitions may be easy t- determine,
they can be difficult or impossible to implement in programming languages that provide

only regular data distributions, such as blocked or cyclic arrays. We are developing .

Onyx, a programming system that provides a shared memory model of distributed

‘data structures and extends the concept of data distribution to include irregular and

dynamic distributions. This provides a powerful means to specify irregular partitions.
Perhaps surprisingly, programs using it can also execute efficiently. In this paper, we
describe and evaluate the Onyx implementation of a model problem that repeatedly
executes an irregvlar but fixed data reference pattern. On an NCUBE hypercube,
the speed of the Onyx implementation is comparable to that of carefully handwritten
message-passing code.

Keywords: non-shared distributed mermory, Onyx, finite element method, NCUBE,
repeating data reference patterns.

*This work was supported by the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 at
D.0.E’s Pacific Northwest Laboratory, and by the National Science Foundation under Grants CCR-8619663
and CCR-9807666 at the University of Washington. The author can be contacted at the Pacific Northwest
Laboratory, P.O.Box 999, Richland, WA 99352, or via email to rik@cs.washington.edu .

i
3

‘1‘ Introduction

Non-shared distributed memory multicomputers, such as MIMD hypercubes, are atiractive
architectures on which to implement parallel applications. In contrast to shared memory
‘architectures, distributed memory systems. devote less hardware to interprocessor commu-
nication. Potentially, this allows better price/performance and scalability. However, it is
more difficult to write an efficient program for a distributed memory system, because more
attention must be paid to keeping communication costs low.

In the past, efficient distributed memory apphcamons have been coded by hand as explicit
message-passing programs. Unfortunately, such programs are longer and more complex
than uniprocessor or shared-memory programs to do the same job. Several research eflorts,
including our own, are working on language design and compilation techniques to make. it
easier to write programs for distributed memory machines.

We are currently developing Onyx, a programming system targeted for scientific appli-
cations. Our goal is to allow programs to be written easily and concisely, then compiled to
run at a rate comparable to that of a hand-written message passing program. In this paper,
we show that this goal is feasible for programs with 1rregu1ar data reference patterns that

“are executed repeatedly.

The Onyx programming model supports data-parallel programs with a shared memory
model of distributed data structures. Data parallel means that algorithms are expressed in
terms of operations applied sirmultaneously to many elements in a collection of logically sim-
‘ilar data objects. A distributed data structureis any collection of data that can be referenced
by a single name, even though it is physically distributed across multiple processors, and
shared memory model means that distributed data structures can be accessed with the same
syntax and semantics as conventional non-distributed structures. For example, programs
using distributed arrays can be written in terms of fetches and stores, using conventional
subscripts that can be computed {reely.

Systems providing a shared memory model of distributed data structures have been
described by several other research eflorts targeting scientific applications |11, 8, 10, 3, 9].
However, prior work has considered only distributions that are static and regular, such
as blocked and cyclic arrays. Onyx extends the concept to include irregular and dynamic
distributions. In the extreme case, every element of an array can be individually assigned to
a specific processor at run time, then moved to different processors to maintain locality as
the computation progresses.

This flexibility provides a powerful way to specify the partitioning (dlstrlbutxon of data
and computations) for programs with irregular data reference patterns. However, accessing

~data that is distributed arbitrarily at runtime seems certain to be more expensive than
accessing data that has a regular and static distribution. In this paper, we show that the
difference can be made surprisingly small in some important cases.

This paper focuses on compilation and runtime techniques for programs that require irreg-
~ular partitions and that execute each unique data reference pattern many times. Our mpdel
program iIs extracted from a real-world finite element application using irregular meshes, such

-

vﬂA‘ﬁ" R AVAVARAYA Ry o
21t Sazav anne é. “e&:*kfé_y

N h’l%
' i, 0 YA ™~
A3
V}‘f% o~ \]
WV N
/ /
«

'

Figure 1: A portion of the irregular triangular mesh used By our model program. (Mesh

courtesy Dimitri Mavriplis of NASA/ICASE).

as shown in Figure 1. This application is typical of many scientific codes, in that its patterns
‘of data references are repeated many times in the course of a single execution. Fach pattern
is irregular and dependent on input data, but once established, it is executed many times.
Onyx exploits this behavior to achieve low average access cost. The first time each pattern
occurs, it is interpreted using a relatively expensive procedure that translates references to
distributed data structures into combinations of local memory references and communica-
tions. This information is cached for use with subsequent occurrences of the same pattern. It
" turns out that this approach eliminates almost all of the overhead for subsequent iterations.
The overall result is that execution speed of the Onyx implementation 1s comparable to that
of carefully hand-written code.

In following sections, we discuss these issues in more detail. Section 2 gives a brief
overview of the Onvx programming model. Section 3 describes the model problem and
proposes language constructs 1o program it. Section 4 describes our basic implernentation
rechniques, focusing on the treatment of distributed shared data. Section § discusses caching
for repeated patterns. Section 6 presents and discusses performance data. Section T covers
related work, and Section 8 summarizes and discusses {uture directions.

2 The Onyvx Programming Model | o

Onyx is targeted for data-parallel scientific applications intended to run on distributed mem-
ory multicomputers. Its programming model includes the following features:

o

o Explicit data parallelism. Onyx provides an execution model with a single thread of
control, whose operations are performed in parallel in each of many logically similar
data objects. The programmer is expected to choose algorithms for which this model
is appropriate, and to write code in which the data parallelism is clearly indicated.

The examples in this paper are written in a dialect of Pascal augmented by a forall
statement. This choice was made solely for clarity of presentation, based on the fact
that Pascal has a record declaration whose syntax and semantics are familiar to most
readers. The same functionality clearly could be achieved with other base languages,
by augmenting the syntax or recognizing data parallel code fragments tlnough conmo]
and dataflow analysis. 1 ‘

. Distributed data structures with a uniform name space. Collections of data elements,
- such as arrays, can be physically distributed across processors, but programs reference
data elements by name and subscript without regard for where they physically reside.

o Shared memory data model. Access to distributed data structures is done with the same
language constructs and semantics as for non-distributed data. That is, the statement
ali) = b[j[1]]) is valid and does the same thing regardless of whcthex a, b, and j are
distributed, and if so, how.

o Partition- zndepen dent coding and results. Onyx assumes responsibility for transforming
loop headers, creating processor-local data structures, synchronizing, and communicat-
ing as required to implement whatever partitioning is specified. Computational code,

- as written by the programmer, is independent of the partitioning, and programs pro-
duce the same results regardless of how the partitioning is changed.®* This allows a
program to be tuned for maximum performance without altering its correctness.

o Erplicit partitioning. The underlying machine topology and attendant cormmunication

costs are exposed by allowing (but not requiring) the programmer to explicitly assign
- data and computations to particular processors. Again, this assignment is a matter of
‘ tuning for performance and does not affect computational code or results, Onyx will
p1owde defaults for any partitionings that are not specified, based on heun%uc analyvsis
of contrel and dataflow.

3 Programnﬁng the Model Problem

Our model problem is extracted from an application that solves for air flow over a wing,
using an irregular triangular mesh like the one shown in Figure 1. One portion of that

'In fact, we anticipate that most of our future work will be based on Fortran because of the availability
of application codes already written in that language. :

“This restriction may be relaxed in deference to efficiency, when dealing with certain operations that are
technically non-associative, such as floating-point addition,.

Sy Fypeov
e [|
AN

var ‘
vi array [1..MAXNODES] of float; " . /% node values */

\ S vnew! array [1..MAXNODES] of float; /* temporary new values */
; : nnbr: array [1..MAXNODES] of integer; /* number of neighbors */
‘ nbr: array [1..MAXNODES,1..MAXNEIGHBORS]; /* indices of neighbors */
; c: array [1.. MAXNODES,l. .MAXNEIGHBORS] ; /* multiplying constant */
‘ %ntfximoges; ‘ ‘ /* actual number of nodes */
: float;

SmoothNodes ()
{ for i = 1 to nnodes {
"t = 0.0;
for j =1 to nnbr[i] {
t += c[i,3] * vinbr[i,jl];

vnew[i] = t;

for i = 0 to nnodes
© o v[i) = vnewl[i];

Flgure . Converntional serial code for the smoothing calculation on an irregular mesh.

application executes a smoothing calculation that simply replaces each node with a weighted
average of its neighbors. We choose that function for our model program.

For a uniprocessor, the calculation might be expressed as shown in Figure 2. Note that
the data reference pattern of this program is both irregular and repeating. It is irregular
because the mesh topology is determined by arbitrary indices contained in the nbr array (as
opposed to having a parametric form), and it is repeating because those indices don’t change
between executions of SmoothNodes. ‘

To parallelize this program requires two tasks. First, a good partition must be deter-
mined, i.e., data nodes (array elements) and computations must be assigned to processors
so that, as far as possible, neighboring nodes reside in the same processor and all processors
have an equal amount of work. In this application, there is a natural spatial relationship
between interacting nodes, so it is relatively easy to determine a good partition.® Second, the
partitioning must be implemcnied, i.e., each processor must be loaded with data structures
that represent the partitioning, and thh a program that can use those data structures to ef-
ficiently perform the required computat:ons and communications. In many ases, efficiently
implementing the partitioning is more difficult than determining it.

With programming languages that support only regular distributions, the two partition-
ing tasks (determining and implementing) are intertwined, For example, arbitrary partitions
cannot be specified in a system that supports only blocked and cyclic arrays. Given that
limitation, one is forced to renumber dala elements in subtle ways so that a regular distri-
bution can be tricked into producing something close to the desired result. In general, it is
not possible to achieve optimum partitioning using regular distributions. Blocked and cyclic
distributions, for example, require that the number of array elements in each processor be the'

3We used recursive bisection [5] in the experiments reported here.

3
!
\
i
k
[

type nodeT = Tecord {

v: float; /* node value */
- vnew: float; , /* temporary new value */
nnbr: integer; /* number of neighbors */ :
nbr: array [1..MAXNEIGHBORS] of integer; /+# indices of neighbors */-
c: array [1..MAXNEIGHBORS] of float; /* multiplying constant */
procID: preodID_T; VA processor ID (for partitioning)
} : ‘ ‘
var '
node: 'array [1..MAXNDODES] of nodeT distributed arbitrarily;
nnodes: integer; /* actual number of nodes */
InitiallyMoveNodes () /* partitioning -- one time only */

{ forall i = 1i..nnodes
node[i] .MoveToProcessor (node([i].procID);

}

SmoothNodes () . /* executed many times */
{ forall i = 1..nnedes on owner(node[lj) q{
with node[i) do {
~ var t: float;
t = 0.0;
forall j = 1..nnbr {.
t += c[j] * node[nbr[jll.v;
}

}vnew = v,

} ‘

forall i = 1..nnodes on owner(node[i])
with nodef[i] do v = vnew;

Figure 3: The smoothing calculat:on in Onyx, using an arbitrary assignment of array ele-

. ments to processors.

same, give or take one element. However, a good partition may place many more elements

- in some processors than in others, if those elements are easier to process. (Boundary nod,es,

for example, usually are handled d]ﬁ"ercnt]y from internal nodes.)

In contrast, Onyx provides a clean separation between the two partitioning tasks. Dc ter-
mining a good partition is declared to be outside the scope of the language, and is expected
to be done with some application-specific tool. Onyx then concentrates on making it easy to
specify any chosen partition and to implement it efficiently. In the case of our model prob-
lem, we simply retain whatever node numbering the programmer or user finds convenient,
and specify the partitioning by individually assigning array elements to processors.

An Onyx program using this approach is shown in Figure 3. This Onyx program closely
resembles a Pascal program to do the same job, and for the most part it can be understood
to have Pascal’s semantics. However, there are some features that require explanation.

e forall denotes a data-parallel piece of code. Conceptually, the body of the forall is
executed simultaneously for each different value of the control variable.

e e]

Y SR,

o distributed arbitrarily declares that any element of the array can be associated
with any processor. There is no parametric relationship bctween qubscnpt and proces-
sor number. ‘

 node[i] .MoveToProcessor(ID) is an intrinsic function that causes the array element
node[i] to be relocated onto processor ID. That processor becomes its owner. Note
that since all the MoveToProcessor calls are embedded in a forall, the relocations
are done in parallel. (Again, the processor ID’s are expected to bc determined by
some application-specific partitioning tool. We use a stand-alone partitioner, and read
processor 1D’s from an input. file. They might equally well be computed on the fly.)

e on owner(node[i]) causes the body of the forall, for each different i, to be executed
on whichever processor is currently the owner of node[i]. This is an example of
explicitly partitioning the computation. In this case, the explicit specification just
echoes the default, which is to assign each instance to whichever processor appears
to have fastest access to the required data, based on compile-time analysis. In other
cases, it may be better to perform a computation on some other processor, perhaps to
improve load balance at the expense of extra communication.

To implement this program, the Onyx compiler must transform it into a runtime form.

- that efficiently iterates over local data structures and provides efficient communication for

references to rernote data. These topics are the subjects of the next two sections.

4 Distributed Shared Data

Onyx provides a shared data model, i.e., distributed data can be accessed {rom any processor
simply by making a reference to it. All communications are implicit; the programmer’s view
is that array elements are simply fetched and stored. This model could be implemented in
a variety of ways, differing especially in how much hardware support is used. For flexibility
and portability, we use a purely software-based system that requires no memor ¥ management
hardware and that maintains a dense address space on each processor.

The programmer specifies array references in terms of an array identifier and global in-
dices. Translation from global indices to processor number and local addr. ;s is specified by
a mapping function or table that describes how the array is distributed. Onyx supports sev-
eral styles of distribution, chosen somewhat arbitrarily by matching application requirements
against the possibility of efficient implementation. A distribution may be fully parametric,
such as a regular blocked or cyclic distribution. It may be piecewise parametric, such as an
irregular blocked or rectangular decomposition, Or it may be fully enumerated, in which case

- any array element can be assigned to any processor arbitrarily. In this paper, we evaluate

only the fully enumerated option.

At runtime, each array element may occur on only a single processor or may be replicated
(copied) on several processors. In either case, each element is uniquely associated with one
processor called its owner. The owner is responsible for keeping a master copy of the element

1}

e
(. _tr - - - [|- _ -]

[

and making sure that replicates are updated as required. If an element’~ owner may change
at runtime, as in our example, the distribution is said to be dynam: . In that case, the
element is also statically assigned a Jorwarder processor, whose job is simply to keep track of
who the current owner is and relay requests to it. The combination of owners and forw ar ders
essentially comprise a distributed directory for dynamic distribution mappings.

In general, the system works as follows. To fetch an array element, a processor first checks
to see whether a local copy exists, either because that processor owns the element or because

- it has been locally replicated. If not, it allocates space for the element and sends a request to

that element’s owner or forwarder. The owner responds by sending back the required data
and making a note to itsell that the replicate exists. The local copy, pre-existing or newly
created, can then be accessed with just a local memory fetch. To update an array element,
a message containing the new value is sent to that element’s owner, which changes its copy
and propagates the update as required. Race conditions are precluded by the data-parallel
semantics of Onyx, so no mechanisms are required for mutual exclusion.

There are several obvious improvements to the basic scheme. First, remote references

“occurring in parallel code (forall’s) can be processed in batches. This allows multiple

requests to be bundled into a single message to amortize startup costs. In a hypercube or
other multipath network, bundling can also reduce routing overhead. Second, as in our model
program, it 1s often practical to partition the computation so that all work needed to update
an element is done by that element’s owner. When this can be done, it avoids the necessity
of collecting contributions {from several processors, which allows one set of messages to be
eliminated. Third, repetition can be exploited to reduce communications requirements, by
sending data directly to where it is known to be needed. This avoids explicit request messages
and the forwarding associated with them for dynamic distributions.

To exploit the repetition, we use a variation of the inspector/ezecutorapproach introduced
by Crowley et.al.[4]. The first time a data reference pattern is seen, it is processed by the
inspector, a relatively long and slow code that resolves all the references, figures out how
to handle the replication, and builds tables to describe the required actions. Subsequent
occurences of the pattern are handled by the ezecutor, a short fast code driven by the tables.
Both the inspector and the executor are generated by he compiler {from the same source
program.

This approach results in compiling the procedure SmoothNodes into a piece of code that

‘works as shown in Figure 4. The exact code at points A and B depends on the replication

policy. In most circumstances, the best approach probably is to create replicates the first
time the pattern is encountered, and use them repeatedly through subsequent iterations.
We call these persisient replicates. With persistent replicates, the code at point A will be
execuled only once, and the code at point B will be executed each iteration. If some of the
replicated cells can be reused without updating, this approach will reduce data traffic. In
the applications we have studied, opportunities for reuse appear frequently. In other circum-
stances, it may be better to use transient replicates that are discarded immediately after thes
computation. This might be appropriate, for example, if memory were very restricted and

—~1

A O I B

- zmpecior
~ if (this data reference pattern is not I\nown) then
‘ for i such that ‘his processor owns node[i] and i is in 1..nnode
determine which nodes [node(i].nbr[j]1], elc. hdve a remote owner
- and therefore need to be replicated
endfor _
cooperate with other processors so that owners know about
all the required replicates
determine and remember which processors have replicates of nodes
that this processor owns and needs to update
remember that this pattern has been seen
endif '
— ezecutor
(A) = if required, create replicates ‘
‘ ~ for i such that this processor owns node[i] and i is in 1..nnode
translate all node[node[i] .nbr[j]1] into local memorv addresses
ar.d perform the computation ‘
(B) =» if required, propagate updates

Figure 4: Basic implementation of distributed data references in the Onyx program. The
code at points A and B depends on the replication policy, as described in the text.

the replicates might have to be discarded after updating but before they could be reused.*

In terms of the volume of data transfer and number of synchronization points, this type
of executor is as efficient as if the programmer coded the communications explicitly. As
Mehrotra points out (8], unnecessary messages and synchronization are eliminated, since
after the first execution of a pattern, each processor knows exactly what data must be
exchanged with which other processors. ‘

In terms of instructions executed, however, this type of executor still imposes overhead.
Each array reference requires a conversion from global indices to local memory address, and
remote references also require searching a directory of replicates. The impact of this overhead
varies with the style of distribution and the amount of computation per reference. For simple
computations and complex distributions like our model problem, the overhead is likely to be
several times the computational cost. This would be unacceptdb]e for practical use. In the
next section, we will discuss modifications to the mSpector and executor that can virtually

eliminate this overhead.

It is important to note that overhead of this type cannot be seen in experiments that

4The Kali implementation of Koelbel and Mehrotra [7] essentially implements transient replicates, de-
scribing them in terms of “communication buffers”.

i

: N

y L
TR

— inspec‘tbr ‘
for i such that node[i] is local and i isin 1..nnode
" translate node[i) into a local address and save it in table T
save node[i] .nnbr in table T ‘ ’
for j = 1..nndbr ‘
translate node[node[i] .nbr[j]] into a local memory address
and save it in table T
endfor ‘
endfor

— ezecutor
while (table T is not empty)
retrieve np = address of node[i] from Table T
retrieve n = nnbr[i) from table T
t =0.0
forj =1..n
retrieve onp = address of node[node[i] .nbr[j1] from table T

t += np—cl[j] * onp—v /* pointer references */
endfor | |
np—vnew = t
endwhile

Figure 5 Using address caching to improve execution speed for repeated patterns of refer-
ences to distributed data.

merely vary the number of processors. Since all processors do similar amounts of overhead
work, the overhead exhibits perfect speedup. The program runs more slowly with any number

of processors, but the speedup curves look better. To see the overhead, one must compare

against an alternative implementation that doesn’t have it.

5 Caching the Data Reference Pattern

There is-a general rule for making programs run fast: don’t recompute what you can
tabulate. In our case, the inspector follows this rule by carrying its symbolic execution all
the way down to the level of computing local memory addresses, and saving these for use by
the executor and communication routines. |

The exact code depends on the policy for handling replicates. The simplest situation is’
when replicates retain their absolute addresses between iterations. In that case, to continue
our example, the inspector and executor contain code that works as shown in Figure 5.

ma

Note that essentially all the overhead costs have been moved into the inspector, which is

executed only once per pattern. This includes not only the reference resolution, but also
whatever time may be required for each processor to determine which computations it has
been assigned (i.e., to execute the code described by “for i such that...” in Figure 4).

The rémaini‘ng?processor‘ overhead is primarily due to the need to determine whether the
data reference pattern is already known. In general, this requires a combination of compile
time dataflow analysis-and runtime checking. In our example, dataflow analysis indicates
that the pattern depends on the distribution of node and the values of nnbr and nbr at
each node. In the context of our model problem, it is easy to determine that these do
not change after initialization. Realistic situations will be more complicated, especially if
procedure parameters are involved, We anticipate that an adequate solution can be obtained
by having the runtime system combine scalar values and structure update times into a unique
key that is associated with the pattern, but this issue requires further study. In any case,
the cost of determining whether the pattern has been encountered befow is amortized over

all the calculations done by the executor,

This executor’'s computational loop is quite efficient. In fact, it is essentlally ldentlcal

to what one would get by replacing the nbr indices with direct pointers to the referenced

nodes. We generate similar executors for packing, unpacking, and routing communication
buffers needed to create or update replicates.

6 Performance

We have hand-compiled the Onyx program discussed above, implemented it on an NCUBE
hypercube multicomputer, and measured its performance. These measurements include sep-
arate timings for computation, packing and unpacking message buffers, and communication.
Communication is further broken down into system primitives and user-mode message rout-
ing. (Our NCUBE is a first-generation machine with software routing, and we use the Caltech
“crystal router” strategy [5] to avoid forwarding at the operating system level.)

As a standard of comparison, we also implemented a highly optimized uniprocessor ver-

sion in the C language, and ran it on a single node of the NCUBE. This standard is as

stringent as we could make it - “highly optimized” means coding loops with pointers and
register variables, applying induction optimizations by hand, examining the object code to
see what the compiler was doing, and refining the uniprocessor code until we could get no
further improvement.® ‘

Results are shown in Figure 6. There are several interesting features of these numbers.

e The Onyx executor performs the computation faster than the hand-optimized C code.
This may be surprising, but it is easy to explain - pointers are faster than index-
ing.” The relatively large difference (14%) is apparently a quirk of the NCUBE com-

- piler/hardware combination. When we repeated this comparison with other compil-

®We did not, hewever, explicitly convert the nbr arrays from numeric indices to pointers. That is essen-
tially what Onyx does, and there seemed little point in comparing an apple to itself.

10

A O O

Optim- | |
‘ ized O : - Onyx
Processors, P, - 1 1 2 4 8 16 32
Times (1) '
Computation - 0.435 0.373 1 0.1907 | 0.0955 | 0.0483 | 0.0246 | 0.0127
Message Packing - - 0.0029 | 0.0025 | 0.0030 | 0.0021 | 0.0024
Communications ‘
routing ‘ - - {0.0017 { 0.0027 | 0.0049 | 0.0038 | 0.0062
sys /O (2) - - 0.0042 | 0.0053 | 0.0075 | 0.0096 { 0.0118
phy 1/0 (3) ~ - 10.0012 | 0.0009 | 0.0013 | 0.0007 | 0.0008
+ Total per iteration, ‘ ‘
T, (4) 0.435 0.373 | 0.2011 | 0.1075 | 0.0653 | 0.0423 | 0.0363
Inspector Setup - 0.577 (5) | 2.212| 1.233 | 0.932 | 0.595 | 0.541
Relative speed, S, (6) 0.86 1 1.85 3.47 5.71 8.82 | 10.26
Efficiency, Ey (7) ~ 100% 2% | 86% 71% 55% 32%

Noteg:

(1) Times for individual steps are reported as the maximum seconds used by any processor
for that step. ‘

(2) Time spent in system I/O primitives, including buffering and message startup, but
excluding physical I/O time. ‘

(3) Physical I/O time, estiniated from transfer byte counts and published link speed.

4

) Total wall clock time per iteration. May not equal the sum of times for steps because
of measurement uncertainty. ‘

(5) This inspector was customized for standard array storage and no remote references.
)
/

Relative speed is defined as S, = I1/T,, where T3 is the I-processor Onyx time. See
text for the reasons behind this definition.

(7) Efficiency is defined as E, = S,/P,, for P, processors and a relative speed of S5,.

Figure 6: Measured performance for the smoothing calculation on a small irregular mesh of
1854 nodes, average 5.7 neighbors/node.

11

[T o n T ' . I

ers and processors (Encore, Sequent, VAX, DECStatlon) the hand-optimized C was
almost equal to Onyx. Berause of these results, we have chosen to use the single-
processor Onyx time as a reterence in table 5. It is appealing to use the C time, since
this would further improve the Onyx performance numbers, but we believe this would
be misleading.

e The time spent in software routing is roughly equal to that spent in system-level com-
munication primitives. Both of these are much higher than the data transfer time
based on the link speed. This means that the Onyx implementation could greatly ben-
efit from hardware routing and reduced message startup cost. It also means that there
is very little to be gained from attempting to overlap communication and computation
for this apphcatlon :

e Setup cost for the inspector is in the range of 11-15 iterations of the computation, for
all yrain sizes tested. This time could undoubtedly be reduced, considering that little
effort has been spent on optimizing the inspector. However, it is important to note
that even the current setup time would be a small fraction of total run time in typical
applications with hundreds or thousands of iterations. In addition, the calculation in
our model program is lightweight - only two floating point operations per (potentially)
remote data reference. The heavier calculations found in realistic applications would
further reduce the relative setup cost.

We believe that these results also indicate that the Onyx implementation is competitive
with a handwritten message passing code, for this simple model program. Our performance
results indicate that the Onyx executor can compute over local data structures faster than
the conventional indexing code that a human would write. Similarly, the executors produced
for message packing, unpacking, and routing are also as good or better than a human would
write, and there is no unnecessary data transfer or synchronization. For more complex
applications, the Onyx approach remains to be tested. We have no data, for example, on
how well the Onyx approach will detect opportunities to reuse data instead of transferring
it, which is a common optimization in hand-written programs.

7 Related Work

The techniques discussed in this paper are most closely relited to those of Mehrotra [8, 7).

Koelbel and Mehrotra [7] discuss using a regular blocked distribution to address problems
like our model. However, that work does not identify the need for irregular (arbitrary)
distributions, and the performance statistics it reports were obtained from a model problem
with a rectangular grid pattern, where regular distributions (blocked or cyclic) are well
known to be optimal. This paper extends their work by addressing distributions that are,
irregular and specified at runtime, and by introducing the concept of persistent replicates.

It also differs in using a truly 1rregu1ar pattern for evaluatlon and 1 in comparing performance
against the standard of a “best uniprocessor program”

Our address caching strategy is similar to that described by Crowley et.al. [4]; who use

‘it to implement a matrix solution iteration. We generalize that work by using the strategy

to implement application-independent parallel access to distributed arrays. Our executors
are also somewhat faster because all distribution checking code i1s moved to the inspector.
(Crowley et.al. [4] report a 10% penalty, compared to conventional indexing; ours runs faster
than conventional indexing.) However, we do not attempt to parallelize a computation
expressed in serial form, which is Crowley’s major point 4] :

QOur concepts of data distribution and replication, particularly the use of per51stcnt repli-
cates, also borrow much from Emerald [6], Bal’s Orca [1], Munin [2], and other =fforts
designed to provide the functionality of shared data while running on distributed systems.
However, our language model and implementation techniques are substantially different, and
none of those systems have attempted to p10\'1de efficient execution of the sort of problcm
we have addressed lere.

8 Summary and Conclusions

We have discussed the efficient implementation of a model program with irregular but re-
peating data reference patterns. This example requires an irregular partitioning, which is
easily specified in the Onyx system in terms of moving data elements to specific processors.
Onyx exploits the repetition by caching information from the first iteration of each pattern,
in order to make subsequent iterations as fast as possible. The model program has been
hand-compiled and implemented on an NCUBE multmomputer, and its performance has
been measured. ' ‘
The computational loops of the Onyx program were found to be as fast as hand-optimized
uniprocessor code, and its communication requirements were as low as could be achieved
by hand-coding. This suggests that the .approach is well suited to programs in which the

* repetition count is relatively high and for which there is enough memory to allow caching its

patterns.

Further work is required in several areas. For patterns which are regular or nearly so,
such as grid algorithms on domains with irregular boundaries, it should be possible to greatly
rednce cache sizes by compressing them, perhaps using linear sequence techniques. This

approach could be especially effective in combination with compile-time replication, which

would allow owned and replicated data to be placed in the natural addressing relationships
of non-distributed arrays. More attention must be paid to the issue of how one detects
repeatling reference patterns in programs of realistic complexity. Finally, the entire approach
must be evaluated against a wider range of applications, again using programs of realistic
complexity.

References

(1] H. E. Bal. The Shared Data-Object Model as a Paradigm for Programming Distributed

13

[' n L ‘ [S ' Cowo ' e [n Wi “u w o o o o

Systems. PhD thesis, Vrije Univ. Amsterdam, October 1989.

(2] John Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed shared
mernory based on type-specific memory coherence. Techmcal Report COMP TREI-98,
Rice Univ., Novembm 1989. ‘

[3) D. Callahan and K. Kennedy. Compiling programs for distributed-memory multipro-
! : cessors. The Journal of Supercomputing, 2(2):151-170, Oct 1988.

(4] Kay Crowley, Joel Saltz, Ravi Mirchandaney, and Harry Berryman. Run-time scheduling
and execution of]oops on message passing machines. Technical Report 89-7, 1CASE,

1987.

Geofﬁey C. Fox, Maxl\ A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K.
Salmon, and David W. \7\7&11\(31 Solving Problems on Concurrent Processors. Prentxce

Hall, 1988.

L]
o

[6] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine grained mobility
in the Emerald system. ACM Transactions on Computer Systems, 6(1):109-133, Feb
1988. '

(7] Charles Koelbel and Piyush Mehrotra. Supporting shared data structures on distributed
memory architectures. Technical Report CSD-TR-915, Purdue Univ., October 1989.

[8] Piyush Mehrotra and John Van Rosendale. Compiling high level constructs to dis-
tributed memory architectures. Technical Report 89-20, ICASE, 1989.

[9] Michael J. Quinn and Philip J. Hatcher. Data parallel programming on multicomputers.
| Technical Report PCL-88-17, Parallel Computing Lab, Dept. of Comp.Sci., Univ. of New
Hampshire, Durham, NH 036’)4 Oct 1988.

[10]' Anne Rogers and Keshav Pingali. Process decomposition through locality of reference.
In Conference on Programming Language Design and Implementation, pages 69-80,
©1989. | | |

[11] P. S. Tseng. A Parallelizing Compiler for Distribuled Memory Parallel Computers. PhD
thesis, Carnegie Mellon University, May 1989.

H

1

i
-

Y
S

fa—y

12N

e [" ' n u T [g e e T TR

S N N SR " NS RN NN S NN S SR M—

