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1. The momentum balance equation

The basic momentum-balance equation that is used to infer local values of the :;
momentum diffusivity (X_) from measurements of the rotation speed is [1]

O_(__.,njmjTl2w4,) -- T_ol (collisonal torque from beams) (1)
3

+ Tbth (beam thermalization torque)

+ Ti_ (torque from ionization of rotating neutrals)

+ V. __, njmjR2X,i, jVw¢, (viscous torque)
J

- v. Z:

- Z: + !).  ipple)
j r_. r_s

Generally the densities and rotation frequencies are measured, the torque densities
axe calculated from a beam code, and the equation is solved for x_(r,t). The
magnitude of the convection term is somewhat arbitrary - the choice made in Eq. 1
is that each ion convected across a flux surface carries with it the local rotation

speed. The turbulence which actually drives cross-field transport might well impose
a different multiplier. The Fj terms axe the radial fluxes of each ion species, which
are determined separately from the particle continuity equation. The assumption
has been made that ail the ions rotate at the same rotation speed, which may not
be valid in all regimes [2].

The principle objective of performing momentum transport analysis is to iden-
tify the behavior of the momentum diffusivity X_, in particular its variation with
various plasma parameters. A wide variety of experiments has found that XC be-
haves similarly to the heat transport coefficients Xi and X-., and it seems reasonable
to assume that a common mechanism controls transport of both heat and momen-
tum.

Studies of momentum transport offer the following advantages with respect to
studies of heat transport:

• Ion-electron coupling is negligible in the momentum equation, due to the small
electron mass. This allows X_ to be determined accurately in low-temperature
plasmas where it is difficult to separate Xi from X,.

• The convection term remains reasonably small even in the center of very hot
plasmas, so that uncertainties in its magnitude don't introduce large errors
into the inferred Xe. By contrast, heat convection becomes the dominant term
in the power balance.
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• If both co- and counter-beams are available, the torque can be varied with

other conditions (in particular, beam power) held constant.

• In plasmas with modest Zefr (>__2) and strong beam heating, the thermal
ion density (ni -- ne - n,Z - nbeam) Can become a small fraction of n_, and
its magnitude quite uncertain. The plasma mass density, which enters the
momentum balance equation, remains more constant under these conditions.

• Rotation is generally easier to measure than temperature, because the rotation
measurement is derived from the position of the eentroid of a shifted impurity
radiation line, while the temperature is derived from a measurement of the
line width.

One limitation of momentum transport analysis, from the point of view of

understanding anomalous transport, is that additional torques can be imposed on
a plasma through radial currents (J, x B0) that are not measured. For examp!e,
toroidal rotation has been observed to stop in JET with up to 10 MW of co-injection
power during 'locked modes'. Although degradation of energy confinement is also
observed with locked modes (_ 30%), it is not as severe as the total loss of rotation.
It has been conjectured that the rotation damping results from an electromagnetic
interaction between the internal modes and eddy currents in the vessel wall, or with
fixed stray fields [3]. Similar observations have been reported by the ASDEX group
[4].

Similarly, toroidal rotation appears to slow down if ICRF power is added to a
beam-heated discharge. This effect has apparently not been studied systematically,
but could be due to a radial current of energetic ions driven by the RF [5]. Unless
these radial currents (if present) are understood, the momentum transport analysis
will erroneously infer a change in X_ where it in fact remained constant.

I.I. Typical analysis

Figures 2 and 3 show a typical momentum transport analysis for a strongly co-
-rotating TFTR plasma (12 MW co-injection, low-recycling, Ti _ 20 keV, T,(0)

7 keV). The f x/3 torque is reasonably small because injection was in the co-
direction. Due to the high centrvl ion temperatures, the beam thermalization torque
dominates at the plasma center. The ion thermal density is reasonably small due
to carbon contamination (Zefr'- 3.6) aad the large beam-ion population; the carbon
impurity contributes about half the plasma mass. Note that viscous damping is
the dominant term in the momentum balance over the entire plasma; convection
remains small even at the plasma center. By contrast, in the power balance analysis

heat convection (assuming q - _FT) becomes larger than heat conduction for both
ions and electrons inside of r _< 34 cm. The inferred momentum diffusivity XC
increases strongly with radius. The decrease in Xi and X_ near the plasma center
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Figure 1: Effect of mode locking on toroidal rotation observed in JET [3]. An
m = 2, n = 1 was locked before NBI started, then it unlocked for _2.5 s. It locked
once again at _14.5 s, shortly after the beam power was reduced below 5 MW. Note
the excellent agreement between the angular rotation frequency measured by CXR
and the MHD frequency. The rotation profile was quite fiat inside the R = 3.8 m
location (the calculated radius of the q = 2 surface was _3.9 m) during the m = 2
MHD, then it fell to near zero across the entire profile when the mode locked. Near-
zero rotation speeds have been observed during locked modes even at neutral beam
powers of 10 MW.

i



,. momemturn analysis 5

!
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Figure 2: Measured and calculated inputs to the momentum transport s_alysis for
a strongly rotating TFTR plasma. The carbon density has been multiplied by 6
to show its relative contribution to the plasma mass density. The torque densities
were calculated by a Monte Carlo routine in the TRANSP code.

1.2. analysis di_culties /'or Xi atld Xe at low temperature

At the low T, obtained in L-mode plasmas, the electron-ion power coupling

(q,aocn_Zetr(T_- Ti)/ Ta/2) is large even for modest temperature differences(T_- Ti).
Consequently, T/cannot differ significantly from the T_ - otherwise there would be
more power flowing from electrons to ions (or vice versa) than is available from the
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Figure 3: Momentum transport analysis for the plasma shown in Fig. 2.

beams and other heating sources. For a given, fixed T,(r) profile, we can compute
a maximum allowable Ti(r) by assuming that Xi -= 0, i.e. the ions do not transport
arty heat radially. Then, T_ will rise locally until the local heating rate from beams
equals the power transfer to electrons (qbi + qbth "- q¢onv-i -- qei). Similarly, we can
compute a minimum allowable Ti by assuming that Xe - 0, i.e. the electrorts don't
conduct any heat radially. At fixed T,, this corresponds to decreasing the local
until ali the power delivered to electrons is (locally) collisionally coupled to the ions
(qb,+qoH = qconv-,+q,i)- Fig.4 illustrates the measured Ti and T, in a typical beam-
heated TFTR L-mode plasma (Ip = 1.2 MA, Pb = 17 MW) and the corresponding
allowable minimum and maximum Tj. As is customary in L-mode plasmas [6], the
standard steady-state power balance analysis indicates that the ions are responsible
for most of the radial heat transport, and that they have a much 1.arger thermal
diffusivity than the electrons. But note that in the region r > a/2, the difference
between Ti_,,_x and Ti-ml, becomes quite small - so that an error of only ,-_1 keV
in the measured temperature difference Ti- T, would cause us to conclude that the
electrorts are entirely responsible for the heat transport. Under these conditions,
the measurement accuracy for T_ and Ti is not sufficient to determine which channel
- ions or electrons - is primarily responsible for the radial heat flow. Because the
electrons are an insignificant term in the momerttum balance, we can still determine
with good accuracy the transport rate for angular momentum in L-mode plasmas,
and thereby infer the ion momentum diffusivity X#-

I
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Figure 4: Standard power-balance analysis for a low-temperature TFTR L-mode
plasma. (a) Density profile. (b) Calculated beam and ohmic power deposition
to thermal ions and electrons. Note that roughly equal power is given to ions
and electrons. However, because the electrons are hotter than the ions, about
._5 MW is given from the electrons to the ions. (c) Inferred heat flows in the
ion and electron channel. The ions are inferred to carry most of the radial heat
flow because they have the additional 5 MW from the electrons. (d) The inferred
local ion and electron thermal diffusivities, _:i and Xe, deduced from the power
flows in (c) and the measured temperature profiles. (e) The measured Te and Ti
profiles. The maximum and minimum ion temperatures consistent with classical

ion-electron power coupling are also shown. Outside the plasma core (r _> a/2),
even small errors in the measured temperature difference Te- T/would have a large
effect on the electron-ion power coupling Pei) term, and therefore also a large effect
on the inferred profiles of Xi and Xe.
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2. Deposition of torque by neutral beams

Neutral beams injected into a plasma follow a finear trajectory, along which
they are attenuated through ionization and charge-exchange events with the plasma
electrons and ions. This creates a population of energetic ions at the beam energy
(and its half- and third-energy components), which then slows down in the plasma
through Coulomb collisions with the thermal ions and electons, thereby depositing
the beam power and momentum to the bulk plasma.

It is important to realize that most transport simulations deduce local trans-
port coements by comparing the measured gradients (temperature, velocity) with
calculated sources of heat and momentum from the beams. So the accuracy of the
inferred Xi, Xc, and X_ depend as much on the accuracy of our calculations of the
beam deposition and thermalization process as it does on accurate measurements
of Tj, Tc, and v_.

The calculation of beam deposition process is very straightforward: the beam
(usually represented as a large number of small collimated 'beamlets') is tracked
along its linear trajectory through the plasma; in each spatial step ds a fraction of

the beam ds/Ardp is deposited locally, where ds/Amfp is the mean-free--path against
ionization and charge-exchange, which is calculated from known cross-sections and

the local plasma density. The beam intensity is decremented by ds/Amfp, then it
proceeds on to the next spatial step, until the beam - normally attenuated by many
e-folds in intensity- leaves the plasma.

• For rotating plasmas the beam energy must be evaluated in the frame of
the rotating plasma when calculating ds/Amfp, since ali of the cross-sections
depend on the relative energy of the beam neutral and the plasma particle.
This can modestly increase the beam attenuation, as we will see later.

I

• The accuracy of the calculated deposition profile of beam neutrals as energetic
ions depends largely on the accuracy of the atomic cross-sections. Park et al.
[7] compared the rate of rise of electron density at the start of beam injection
and found it to be in excellent agreement with the calculated deposition profile.

The next step is to follow the beam ions along their orbits, including Coulomb
collisions with plasma ions and electrons, to determine where they deposit their
energy, and to which species (electrons or ions).

• This can be done in a Monte-Carlo fashion, by numerically following the
guiding-center orbits of an ens_ lable (typically 1000-4000) of beam ions. Col-
lisions are included by scattering/slowing the ion at each step by an (random)
amount commensurate with the local slowing-down and pitch-angle scattering
times. For a descx4ption of a Monte Carlo treatment of beam deposition, see
Hawryluk et al. [8].

i
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• Alternately, one can solve the Fokker-Planck equation for the fast-ion popula-
tion. The plasma is divided up into many radial zones, and the F.P. equation
is solved separately in each of them. The inputs to the F.P. equation are
the beam-ion 'birth' population as calculated by the neutral deposition code,
and the local plasma parameters (n_, Tc, Ti, Ze_, etc.). The outputs are the
power and momentum deposition rates to ions and electrons as a function of
radius. See _allen [9] for a simple description of the Fokker-Planck equation
and analytic approximations to its solution.

Although the Monte Carlo calculation is more comprehensive in that follows
the expected guiding-center ion orbits (whereas the F.P. equation essentially pre-
sumes a zero banana width), bath calculatianal technique8 assume that the beam
ior_ are not subject to anomalous radial diffusion as they slow down. This is quite
a courageous assumption, since the final conclusion from most transport analyses is
that the thermal plasma experiences very large rates of anomalous transport! Quite
fortunately, for energetic ions, the assumption of no anomalous transport appears
to be true. It has been tested in a variety of experiments [10-13]; the fast-ion dif-
fusivity Dr_t appears to be at least a factor ,,_10 less than the thermal transport
rates - small enough so that the beam power should be deposited where the codes
say it is.

Although there are no standard diagnostics which can measure the beam dis-
tribution function directly, there are two standard "consistency checks" which are
routinely used to assess the validity of the Monte Carlo and Fokker Planck codes.
These are:

• A comparison of the measured neutron emission with that calculated by the
beam codes. For D°--,D + injection, the neutrons are mostly made through col-
lisions of beam ions with other beam ions or with thermal deuterons (i.e. the
thermonuclear component from thermal-thermal fusion is small), so anoma-
lous losses of the beam ions would show up as an overestimate of the measured
neutron production.

• A comparison of the total stored energy, measured for example with a dia-
magnetic loop, with that calculated from integrating the measured density and
temperature profiles and adding the calculated energy stored in the beam-ion
population. This procedure is obviously a less sensitive test of classical beam-
ion physics, since the beam stored energy typically represents only 10-50% of
the total energy in a plasma.

-,4, -4,

2.1. The J x B torque

The deposition of beam torque differs from the deposition of beam power in
one important way: torque can be coupled to the plasma directly through radial
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motion of the beam ions, i.e. no collisions required. Any radial motion of the beam
ions represents a radial current, which when crossed with the poloidal magnetic field
exerts a torque. Goldston[1] describes the physics clearly. Note that because F.P.

codes assume a zero banana-width, they completely neglect the Jr x B_ torque (it
isn't lost, it's collisionally deposited instead). Some illustrative cases are instructive:

® Consider a counter-injected ion born relatively near the outside of the plasma
with a toroidal velocity -vm_i= , with a pitch-angle such that it is banana-
-trapped on its first poloidal orbit. Assume it leaves the plasma on the co-
going side of its first orbit (because its orbit-shift is outward) with a toroidal
velocity V_-out. Clearly, the beam ion has imparted an angular momentum
--mbR(v_-out + v__m) to the plasma, even though it was lost on its first orbit!

-@ .,_

This will be represented as a J x B torque in the orbit codes, because the
beam ion effectively represents a large outward-directed J-'.

This process has practical implications: throughout the region near the plasma
edge where counter-born beam ions are lost on their first orbit, there will be
effectively no power deposition, but the deposition of beam momentum will
be roughly twice the original beam momentum. Consequently, the profile of
deposited torque can be much broader than that of power during counter-
injection.

• When a beam ion becomes banana trapped, then its bounce-averaged rotation
speed is zero (neglecting the precessional drift of the banana itself), and it
effectively deposits all of its momentum to the plasma. This will show up in
the beam-orbit codes as a J x/_ torque due to the orbit shift of the banana.
Consequently, if the beams are injected quasi-perp so that many of them

become banana-trapped earl._r in their slowing-down lifetime, much of their
torque will be deposited as J x B torque.

• For standard co-_ject_ed beam ions that don't banana trr.p, there is only a
relatively small J x B torque due to the fact that the beam neutrals are
typically born on the outside portion of their orbit (say at Ro + r) but their
guiding-center orbit-averaged major radius is Ro. By _u conservation then,

these ions' orbit-averaged vllis less than their initial vii, and *,he difference is
given to the plasma as J × B torque.

Illustrations of the J x B torque density for co-injection and counter-injection
are shown in Figures 5 and 6.

2.2. Collisional beam power and torque deposition

The beam torque which isn't coupled to the plasma as J x B torque, and which
isn't lost due to charge-exchange of the beam ion, is coUisionally deposited to the

I
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Figure 5: Comparison of calculated torque and deposition profiles for co- and
counter-injection (the plasma conditions for the counter-injected calculation are
the same as those for the co-injected plasma (see Fig. 8) except the direction of
plasma rotation is reversed). Note the large contribution of J x B torque at the
edge of the counter-injected plasma, which arises from beam ions which banana-trap
on their first orbit & leave the plasma as co-going ions. These beam ions effectively
deliver roughly twice their original angular momentum to the plasma edge as J × B
torque.
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plasma electrons and ions. This section calculates the fraction of torque coUisionaUy
coupled to each species (electrons, ions, and impurities), and compares the result to
the corresponding fractions for delivery of beam energy. There are two important
results:

1. The (ions + impurities) get most of the beam power and torque in regions of
high Tc, while the electrons get more in regions of low T_. So in the center of
most large experiments (JET, TFTR), the ions get most of the power, while
in smaller devices (e.g. DITE, ISX-B) the electrons get most of the power.

2. The impurities get considerably more power and torque on a per-ion basis
than do the hydrogenic ions. This can drive their temperature significantly
higher than 2_ of the hydrogenic ions under some circumstances.

Beam ions deposit their energy and momentum to the plasma electrons, ions,
and impurities as a result of Coulomb collisions. To determine the fraction given
to each, we must compute the rates at which the beam slows down on each species.
The expressions below are direct evaluations of the formulae presented in the NRL
plasma formulary [14] for the loss rate of beam energy and velocity to electrons (e),
to a specific ion species (j), and to all of the ion species combined (i), e,g.

dEb _ _ ..-, b/j
f-'_)b--tsp " j M --_bV/_

( d_b" --_bvb/e (2)
-'_ )b---+electrons _-_

Note that the loss rate of velocity multiplied by the beam mass represents the rate
of momentum transfer to each species. The units in the following expressions are:
seconds, 1019 m -z, keV, and ainu.

2 i/2

E3/?pj (3)

4f'- s54"'4/-- E_/2 Z.7 (log A//15) (4)

_bT_e/2 (5)

i/2 2
± + g) b  jZ (IogA/15)

vb/j _ 427(,# E_b/2 (O)

427p_/2 1 1
/]b/i .__

E_/2 _'njZ](logAj/15)(j _J "_---)_b (7)

 yo__ 7.6  (logAo/ 5)
_b_/2 (8)
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At highvaluesofEh,thebeam energyand momentum isgivenprimarilytoelectrons.
At low Eh,thebeam energyand momentum isgivenprimarilytothe thermalions

The beam energytransferto ionsand electronsisequM when v_i = v_e,and
thebeam momentum transfertoionsand electronsisequalwhen v,b/i= v0"b/e.The

equipartitionpointisreachedatbeam energiesEc forpowerand Ec_formomentum,
where i

E_ -- 14.8/_bTe(E njZ_ log Ae2la !• ) IJ i

E_4, - 14.SlzbT.(_)'_ n'iZ](_ q" _)l°gAj) 2/3. (9) i
j n_ log Ae

From Eq. 9 it is a straightforward identity to show that in a deuterium plasma with
a single, fully-stripped impurity (implying #i - 2Zj), Ec¢ is just a factor (Zea-b 1)2/a
larger than Ec. Figure 7 illustrates a typical numerical calculation of the torque
deposition profile by the TRANSP code for co-injection. As expected, equal torque
is delivered to electrons and ions at a lower electron temperature, only quite near

the plasma edge, compared to the point of equal power sharing.

As shown in Fig. 8, the ratio of total torque collisionally coupled to ions vs
electrons (4:1) is considerably greater than the corresponding ratio for power (1.5:1).
Figure 8 also compares the shape of the torque deposition profile to the power
deposition profile. The shapes of the power and torque deposition profiles are quite
similar for co-injection, which is not surprising since they derive from the beam-

-ion population. There is less similarity for the depos_ion profile shapes during
counter-injection due to a large contribution from the J x B torque, as discussed
earlier.

Since the energy dependence of v_ j is independent of ion mass, the partition of
the beam power and torque among the ions can be evaluated simply by comparing
the damping rates at any energy for all of the ions. This yields

qb__= njZh, (10)
qbi Ek nkg_/I.tk

n Z2( 1 1
= J + (11)

ssi nZg(1 + 1)
where qt,.i/qt,i is the fraction of all beam power to ions which is given to the jt//ion
species, and fbi/fbi is the fraction of all beam torque to ions which is given to the
jth ion species.

• Note that the beam interacts more strongly with the impurities than with

the hydrogenic ions, due to the Z 2 dependence of the Coulomb cross-section.
Consequently, the impurities receive a disproportionate share of the beam
power and torque.
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Figure 7: Numerical calculation of the torque deposition profile by the TRANSP
code using a Monte Carlo orbit-following beam routine (2000 beam particles) to
calculate the beam-ion orbits _ their collisional torque deposition to thermal elec-

trons and ions. Plasma conditions: (quasi-shot 41719) R = 2.58 m, a = 0.93 m,
Ip = 1.4 MA, Bt = 3.8 T, Pb = II MW (co) E_ = 90 keV, _ = 3.4 x 10 TM m -3,

Z,_ = 2.2, P,. = 1.45, and rE = 92 ms = 1.1 x rL-m°a'. Except at the plasma
edge, ali of the beam energies (full, half and third components) are less than E_,,
so the collisional beam torque is delivered mostly to the thermal ions rather than
electrons.
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The Zj factor in the expression for power transfer to impurities is partially com-
pensated by the additional factor 1/l_j (which for deuterium and fully-stripped
impurities is _ 2Zj) - so the power delivered per ion is proportional to Zj in a
deuterium+ impurity plasma. This reflects the physics of scattering of fast, light
particles by stationary, heavy ones: only a fraction ,-_ #usht//_he_vy of the incident
energy is transferred even in a head-on collision.

Below we evaluate the power and torque partition among the ion species for
a typical hot-ion mode plasma. Although the impurities represent only _8_ of the
ion density, they get about 1/3 of the beam power and 2/3 of the beam torque.

• Because the impurities get a disproportionate share of the beam power and an
even larger fraction of the beam torque, they will become hotter, and rotate
faster than the hydrogenic ions.

Hew much hotter and how much faster is an important issue for understanding
plasma transport, because Ti and v_ diagnostics typically measure the impurity
temperature and rotation speed (either carbon through charge-exchange recombi-
nation spectroscopy or a metallic element through x-ray crystal spectroscopy), but
we are more interested in the temperature and rotation speed of the hydrogenic
ions.

Species Z A ni]n, percentage of _dl ions
density mass power torque

D 1 2 0.646 91.8 64.6 (_4.7 32.3
C 6 12 0.057 8.1 34.2 34.2 59.9
Fe 26 56 0.0004 0.06 1.2 1.1 7.8

Table 1: Calculated partition of beam power and torque to various ion species for a
deuterium plasma (D °-,D +) with carbon as the dominant light impurity and iron
as a metallic impurity, assuming Ze_ - 3.0 and Zeff_metals --" 0.3.

We show below that there can be significant differences between the impurity
and ion temperature in modest-density 'hot-ion mode' plasmas (the temperature
differences are small in the L-mode regime). In both regimes the velocity differential
among the ion species remains small, because momentum is rapidly exchanged
among the ions. Actually, velocity equilibration is expected on more fundamental
grounds: when v_ of the hydrogenic ions becomes comparable to the sound speed,
theory predicts that all ions should rotate at the same/!_, × B_ speed [15].

2.3. Calculation of ion-impurity Ti differential

The temperature difference Tj- Th between the impurity and main hydro-
genic ions will be limited by the power tranfser between them: As the impurity

|

i
i|
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temperature rises above the hydrogenic Th, the impurities will transfer energy to
the main ions at a rate proportional to the temperature difference. The same is true
for velocity. The local exchange rates of energy (qii) and momentum (f ii) between
two ion species (i and j) are

1.OS72injZiZj(v i -- z)j)(log h/15) (12)
fij "- T1.5( 1 1 )0.5i _+_

1.62   jZ?Z](T- Tj) (13)
qij ---: I'_il'zJ( .'_i -Jr"_ )312tzj .

where the units of new quantities are fij-- Nm-3, v -- 10Sm/s, and qij = MW/m -3.
Similar to the expressions for beam power, the collision term for heat transfer is

proportional to Z_//_j while that for the momentum transfer is roughly proportional
to Z_ (the term (1//_j + 1//_b) varies weakly with/_j).

• Note that interspecies coupling of momentum is stronger than interspecies
coupling of heat by roughly a factor Zj.

In a nearly-pure plasma for which the hydrogeni,z ions still get most of the beam
torque, the distribution of beam torque is also skewed in favor of the impurities by
an additional factor of ,,_ Zj, so we expect the fractional differences in rotation
speed and temperature to be comparable. But even at modest impurity levels (see
Table 1) the impurities get most of the beam torque - so the actual torque density
delivered to the impurities doesn't increase as gj indefinitely, rather it saturates a
the total torque available in the beam population.

• The net result is that under most conditions (Zea not terribly close to 1.0),
friction among the ions will maintain their velocities closer together than their
temperatures.

Not all of the power and torque delivered to an impurity species is available to
'support' its temperature above the hydrogenic ion temperature - some of it is
lost radially through heat conduction. If we characterize the conducted heat as

a local loss term 0c 3njTj/TF, j, it is straightforward to calculate (algebraically)
the distribution of ion temperatures and velocities among the various ion species
that will result in a plasma once the source terms (beam power and torque) are
specified. Typically one assumes that all of the ion species have the same local
energy confinement time rEj. A calculation for a hot-ion mode plasma under this
assumption is shown in Fig. 9. The impurity temperature exceeds the deuterium
temperature by > 30% at r - al3. A similar calculation for the velocity shows at
most a 7% difference in rotation speed between impurities and deuterium at the
center.
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Figure 9: Calculated differences among the temperatures of four ion species (hydro-
gen, deuterium, carbon and iron) for the plasma shown in Fig. 7, assuming classical
beam-ion and ion-ion power coupling for all species, m,d that ali ion species have
the same local energy confinement time.
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2.4. Detour: thermalization torque in hot-ion mode plasmas

This section deals with a relatively obscure issue which can be safely skipped
by the casual reader.

Typically, transport codes such as TRANSP nun'..;ically calculate the beam-
-ion distribution function down to E = 3_T_, at which point the beam ions are
considered to be "thermalized". These £hermalizing beam ions represent a source
of power (density) to the plasma, qbth --" 3Tifibth, where hbth is the thermalization
rate (m-3/sec). Similarly, they deposit a thermalization torque to the plasma Tbth=
Rmbhbth(V_-th), where (v_-th) is the mean toroidal rotation speed of the beam-ion
population at E = s

In most plasmas the beam-ion distribution is almost isotropic in the rotating
plasma frame at E = 3_T_. so (v__th) w, v_, i.e. the mean beam rotation speed
equals the local thermal rotation speed. The reason for this is simple: the beam
ions' rate of pitch-angle scattering on thermal ions is ,_ Zetr times greater than their
rate of slowing down on the thermal ions, so the beam ions isotropize before they
thermalize.

However, in 'hot-ion' mode plasmas the ion temperature can reach a significant
fraction of the beam energy, so the time required for beam-ion thermalization is
short. This is particularly true in strongly rotating plasmas, for which the birth
energy of the beam ions in the plasma frame can be ,,_half the beam energy in the
lab frame. It is also particularly true for the fractional beam components (Eb/2,
Eh3) which are often born with less energy in the plasma frame than _Ti, i.e. they
are considered to be "thermalized" instantaneously upon birth. Clearly, in these
plasm_ the beam-ion population is strongly anisotropic at E 3= ]Ti, and so we
expect (vm_rh)>>v_.

• The arithmetic regarding the thermalization power and torqm is correct even
in the limit (vm_rh)>>vm. However, regarding the beam ions as having "ther-

3 when they haven't yet isotropized introduces some errorsrealized" at E =
into the calculation of the energy and momentum density of these ions.

Consider first the stored beam momentum. Since the beam ions are treated as part
of the 'thermal' plasma when they reach 3_T_, they are assigned the local rotation
speed v m. But in fact they have on average a mean rotation speed (vm_rh) _>>
vm, which will require a time Tj. to isotropize. Therefore, these "thermalized but
not yet isotropized" (tbnyi) ions have an additional angular momentum density

nbthmb-l_(vm_th)'r.t. - which represents angular momentum of the thermal plasma
- that is not normally included in transport analysis for Xm. Figure 10 illustrates
a typical example for a strongly rotating, hot-ion mode plasma in TFTR. Due
to the high temperatures, the beam thermalization term is the dominant source
of beam torque at the plasma center (Fig. 10c), and the mean beam-ion velocity
at time of thermalization is roughly twice the thermal rotation speed (Fig. 10e).
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The angular momentum density of the tbnyi ions is about one-third of the thermal

momentum density (Fig. 10h). Thus standard transport analsis, which neglects
the contribution of the tbnyi ions, would underestimate the central momentum

confinement by ,,,25%.
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Figure !0: Calculation of angular momentum density of beam ions which reach E =

a2_ but which are not isotropized. The average toroidal speed of the thermalizing
beam ions for this hot-ion mode shot is 15 × 10Sm/s, compared to the thermal

rotation speed of 8 × 105m/s.

A corresponding error is introduced into the calculation of the energy density

of the tbnyi ions. The standard assumption that the beam ions are isotopic at

time of thermalization means that the energy of a just-therrnalized beam ion is

1 2 in the lab frame, which may be less than their actual energy.-]:Ii+
A larger casualty of our too-cavalier treatment of the thermalizing beam ions

may be the calculation of beam-target neutron emission in strongly rotating plas-
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mas, which is sensitive to the relative velocity of the high-energy beam icns and the
target "thermal" deuterons.

3. Effects of Toroidal Rotation

There are several "classical" effects of strong toroidal rotation:

• In the rotatirtg plasma frame, the beam energy is reduced, so the cross-sections
for charge-exchange and ionization are increased. This leads to increased
attenuation of beam neutrals, and less power deposited on-axis.

• Some of the beam power is deposited not as heating power, but as 'work'
on the rotating fluid. This power is later returned as viscous heating, but
typically at a larger radius.

• Lower birth energy of beam ions in the rotating ple.sma frame. This reduces
their fusion reaction rate considerably, and also reduces the beam-driven cur-
rent.

• Modification of impurity transport [16,17].

• Poloidal density asymmetries and modification of the plasma equilibrium
driven by the centrifugal force [18-20].

There is also a growing theoretical literature on the possible effects of shear in
the poloidal rotation speed (or radial electric field) on anomalous transport which
will not be covered here. The paper by Biglari [21] is a reasonable starting point.

3.1. beam deposition

The mean free path of a beam neutral is given approximately by

_ 0.055_b (14),_m fp -- Ab?_¢19

(meters, kev, ainu, 1019m-a). Of course, since the attenuation takes piace in the
plasma, the beam energy must be evaluated in its frame of reference. In a plasma
that is rotating strongly in the same direction as the beam injection, the beam
energy in the plasma frame (Ebpt) can be considerably less than Eb in the lab frame:

1

Ehp, = Eb sin2(O) + -_mb(Vb COS(e) -- vep(r)) (15)

where/9 is the angle between the neutral trajectory and the toroidal velocity v_, and
Vb is the beam speed in the lab frame. A typical example is shown below in Table 2.
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3

Eb ria v_ Ebp_ _Ti
93.0 0.0 8.0 59.0 30
46.5 0.0 8.0 25.0 30
31.0 0.0 8.0 14.9 30
93.0 0.4 4.0 74.9 16
46.5 0.4 4.0 34.2 16
31.0 0.4 4.0 21.3 16

Table 2: Beam energy in the lab and rotating plasma frames for the three beam-
energy components in a strongly rotating TFTR plasma (shot 52160) using quasi-
tangential injection (cos(0) = 0.79) and the measured ion temperature and rotation
speed.

Note that at the plasma center, the half- and third-beam energy components are
born with less than 3]_ in the rotating plasma frame, and thus actually cool the
thermal ions!

According to Eq. 14 the total attenuation of the beam from the plasma edge
to the center is roughly /(r = 0)/I(r - a) = e -ls'ld_-_'ffelgAb/_b_, where I have
assumed tangential beam injection so the path length from the edge to r = 0 is
about _. For the plasma shown in Table 2 the density was _e19 = 2.0. The
beam attenuation in a stationary plasma would be 1.54 e-folds. A mean rotation
speed of 4 × 10Sm/s drops Ebpl to 74.9 keV and increases the attenuation to 1.91
e-folds, implying a ,.,30_ reduction in central power deposition by the full-energy
beam component (note that if one iDjected a counter-directed beam into this plasma,
its energy in the plasma frame would be bigger than Eh, and it would experience
be_er penetration to the plasma center).

Unless fully unbalanced beam injection into a low-density plasmas is employed
on TFTR, the rotation speed is typically considerably less than the 8 x 105 m/s
assumed in the previous calculation, and the expected effect on beam attenuation
is correspondingly smaller.

3.2. beam 'work' on a rotuting plasma and viscous heating

We saw in the previous section that, in the rotating plasma frame of reference,
beam ions are born with less energy than in the lab frame. Consequently, in the
rotating lab frame there is less beam power available to coUisionally heat the thermal
ions and electrons.

Where does the extra power go?
.-o

The answer is very simple: the beam ions exert a toroidal force F (per unit
volume) on the rotating fluid - which is precisely the force needed to sustain the
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..¢

rotational velocity against viscous damping forces. We can calculate F from the
usual Coulomb collisions between beam ions and the thermal electrons, and impu-
rities. Since the plasma is moving, the toroidal beam force does 'work' on it at
the rate F. _7(per unit time and unit volume). The total power thus delivered
as 'work' to the plasma over some: volume is just the volume integral of all the
ig. ft"terms. Some of this power is converted to thermal energy by viscous heating

Oy 2
(q_i0 = _j rnjnjx_(Y_) ), but the remainder flows out radially and is no longer
available to heat the plasma inside the volume under consideration.

• The net result we expect toroidal rotation to broaden the beam power depo-
sition profile, and can decrease the total power (collisional + viscous heating)
delivered as well.

This section describes the arithmetic that is carried out by standard transport codes
(TRANSP, SNAP, etc.) to calculate these effects. It p_-etty much follows Goldston's
[1] derivation of the rotational energy balance, rewritten slightly to emphasize the
radial energy flows induced by rotation. Stacey [22,23] has also evaluated the radial
power flows associated with rotation.

Is this rotation-induced broadening of the power deposition profile large enough
to seriously affect plasma heating? Energy confinement in hot-ion mode plasmas
is indeed quite sensitive to the direction of injection (balanced vs. unbalanced),
but the observed effects are considerably larger than we would attribute to the
combined effects of rotation (including both the reduced beam penetration and the
broadening of the deposition profile).

The absorbed beam power density in a rotating plasma, qa_°, is delivered to
the plasma in the form of both heat and work:

qab° "-- qbe + qbi + qbth + qb= + W(_.iOe + W(p.g)i + W(lg.iObth + W($'.g)jxB (16)

where qb_ and qbi are the collisional power delivered to thermal electrons and ions;
qbth is the power flow represented by thermalizing beam ions (-- Sbth'_Ti), q_ is
the power lost through charge-exchange of beam ions before they thermalize, and
Sbth is the birth rate of thermalizing beam ions. The "w" terms represent "work"
power densities done by the force of the slowing down beam ion population on the
rotating plasma. The collisional force of the slowing down beam ions on the thermal
electrons, acting on a plasma rotating with local velocity v_, gives rise to the first
two "work terms,

W{p.g)i -- FbillW,

w(p._ = Fb_llv¢,. (17)

Similarly, the total j_ x B_ force arising from radial motion of the beam ions yields
a work term

= x (18)
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The thermalizing beam ions deposit momentum to the plasma at the rate Sbthmbv_lhl,
where vth is the average parallel velocity of the beam ions at time of thermalization.

To evaluate the power terms arising from the thermalizing beam ions, they can 1
be replaced by a thermalization force of the same magnitude (Fbth -_ SbthmbV_]), I
and a source rate Sbth of zero-velocity ions. The thermalization force yields the J
usual work term FbthV¢, while the zero-velocity particle source absorbs power at the
rate Sbthmbv_/2 from the thermal plasma to provide energy for these ions to reach
velocity equilibium. Thus the net work done by the thermalizing beam ions is

v¢
w {_.fl)b,h = Sbthmb Vq,(Vbl[-- "_ ) . (19)

This definition of W(p._)bthincludes the so-called "source-friction" term (Sbthmbv_/2)
which is treated separately in reference [1].

The beam heating power delivered to the thermal plasma, which is available
to sustain the temperature gradient against radial heat conduction, convection,
radiation, charge-exchange, and ionization losses is

qheat = qbe"4"qbi 4- q_,th"i-qvis (20)

where q,,i, is the heat generated through viscous damping of the plasma velocity,
¢ 8v,_ x2

qvis = ]__,j mcn_x,t'-_-,j , where the sum extend over ali thermal ion species j.

• Note that the beam energy deposited in the form of work is not available as
heating power. Most of it is eventually converted to viscous heating power,
but at a larger minor radius than where it was originally deposited.

As we shall see, there is a radial flow of energy driven by rotation which (along
with a few other terms) at any radius is equal to the integrated F. ft'work done by
the beams minus the total work energy that has been converted into heat through
viscous dissipation.

At steady state, Goldston's Eq. 23 [1] for the balance of rotational energy
integrated out to an arbitrary minor radius r is

f0r rqvis dV -" dV (W(l_.i_)e4- W(,_._) i 4- W(_.i_)bt h 4- W(_.iT)jx B 4- W(p._ioniz)

Ej njmjv_- ff dV
Jo

4-Arv4'(Y'_ mjnj)x_ 0-_ -- At _ mj(_ . _)_ (21)J J

where Fj is the radial flux of the jth ion species, dV = 41r2Rrdr for circular con-
centric flux surfaces, and Ar is the surface area of the flux surface (At - 2_r2Rr 2 for
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circular concentric flux surfaces), and w _ _)i_izis an additional work term arising(.
from creation of new plasma ions through ionization of multiple ion species j at

rates Sj, at mean birth velocities v_j"

W(_._)ioniz -- _ Sjmj_(_j -- _). (22)J

We can substitute this expression for q_io into Eq. 20 to calculate how much
rotation reduces the power available for heating;

]or ]orqh_,t dV = dV (q,bo- qb= ) _-- usual terms (23)

Ov._.._£__ -. v_
+Arv_(_ m_ni)x _ Or Ar _ mj(Fi, r)z _-- rotation termsi J

+ for dV (w(i_.Oio,_i, - Ej njrnjv$) ,-- usually small terms

Here q, bo is the density of absorbed beam power, calculated by a neutral beam
attenuation/deposition code (which includes the effect that plasma rotation reduces
the relative beam-target energies and therefore decreases beam penetration).

The first term on the right-hand-side represents the total power inside the
radius r available to heat (and push) the plasma. The next two terms (second
line) represent radial flows of energy driven by rotation; the former represents the
work done by the rotating plasma against the restraining viscous force (F_i0 -

Oy
_]jnjrnix._-¢) at a flux surface of radius r (which is where ali of the va, iables
in these two expressions are evaluated), and the latter term represents a radial
convection of rotational energy. The last two ternm (third fine), which are typically
small in the plasma interior, represent the rotational energy lost to charge-exchange,
and the work that needs to be invested to bring newborn ions up to the local rotation
speed.

3.3. sample calculation

Figure 11 illustrates these power flows as calculated by SNAP for the nominal
plasma conditions of shot 35782, assuming a velocity profile of the form v.(r) -"
8 x 10s(1- (_)2)3 m/sec, and a x_(r) consistent with the calculated beam torque
and this velocity. The distribution of beam power to thermal heating, work against
the moving plasma, and charge-exchange losses is illustrated. Fig. 12 shows the
power delivered to the thermal plasma, which naturally excludes the work terms
but includes the viscous heating. As we expected, the profile of rotational work
done by the beam ions is much more peaked than the viscous heating (which mast
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Figure 11: (a) Calculated beam power deposited as 'work' (shaded region) on a
plasma rotating with a central velocity of 9 x l0 s m/s, compared to the beam power
coUisionaUy coupled to thermal ions and electrons. (c) Corresponding volume-
-integrated power flows. PF.v is the power invested by the beams as work against
the rotating fluid plasma. Some of this power,Pes, is recouped as local heating via
viscous dissipation, but the difference (PF.v- Pes) represents the beam power that
is not available for heating.
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Figure 12: (b) Local heating rates corresponding to the calculaticns in Fig.ll. In
the absence of rotation, the collisional and beam thermalization terms (qb,-I-qbi-l-qbth)
would sum to the available beam power density (q, bo - qbcx) of 3.6 MW/m 3 at the
plasma center. Rotation reduces this thermal heating to only 2.4 MW/m 3 at the
center. The missing power is returned to the plasma as viscous heating at larger
minor radius. (d) Corresponding integrated power deposition profiles. Overall, the
effect of rotation is to convert _4 MW of centrally-deposited beam power to _4 MW
of viscous heating.
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vanish at the magnetic axis because _ -- 0 at r - 0), thus, the rotation broadens
the delivered power profile. Fig. llc shows the rotational energy balance Eq. 21; the
integrated rotational work done by the beams out to any minor radius r is equal to
the viscous heating within that volume, plus the rotational energy convected across
the flux surface, plus the work done by the plasma against the restraining viscous
force acting across the flux surface. Charge-exchange transport of rotational energy
is typically calculated to be negligible for all rotating TFTR discharges, because
the charge -exchange times are long in the plasma center, while nearer the edge the
rotational energy is small ((Vqj/Vth) 2 << 1)).

In this particular case, the plasma recovers as viscous heating ali of the beam
power deposited as work, because our assumption of a parabolic-cubed velocity
profile implies tha, _,both the convection term and the surface work term vanish at
the plasma edge (v_. - 0 at r = a). Thus, in this case the only effect of rotation is
to broaden the profile ¢_fdelivered thermal power, and thereby to reduce (modestly,
as we shall see) its heating effectiveness. In the more general case where neither vm
nor av_ vanishes at the plasma edge, the rotational energy flows at the plasma edgeOr

are also nonzero, and therefore directly reduce the total integrated heating power
and 1"_. The integrated power delivered to the thermal plasma is shown in Fig. 12d.
Notice that viscous heating accounts for roughly 25% of the total.

3.4. Effect of rotation on beam ion population

In the sections above we have seen that strong plasma rotation can produce a
modest increase in beam attenuation and a modest broadening of the beam power
delivered to the thermal plasma. A far stronger effect is on the beam ion population
itself: because the beam energy is reduced in the plasma frame, both the bearn-
target and the beam-beam fusion reactivity are decreased significantly. For example,
Hendel [24] calculated that stopping the rotation in a co-injection plasma with
vm(0) - 5.2 x 10s m/s would increase the beam-target neutron rate by 65% and the
beam-beam rate by a factor of 4, mostly due to the increassed slowing down time
when rotation _0.

The toroidal beam-driven current (due to the circulating beam-ion population)
is reduced by rotation for the same reason: it reduces the beam energy in the plasma
frame, increases the drag, and thereby decreases the fast-ion population. Zarnstorff
has calculated that the beam-driven (including a modest bootstrap contribution)
could be increased from -,,1 MA to _1.7 MA if the associated plasma rotation could
be stopped, for example using RF heating.
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3.,5. Effect of Itee_ting ProNe Modit_cations on TE

Experimentally, the energy confinement time r_ i_ measured with a diamag-
netic loop shows a strong correlation with the beam balance parameter B = (Pco-
Pctr)/(P_o + Pc,r) [25] which in turn is strongly correlated with the rotation speed.
The maximum rff_decreases from 170 msec with balanced injection to about 105
msec with pure co-injection. Can this difference be attributed entirely to the clas-
sical effects of a increased beam attenuation and a broadened power deposition
profile, or does the heat conductivity change?

We will use the "heating effectiveness" parameter developed by Callen et
al. [26] to estimate the variations in stored plasma energy brought about by changes
in the heating profile, assuming fixed profiles of ion and electron thermal diffusivity,
Xi and Xe- Callen represents global energy confinement time r_ as the product of
an "ideal" confinement time rx (which is independent of the heating profile) and
the heating effectiveness, 77,which is calculated from a radial integral of the heating
profile and other quantities.

To evaluate r/, we performed a steady-state power balance for discharge 35782
using the SNAP code, to determine the radial profiles of Xe and Xi that are consistent
with the measured profiles of Ts(r), _(r), and ns(r). In this analysis the convective
heat fluxes (qe = 3 52 2 × T_F_ and qi -- _-_x3s _F_) which dominate the power
balance near the plasma center in TFTR supershots [27,28] were turned off, so that
the calculated X_ and Xe are consistent with the to_al power fluxes (convective plus
conductive) throughout the plasma. The heating effectiveness r/was then calculated
using the ns(r) and xe(r) from the SNAP analysis in the appropriate heating-
effectiveness equations, Callen's Eqs 22-24. A ad-hoc correction (which ultimately
amounted to only 12%) was used to extend CaUen's expressions to _he case for which

_ Tc. Then the heating effectiveness was determined for other plasma conditions
by re-calculating the heating profile (including the effects of rotation, broader beam
deposition profile arising from higher n--e,etc.) and then re-evaluating the integrals
for rl, using the previously determined profiles of x_(r) and x_(r). To e_luate
the rotational power flows for each case, which requires knowledge of v_(r) and
xc(r), SNAP determined the radial profile of X4,(r) which was consistent with its
calculation of the beam torque deposition profile and an assumed velocity profile.

• A modest reduction of 11% in rE is projected for the nominal plasma con-
ditions (_e = 3.9 x 1019 m -a, parabolic-cubed velocity profile) if the plasma
rotates at a speed of 8 x 105 m/sec.

(Recall that rE is observed to decrease by N 38% as one progresses from balanced
to pure co-injection). A considerably larger reduction in vE(25%) is calculated
for broader velocity profiles (parabolic), which however have not been observed in
TFTR in modest-current, conditioned discharges. Based on the observed scaling of
rotation speed in TFTR, ro(0) c< Fb/ff_ [29,30], we would expect a rotation speed

|
I
|
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v_(0) ,,_ 8 x 105 m/see for to.tangential injection of 22 MW at the observed me.
However, the beam sources on TFTR are equally divided between co- and counter-
injection, with a maximum available unidirectional power of about 15 MW; at
Pb = 22 MW there can be at most 7 MW of unbalanced power and correspondingly
smaller rotation speed (the actual v6(0) for shot 35782 was 1.5 x l0 s m/see).

Parameter Range W, S,o,(O) n,(O) Pn H(O) rs rF,(rot)
vo -(3) 0 --,9 3.9 3.40 --,3.07 8.16 --*8.02 3.11 -*3.05 6.72 -*3.98 122 -.108 122 -.120 -.123
vo -(3) 0 --,9 6.2 2.31 --,1.81 6.69 --,6.23 2.79 --,2.63 4.34 -*2.30 111 -*99 111 -.109 -.122
vo -(1) 0 --*9 3.9 3.40 -*2.86 8.16 -,7.74 3.11 -*2.97 6.72 -*3.89 122 -*92 122 -.113 --,120.

Table 3: Summary of density and energy confinement simulations. Nominal
plasma had _e= 3.90 x 1019 m -a, Eb = 108.5 keV, Shafranov shift = 21.7 cm,
v_(0) _ 1.5 × 105 m/s. Units: _,and he(0) in 1019 m-a; Stor in 102° m-a/see;
v. in 105 m/see; rEand rE(rot) in msec. The (3) and (1) identifiers listed for
the velocity represent parabolic-cubed and parabolic velocity profiles, respectively.
The dependent quantities (Stor, ne(O), Ph, H(O), rE, and re(rot)) generally changed
monotonically with velocity, One exception was the energy confinement time includ-
ing stored rotational energy, rE(rot), which first decreased with increasing plasma
velocity, reached a minimum, and then increased once again for central velocities in
excess of 5 × 105 m/s.

4. Experimental Observations

4.1. Is momentum transport diffusive?

Most analyses of momentum transport assume that the radial flux of toroidal
momentum is driven by

. a diffusive, viscous term of the form R2nirnix_j-_, and

• a convective term arising from particle transport of the form R2rnjFjw¢j
(which is usually small).

However, there may be other terms such as

• off-diagonal terms such as R2njm_X_j_, i.e. momentum flux driven by a
temperature gradient;

, pinch terms of the form R2njmjw¢jVpin_h;

• and nonlinear terms of.the form R2n m "- t0_,, with n ¢ 1.j jACnl_, Or ]

|
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There is very httle experimental data that validates or rejects the existence
of these 'other' terms which might drive radial flows of angular momentum. Since
the functional form of xc(r) is unknown, it is difficult to distinguish the effects of
say a nonlinear term from a complicated dependence of Xc on local parameters.
Some progress has been made with respect to the momentum pinch: one can look
for a momentum pinch by aiming a neutral beam so that it misses the magnetic
axis, thereby creating a region in the plasma core with no momentum input. A
significant inward-directed momentum pinch would manifest itself by peaking the
velocity in the core, whereas simple diffusion would predict a flat velocity profile
inside any region with no momemtum sources. Such an experiment cannot easily
identify an outward momentum pinch, since it would be difficult to distinguish it
against arbitrary forms of x_(r).

Figure 13 illustrates the evolution of the velocity profile measured by charge-
-exchange recombination spectroscopy during edge-heating in TFTR [31-33,10].
A single neutral beam source with Pb = 2.0 MW was injected into an r/a =
2.36/0.71 m plasma in the horizontal midplane from 4.0 - 4.5 seconds at a tan-
gency radius of 2.84 m. The calculated torque deposition profile was essentially
zero inside r _<0.3 m, and peaked at r .._ 0.48 m.

• Note that the velocity profile shows no evidence of peaking inside the region
where there is no beam torque. Thus, qualitatively, there is no evidence for
an inward-directed momentum pinch.

As discussed below, the time history of w_(r, t) can be reproduced quite well by the
standard momentum diffusion equation without a momentum pinch term.

The discharge was analyzed with the TRANSP code to deduce the time evo-
lution of x#(r,t) from the measured v#(r,t) and the calculated torque deposition
profile, assuming no pinch term. The inferred x#(r, t) was then smoothed in time
(30 ms), cupped with a minimum of 0.1 m2/s and a maximum of 50 m2/s, and
then used as the input to a velocity simulation code which solves the momentum
balance equation using the measured density and the calculated torque profiles to
predict the time history of w#(r, t). The simulation does not include a pinch term.
As shown in Fig. 13, the simulation reproduces the measured time evolution of w
quite well.

A similar experiment had been carried out previously by modulating the edge-
heating beam in three 100 ms pulses separated by 100 ms off-periods [34]. As shown
in Fig. 14, the measured central velocity was also modulated in time, but with a
phase lag. The time history of v#(0) could be reproduced quite well assuming a
flat x_(r) -- 3.0m2/s, or a radially-dependent x_(r) = 1.4(1 + 2_)m2/s, and no
momentum pinch. Similar analyses for central-heating required a larger X6 by
about a factor of two. These edge-heating results do not necessarily rule out a
momentum pinch, since the edge velocity wasn't measured (so it isn't known if



momem_um analysis 33J

ss910016

' I ' I ' I ' I ' I ' I
+446ms _

____"_-_. _f..-"model

3 _ experiment
2

fZ,
00%)

1

I
0

2 beam torque _ ._ _

Nm/m31 dln,__j_, i_ I ,i_,O' , I ' I I
0 10 20 30 40 50 60 70

Figure 13: Measured time evolution of toroidal angular rotation frequency during
edge-heating compared to a simulation with zero momentum pinch.
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the velocity gradient was zero inside the region of zero torque), but if one were
present, we might have expected the inferred XC to be larger during edge-heating
then during central-heating. The observation of a significant rotation speed during
edge-heating does imply a significant level of diffusive-driven momentum transport.
If 'local' damping mechanisms such as charge-exchange or ripple were the dominant
momentum loss process in these plasmas, the center would not have accelerated to
nearly 2/3 the rotation speed obtained during central-heating.
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Figure 14: Measured central rotation speed during modulated edge heating. The
solid line is a simulation based on XC(r) = 3.0 m2/s with no momentum pinch.

4.2. Measurements of global and local momentum  ranspor .

The next few figures summarize the scaling results of central rotation speed
with input torque from a number of tokamaks. PLT, TFTR, and DIII-D ali observe
a roughly linear increase of v_(0) with input torque, while ASDEX found it to scale
with input torque as c< T°.6. In ISX-B (not shown) the central rotation speed
saturated relatively quickly with beam power.

Next we present several analyses of local momentum transport from TFTR in
the supershot regime, another from ASDEX in a variety of confinement regimes,
and from JET in the hot-ion H-mode. An interesting correlation between Ti(0) and
v_(0) observed in the JT-60 hot-ion mode is illustrated in Fig. 23. For both TFTR
and ASDEX, it is observed that the region where XC experiences the largest im-

provement (relative to L-mode values) is also the region where the density gradient
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is the steepest. In the ASDEX H-mode the largest change in X, occurs at the plasma
edge, which corresponds to the region of large Vne, although X_ is lower throughout
the plasma. Measurements of the radial space potential from ISX-B (Fig.22) dur- i
ing ohmic, co-, counter-, and balanced injection are in qualitative agreement with i
predictions from the force balance.
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Figure 15: Measured central rotation speeds in PLT as measured from Doppler
shifts of the FE XX line[35] for D°---_H + beam injection. The extrapolation to
TFTR with _32 MW was remarkably accurate.
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Figure" 16: Toroidal rotation velocities as measured by CXR in the Doublet III
tokamak (divertor plasmas) at three different major radii versus input beam torque
[36]. Plasma conditions were Ip - 700 KA, Bt -- 2.5 T and _e -- 8 × 1019m -3.

The central rotation speed rises linearly with input torque, but the rotation speed
further out increases less rapidly.
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Figure 17: (a) Central rotation speeds in TFTR plasmas measured by x-ray crystal
spectroscopy as a function of beam force per particle [37]. The dependence of central

rotation speed on Ip is weak. (b) Comparison of central rotation speed scaling in
TFTR reduced-bore plasmas (R/a = 3.00/0.60) with the PLT results at the same
lp, showing a considerable size scaling of momentum transport.
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Figure 18: Comparison of local momentum transport in regimes of standard versus
'improved' confinement in ASDEX [38]. Similar to the TFTR 'supershot' regime
with a centrally peaked density profile (Fig. 19), the peaked-density regimes on
ASDEX (pellet and counter-injection) show the largest improvement in X_ in the
plasma core, where Vne is most affected. The improvement in x_in H-mode plasmas
occurs mostly at the plasma edge, which is also where the largest change in Vne is
observed.
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Figure 19: Comparison of particle, momentum and heat transport in TFTR 'super-
shot' versus L-mode plasmas with unbalanced injection (6 co-, 3 counter beams).
Plasma conditions: R - 2.45 m, a -- 0.8 m, Br = 4.8 Tesla, Ip = 1.3 MA, The
decrease in X_ is similar to that inferred for Xi. Note that inferred Xi decreases

3
significantly if a convection term qco,v -- _FiTi is subtracted from the total ion
radial heat flow. The corresponding changes in electron transport (D,, X,, r_ _,
7"_re are less than the changes in ion transport (larger improvemenent in electron
confinements are observed in better-quality supershots with balanced injection [27]
).




