
Distribution Category"
Mathematics and Computer

Science (UC-405)

ANL--91/34
ANL-91/34

DE92 006819

ARGONNE NATIONALLABORATORY
9700 South Cass Avenue
Argonne, IL 60439-4801

PROCEEDINGS OF THE WORKSHOP ON

COMPILATION OF (SYMBOLIC) LANGUAGES FOR PARALLEL COMPUTERS

held October 31 -- November 1,1991
San Diego, CA

compiledby

Ian Foster and Evan Tick*

" _ 'L '

• i?,,_
...._:_it,__,

;, . ,

Mathematics and Computer Science Division

November 1991 _ _i

, '_

*Current address: University of Oregon, Eugene, Oregon

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.

Department of Energy, under Contract W-31-109-Eng-38. <2,_
JL_

Agenda

THURSDA Y, OCTOBER 31

1:20 Welcome and Introductions

1:30 Interfacing Performance Measurement Capabilities into a
Parallel Language Compiler

Carl Kesselman

2:00 Message-oriented Parallel Implementation of Flat GHC
Kazunori Ueda

2:30 An Overview of the Fortran D Programming System
Charles Koelbel

3:00 Break

3:30 OSCAR Fortran Compiler
Hironori Kasahara

4:00 Coordination Language Design and Implementation Issues
Steve Lucco

4:30 Break

5:00 Designing Imperative Programming Languages for Analyzability:
Parallelism and Pointer Structures

Laurie Hendren

5:30 Compile-Time Parallelization of Prolog
Hakan Millroth

6:00 Compiling Crystal for Massively Parallel Machines
Young.il Chou

iii

FRIDAY, NOVEMBER 1

8:30 A New Method for Compile-Time Granularity Analysis
Evan Tick

9:00 GST: Grain-Size Transformations for Efficient Execution of Symbolic Programs
Andrew Chien

9:30 Break

10:00 Using Domain-Specific, Abstract Parallelism
Ira Baxter

10:30 Applying Abstract Interpretation to Identify Numerical Code in Logic Programs
Arvind Bansal

11:00 Break

11:30 Data Locality
Monica Lain

12:00 Compiling FP for Data-Parallel Systems
CliffordWalinsky

12:30 Lunch

1:30 Improving Compilation of Implicit Parallel Programs by Using Runtime Information
John Sargeant

2:00 Generalized Iteration Space and the Parallelization of Symbolic Programs
Luddy Harrison

2:30 Break

3:00 Dataflow Analysis of Concurrent Logic Languages
Will Winsborough

3:30 Compiler Support for the Refinement and Composition of Process Structures
Ian Foster

4:00 General Discussion and Conclusion

iv

' Contents

Abstract .. vi

Interfacing Performance Measu,-eiaent Capabilities into a Parallel Language Compiler 1
Carl Kesselman

Message-oriented Parallel Implementation of Flat GHC ... 2
Kazunori Ueda and Masao Morita

An Overview of the Fortran D Programming System .. 18
.... Seerna Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich Kremer, and Chau-Wen Tseng

OSCAR Fortran Compiler .. 30
!t. Kasahara, H. Honda, K. Aida, M. Okamoto, and S. Narita

Coordination Language Design and Implementation Issues .. 38
Steve Lucco and Oliver Sharp

Designing Imperative Programming Languages for Analyzability:
Parallelism and Pointer Structures .. 40

Laurie J. ttendren and Guang R. Gao

Compile-Time Parallelization of Prolog .. ,.. 58
ltakan Millroth

Compiling Crystal for Massively Parallel Machines .. 60
Marina Chen and Young-il Choo

A New Method for Compile-Time Granularity Analysis ... 73
X. Zhong, E. Tick, S. Duwuru, L. Hansen, A. V. S. Sastry, and R. Sundararajan

GST: Grain-Size Transformations for Efficient Execution of Symbolic Programs .. 86
Andrew A. Chien and Wuchun Feng

Using Domain-Specific, Abstract Parallelism .. 93
Ira Baxter and Elaine Kant

Applying Abstract Interpretation to Identify Numerical Code in Logic Programs 108
Arvind K. Bansal and Dilip S. Poduval

Data Locality .. 111
Monica S. Lain

Compiling FP for Data-Parallel Systems .. 114
Clifford Walinsky and Deb Banerjee

Improving Compilation of Implicit Parallel Programs by Using Runtime Information 129
John Sargeant

Generalized Iteration Space and the Parallelization of Symbolic Programs .. 149
Luddy Harrison

Datallow Analysis of Concurrent Logic Languages ... 161
Ian Foster and Will Winsborough

Compiler Support for the Refinement and Composition of Process Structures 162
Ian Foster

List of Contributors ... 173

Proceedings of the Workshop on

Compilation of (Symbolic) Languages for Parallel Co_iputers
held October 31 - November 1, 1991

, San Diego, CA

compiled by

Ian Foster and Evan Tick

Abstract _,

', ii

This report comprises the abstracts and papers for the talks presented at the Work-
shop on Compilation of (Symbolic) Languages for Parallel Computers, held October 31_
November 1, 1991, in San Diego. These unrefereed contributions were provided by the

participants for the purpose of this workshop; many of them will be published elsewhere in
peer-reviewed conferences and publications.

Our goal in planning this workshop was to bring together researchers from different

disciplines with common problems in compilation. In particular, we wished t6 encourage

interaction between researchers working in compilation of symbolic languages (especially
logic and functional programming) and those working on compilation of conventional, im-
perative languages.

The fundamental problems facing researchers interested in compilation of logic, func-
tional, and procedural programming languages for parallel computers are essentially the

same. However, differences in the basic programming paradigms have led to different com-

munities emphasizing different aspects of the parallel compilation problem. For example,
parallel logic and functional languages provide dataflow-like formalisms in which control de-
pendencies are unimportant. Hence, a major focus of research in compilation has beon on
techniques that try to infer when sequential control flow can safely be imposed. Granularity

analysis for scheduling is a related problem. The single-assignment property (centred to the

dataflow model) leads to a need for analysis of memory use in order to detect opportunities

for reuse. Much of the work in each of these areas relies on the use of abstract interpretation
techniques.

In contrast, research in procedural languages has emphasized the problem ofiz_ferrillg
data dependencies in order to determine when sequential control flow can safely be relaxed.
A r_lated area of research is the automatic partitioning and distribution of data structIlres.

This topic has not been addressed in the logic and functional programming comm,inities

but is important on large-scale parallel computers.
There is clearly both a commonality of interests between researchers in these differs, ht

fields and large differences in emphasis and techniques. This workshop was a first step at

opening up discussions between the researchers and contributing to the solution of problems

in language compilation for parallel computers.

vi

Interfacing Performance Measurement Capabilities

into a Parallel Language Compiler

Carl Kesselman, Caltech

When developing a parallel program, one is ultimately interested in how effectively that

program uses the parallel computer on which it 'runs. In this sense, identifying and elim-
inating performance bottlenecks is central to parallel computing. The number of times a

procedure executes on a processor, or how much time is spent waiting for interprocessor

' communication are typical of the types of information needed to identify and eliminate

performance bottlenecks. A means for measuring qua.ntities such as these is essential to
any practical parallel programming system. Recognizing this, facilities for performance

measurement have been integrated into the programming environment for Program Com-

position Notation (PCN), a parallel programming language based on program composition,

: single assignment variables, and recursively defined data structures.
Facilities for performance measurement were designed into the PCN implementation

from the beginning. The approach we have taken combines novel measurement techniques
with statistical performance models to provide performance measurements with extremely

low overhead. In this talk, we will discuss issues in the design of performance measurement

systems for parallel programs and we will show how these issues have been addressed in
PCN. An overview of the implementation of performance measurement in PCN will be

given, paying particular attention to the influence measurement had on the design of the
PCN implementation and the PCN compiler.

Message-Oriented Parallel Implementation of Moded Flat GHC

(Extended Abstract)

Kazunod Ueda

Institute for New Generation Computer Technology

4-28, Mira 1-chome, Minato-ku, Tokyo 108, Japan

Masao' Mori _a

Mitsubishi Research Institute

3-6, Otemachi 2-chome, Chiyoda-ku, Tokyo 100, Japan

Abstract. We proposed in [UMg0] a new, me_sage.orien_ed implementation technique for

Moded Flat GHC that compiles unification for data transfer into message passing. The

technique was based on constraint-based program analysis that was amenable to separate

compilation, and significantly improved the performance of programs that used goals and

streams to implement recordlgurable data structures. In this paper we discuss how the tech-

nique can be parallel]zed. We focus on the _hared-goaI me_hod for shared-memory multipro-

cessors, though a different scheme could be used for distributed-memory multiprocessors.

Unlike other parallel implementations of concurrent logic languages which we call process-

oriented, the unit of parallel execution is not an individual goal but a chain of message

sends caused successively by an initial message send. Parallelism comes from the existence

of different chains of message sends that can be executed independently or in a pipelined

manner. Mutual exclusion based on busy waiting and on message buffering controls access

to individual, shared goals. Typical goals allow last-send optimization, the message-oriented

counterpart of last-call optimization. We are building an experimental implementation on

Sequent Symmetry. In spite of the simple scheduling currently adopted, preliminary evalua-

tion shows good parallel speedup and good absolute performance for concurrent operations

on binary process trees.

1. Introduction

Concurrent processes can be used both for programming computation and for pro-

gramming storage. The latter aspect can be exploited in concurrent logic programming to

program recornCigurable data structures using the following analogy:

records _ (body) goals

pointers _ streams (implemented by lists),

where a process is said to be implemented by a multiset of goals.

An advantage of using processes for this purpose is that it allows implementations to

exploit parallelism between operations on the storage. For instance, a search operation on

ht(E3, _, _, L,I_) :-true L=EJ,I_=EJ.

nt(Esearch(K,V) Cs],K, VI,L,K) :-true V=VI, nt(Cs,K,Vl,L,h).

nt([search(K,V) Cs],K_,VI,L,K):-K<KI L= [search(K,V)IL1],nt(Cs,Kl,V1,il,h).

nt([search(K,V) Cs],KI,VI,L,K):-K>KI h=Eseaxch(K,V)Ihl],nt(Cs,KI,VI,L,Rl).

nt([upd&te(K,V) Cs],K, _, L,K) :-true nt(Cs,K,V,L,K).

nt(Eupdi_te(K,V)Cs],KI,VI,L,K) :-K<KI i=[update(K,V)ILl.],nt(Cs,'Xl,Vi,Li,K).

nt([updi_te(K,V)Cs] KI,VI L K):-K>KIJ K=[update(K V)IKI] nt(Cs El VI,L Kt)
i

t(El i) :-true Itrue.
t(Esear_zh(_,V)ICs]) :-true I _=undefined,t(Cs).

t([upda,_e(E,V)ICs]) :-true Int(Cs,K,V,i,K),t(L), t(K).

Program I. A CHC program defn_ngbinarytreesasprocesses

a binarysearchtree(Program I),givenas a messageinthe interfacestrearn,can enterthe

tree soon after the previous operation has passed the root of the tree. Programmers do

not have to worry' about mutual exclusion, which is taken care of by the implementation.

This suggests that the programming of reconfigurable data structures cam be an important

application of concurrent logic languages. (The verbosity of Program 1 is a separate issue

which is out of the scope of this paper.)

Processes as storage are almost always suspending, but should respond quickly when

messages axe sent. However, most implementations of concurrent lo_c languages have not

been tuned for processes with this characteristic. In our earlier paper [UMg0], we proposed

a me3_ge.orien_ed scheduling of goals for sequential implementation, which optimizes goals

that suspend and resume frequently. Although our primary goal was to optimize storage-

intensive (or more generally, demand-driven) programs, the proposed technique worked quite

well also for computation-intensive programs that did not use one-to-many communication.

However, how to utilize the technique in parallel implementation was yet to be studied.

Parallelization of message-oriented scheduling can be quite different from paxallelization

of ordinary, proce33-orien_ed scheduling. An obvious way of parallelizing process-oriented

scheduling is to execute different goals on different processors. In message-oriented schedul-

ing, the basic idea should be to execute different message sends on different processors, but

many problems must be solved as to the mapping of computation to processors, mutual

exclusion, and so on. This paper reports the initial study on the subject.

The rest of the paper is organized as follows: Section 2 reviews Moded Flat CHC, the

subset of GHC we axe going to implement. Section 3 reviews message-oriented schedul-

ing for sequential implementation. Section 4 discusses how to parallelize message-oriented

scheduling. Of the two possible methods suggested, Section 5 focuses on the shared-goal

method suitable for shared-memory multiprocessors and discusses design issues in more de-

tail. Section 6 shows the result of the preliminary performance evaluation. The readers axe

assumed to be familiar with concurrent logic languages [S89].

2. Moded Flat GHC and Constraint-Based Program Analysis

Moded Flat GHC [UMg0] is a subset of GHC that introduces a mode system for the

compile-time analysis of data.flow caused by unification. Unification can cause bidirectional

data£1ow in general. Without static analysis, the bidirectionality requires more runtime

checks in compiled code and can cause the failure of unification.

However, our experience with GHC and KL1 (Flat GHC augmented with constructs for

controlling parallel execution [ucg0]) has shown that the full functionality of bidirectional

unification is seldom used and that programs using it can be rewritten rather easily (if not

automatically) to programs using unification as assignment. Actually, GHC is being used

as a general-purpose concurrent language, which means that the efficiency of commonplace

operations is more important than the efficiency of specific complex operations. Its imple-

mentations should not be too inefficient compared with those of imperative languages. Local

and global compile-time_a_alysis is thus very imPortant to reduce the number of runtime

checks and obtain mactfine codes close to those obtained from imperative programs.

For global compile-time analysis to be practical, it is highly desirable that the analysis

can be made separately for individual program modules in such a way that the results can

be merged later. The mode system of Moded Flat GHC is thus constraint-based; that is,

the mode of a whole program can be determined by accumulating the mode constraints

obtained separately from each program clause. The mode constraints for each clause are

given by a set of syntactic rules (described in [UMg0]) each applicable to a variable or an

occurrence of function symbols in the clause. Another advantage of the constraint-based

system is that it allows programmers to declaxe some of the mode constraints, in which case

the analysis works as mode checking as well as mode inference.

The modularity of the analysis was brought by the rather strong assumption of the mode

system: whether the function symbol at some position (possibly deep in the structure) of

a goal g is determined by g or by other goals running concurrently is determined solely by

that position specified by a path, which is defined as follows: Let Pred be the set of predicate

symbols and Fun the set of function symbols (we do not distinguish between (_-:tants and

function symbols). For each p E Pred with the _ity hp, le_ Np be the set {1,2,..., hp).

N I is defined similarly for each f E Fun. Now the sets of pa_h_ P, (for terms) and P. (for

atoms) axe defined using disjoint union as:

P,=(N+).,
frFun pEPred

An element of P. can be written as a string _p,i)(fl,jl>... (f.,j.), that is, it records the

predicate and the function symbols on the way as well as tlae argument positions selected.

4 : '"

A mode is a function from Pa to the set {i_, o_}, which means that it assigns either of ir_

or o_zt to every possible position of every possible instance of every possible goal. Because

a path records the predicate and the function sym_6olson it, whether some posltion is in or

o_ can depend on the predicate and function symbols on the path down to that position.

Mode analysis tries to guarantee that unification in clause body is used as assignment.

For that purpose, it checks if every variable g.e.r_eratedin the course of execution has exactly

one ou_ occurrence (occurrence at an o_z_position) that can determine its top-level value, by

accumulating constraints between the modes of different paths. The purpose of the analysis

is to obtain partial information on the mode sufficient for compilation; it does not aim to

compute a single mode, because the m,.de of many uninteresting positions that will not

come to exist will be unconstrained and can be left undefined. The mode information can

be used for compiling unification as assignment further into message passing.

Constraint-based analysis can be applied to analyze other properties of programs as

well. For instance, if we can assume that streams and non-stream data structures do not

occur at the same position of different goals, we can try to classify all the positions into

(1) those whose top-level values are limited to the list constructors (con_ and nil) and

(2) those whose top-level values are limited to symbols other than the list constructors,

which is the simplest kind of type inference. Other applications include the static identifica-

tion of 'single-reference' positions, namely positions whose values are not read by more than

one goal and hence can be discarded or destructively Updated after use. This could replace

the MRB (multiple-reference bit) scheme [CK87], a runtime scheme adopted in current KL1
implementations for the same purpose.

3. Message-Oriented (Sequential) Implementation

Message-oriented implementation compiles the generation of stream elements into pro-

cedure calls to the consumer of the stream. A stream is an unbounded buffer of messages

in principle, but message-oriented implementation tries to reduce the overhead of buffering
and unbuffering by transferring control and messages simultaneously to the receiver when-

ever possible. To this end, it tries to schedule goals so that whenever the producer of a

stream sends a message, the consumer is suspending on the stream and is ready to handle

the message. Of course, this is not always possible because we can write a program in which
a stream must act as a buffer; messages are buffered in that event.

Process-oriented implementation tries to achieve good performance by reducing the

frequency of goal switching and taking advantage of last-call optimization. Message-oriented

implementation tries to reduce the cost of each goal switching operation and the cost of data
transmission betwcen goals.

_. codefor bMferin9

9ool _ 9o_t 9oal I 19o_L
E23m_s._ reeS. L

comm. re_. comm. re_.

Fig. 1 Immediate message send Fig. 2 Buffered message send

Suppose two goals_ p and q, are connected by a stream s and p is going to send a
,,

message to q. Message-oriented implementation represents s as a two-field communication

cell that points to (1) the instruction in q's code from which the processing of q is robe

resumed and (2) q's goal record containing its arguments (Fig. 1). To send a message m, p

first loads m on a hardware register called the communication register, change the current

goal to the one pointed to by the communication cell of s, and call the code pointed to by

the communication cell of s. The goal q gets m from the communication register and may

send other messages in its turn. Control returns to p when all the message sends caused

directly or indirectly by m have been processed. However, if m is the last message which

p can send out immediately (i.e., without writing for further incoming messages), control

need not return to p but can go directly to the goal that has outstanding message sends.

This is called last-send optimization.

We have observed in GHC/KL1 programming that the dominant form of interprocess

communication is one-to-one stream communication. It therefore deserves special treatment,

even though other forms of communication such as broadcasting and multicasting become a

little more expensive. One-to-many communication is done eitb.cr by the repeated sending

of messages or by using non-stream data structures.

Techniques mentioned in Section 2 are used to analyze which positions of a predicate

and which variables in a program are used for streams and to distinguis.a between the sender

and the receiver(s) of messages.

When a stream must buffer messages, the communication cell representing the stream

points to the code for buffering and the descriptor of a buffer. The old entries of the

communication cell are saved in the descriptor (Fig. 2). In general, a stream must buffer

incoming messages when the receiver goal is not ready to handle them. The following are

the possible reasons [UMg0]:

[/ t_p&xte and sec_rch

4_ driver ,

I

Fig. 3 Binary search tree as a process

(1) (selective message receiving) The receiver is waiting for a message from other input

streams.

(2) The receiver is suspending on non-stream data (possibly the content of a message).

(3) The sender of a message may run ahead of the receiver.

(4) When the receiver r belongs toa circular process structure, a message ra sent by r may

possibly arrive at r itself or may cause another message to be sent back to r. However,

unless ra has been send by last-send optimization, r is not ready to receive it.

The receiver examines the buffer when the reason for the buffering disappears, and

handles messages (if any) in it.

4. Parallelization

How can we exploit parallelism from message-oriented implementation? Two quite
different methods can be considered:

Dia_ribu_ed-goal me_Aod. Different processors take charge of different goals, and each pro-

cessor handles messages sent to the goals it is taking charge of. Consider a binary search

tree represented using goals and streams (Fig. 3) and suppose three processors take charge

of the three different portions of the tree. Each processor performs message-oriented pro-

cessing within its own portion, while message transfer between portions is compiled into

inter-processor communication with buffering.

Shared-goal rae*l_od. All processors shaa:e all the goals. There is a global, output-restricted

deque [K73]of outstanding work, from which an idle processor gets a new job. The job

is usually to resume the execution of the body goals of a clause. If it is a message send

followed by the rest of the work for the clause, the processor performs the message send

and subsequent message sends it causes, putting the rest of the work back to the top of the

deque. This allows different chains of message sends to be performed in parallel. In the

binary tree example, different processors will take care of different operations sent to the

7

J

root. A tree operation may cause subsequent message sends inside the tree, but they should

be performed by the same processor because there isno paralle!ism within each operation.

Unlike the shared-goal me_hod, the distributed-goal method can be applied to distributed-

memory multiprocessors as well as shared-memory ones to improve the throughput of mes-

sage handling. On shared-memory multiprocessors, however, the shared-g6al method is

more advantageous in terms of latency (i.e., responses to messages), because (1) it performs

no inter-processor communication within a chain of message aends and (2) good load bal-

ancing can be attained easily. The shared-goal method req_res a locking protocol for goals

as will be discussed in Section 5.1, but enables more tightly-coupled parallel processing that

covers a .wider range of applications. Because of i_s greater technical interest, the rest of

the paper is focused on the shared-goal method.

5. Shared-Goal Implementation

In this section, we discuss new technicalities in implementing the shared-goal method.

Space h'mitations do not allow the full description of the implementation, so we choose to

use examples to explain our intermediate code.

5.1 Locking of Goals

Consider a goal p(Xs,Ys) defined by the single clause:

p([A[Xsl],Ys) :-true [Ys=[A[Ysl], p(Xsl,Ysl).

In the shared-goalmethod,dif[erentmessagesin theinputstreamXs may be handled

by different processors that share the goal p (Xs, Ys). Any processor sending a message must

therefore try to lock the goal record (placed in the shared memory) of the receiver first and

obtain grant for the exclusive access to it. The receiver must remain locked until it sends a

message through Ys and restores the dormant state.

The locking operation is important in the following respect as well: In message-oriented

implementation, the order of t,he elements in a stream is not represented spatially as a

list structure but as the chronological order of message sends. The locking protocol must

therefore make sure that when two messages, a and ft, are sent in this order to p(Xs, Ys),

they are sent to the receiver of Ys in the same order. This is guaranteed by locking the

receiver of Ys before p(Xs,Ys) is unlocked.

5.2 Busy Wait vs. Suspension 1

How should a processor trying to send a message wait until the receiver goal is unlocked?

The two extreme possibilities are (1) to spin (busy wait) until unlocked and (2) to give up

(suspend) the sending immediately and do some other work, leaving the notice to the receiver

that it has a rc.essage to receive. We must take the following obserwations into account'

(a) The time each reduction takes, namely the time required for a resumed goal to restore

the dormant state, is usually short (several tens of CI$C instructions, say), though it

can be considerably long sometimes.

(b) As explained in Section 5.1, a processor may lock more than one goal temporarily upon

reduction. This means that busy wait .may cause deadlock when goals and streams

form a circular structure.

Because busy wait incurs much smaller overhead than suspension, Observation (a)

suggests that the processor should spin for a period of time within which most goals can

perform one reductiou. However, it should suspend finally because of (b).

Upon suspensi_m, a buffer _s prepared as in Fig. 2, and the unsent message is put in it.

Subsequent messages go to the buffer until the receiver has processed all the messages in

the buffer and has removed the buffer. As is evident from Fig. 2, no overhead is incurred to

check if the message is going to the buffer or to the receiver. The receiver could notice the

existence of the outstanding messages by checking its input streams upon each reduction,

but it incurs overhead to (normal) programs which don't require buffering. So we have

chosen to let the sender schedule the re_ransrai_er of the messages when it creates a buffer.

The retransmitter occasionally tests if the receiver has been unlocked, iu which case it sends

the First message in the buffer and re-schedules itself.

For the shared resources other than goals (such as logic variables and the global deque),

mutual exclusion should be attained by busy wait, because access to them takes a short

period of time. On the other hand, synchronization on the values of non-stream varia.bles

(due to the semantics of GHC) should be implemented using suspension as usual.

5.3 Scheduling

Shared-goal implementation exploits parallelism between different chains of message

sends that do not interfere with each other. For instance, the binary search tree in Fig. 3

• can process different operations on it in a pipelined manner, as long as there is no dependency

between the operations (e.g., the key of a search operation depending on the result of the

previous search operation). When there is dependency, however, parallel execution can even

lower the performance because of synchronization overhead.

Another example for which parallelism does not help is a demand-driven generator of

prime numbers which is made up of cascaded goals for filtering out the multiples of prime

numbc_rs. The topmost goal receiving a new demand from outside filters out the multiples

of tile prime computed in response to the last demand. However, it doesn't know what

prize's multiples should be filtered out, and hence will be blocked, until the last demand

has almost been processed.

These considerations suggest that in order to avoid ineffective parallelism, it is most

realistic to let programmers specify which chains of message sends should be done in parallel

with others and which should not. The simple method we are using currently.is to have (1)

a global deque for the work to be executed in parallel by idle processors and (2) one local

stack for each processor for the work to be executed sequentially by the current processor.

Each processor obtains a job from the global deque when its local stack is empty. We use

a global deque rather than a global stack because, if the retransmitter of a buffer fails to

send a message, it must go to the tail of the deque so it may not be retried soon.

Each job in a stack/deque is uniformly represented as a pair (code, ehv), where code

is the job's entry/resumption point and ehv is its enviroxmaent. The job is usually to start

the execution of a goal or to resume the reduction of a goal, in which case ehv points to the

goal record on which code should work. When the job is to retransmit buffered messages,

ehv points to the communication cell pointing to the buffer.

5.4 Reduction

This section outlines what a typical goal should do during one reduct'ion, where by

'typical' we mean goals that can be reduced by receiving one incoming message. As an

example, consider the distributor of messages defined as follows,

p([AIXs],Ys,Zs) :- true I Ys=[AIYsl], Zs=[AlZsl], p(Xs,Ysl,Zsl).

where A is assumed no_ to be a stream. The unoptimized intermediate code for above

program is:

entry(p/3)
rcv_value(AI)

get_cr(A4)
send_call(A2)

put_ct(A4)
send_call(A3)
execute.

The Ai's are the arguments of a goal and temporary variables to be recorded in the goal

record. Other programs may use Xi's, which are (possibly virtual) general registers local to

each processor. The label entry(p/3) indicates the initial entry poi,lt of the predicate.

The instruction rcv_value(Al) waits for a message from the input stream at the first

argument. If messages should be already buffered, it takes the first one and put it on the

communication register. A retransmitter of the buffer is put on the deque if more messages

exist; otherwise the buffer is made to disappear (Section 5.7"). If no messages are buffered,

10

which is expected to be most probable, tcv_value records the address of the next instruction

in the communication cell, unlocks the goal record, and suspends until a message arrives.

The goal is usually suspending at this instruction.

The instruction get_ct(A4) saves into the goal record the message in the communica-

tion register, which the previous rcv_value has received. Then send_call(A2) sends the

message through the second stream. Control is transferred to the receiver of the strea_n

unless the stream is being buffered. When control eventually returns, put_cr(A4) restores

the communication register and send_call (AS) sends the next message.

When control returns again, execute performs the recursive call by going back to the

entry point of the predicate p. Then the tcv_value(Al) instruction either finds buffered

messages or finds nothing. In the former case, a retransrnitter of the buffer must have been

scheduled. So tcv_value(Al) can suspend until the retransmitter sends a message. In the

latter case, the recursive call is suspended at the same instruction as the last time. Thus

in either case, execute effectively does nothing but unlocking the current goal. This is

why last-send optimization can replace the last two instructions into a single instruction,

send_jmp(A3). The instructionsend_jmp(A3) locksthe receiverof_he thirdstream,un-

locks the current goal, and transfers control to the receiver without stacking the return

address. Last-send optimization enables the current goal to receive the next message earlier

and allows the pipelined processing of message sends.

The above instruction sequence performs the two message sends sequentially. However,

a variantof send_call calledsend_gcall stacksthe returnaddresson the globaldeque

insteadof theloca/stack,allowingthe continuationtobe processedinparallel.

We have established a code generation scheme for general cases including the spawning

and the termination of goals (Section 5.5), explicit control of message buffering (Section

5.6), and suspension on non-stream variables. Several optimization techniques have been

developed for goals with a single input stream and for goals whose input streams are known

to carry messages of limited forms (e.g., non-root nodes of a binary search tre o (Fig. 3)).

Finally, we note that although process-oriented scheduling and message-oriented scheduling

differ in the flow of control, they are quite compatible in the sense that an implementation

can use both in running a single program. Our experimental implementation has actually

been made by mocUfying the process-oriJnted implementation.

5.5 Examples

Here we give the intermediate code of the n ai've reverse program (Fig. 4). In order for

the code to be almost self-explanatory, some comments are appropriate here.

Suppose the messages ml, ..., mn are sent to the goal nreverse(In,0ut) through

In, followed by the eo_ (end-of-stream) message indicating that the stream is closed. The

11

nreverse([HIT],O) :- true [append(O1,[H],O), nreverse(T,01). (I)

nreverse([], O) '-true I O=[]. (2)

append([IlJ],K,L) :-true [n=[IlM], append(J,K,M). (3)

append([]_ K,n) :- true I K=n. (4)

entry(nreverse/2)
rcv_value(A1) receivea messagefrom thela_aTg(_heprogram is

u_ually waiting for incoming messages here)
check_not_eos(101) if the message is eos then collect the current,

com',a, cell and goto I0i

get_cr(X3) save the message H in She comm. reg. to the
register of the current PE

commit Clause i is selected (no operation)
put_ce(X4) ' create a comm. cell with a buffer

push..value(X3,X4) put the message H into the buffer
push..eos(X4) p'ut cos into the buffer
gr_setup(append/3,3) create a goal record for 3 args and record the name

put_com_variable(X3,sarg(:t)) create a locked variable 01 and set it to
X3 and the Isr crg of append/3

put_value(X4,sarg(2)) setlH]
put_value(A2,sarg(3)) set 0
call_proc execute append/3 until i_ suspends

put_value(X3,A2) set01
return unlock the current.goal and do the job on the

local stack top
label(lOl)

commit Clause ,_ is selected (no operation)
send_call(A2) send cos in the comm. reg. to the receiver of 0

proceed deallocate the goal record and return

entry (append/3)
deref(A3) dereference the 3rg atp L

tcv_buffer(A2) make sure that the Snd crg K buffers messages
tcv_value(Al) receive a message from the 1at crg.
check_not_cos(lO2) if the message ia eos then collect the current

comm. cell and goto i02.

commit Clause 3 is selected (no operation)
sendn_jmp(A3) aencl the received message to the receiver of L,

assuming that L has been dereferenced
label(lO2)

commit Clause 4 is selected (no operation)
send_unify_jmp(A2,A3) make sure that messages sent through A2 are

forwarded to the receiver of A3, and return

Fig. 4 Intermediate code for na_'ve reverse

12

number B coming throughthe secondstream.Suppose B(> A) arrivesand thefirstclause

commits. Then the second streamshouldbecome a bufferand B willbe put back. The

firststreazn,now beinga buffer,ischeckedand a retransmitterisstackedifitcontainsan

element;otherwisethe bufferismade to disappear.FinmllyA issenttothereceiverofthe

thirdstream.The above proceduremay lookcomplex,but thisprogram isindeedone of

thehardestones toexecuteina message-orientedmanner. A simplerexample ofselective

messagereceivingappearsintheconcatenationoftwo streams,asdescribedinSection8.5.

Suspensionon non.3ireamda_a.The most plausiblecaseisthesuspensionon the content

of a message (e.g.,the firstargument of a update command to the binarysearchtree).

When a goalreceivesfrom a stream s a messagethatisnot su_cientlyinstantiatedfor

commitment, itchangess toa bufferand put themessageback toit.The retransmitteris

hooked on the uninstantiated variable(s) that caused suspension, and is invoked when any

of them are instantiated.

The sender of a _ream running ahead of the receiver. It is not always possible to guarantee

that the sender of a stream does not send a message before the receiver commences execution,

particularly when they run in parallel. A stream is initialized to a buffer in that event.

Circular proce_ _ruc_ure. When the receiver sends more than one message in response

to an incoming message, the SequentiM implementation must buffer subsequent incoming

messages until the last message is sent out. Inparallel implementation, the same effect

is automatically achieved by the lock on the goal record and hence the explicit control of

buffering is not necessary.

The retransmission of a buffer created by the receiver of a stream is explicitly con-

trolled by the receiver, while the retransmitter of a buffer created by the sender is scheduled

asynchronously with the receiver.

5.7 Mutual Exclusion of Communication Cells

Because the communication cell for a stream may be updated both by the sender and

the recciver of the stream, some method of mutual exclusion is called for. The simplest

solution would be to lock a commurScation cell whenever accessing it, but locking both a

goal record and a communication cell for each message sending would be too costly.

The solution we adopted does not incur any overhead in ordinary message sends: While

the rcceiver is updating the communication cell, its first field temporarily points to a code

that makes the sender to retry the message send. This is not yet sufficient because there is

a slight possibility that

(1) the sender follows the pointer in the second field of the communication cell, and then

lJ

I BOS '

mn. r £o_1 |Cos' '_1

i'
'i/

Fig. 5 Process structure being created by nreverse([ml,... ,m_] ,Out)

nreverse go_ generates one suspended append go_ for each m_, creating the st_cture in

Fig.5. The ithappend has as thesecondargumenta bufferwith two messages,mi and eo,.

The finaleo,messagetonreverse causesthesecondclausetoforwardthe eo,to themost

recentappend goalholdingmn. The append goal,inresponse,letsdifferent(ifavailable)

processorssend thetwo bufferedmessagesmn and eo_to the append holdingm,-1. The

message mn istransferredalltheway to theappend holdingml and appearsin0ut. The

followingeo_causesthenextappend goaltosendmn-_ and anothereor.

The performancehingeson how fastan append goalcan transfermessages.For each

incomingmessage,itchecksifthemessageisnot eoaand then transfersthemessage and

controlto the receiveroftheoutputstream.The messageremainson the communication

register and need not be loaded or stored.

The send_unify_jmp(rl ,r2) instruction is for the unification of two streams. If the

stream rl has a buffer(whichisthe casein nreverse),itscontentsare firstsentto the

receiver of r2. Then an arrangement is made for rl so that nex_ time a message is sent

through rl, the sender is made to point directly to the communication cell of r2.

5.6 Buffering

As discussed in Section 5.2, the producer of a strearn s creates a buffer when the receiver

is locked for a long time. However, this is a rather unusual situation; a buffer is usually

created by s's receiver when it remains unready to handle incoming messages after it has

unlocked itself. Here we re-exaxnine the four reasons of buffering in Section 3:

Selective me_sage receiving. This happens, for instance, in a program for merging two

(ordered) streams of integers:

omerge([AlXl],[BlYi],Z) :- A< B I Z=[AIZI], omerge(Xl,[B[Yl],Zl).

omerge([AIXl],[BIYl],Z) :-A>=B J Z=[SJZl], omerge([AIXl],YI,Zl).

Two numbers, one from eachinputstream,arenecessaryforthereduction.Suppose the

first number A axrives through the first streaJn. Then the goal omerge checks if the second

stream has a buffered value. Since it doesn't, the goal cannot be reduced. So it records A in

the goal record and change the first streaa_ to a buffer, because it has to wait for another

14

(2) thereceiverstartsand completestheupdatingofthecommunicationcell,and then

(3) 1ock (rozg) obt n dinS ep(1)=d poi=t dto
by the first field of the updated communication cell,

which happens in the following cases:

(a) the receiver creates a buffer for the cell,

(b) the receiver removes a buffer for the cell,

(c) the goal record of the receiver is moved due to reduction, and

(d) the receiver unifies the stream which the cell represents with another stream by

send_unify_jmp.

Case (a)ishandledby the codeforbuffering.The othercasesarehandledby no_ letting

thereceiverupdate thecom_municationcellbut lettingthemJs]ockedbufferhave a recover"

pointerto therightgoalrecord.The conmmunicationcellisupdatedby thesenderwhen it

follows the recovery pointer.

6. An Experimental System and Its Performance

We have almost finished the design of an initial version of the abstract machine in-

struction set for the shared-goal method. An experimental runtime system for performance

evaluation has been developed on Sequent Symmetry, a shared-memory parallel computer

with 20MHz 80386's The system is written an assembly language and C, and the abstract

machine instructions are expanded into native codes automatically bly the loader. A com-
piler from Moded Flat GHC to the intermediate code is yet to be de,_,leloped.

The current system employs a simple scheme of parallel execu',_,ion as described in

Section 5.3. When the system runs with more than one processor, one of them acts as a

1 master processor and the others as slaves. They act in the same ma_acr while the global

deque is non-empty. When the master fails to obtain a new job from the deque, it tries

to detect termination and exceptions such as stack overflow. The current system does not

care about perpetually suspended goals; they are treated just like garbage cells in Lisp. A

s]ight overhead of counting the number of goals in the system would be necessary to detect

perpetually suspended goal [I090] and/or to feature the 8hoen construct of KL1 [ucg0],

but it would scarcely affect the result of performance evaluation described below.

Locking of shared resources, namely logic variables, goal records, communication cells,

the global deque, etc., is done using the xchg (exchange) instruction as usual.

Using Program 1, we measured the processing time of 5000 update commands with

random keys given to an empty binary tree and the processing time of 5000 search com-

m_'mds (with the same sequence of keys) to the resulting tree with 4777 nodes. The number

15

Table 1. Performance Evaluation (in seconds)

binary process tree na_'ve reverse

(5000 operations) (1000 elements)
Language Processing (search) (update)

CHC 1 PE (no locking) 1.25 1.83 2.23 (225 kRPS)"
1 PE 1.38 2.10 3.27 (154 kR_PS)
2 PEs 0.78 1.15 2.43 (207 klLPS)

3 PEs 0.55 0.81 1.71 (294 kRPS)
4 PEs 0.44 0.63 1.33 (377 kl:LPS)
5 PEs 0.36 0.53 1.10 (456 klLPS)
6 PEs 0.33 0.46 0.96 (523 ktLPS)
7 PEs 0.33 0.39 0.85 (591 kl:[PS)
8 PEs 0.33 0.36 0.77 (652 kRPS)

C (recursion) cc -0 0.71 0.72
C (iteration) cc -0 0.32 0.35

(* kilo Reductions Per Second)

ofprocessorswas changedfrom I to 8. For theone-processorcase,a versionwithoutlock-

ing/unlockingoperationswas testedas weil.The numbers includethe executiontime of

the driverthatsendsmessagesto the tree.The resultwas compared with two versions

of (sequential)C programs usingrecordsmud pointers,one usingrecursionand one using

iteration. The performance of nreverse (Fig. 4) was measured as weil. The results are

shown in Table 1.

The results show good (if not ideal) parallel speedup, though for search operations on

a binary tree, the performance is finally bounded by the sequential nature of the driver and

the root node. Access contention on the global deque can be another cause of overhead.
J,

Note, however, that the two exaznples are indeed harder to execute in parallel than running

independent processes in parallel, because different chains of message sends can pass the

same goal. Note also that the binaa'y tree with 4777 nodes is not very deep.

The binary tree program run with 4 processors outperformed the optimized recursive C

program. The iterative C program was more than twice as fast as the recursive one and waz

comparable to the GHC program run with 8 processors. The comparison, however, would

have been more preferable toparallel GHC.if a larger tree had been used.

The overhead of locking/unlocking is about 30% in nreverse and about 10% in the

binary tree prograan. Since nreverse is one of the fastest programs in terms of the kRPS

value, we can conclude that the overhead of locking/unlocking is reasonably small on average

even if we lock such small entities as individual goals.

As for space efficiency, the essential difference between our implementation and C im-

plementations is that GHC goal records have pointers to input streams while C records

do not consume memory by being pointed to. The difference comes from the expressive

16

power of streams; unlike pointers, streazns can be unified together and cart buffer messages

implicitly.

7. Conclusions and Future Works

The .main contribution of this paper is that message-oriented implementaiion of Moded

Flat GHC was shown to benefit from small-grain, tightly-coupled parallelism on shared-

memory multiprocessors. Furthermore, the result of prelil_finary evaluation shows that the

absolute performance is good enough to be compared with C programs.

These results suggest that the programming of reconfigurable storage structures that

-Alow concurrent access can be a realistic application of Moded Flat GHC. Progranmers

need not worry about mutual exclusion necessitated by para_llelization, because it is achieved

automatically at the implementation level. In procedural languages, parallelization may well

require major rewriting of programs. To our knowledge, how to deal with recordlgurable

storage structures efficiently in non-procedural languages without side effects has not been

studied in depth.

We have not yet fully studied the language constructs and its implementation for more

minute control over parallel execution. The current scheme is a simple extension to the se-

quential system and is rather tentative; it worked well for the benchmark programs used, but

will not be powerful enough to be able to tune the performance of large programs. We need

a notion of priority that should be somewhat different from the priority construct in KL1

designed for process-oriented parallel execution. KL1 provides the _hoen (manor) construct

[UC90] as weil, which is the unit of execution control, exception handling and resource con-

sumption control, How to adapt the _hoen construct to message-oriented implementation

is another research topic.

References

[CK87] T. Chikayaxaa and Y. Kimura, Multiple Reference Management in Flat GHC. In

Proc. 4_h L_t. ConY. on Logic Programming, MIT Press, 1987, pp. 276-293.

[I090] Y. Inamura and S. Onishi, A Detection Algorithm of Perpetual Suspension in KL1.

In Proc. Seventh InC. Conf. on Logic Programming, MIT Press, 1990, pp. 18-30.

[K73] D. E. Knuth, The Art of Computer Programming, t/oi. 1 (2hd ed.). Addison-Wesley,
Reading, MA, 1973.

[$89] Shapiro, E., The Family of Concurrent Logic Programming Languages. Computing
Surveys, Vol. 21, No. 3 (1989), pp. 413-510.

[UMg0] K. Ueda and M. Morita, A New Implementation Technique for Flat GHC. In Proc.

Sevent1_ L_t. ConY. on LooSe Programming, MIT Press, 1990, pp. 3-17. A revised,

extended version to appear in New Generation Computing.

[ucg0] K. Ueda aid T. Chikayaxna, Design of the Kernel Language for the Parallel Inference

Machine. T/ae Computer Journal, Vol. 33, No. 6 (Dec.,.1990), pp. 494-500.

17

An Overview of the Fortran D Programming System*

Seema Hiraaanda_ai

Ken Kennedy
Charles Koelbel

Ulrich Kremer

Chau-Wen Tseng

Department of Computer Science
Rice University

Houston, TX 77_5i-I892

Abstract . of vector supercomputers is the ability to write

The success of large-scale parallel architectures is inacha'n'e-independent vectorizable programs. Au-

limited by the difficulty of developing machine- tomat[c vectorization'and other compiler technolo-

independent parallel programs. We have devel- gies have made it possible for the scientist to struc-

oped Fortran D, a version of Fortran extended ture Fortran loops according the weil-understood

with d_ta decomposition specifications, to provide _ rules of "vectorizable style" and expect the result-

a portable data-parallel programming model. This ing program to be compiled to efficient code on any
vector machine [6, 32].paper presents the design of two key components

of the Fortran D programming system: a proto- Compare this with the current situation for par-

type compiler and an environment to assist auto- al]el machines. Scientists wishing to use such a
machine must rewrite their programs in an exten-marie data decomposition. The Fortran D com-

piler addresses program partitioning, communica- sion of Fortran that explicitly reflects the azclfitec-

tion generation and optimization, data decompo- ture of the underlying machine, such as a message-

sition analysis, run-time support for unstructured passing dialect for MIMD distributed-memory ma-

computations, and storage management. The For- chines, vector syntax for SIMD machines, or an

tran D programming environment provides a static explicitly parallel dialect with synchronization for
ML_vIDshased-memory machines. This conversion

performance estimator and an automatic data par-
is difficult, and the resulting parallel programs aretitioner. We believe that the Fortran D program-

rning system will significantly ease the task of writ- machine-specific. Scientists are thus discouraged
ing machine-independent data-parallel programs, from porting programs to parallel machines be-

cause they risk losing their investment whenever

1 Introduction the program changes or a new architecture arrives.

It is widely recognized that parallel computing rep- One way to overcome tiffs problem would be

resents the only plausible way to continue to in- to identify a "data-parallel programmir_g style"

crease the computational power available to com- that allows the efficient compilation of Fortran

putational scientists and engineers. However, it programs on a variety of parallel machines. P_e-

is not likely to be widely successflfl until paraliel searchers working in the area, including ourselves,

computers are as easy to use as today's vector su- have concluded that such a programming style is

p_ercomputers. A major component of the success useful but not sufficient in genera]. The reason for
this is that not enough information can be included

"This research waz supported by the Center for Research in the program text for the compiler to accurately
on Parallel Computation, a Nation,'d Science Foundation evaluate alternative translations. Similar rea.sort-
Science and Tech.uology Center. ing argues against cross-compilations between the

18

t:

current parallel extensions of Fortran. ray dimensions. We call th.is the problem mapping
For these reasons, we have chosen a different ap- induced by the structure of the underlying com-

proach. We believe that selecting a data decompo- putation. It represents the minimal requirements
sition is one of the most important intellectual step for reducing data movement for the program, and

in developing data-parallel scientific codes. How- is largely independent of any machine considera-
ever, current parallel programming languages pro- tions. The alignment of arrays in the program de-

vide little support for data decomposition [26]. We pends on the natural fineo_ain parallelism defined
have therefore developed an enhanced version of by individual members of data arrays.
Fortran that introduces data decomposition spec- Second, there is the question of how arrays

ifications. We call the extended language For- should be distributed onto the actual para]M ma-
tran D, where "D" suggests data, decomposition, ctune. We call this _he machine mapping caused by
or distribution. When reasonable data decomposi- translating the problem onto the finite resources of

tions are provided for a Fortran D program written the machine. It is affected by the topology, com-

in a data.parallel programming style, we believe munJcation mechanisms, size of loc_ memory, and
that advanced compiler technology can implement number of processors in the underlying machine.
it efficiently on a variety of parallel architectures. The distribution of arrays in the program depends

We are developing a prototype Fortran D com- on the coarse-grain parallelism defined by the phys-

piler to generate node programs for the iPSC/860, ical parallel machine.
a MIMD distributed-memory machine. If suc- Fortran D is a version of Fortran that provides

cessfut, the result of this project will go far data decomposition speckfications for these twolev-
towards establishing the feasibility of machine- els of parallelism using DEC0MPOSITION,ALIGN,and
independent parallel programming, since a MIMD DISTRIBUTEstatements. A decomposition is an ab-

shared-memory compiler could be based directly on stract problem or index domain; it does not require
the MIMD distributed-memory implementation, any storage. Each element of a decomposition rep-

The o_fly additional step would be the construe- resents a unit of computation. The DECOMPOSITION
tion of an effective Fortran D compiler for SIMD statement declares the name, dimensionality, and

distributed-memory machines. We have initiated size of a decomposition for later use.
at Rice a project to build such a compiler based on The ALIGNstatement is used to map arrays onto

existing vectorization technol%, . decompositions. Arrays mapped to the same de-
The Fortran D compiler automates the time con- composition are automatically aligned with each

sum_ing task of deriving node programs based on other. Alignment can take place either within or
the data decomposition. The remaining compo- across dimensions. The alignment of arrays to
nents of the Fortran D programming system, the decompositions is specified by placeholders in the
static performance estimator and automatic data subscript expressions of both the array and decom-
partitioner, support another important step in de- position. In the example below,

veloping a data-parallel program_selecting a data
decomposition. The rest of this paper presents the REALX(N,N)
data decomposition specifications in Fortran D, the DECOMPOSITIONA (N, N)
structure of a prototype Fortran D compiler, and ALIGNX(I,J) _i_h A(J-2,1+3)

the design of the Fortran D programming environ- A is declared to be a two dimensional decomposi-
ment. We conclude with a discussion of our vali- tion of size N x N. Array X is then aligned with

dation strategy, respect to A with the dimensions permuted and

2 Fortran D offsets within each dimension.
After arrays have been aligned with a decom-

The data decomposition problem can be up- position, the DISTRIBUTEstatement maps the de-
proached by considering the two levels of paral- composition to the finite resources of the physical
lekism in data-parallel applications. First, there is machine. Distributions are specified by assigning
the question of how arrays should be aligned with an independent att.ribu_e to each dimension of a
respect to one another, both within and across ar- decomposition. Predefined attributes are BLOCK,

19

, , q i ,, , i

!i!iiii

I I !iii!i!i!iiiiii!iiII'.'. iiiiiiaiiiiiiiii',i',','.iill

DECOMPOSITION REAL X(N,N) DISiRIBUTE DISTRIBUTE

A(N,N) ALIGN X(I,J) A(: ,BLOCK) A(CYCLIC, :)

with A(J-2,I+3)

Figure I:Fortran D Data' Decomposition Specifications

CYCLIC,and BLOCK_CYCLIC.The symbol ":"marks We .=houldnotethatour goalin designingFor-

dimensions that/re not distributed. Choosing the tram'I) is not to support the most genera/data de-

distribution for a decomposition maps all arrays compositions possible. Instead, our intent is to pro-

aligmed with the decomposition to the machine. In vide decompositions that are both powerful enough

the following example, to express data parallelism in scientific programs,

and simple enough to permit the compiler to pro-

DECOMPOSITION A(N,N) duce efficientprograms. FortranD isa language

DISTRIBUTE A(:, BLOCK) withsemanticsverysim.ilarto sequentia/Fortran.

DISTRIBUTE A(CYCLIC, :) As a result,itshouldbe quiteusableby computa-

distributingdecompositionA by (:,BLOCK)results tionalscientists.In addition,we believethatour

in a column partitionof a1,aysalignedwith A. two-phasestrategyforspecifyingdata decomposi-

Distributing A by (CYCLIC,:) partitions the rows tion is na';uraJ and conducive to writi'.g modular

of A in a round-robin fashion among processors, and portable code. Fortran D bears similarities to

These sample data allgnment and distributions are both CM Fortran [31]and KALI [22]. The complete

shown in Figure 1. language is described in detail elsewhere [8].

Predefined regulaz data distributions can effec- 3 Fortran D Compiler
tively exploit regular data-parallelism. However,

irreg'uiar distributions and run-time processing is As we have stated previously, two major steps in

required to manage the iri'egu/ar data parallelism writing a data-pax/dM program are selecting a data

found in many unstructured computations. In For- decomposition, and then using it to derive node

tran D, irregular distributions may be specified programs with explicit communications to access

through an explicit user-defined function or data non.loca/data. Manua/ly inserting communications

array. Inthe example below, is unquestionably the most time-consuming, te-
dious, non-portable, and error-prone step in par-

INTEGER MAP(N) a/lelprogramming. Significant increases in source

DECOMPOSITION IRREG(N) code sizeare not onlyconunon but expected.A

DISTRIBUTE IRREG(MAP) major advantageofpro_amming inFortranD wi/l

be the abilityto utilizeadvanced compilertech-

elements of the decomposition IKREG(i) will be ni.ques to automatically generate node programs
mapped to the processor indicated by the array with explicit communication, based on the data de-
MAP(i). Fortran D a/so supports dynamic data

decomposition; i.e., changing the alignment or dis- compositions specified in the program. The proto-

tribution of a decomposition at any point in the type compiler is being developed in the context of
the ParaScope parallel programming environment

program. [4], and will take advantage of the ana/ysis and

20

search analyze varlables transform parallel estimate complle

C _'' KERNEL I HYDRO FRAGMENT

C

C The loop bounds of k are modified so that every processor only
C assigns to its local segment of array x. Since only processors
C I to 9 assign values to x, the _ranslator generates the appropriate
C mask to reflpc_ this.
C Communication analysis reveals all y array reads are to the
C local segment of y. Accesses to the z array may be local or
C non local. The comptler computes that processors 2 to _e need
C to send li elements ef the z array to the processor on thelr le_t.
C These elements are placed in a buffer and %he csend call Is generated.
C The compiler computes that processors i to 9 need to receive li
C elements of the z arra_ from the processor to their right.
C The receive cell is generated and _he non local data is removed
C Yrom the buffer and copied into the overlap area of the z array.

_ln$proc =
max$proc = 9
if (my$clz .le. max$proc • 1 .and.. my$clz .ge. mln$proc • l) then

call buffer_data(z, l, l, li, rSbuffer)
call csend(lll, rSbuffer, 11 * rSsize, mySproc L 1_ myp_ _))

endif
I# (my$clx * IO8 .le. 988 .and. my$c_x * IBS'.ge. I) then

call crecv(lll_ rSbuffer, li * rSslze)
call copy_data(z, i, i81, Ill, rSbuffer)
do 1 = I, IBeO

do k = I, 188
X(K) = q * y(k) ' (r • zCk + CB) + t " zfk + ii))

endOo
enddo

endif

prey loop next loop prey dbp next dep filter type delete

_ype src(___) sink(bold) vector, 'level block

Figure 2: Fortran D Compeer Output

transformation capabilities of the ParaScope Edi- costs.

tor [19, 20]. The Fortran D compiler bears similarities to
The main goal of the Fortran D compiler is to AP,r [33], ASPAR [18], ID NOUVEAU [29], KALI

derive from the d_t_ decomposition a parallel node [22], M_._D_ZEP_[13], and SUPERB [34]. The cur-

program that minimizes load imbalance and com- rent prototype generates code for a subset of the
muaication costs. Our approach is to convert tbr- decompositions allowed in Fortran D, namely those

tran D programs into single-program, multiple-data with BLOCKdistributions. Figure 2 depicts the out-
(SPMD) form with explicit message-passing that put of a Livermore loop kernel generated by the
executes directly on the nodes of the distributed- Fortran D compiler.

memory machine. Our basic strategy is to parti- 3.1 Program Partitioning
tion the program using the owner computes rule,
where every processor only performs computation The first phase of the compiler partitions the pro-
on data it owns [5, 29,34]. However we will relax gram onto processors based on the data decompo-' sition. We define the iteration set of a reference/_
the rule where it prevents the compiler from achier-

on the local processor tp to be the set of loop itera-
ing good load balance or reducing communication

tions that cause R to access data owned by rp. The

21

iteration set is calculated based on the alignment ag_essively optimize communications. Vie intend
and distribution specified in the Fortran D pro- to apply techniques proposed by Li and Chen to

gram. According to the owner computes rule, the recognize regular computation patterns that ca.n

set of loop iterations that tp must execute is the utilize collective communications primitives [24]. It
union of the iteration set_ for the left-hand sides will be especially important to recogniz : reduction

(lhs) of all the iltdividual assignment statements operations. For regular communication patterns,
witkin the loop. we plan to employ the collective communications

To partition the computation among processors, routines found in EXPRESS[27]. For unstructured
we first reduce the loop bounds so that each pro- computations with irregular communicatio,ns, we
cessor only executes iterations in its own set. With will incorporate the P._,RT'Iprimitives of Saltz et al.

multiple statements in the loop, the iteration set of [33].
, an individual statement may be a subset of the it- The Fortran D compiler may utilize data decom-

eration set for that loop. For these statements we position and dependence information to guide pro-

also add guards based on membership tests for the gram transformations that improve communication
iteraticn set of the lh,s to ensure that all assign- patterns. We are considering the usefulness of sev-
meats are to local array elements, eral transformations, particularly loop interchang-

,3.2 Communication Introduction ing, strip mining, loop distribution, and loop align-
meat. Replicating computations and processor-

Once the computation has been partitioned, the _pecific dead code elimination will also be applied
Fortran D compiler must introduce communica- _oeliminate communication.
tions for nonlocal data accesses to preserve the se-

Communications may be further optimized by
mantics of the original program. This requires cal- considering interactions between all the loop nests

culating the data that must be sent or received by in the pro_am. Intra- and interprocedural
each processor. We can calculate the send itera- datafiow analysis of array sections can show that
Zion set for each right-hand side (rh_) reference as

an assignment to a variableis live at a point in theits iteration set minus the iteration set of its lhs.
program if there are no intervening assignments to

Similarly, the receive iteration set for each rbs is that variable. This information may be used to
the iteration set of its lh.s minus its own iteration

eliminate redundant messages. For instance, as-
set. These sets represent the iterations for which sume that messages in previous loop nests have

data must be sent or received by rp. The Fortran D already retrieved nonlocal elements for a given ar-
compiler summarizes the array locations accessed ray. If those values are live, messages to fetch those
oa the send or receive iterations using rectangular values in succeeding loop nests may be eliminated.
or tria.ng-_ regions known as regular sections[12]; Data from different arrays being sent to the same
they are used to generate calls to communication

processor may also be buffered together irt one rees-
primitives, sage to reduce communication overhead.
3.3 Communication Optimization The owner computes rule provides the basic

.4. na/re approach for introducing communication strategy of the Fortran D compiler. We may also
is to in,sert send and receive operations directly relax this rule, allowing processors to compute val-

preceding each reference c_.using a nonlocal data ues for data they do not own. For instance, suppose
access. This generates many small messages that that multiple rh8 of an assignment statement are
may prove inefficient due to communication over- owned by a processor that is not the owner of the
head. The Fortran D compiler wi:! use data depen- lhs. Computing the result on the processor owning
der2ce information to determine whether commu- the rbs and then sending the result to the owner of

n_ication may be inserted at some outer loop, vec- the lhs could reduce the amount of data commu-
torizing messages by combining many small rees- nicated. This optimization is a simple case of the

sages. The algorithm to calculate the appropriate owner stores rule proposed by Balasundaram [1].
loop level for each message is described by Bala- In particular, it may be desirable for the I_br-
sundaram et al. and Gerndt [2, 10]. tra.a D compiler to partition loops amongst pro-

A major goal of the Fortran D compiler is to cessors so that each loop iteration is executed ota

22

a single processor, such as in KALI [22] and PARTI 3.5 Run-time Support for Irregular
[33]. This technique may improve communication Computations

and provide greater control over load balance, es- Many advanced algorithms for scientific applica-
pecially for irregular computations. It also elimi- tions are not amenable to the techniques described
nares the need for individual statement guards and in the previous section. Adaptive meshes, for ex-

simplifies handling of control flow within the loop ample, often have poor load balance or high com-
body. munication cost if static reg-ular data distributions

3.4 Data Decomposition Analysis are used. These algorithms require dynamic irreg-

Fortran D provides dynamic data decomposition lflar data distributions. Other algorithms, such as
fast multipole algorithms, make heavy use of in-by permitting ALIGNand DISTRIBUTEstatements
dcx arrays that the compiler cannot analyze. Into be inserted at any point in a program. This com-

plicates the job of the Fortran D compiler, since it these cases, the communications analysis must be
must know the decomposition of each array in or- performed at run-time.

der to generate the proper guards and communJca- The Fortran D project supports dynarn.ic irreg-

tion. We define reaching decompositions to be the uiar distributions. The inspector/ezecutor strat-
set of decomposition specifications that may reach egy to generate efficient communications has been
an array reference alined with the decomposition; adapted from KALI [22] and P._RTI [25]. The in-
it may be calculated in a manner similar to reach- spector is a transformation of the original For-
ing definitions. The Fortran D compiler will apply tran D loop tl_at builds a list of nonlocal elements,
both intra- and interprocedural analysis to calcu- known as the IN set, that will be received during

the execution of the loop. A global transpose oper-late reaching decompositions for each reference to a
distributed array. If multiple decompositions reach ation is performed using collective communications
a procedure, node splitting or run-time techniques to calculate the set of data elements that must be

may be required to generate the proper code for sent by a processor, known as the OUT set. The
the program, executor uses the computed sets to control the ac-

To permit a modular programming style, the el'- tual communication. Performance results using the
fects of data decomposition specifications are lira- PAP,TI primitives indicate that the inspector can

ited to the scope of the enclosing procedure. How- be implemented with acceptable overhead, pattie-
ever, procedures do inherit the decompositions of ularly if the results are saved for future executions

of the original loop [33].their callers. These semantics require the com-
piler to insert calls to run-time data decomposition a.6 Storage Management

routines to restore the original data decomposition Once guards and communication have been cal-

upon every procedure return. Since changing the culated, the Fortran D compiler must select and
data decomposition may be. expensive, these calls manage storage for all nonlocal array references
should be eliminated where possible, received from other processors. There are several

We define live decompositions to be the set of different storage schemes, described below:
decomposition specifications that may reach some

array reference aligned with the decomposition; it • Overlaps, developed by Gerndt, are expan-
may be calculated in a manner similar to live vari- sions of local array sections to accommodate

ables. As with reaching decompositions, the For- neighboring nonlocal elements [10]. They are
tram D compiler needs both intra- and interpro- useful for programs with high locality of ref-
cedural analysis to calculate live decompositions erence, but may waste storage when nonlocal
for each decomposition specification. Any data accesses are distant.
decompositions determined not to be live may be
safely eliminated. Similar analysis may also hoist • Buffers are designed to overcome the contigu-
dynamic data decompositions out of loops, ous nature of overlaps. They are useful when

the nonlocal area is bounded in size, but not
near the local array section.

23

 nvironmenti ortr nOComper/ ti i

.. , __

JAutomatic Static
Data Performance
Partitioner Estimator

Figure 3: Fortran D Parallel Programming System

, Hash tables are used when the set of accessed process is prohibitively difficult without the assis-

nonlocal elements is sparse. This is the case tance of a compiler to automatically generate node
in many irregular computations. Hash tables programs based on the data decomposition.
provide a quick lookup mechanism for arbi- Several researchers have proposed techniques to

trary sets of nonlocal values [16]. automatically derive data decompositions based on
simple machine models [17, 28, 30]. However, these

Once the storage type for all nonlocal data is de- techniques are insufficient because the efficiency of
termlned, the compiler needs to analyze the space a given data decomposition is highly dependent on
required by the various storage structures and gen- both the actual node program generated by the
erate code so that nonlocal data is accessed from its

compiler and its performance on the parallel ma-
correct location. Storage management and other chine. "Optimal" data decompositions may prove
parts of the Fortran D compiler are described in inferior because the compiler generates node pro-
more detail elsewhere [14, 15]. grams with suboptimal communications or poor

4 Fortran D Programming load balance. Similarly, marginal data decompo-
Environment sitions may perform well because the compiler is

Choosing a decomposition for the fundamental able to utilize collective communication primitives
data structures used in the program is a pivotal to exploit special hardware on the parallel machine.

step in developing data-parallel applications. Once What we need is a programming environment
that helps the user to understand the effect of a

selected, the data decomposition usually com-
given data decomposition and prograzn structurepletely determines the parallelism and data move-
on the efficiency of the compiler-generated codement in the resulting program. Unfortunately,
running on a given target machine. The Fortran D

there are no e._isting tools to advise the program-
mer in making this important decision. To evaluate programming system, shown in Figure 3, provides
a decomposition, the progrzmmer must first insert such an environment. The main components of
the decomposition in the program text, then com- the environment are a static performance estima-
pile and run the resulting program to determine its tor and an automatic data partitioner [2, 3].

effectiveness. Comparing two data decompositions Since the _brtran D programming system is built
on top of ParaScope, it also provides program anal-thus requires implementing and running both ver-

sions of the program, a tedious task at best. The ysis, transformation, and editing capabilities that

24

allow users to restructure their programs accord- the static performance estimator. It assists the
ing to a data-parallel programming style. Zima user in selecting data decompositions by statically
and others at Vienna are working on a similar predicting the performance of a program for a
tool to support data decomposition decisions us- set of data decompositions. The compiler mod-

ing automatic techniques [7]. Gupta and Banerjee ule employs a compiler-level training set written in
propose automatic data decomposition techniques Fortran D that consists of pro_am kernels such
based on assumptions about a proposed ParM'rase- as stencil computations and matrLx multiplication.
2 distributed-memory compiler [11]. The training set is converted into message-pas_ing

4.1 Static Performance Estimator Fortran using the Fortran D compiler and executed
on the target machine for different data decompo-

It is clearly impractical to use dynamic perfor- sitions, numbers of processors, and array sizes. Es-
mance information to choose between data decom- timating the performance of a Fortran D program
positions in our programming environment. In- then requires matching computations in the pro-
stead, a static performance estimator is needed gram with kernels from the training set.
that can accurately predict the performance of a

The compiler-level training set also provides a
Fortran D program on the target machine. Also natural way to respond to changes in the Fortran D
required is a scheme that allows the compiler to as- compiler as well as the machine. We simply recom-
sess the costs of communication routines and com-

pile the training set with the new compiler and
putations. The static performance estimator in execute the resulting procures to reimitialize the
the Fortran D programming system caters to both compiler module for the performance estimator.

needs. Since it is not possible to incorporate all possible
The performance estimator is not based on a computation patterns in the compiler-level train-

general theorP+!=,d model of distributed-memory ing set, the performance estimator will encounter
computers, Instead, lt employs the notion of a code fragments that cannot be matched with ex-
training set of kernel routines that measures the isting kernels. To estimate the performance of
cost of various computation and communication these codes, the compiler module must rely on the
patterns on the target machine. The results of machine-level training set. \Ve plan to incorporate
executing the training set on a parallel machine elements of the Fortran D compiler in the perfor-
ate summarized and used to train the performance mance estimator so that it can mimic the com-

estimator for that machine. By utilizing training pilation process. The compiler module can thus
sets, the performance estimator achieves both ac- convert any unrecognized Fortran D program frag-
curacy and portability across different machine ar- merit into an equivalent node program, and invoke
chitectures. The resulting information may also be the machine module to estimate its performance.
used by the Fortran D compiler to guide commu- No'te that even though it is desirable, to assist
nication optimizations, automatic data decomposition the static perfor-

The static performance estimator is divided into mance estimator does not need to predict the ab-
two parts, a machine module and a compiler rood- solute performance of a _ven data decomposition.
u]e. The machine module predicts the performance Instead, the it only needs to accurately predict
of a node program containing explicit commun]ca- the performaz_ce relative to other data decompo-
tions. It uses a machine-level training set written sitions. A prototype of the machine module has
in message-passing Fortran. The training set con- been implemented for a common class of loosely
ta_ins individual computation and communication synchronous sdentific problems[9]. It predicts the
patterns that are timed on the target machine for performance of a node program using EXPRESS
different numbers of processors and data sizes. To communication routines for different numbers of

estimate the performance of a node program, the processors and data sizes [27]. The prototype per-
machine module can simply look up results for each formance estimator has proved quite precise, es-
computation and communication pattern encoua-

pecially in predicting the relative performances of
tered, different data decompositions [3].

The compiler module forms the second part of
A screen snapsho_ during a typical performance

25

[] ParaScope Editor perf.demo/tes_slrb.col.G4.1G.f []

analyze I variables I trans'°rm I parallel [estimate I comptle I

C
I do 6 _ : Z, cycles

Ic

lC Compute values of RED poin_s
[C Select program _eojlent to be ana%yzed by cllcklng

do 21 I : 1, ay_tze, 2 on the boundary stats deffnin9 the segHent
do 28 J : 1, u.+ 2

_iLl: a ' (val(l+ J- t)*va [I3B continue First stmt -) [tlGB] do 5 k : 1, c_cles
21 continue r I

dO 31 1 : 2, ,_$,ze, 2 |Last s,mt -_1

do 3B j : 2, mo, 2
! I

39 contlnue Estimate Performance Clear selections
3t continue
C Execution tl=e estlmate of segment : 6.88e-82 secs
C Communicate ulth neighbors % of tlme spent in Communication : ?G.G2
C

call comm(v11, me, left, rlght)
C

c Compute values of BLACK points
C

do 41 i : 1, mysize, 2
do 48 J : 2, mo, 2

val(1, J) : a ' (val(l, J - 1) + val(l - 1, J) • val(t, J * I) * val(1 * 1, 3))
48 continue
4_ continue

do 51 i : 2, _yslze, 2 lEditlng perf.deJmo/tests/rb.col.64.16.f []
de 5@ j = I, mo, 2
vmi(i, j) =,a ' (vat(l, j - 1)

5B continue subroutine comm(val, me, left, rlgnt) &
St continue integer me, left, right i

integer rc

Communicate wlth neighbors integer lh, ub_ olaptb, olapub, my_lze, myslze4 lill
parameter (lb : 1, ub : 4. olaplb : B, olapub :5)

call COil(vmi, me, left, right) parameter(mystze : G4_ myslze4 : 4) li
S contlnue real'4 va1(%:myslzeo olaplb:olapub) I

,_,_,..::.+_..;.,,+._+ , common Ixpressl nocare, norder, nonode, 1host, lalnod, lalprc
C I

C Exchange boundary columns with left and rlght nelghbors {:i
prey loop prey dep O rc = Kxvur1(val(Ib, lh), 4, 4s myslze, left, 1) II

Itype src(___) slnk(bold) v rc : Xxvrea(val(lb, olapub)o 4, 4, lys;ze, righi, 1)
rc = kxvuri(vml(lb, mb), 4, 4, iysize, right, 2)

Outout val(1. 1) val(1, 1) rc : Kxyrea(val(lb, olaplb), 4, 4, mysize, left, 2)
Ant_ val(_, J) val(i, j) return
True val(l, J) vat(i, J) end •

:Output val(i, J) val(1, j) ,:_+,,.',_;'._,_,_,:_i:;:::_<_........,,t:,.:,',.
!kntl val(i, j) val(i, j)

Fig-ure4:StaticPerformanceEstimator

estimation session is shown in Figure 4. The us.er formance estimator to select data pa_'titions that

can select a program segment such as a do loop .are efficient for bo_h the compiler and parallel ma-

and invoke the performance estimator by clicking chine.

on the [Estimate Performance I button. The pro- The automatic data partitioner may be applied
totype responds with an execution time estimate of to an entire pro_am or on specific program frag-

the selected segment on the target machine, as well merits. When invoked on an entire program, it
as an estimate of the communication time repre- automatically selects data decompositions without

sented as a percentage of the total execution time. further user interaction. We believe that for regu-
This allows the effectiveness of a data partitioning lar loos=]y synchronous problems written in a data-

strategy to be evaluated on any part of' the node parallel programming style, the automatic data

program, partitioner can determine an efficlent partitioning

4.2 Automatic Data Partitioner scheme without user interaction.
Alternatively, the automatic data partitioner

The goal of the automatic data partitioner is to may be used as a starting point for choosing a

assist the user in choosing a good data decompo- good data decomposition. When i_voked interac-
sition. It utilizes training sets and the static per-

26

tively for specific program segments, lt responds After computing data decompositions for each
with a list of the best decomposition schemes, to- phase, the automatic data partitioner must solve
gether with their static performance estimates. If the inter-phase decomposition problem of merging
the user is not satisfied with the predicted overall individual data decompositions. It also determines
performance, he or she can use the performance es- the profitability of realign.ing or redistributing ar-
timator to locate communication and computation rays between computational phases. Interprocedu-
intensive program segments. The Fortran D envi- ra] analysis will be used to merge the decomposi-
ronment can then advise the user about the effects tion schemes of computation phases across proce-
of program changes on the choice of a good data dure boundaries. The resulting decompositions for
decomposition, the entire program and their performance are then

The anMysis performed by the automatic data presented to the user.

partitioner divides the program into separate com-
5 Validation Strateg'y

putation p,_ases. The intra-phase decomposition

problem consists of determining a set of good data We plan to establish whether our compilation and
decompc,sitions and their performance for each in- automatic data partition_ing schemes for Fortran D

dividuaJ phase. The data partitioner first tries to can achieve acceptable performance on a variety of
match the phase or parts of the phase with com- parallel axcMtectures. We will use a benchmark
putation patterns in the compiler training set. If a suite being developed by Geoffrey Fox at Syracuse
match is found, it returns the set of decompositions that consists of a collection of Fortran programs.
with the best measured performance as recorded in Each program in the suite will have five versions:

the compiler training set. If no match is found, the (vl) the original Fortran 77 program,
data partitioner must perform alignment and dis-
tribution analysis on the phase. The resulting so- (v2) the best hand-coded message-passing version
lution may be less accurate since the effects of the of the Fortran procure,

Fortran D compiler and target machine can only (v3) a "nearby" Fortran 77 program,

be estimated. (v4) a Fortran D version of the nearby program,
Alignment analysis is used to prune the search and

space of possible arrays alignments by selecting (v5) a Fortran 90 version of the program.o_fly those alignments that minimize data move-

meat. Alignment analysis is largely machine- The "nearby" version of the program will utilize
independent; it is performed by analyzing the array the same basic algorithm as the message-passing
access patterns of computations in the phase. We program, except that all explicit message-passing
intend to build on the inter-dimensional and intra- and blocking of loops in the program axe removed.

dimensional alignment techniques of Li 'and Chen The Fortrafi D version of the program consists of
[23] and Knobe st al. [21]. ttie nearby version plus appropriate data decom-

Distribution analysis follows alignment analysis, position specifications.
It applies heuristics to prune unprofitable choices To validate the Fortran D compiler, we will
in the search space of possible distributions. The compare the running time of the best hand-coded

efficiency of a data distribution is determined by message-passing version of the program (v2) with
machine-dependent aspects such as topology, num- the output of the Fortran D compiler for the For-

ber of processors, and communication costs. The tran D version of the nearby program (v4). To val-
automatic data partitioner uses the final set of idate the automatic data partitioner, we will use lt
alignments and distributions to generate a set of to generate a Fortran D program1from the nearby

reasonable data decomposition schemes. In the Fortran program (v3). The result will be compiled
worst case, the set of decompositions i_ the cross by the Fortran D compiler and its running time
product of the a.li_;_ment and distribution sets. Fi- compared with that of the compiled version of the

nMly, the static performance estimator is invokeci h_d-generated Fortran D program (v4).
to select the set of data decompositions with the The purpose of the validation program suite is
best predicted performance, to provide a fair test of the prototype compLlerand

27

data partitioner. We do not expect these tools to 7 Acknowledgements

perform high-levela/gorithmchanges. However, we The authors wish to thank Vasanth Bn/a,

will test their ability to analyze and optimize whole Geoffrey Fox, and Marina Ka/em for inspiring
programs based on both machine-independent is- many of the ideas in this work. We are also grate-

sues such as the structure of the computation, as ful to the ParaScope research group for providing
well as machine-dependent issues such as the num- the underlying software infrastructure for the For-

ber and interconnection of processors i11the para/- tran D programming system.
lel machine. Our validation strategy will test three

key pasts of the Fortran D programming system: References

the limits of our machine-independent Fortran D [1] V. Balasundaram. Translating control parallelism
programming model, the efficiency and ability of to data parallelism. In Proceedings of lhc Fifth

our compiler technology, and the effectiveness of SIAM Conference on Parallel Processing for Sci-

our automatic data partitioning and performance entific Computing, Houst6n, TX, March 1991.

estimation techniques. [2] V. Balasundaram, G. Fox, K. Kennedy, and
U. Kremer. An interactive environment for dat,a

6 Conclusions partitioning and distribution. In Proceedings of

Scientific programmers need a simple, machine- the 5th Distributed Memory Computing Confer-

independent programming model that can be el'- ence, Charleston, SO, April 1990.

ficiently mapped to large-sca/e parallel machines. [3] V. Balasundararn, G. Fox, K. Kennedy, and

\\re believe that Fortran D, a version of Fortran U. Kremer. A static performance estimator to
guide data partitioning decisions. In Proceed-

enhanced with data decompositions, provides such ings of the Third ACM SIGPLAN Symposium on
a portable data-parallel programming model. Its Principles and Practice of Parallel Programming,
success will depend on the compiler and environ- Williamsburg, VA, April 1991.

ment support provided by the Fortran D program- [4] D. Callahan, K. Cooper, R. Hood, K. Kennedy,
mint system, and L. Torczon. ParaScope: A parallel program-

The Fortran D compiler includes sophisticated mint environment. The International Journal of

intraprocedura/ and interprocedura/ ana/yses, dy- Supercomputer Applications, 2(4):84-99, Winter

namic data decomposition, program transforma- 1988.

tion, communication optirnizat,.'on, and support for [5] D. Callahan and K. Kennedy. Compiling programs

both regular and irregular problems. Though sit- for distributed-memory multiprocessors. Journal

nificant work remains to implement the optimiza- of Supercomputing, 2:151-169, October 1988.

tions presented in this paper, based on preliminary [6] D. Callahan, K. Kennedy, and U. Kremer. A dy-

experiments we expect the Fortran D compiler to narnic study of vectorization in PFC. Technical
Report TK89-97, Dept. of Computer Science, Rice

generate efficient code for a large cl_ s of .data- University, July 1989.
parallel programs with only minima/us_r effort.

The Fortran D environment is distinguished by [7] B. Chapman, H. Herbeck, and H. Zima. Auto-
matic support for data distribution. In Proceedings

its ability to accurately estimate the performance of the 6_h Distributed Memory Computing Confer-
of programs using collective communication on rea/ ence, Portland, OR.,April 1991.
parallel machines, as well automatically choose

data partitions that account for the characteristics [8] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,U. Kremer, C. Tseng, and M. Wu. Fortran D Ian-
of both the compiler-generated code and underly- guage specification. Technical Report TR90-141,
ing machine. It will assist the user in developing Dept. of Computer Science, Rice University, De-

efficient Fortran D programs. Overall, we believe cember 1990.

that the Fortran D programming syl_tem is a pow- [9] G. Fox, M. 3ohnson, G. Lyzenga, S. Otto,
erftfl and useful tool that will significantly ease the 3. Salmon, and D. Walker. Solving Problems on

Concurrent Processors, volume 1. Prentice-Hall,task of writing portable data-parallel programs.
Englewood Cliffs, NJ, 1988.

[10] M. Gerndt. Updating distributed variables in local
computations. Concurrency--Practice 8J Ez'peN-

28

ence, 2(3):171-193, September 1990. [22] C. Koelbel and P. Mehrotra. Compiling global
name-space parallel loops for distributed execu-

[11] hl. Gupta and P. Banerjee. Automatic data parti- lion. IEEE Transactions on Parallel and Dis-

tioning on distributed memory multiprocessors. In tributed Systems, 2(4) October 1991
Proceedings of the 6lh Distributed Memory Com- ' '
puling Conference, Portland, OR, April 1991. [23] J. Li and bi. Chen. Index domain alignment:

Minimizing cost of cross-referencing between dis-
[12] P. Havlak and K. Kennedy. An implementation tributed arrays. In Frontiers90: The 3rd Sympo-

of interprocedural bounded regular section analy- slum on the FronHers of Massively Parallel Com-sis. IEEE Tr,_nsaciions on Parallel and Distributed

Systems, 2(3):350-360, July 1991. putation, College Park, hiD, October 199{3.

[13] 1%.Hill. MI/vIDizer: A new tool for parallelization. [24] J. Li and Irl. Chen. Compiling communication-efficient programs for massively parallel machines.
Supercompu_ing Review, 3(4):26-28, April 1990. IEEE Transactions on Parallel and Distributed

[14] S. Hiranandani, K. Kennedy, and C. Tseng. Systems, 2(3):361-376, July 1991.

Compiler optimizations for Fortran D on MIMD [25] R./vlirehandaney, J. Saltz, I%.Smith, D. Nicol, and
distributed-memory machines. In Proceedings of K. Crowley. Principles of runtime support for par-
Supercomputing '9i, Albuquerque, Nbi', November allel processors. In Proceedings of lhc Second Inter-

' 1991. national Conference on Supercomputing, St. Malo,
[15] S. Hiranandani, K. Kennedy, and C. Tseng. Com- France, July 1988.

plier support for machine-independent parallel pro- [26] C. Pancake and D. Bergmaxk. Dc parallel lan-
gramming in Fortran D. Technical Report TR90- guages respond to the needs of scientific program-
149, Dept. of Computer Science, Rice University, mers? IE.EE Computer, 23(12):13-23, December
January 1991. To appear in J. Saltz and P. Mehro- 1990.
rra, editors, Compilers and Runtime Software for
Scalable Multiprocessors, Elsevier, 1991. [27] Parasoft Corporation. Ezpress User's Manual,

1989.
[16] S. Hiranandani, J. Saltz, P. Mehrotra, and

li. Berryman. Performance of hashed cache data [28] J. l:l.amanujam and P. Sadayappan. A methodology
migration schemes on multicomputers. Journal of for parallelizing programs for multieomputers and
Parallel and Distributed Computing, 12(4), August complex memory multiprocessors. In Proceedings
1991. of Supercomputing '89, Reno, NV, November 1989.

[17] D. Hudak and S. Abraham. Compiler techniques [29] A. Rogers and K. Pingali. Process decomposition
for data partitioning of sequentially iterated paral- through locality of reference. In Proceedings of the
lel loops. In Proceedings of the I990 ACM Interna- SIGPLAN '89 Conference on Program Language
tional Conference on Supercompu_ing, Amsterdam, Design and Implementation, Portland, CK, June
The Netherlands, June 1990. 1989.

[18] K. Ikudome, G. Fox, A. Kolawa, and J. Flower. [30] L. Snyder and D. Socha. An algorithm produc-
An automatic and symbolic parallelization system ing balanced partitionings of data arrays. In Pro-
for distributed memory parallel computers, ha Pro- ceedings of the 5lh'Dislributed Memory Computing
ceedings of the 5_h Distributed Memorv Computing Conference, charleston, SC, April 1990.

Conference, Charleston, SC, April 1990. [3i] Thinking Machines Corporation, Cambridge, MA.
[19] K. Kennedy, K. S./vlCKinley, and C. 'rseng. Analy- CM Fortran Reference Manual, version 5.2-0.6 edi-

sis and transformation in the ParaScope Editor. In tion, September 1989.

Proceedings of _he 1991ACM International Con- [32] M. J. Wolfe. Semi-automatic domain decomposi-
terence on Supercomputing, Cologne, Germany, tion. In Proceedings of the .4lh Conference on Hy-
June 1991. percube Concurrent Computers and Applications,

[20] K. Kennedy, K. S. McKinley, and C. Tseng. Inter- /vlonterey, CA, March 1989.

active parallel progranaming using the Para.Scope [33] J Wu, J Saltz, S. Hiranaadani, and H. Berrvman.Editor. IEEE Transactions on Para_'lel and Dis- " '
Runtime compilation methods for multicomputers._ribuled Systems, 2(3):329-341, July 1991.
In Proceedings of the 199i International Confer-

[21] K. Knobe, J. Lukas, and G. Steele, Jr. Data cp- ence on Parallel Processing, St. Charles, IL, Au-
timization: Allocation of arrays to reduce commu- gust 1991.

nication on SIMD machines. Journal of Parallel [34] H Zima, It.-, Bast, and M. Gerndt. SUPERB' A
and Distributed Compuling, 8(2)'102-118, Febru- ' '

tool for semi-automatic MIMD/SI/VlD paralleliza-
ary 1990. tion. Parallel Computing, 6:1-18, 1988.

29

OSCAR FORTRAN COMPILER

H. Kasahara, H. Honda, K. Aida, M. Okamot0 and S. Narita
Dept. of Infomlation and Computer Sciences, Waseda University

3-4-10hkubo Shinjuku-ku, Tokyo, 169, Japan. Tel. 03-3209-6323, Fax. 03-3232-3594

E-mail: kasahara@ cfi.waseda.ac.jp

Abstr_|c_. OSCAR FORTRAN compiler has been developed for a shared memory multiprocessor system named
OSCAR (_Qptimally Scheduled Advanced Multiprocessor_), The compiler hierarchically exploits coarse grain paral-
lelism among loops, subroutines and basic blocks, medium grain parallelism among loop-iterations and near fine grain
parallelism among statements. The coarse grain parallelism is automaticallydetected in the form ofearliest executable
conditions of the coarse grain tasks, or the macro-tasks. The earliest executable conditions are obtained by a unified
control dependence and data dependence analysis. The macrotasks are dynamically assigned to processor clusters by
a scheduling routine generated by the compiler. A macrotask composed of a Do-ali or Do-across loop, which is
assigned onto a processor cluster, is hierarchically processed in parallel in the medium grain by processors inside the
processor cluster. A macrotask comt)osed ot'a sequential loop or a basic block on a processor cluster is also processed
in parallel in the near fine grain by using static scheduling. A prototype compiler has been implemented on OSCAR
having sixteen RISC processors and its usefulness has been confirmed on the system,

Key Words: Macro-dataflow, Dynamic scheduling supported by compiler, Earliest executable conditions, Near fine
grain parallel processing, Static scheduling, Multi-grain parallel processing

cessors [17], seems too fine compared with the data tr'ans-

I. INTRODUCTION fer overhead among processors. Therefore, the near fine
grain parallelism among statements has been exploited

In parallel processing of FORTRAN programs on with the use of a static scheduling algorithm considering
shared memory multiprocessor systems, the Do-ali and data transfer overhead [301. Also, it needs architectural
the Do-across [4118][10]has widely been used. Thanks to supports for efficient synchronization 1291 and data trans-
strong data dependency analysis 12113]141and program lhr 130]. However, the parallel processing using the static
restructuring techniques 14119], many types of Do-loops scheduling 112]-[14] generally has a problem to cope with
can be concurrentized, run-time uncertainties.

There still exist, however, sequential loops that can not Considering the above facts, OSCAR compiler has
be concurrentized efficiently because of lo0p carrying adopted a multi-grain parallel processing scheme 116]
dependencies and conditional branches. Also, fine grain that effectively combines the macro-datallow computa-
parallelism inside a basic block or coarse grain parallel- tion, the loop concurrentization and the near fine grain
ism among loops, subroutines and basic blocks has not processing. In the scheme, macrotasks are dynamically
effectively been exploited on multiprocessor systems, scheduled onto processor clusters to cope with the run-

Therefore, to improve the effective perlbrmance of time uncertainties caused by conditional branches. A
multiprocessor systems further, it is important to exploit macrotask assigned to a processor cluster is hier,'trchi-
the coarse grain parallelism and the fine grain parallelism tally processed by using the loop concurrentization, the
its well as the medium grain parallelism among iterations, near fine grain parallel processing, or the m,'_crc_-dataflow
The coarse grain parallel processing on a hierarchical computation.
multiprocessor system is also called the macro-dataflow

comput,'ltion [5]-17] that has not been realized yet etl till 2. M U LTI-GRAIN
actual multiprocessor system. CO M PILATION S CHEM EIn the fine grain parallel processing on multiprocessor

systems [30][33], an instruction level grain, which has been OSCAR compiler adopts the multi-grain compilation
used by VLIW processors [12]-[15] and superscalar pro- scheme. This section briefly describes compilation

3O

[RB1]

E2 [RB1 [[

[RB3 I I R"B4 I (b)Possible parallelism obtained from
basic-block-decomposition

(a)An example of a basic block

having disjoint task graphs
Fig. 1 BPAs generated by basic block decomposition.

_ Data dependence edge
schemes for Lhc macro-dataflow and the near fine grain_. •......... Control flow edge
parallel processing because the well-known compilation

schemes [4][8]-[10][2011134] can be used for the loop con- /__ j. "_....._

currentization.

2.1 Compilation Scheme lhr Macro-dataflow [33] ____ ___.., -.

The macro-dataflow compilation scheme mainly con-
sists of the four steps, namely, generation of macrotasks,
analysis of control-flow and data-dependence among the
macrotasks, extraction of parallelism ,'unong macrotasks,
and generation of dynamic scheduling routine.
2.1.1 Generation of macrotasks

A FOR TR A N program is decomposed in to (a)A flow graph withseveralsmallbasicblocks(BBs)
macrotasks that are assigned to processor cluster at run-

time, Then, macrotasks should have relatively large pro-
cessing time compared with dynamic scheduling I'BBi]
overhead and dam transfer overhead among macrotasks. .I.._..
The compiler generates three types of macrotasks, BPAi _ "''--_.,....-. _..............,, BPA

namely, a Block of Pseudo Assignment statements [BB2] BB3
(BPA), a Repetition Block (RB) and a Subroutine Block I.................. "11"........... _ _'_sgStig
(SB). I /Q.A pseudo / / "''-'""----.._ statemenl

I i.....statementI I_A BPA is usually defined as a basic clock (BB) 11]. /.

H°wever'itiss°metimesdefinedasapart°fabasicbl°ck / faa4] _ J[_or a block composed of multiple basic blocks.

b..,c ,dto I"''"'2";;....... " "
b'ocks,orBPAs,app,iedto. actmorep a.e,ismtamong macrotasks. For example, in Fig, l(a), BB2 in-
cludes two disjoin t parts, such as, a post-processing part

ford preceding Do.loop, or RB1, and a pre-processing [RB RBIO '/
part for succeeding Do-loops, namely RB3 and RB4,
Since the two parts are disjoint, BB2 can be decomposed
into BB2A and BB2B as shown in Fig,l(b). By this dc- (b)BPAsgenerated byfusing small BBs

composition, a group composed of RB1 and BB2A and Fig.2 BPAs generated by basic block fusion.
another group composed of BB2B, RB3 and RB4 can be
processed in parallel,

31

Fusion of small basic blocks into a BPA is used to the control dependencies and the data dependencies
reduce dynamic scheduling overhead. For example, ii" should be analyzed in a unified manner.
BB4 and BB5 in a tlow graph of Fig. 2(a) are small basic In this paper, an earliest executable condition of each
blocks having few statements, BB4 and BB5 are fused into macrotask [31][36] is used to show the)naximum parallel-
a conditional branch statement shown as a small circle isln among macrotasks considering control dependencies
inside BB2. The conditional statement containing state= and data dependencies. The earliest executable condi-
ment inside BB4 and BB5 is treated as a pseudo statement tion of a macrotask i, MTI, is a condition on which MTt
as shown in Fig.2(b). Furthermore, BB8 is fused into the may begin its execution earliest.
block containing BB2, BB4 and BB5 if Be8 is data depen- For example, an earliest executable condition of MT6,
dent on BB4 and Be5 as Fig. 2(a). The block generated which is control-dependent on MT| and on MT2 and is
by the basic block fusion is called BPA. data-dependent on MT3, is:

A RB is a Do loop wr a loop generated by a backward MT3 completes execution OR MT2 branches to MT,1.
branch, namely, an outermost natural loop [1]. RB can Here, "MT3 completes execution" mnlns to satisfy the
bc easily defined in reducible flow graphs [6] and in data dependence of MT6 on MT3 because the following
irreducible flow graphs by copying code [6]. conditions for macro-dataflow execution are assumed in

The RB can be hierarchically decomposed into sub- this paper:
macrotasks when the loop concurrentization and the near
fine grain parallel processing can not be applied effi-
ciently to the RB. The sub-macrotasks are dynamically
scheduled onto processors inside '.i processor cluster at
run-time. In tile ctecomposition of RB into sub- I)at=Dependeney
macrotasks, it is useful lhr exploiting merc parallelism(hmtroln,,.0 Cundltlonalbranch

to structure overlapped loops bycopying code 127]. __ _,,^ ,,_k .,r,,.,a,,
As to subroutines, the in.line expansion is applied as =.............

much as possible taking code length into account. Sub- __] a_"l[1u,7_._ ,iii lI,p_ti,,,._'_tl_""°"tsi,,t,,._.t,iii,,.k

routines for which the in-lino expansion technique can //l/J/" _[_' / _1"',. /

not elTicicndy be applied arc defined as SBs. To fully // ..,

exploit parallelism anaong SBs and the other inacroulsks '[7 _ '".,........ '..... tuJ
in a flow graph, strong inter-procedural analysis tech- // _, _' .//'

ana lysis itself is beyond the scope--oi' th is paper. SBs can =/ _......J

also be hierarchically decomposed into sub-macrotasks I ,, I
well as RBs. ""....

as2.1.2 Representation of control-tlow and data depen. _ E_'"__i:l_ li "'I"..,,,.,"dence among macrotasks by macrofh)w graph f_"....

(MFf_llacr°l'l°w, graph explicitly rc'presents b°th c°ntr°. _l_

flow and data dependencies among macrotasks, Fig, 3 _l.la}:.l.,::.:!..j]
shows an example of,'! macrollow graph,Iii this inacroflow graph, nodc, s represent \\' I,:_ u. I
macrotasks, such as BPAs, RBs and SBs. Dotted edges \\ .:<-----_-----_,
represent control ['low. Solid edges represent data de- _t!...!._-_""]
pendencics among lnacrotasks, Sn-lall circles inside [I,fi,aJ...]
nodes represent conditional branch statements inside
macrotasks. In this graph, directtons of the edges arc
assumed to be downward though arrows are omitted. Fig.3 A macro-flow graph.
MFG is a directed acyclic graph because ali back-edges
are contained in RBs.

2.1.3 Extraction of parallelism among macrotasks TABLE 1 Ealiest Executable Conditions of Macrotasks
The MFG explicitly represents the control l'low and ,,. "" Mueri,i:,d, Nn_ " " . i¢.,,.ii,,,.i l_;,,,.,,lntd,, (;,m,llll,m..

data dependencies among macrotasks though ii dees .l2

not show any parallelism among macrotasks. Goner- 3. _ally, the control del)endence graph, or the program a 2,_
5 (41 s ANl) I 2a OII (])-a_--_

dependence graph 126], rot)resents naaximum parallel- . 6 "'- 3 (iii 1'2_
ism ii" there are nut data dependencies among 7 .s rill 74 6 _.

8 (2) a ('ifr (1) 3,
nlacrotasks 125]. In practice, there exist, however, data .. 9 1'8_,_"
dependencies among macrotasks. Therefore, to extract I tri (ki 7:_

II 80 i)'l_ RILL,
parallelism among macro_lsks from a macroflow graph, _2 11:2 ANl} f tj fir 1'8_ ,e, I

13 11 ia "OR 11 19"

32

1) If macrotask i (MTi) is data-dependent mn that MTI has branched to MT2, Therefore, thtscondition
macrotask j (MTj), MTi can not begin execution before is redundant and its simplest form is:
MTj finishes execution, MT3 completes execution OR MT2 branches to MT4,

2) A conditiomfl branch statement inside a macrotask The simple earliest executable conditions of
may be executed as soon as data dependencies of the macrotasks on Ftg,3, which are given by OSCAR com-
branch statement are satisfied, That is because state- plier automatically [311, tire shown in Table 1, In the
ments inside a macrotask are processed in parallel by table, the earliest executable condition of MTI2 repre-
processors inside a processor cluster, In other words, sented by
MTi, which is control-dependent on MTj, can begin exe- 1112AND {9 OR (8)1o}
cution as soon a,athe branch direction is determined even means that the condition is:

if MTj has not completed execution. MT1] branches to MTI2 and completes execution
The above earliest executable condition of MT6 red ' AND

resents the simplest form of the condition [31][33], An {MT9 completes execution OR MT8 branches to MTI0,)
original form of the condition of MTi [31][33] can be The simplest condition is important to reduce dy-
represented in the following; narnic scheduling overhead,
(MTj, on which MTi is control dependent, branches to Girkar and Polychronopoulos [35] proposed another
MTi) algorithm to obtain the earliest executable conditions
AND based on the original research [31], Theysolved a simpli-
(Every macrotask on which MTi is data dependent, MTk: fled problem to obtain the earliest executable conditions
(__k< INI,completes execution OR it is determined.that by assuming a conditional branch inside a macrotask is
MT"k is net be executed), executed in the end of the macrotask.

For example, the original form of the earliest execut- The earliest executable conditions of MTs are rcpre-
able condition of MT6is: sented by a directed acyclic graph named a macrotask
(MT I branches to MT3OR MT2 branches to MTa) graph [3111331136],or MTG, as shown in Fig, 4, In MTG,
AND nodes represent macrotasks, Dotted edges represent ex-

(MT3 completes execution OR M'-I'I,on which MT3 is tended control-dependencies, Solid edges represent
control-dependent, branches to MT2), data-dependencies,

The first partial condition before AND represents an The extended control dependence edges are classified
earliest execuuable condition determined by the control into two types of edges, namely ordinary control depen-
dependencies, The second partial condition after AND dence edges and cn-control dependence edges, The co-
represents an earliest executable condition to satisfy the control dependence edges represent conditions on which
data dependence. The second partial condition means data dependence predecessor of MTi, namely MTk men-
that MT6 may begin execution after MT3 completes exe- tioncd before on which MTi is data dependent, is not be
cution or after it is determined that MT3 is not executed, executed 1311,
In the condition, the execution of MT3 means that MTI Also, a data dependence edge, or a solid edge, origi-
has branched to MT3 and the execution of MT2 means nating from a small circle has two meanings, namely, an

extended control dependence edge and a data depen-
dence edge, Arcs connecting edges at their tails or heads
have two different meanings, A solid arc represents that

..,:..:........ edges connected by the arc are in AND relationship, AI

ii "........"............................, dotted arc represents that edges connected by the arc arc
lT'_ "_, in OR relationship, Small circles inside nodes represent

' ""°"°' " i!,... .,,:. conditional branch statements,
...................' In the MTG, the directions of the edges are also

.............:..,, :............ assumed to be downward though most arrows are omit-
e o." ' ,o °°° ',,

i ted, Edges with arrows show that the edges art the orig-
ami I J_U-r--J..._"]-----J I inal conditional llow edges that originate from the small

t....__ ,__ i I ..,,'i::-:v-_-_ ! circles irt the MFG,
i 1,,.'_ ! 2.1.4 Generation ofdynamic scheduling routine

"_ are dynamically scheduled to processor clusters (PCs) at
Dutadept.,ndency _.,..'-----_ ._._. / run-time to cope with runtime uncertainties, such as,

......... F]xtendt_Jt°ntr°ldel_ndenc)' ,,., _ ' conditional branches among macrotasks and a variationC) Conditional brunch "/

............ . ." of macrotask execution time, The use of dynamic sched-
..........oa _, uling [2011221fox coarse grain tasks keeps the relative
.---.anl_ _ scheduling overhead small, Furthermore, the dynamic

> Oril_inulcuntrulflow scheduling in dlis scheme is performed not by OS calls
Fig,4 A macroutsk graph, like in popular multiprocessor systems but by a special

scheduling routine generated by the compiler,

33

In other words, the compiler generates an efficient th'at parallelism is fully exploited and overhead related
dynamic scheduling code exclusively l'or each FOR- with data transfer and ,,,'y_lchronizationis kept small.
TRAN program based on the earliest executable condl- In the proposed schexnc, the statement level granuhu'-
tions, or the macrotask graph. The scheduling routine is ity is chosen as the finest granularity lhr OSCAR taking
executed by a processor element, into account OSCAR's processing capability and data

Dynamic-CP algorithm, which is a dynamic scheduling transfer capability.
algorithm using critical ptlth length 118], is employed Fig, 5 shows an example of statement level tasks, or
taking into consideration the scheduling overhead and near fine grain tasks, generated for a basic block that
quality of the generated schedule, solves a sparse matrix {37]. A large basic block having

computational pattern like Fig,5 is generated by the sym-
2,2 Medium Grain Parallel Processing belie generation technique [321that has been used in the

Macrotasks are assigned to processor clusters (PCs) electronic circuit simulator like SPICE.
dynamically as mentioned in the previous section. If a Among the generated tasks, there are data dependen-
macrotask assigned to a PC is a Do-ali loop, the cies [2]-[4]. The data dependencies, or precedence con-
macrotask is processed in the medium grain, or iteration straints, can be represented by arcs in a task graph
level grain, by processors inside the PC. For the Do-all, l18][23] as shown in Fig,6, in which each task corresponds
several dynamic scheduling schemes, such as the self to a node. In Fig, 6, figures inside a node circle represent
scheduling, the chunk scheduling and the guided self t_k number, i, and those beside it for a task processing
scheduling, have been proposed [1t)][20], On OSCAR, time on a PE, tt. An edge directed from node Ni toward
however, a simple static scheduling scheme Is used Ix,'- Nj represents partially ordered constraint that task Tt
cause OSCAR does not have a hardware support for the precedes task Tj. When we also consider a data transfer
dynarnic iteration scheduling, time between tasks, each edge generally has a variable

If a macrotask assigned to a PC is a loop having data weight. Its weight, tij, will be ,'ldata transfer time between
dependencies arnong iterations, the compiler first tries to task Ti and Tj if Ti and Tj are assigned to different PEs.
apply the Do-across wida restructuring to minimize the lt will be zero or a time to access registers or local data
synchronization overhead 181191,Next, the compiler com- memories ii' the tasks are assigned tothe same PE,
pares an estimated processing tiine by the Do-across and 2.3.2 Static multiprocessor scheduling algorithm
by the near fine grain parallel processing of the loop body To process a set of tasks un a multiprocessor system
mentioned in section 2.3. If the processing time by the efficiently, an assignment of tasks onto PEs and an exe-
Do-across is shorter than the one by the near fine grain cution order among the tasks assigned to the same PE
proce:;sing, the compiler generates a machine code for must be determined optimally. The problem that deter-
the Do-across. mines the optimal assignment and the optimal execution

order can be treated as a traditional minimum execution
2.3 Near Fine Grain Parallel Processing [31]133] time multiprocessor scheduling problem 1181123].To •

A BPA is decomposed into the near fine grain tasks state formally, the scheduling problen_ is to determine
131], each o1'which consists of a sultement, and processe(l such a nonpreeml)tive schedule in which execution time
in parallel by processors inside a PC, or schedule length be tnitLimum,given a set oi' n compu-
2,3.1 Gener.'ltlon ol' tasks and task graph tational tasks, precedence relations among them, and m
To efficiently process a BPA in parallel, computation processors with the same processing capability. This

in the BPA must be decomposed into tasks irasuch a way

<< LU Decomposition >> I

l) u,2 = u,2 (1,1 _ _'l'ask NI,,2)u24 n24/122
,9

4) I 64 -I62. U24 i
5) .U45 a46 / 144
_) / I -L.L°__" II I i,r,,_,_.,._l,,_I 55 a56 "164 * u45

l/ / / '""°<< Forward Substitution >>

I
yl I)2 122,

11))' 4 I)4 / 144

10k2_ , Iu_-___ (,nthtr sal,lePE<< Backward Substitution >>

• Y5 _ _ IU=914)x4 = Y4 " u45 , x4
15) x 3 Y3 u 04 _ 11"11 anti Tj are16)x2 =)'2 " U24 * X4

17) xl = Y_ . u12 * x2 _,1 (mdlfferentPEs

Fig.5 An example oi' ne,'lrfine grain tasks. Fig.6 A task graph for near fine grain tasks,

34

scheduling problem, however, has been known as a passed through registers on the PE, The optimal use of
"strong" NP-hard problenl [19], registers red uces the processing time marked ly, Irl add i-

Considering this fact, a variety of heuristic algorithms tion, the compiler can minimize the synchronization over-
arid a practical optimization algorithm have been pro- head by carefully considering the inlbrmation about the
posed 11811201123]. In OSCAR compiler, a heuristic tasks to be synchronized, Lhc task assignment and the
scheduling algorithm CP/DT/MISF (Critical Path/ Data execution order [31].
Transfer/ Most hnmediate Successors First) considering

data transrer 130] has been adopted taking into account a 3, OSCAR'S ARCHITECTURE
compilation time and quality of generated schedules.

2.3.3. Maehine codegeneration This section describes the architecture of OSCAR
For. efficient execution on nn actual multiprocessor (Qptimally Scheduled Advanced Multiprocessor), Fig.7

system, the optimal machine codes must be generated by shows the architecture of OSCAR, As shown in Fig.7,
using tire scheduled results. A scheduled result gives us OSCAR is a shared memory multiprocessor system in
the following information: which up to sixteen processor elements (PEs) are uni-
I) which tasks tire executed on each PE, l'ornfly connected to d_ree centralized common memories
2) in which order the tasks assigned to the stone PE are (eMs) and to distributed shared memories on the F'Es
executed, . through three buses,
3) ,,vher_and where data u'ansl'ers and synchronization Each PE is a custom-made RISC processor with
among PEs are required, throughput o1'5 MFLOPS. lt consisLs of a main pr(x:essing
and so on. Therel'ore, we can generate the machine codes unit with sixty-four registers, an integer processing unit
for each PE by putting together insu'uctions for tasks and a floating point processing unit, a data memory, two
assigned to the PE and inserting instructions for data banks of program memories, a distributed shared mere-
transfer and synchronization into the required places, ory, a stack memory (SM) and a DMA controller, The
The "version number" method 1301 is used for synchroni- PE executes every instruction including a lloating point
zation among tasks, addition and a multiplication in one clock. The distrib-

At the end of a BPA, instructions for the barrier uted shared memory on each PE can be accessed simul-
synchronization, which is supported by OSCAR's hard- t,'meously by the PE itself and another PE.
ware, are inserted into a program code on each PE, Also, OSCAR provides the following three types of

The compiler can also optimize the codes by making data transfer modes by using the DPMs and the CMs:
full use of ali information obufined from the static sched- 1) One PE to one PE direct data transfe,s using DPMs,
uling. For e_lmple, when a task should pass shared data 2) One PE to ali PEs data broadcasting using the DPM,
to other rusks assigned to the same PE, the data can be 3) One PE to several PEs indirect data transfers through

eMs.

1 Each CM is a simultaneously readable memory onHOST COMPUTER

l t which the same address or different addresses can Ix:
CONTROL & UO PROCESSOR COMMON MEMORY 1 "-"--' read by three PEs in the same clock,

Simultaneous Readable)

RISCProcessor , 3.1 Architectural Supportst'or the Macro-datallmv
OSCAR can simulate a multiple-PC system having twoMal

or three PCsbyassigningone bus to each PC, A number
of PCs and a number of PEs inside PC can be changed
even at run-time according to parallelism oi' the target
prograJ_l, or the macrotask graph because partitioning of

I'Es into PCs is rnade by sol'tware. Furtherrnore, each bus

has a control line for the barrier synchronization, There-
fore, each PC can take barrier synchronization in a few
clocks.

3.2 Architectural Supports for the Fine Grain Parallel
(cP) Processing

•5MFLOPS,a2biIRISC (CP) [
Pro_es_or For the near fine grain parallel processing on OSCAR,(64 Registers)

•2B.,,k.ofProg,,,_ tile one PE to one PE direct data transfer and the dataMemory

•DataMemory broadcasting using dm DPM tire used lhr minimizing•StackMemory

•DMAControllerPE1
PE161 data transfer °verhead"cThel direct data transfer using the----. DPM needs onlyone ata-write"onto a DPM for pass-

•,,_-5PECLUSTER(SPC1)_SPC2 SPC3------_ ing one data from one PE to another PE. On the other
OPE PROCESSOR CLUSTER (LPC1) ; LPC2 - =

hand, tile conventional indirect data transfer using a C'M
Fig,7 OSCAR's architecture, requires eric "data-write" to a CM and one "data-read"

35

from tile CM. Also, tile data broadcasting reduces the This section briefly introduces performance of
data transfer time remarkably compared with the indi- OSCAR compiler, Fig.8 is a sample FORTRAN program
reCt data transfer through CM. Therefore, the optimal with 17 macrotasks including RBs, SBs and BPAs.
use of the three data transfer modes using static schedut- Fig.9(a) is a macroflow graph of the program. Fig,9(b)
ing allows us to reduce data transfer overhead. Also, represents a macrotask graph for the macroflow graph.
synchronization using DPMs reduces synchronization This macrotask graph shows the parallelism extracted
overhead because assigning synchronization-flags onto from Fig. 9(a). .
the DPMs prevents degradation of bus band width that is The execution time of the program on OSCAR was as
caused by the busy wait to check synchronization-flags follows. When the program was sequentiallyexecuted by
on CMs, I PE, th-" processing time was 9.63s. The execution time

for the macro-dataflow COlnputation using 3 PEs was

4. AN EXECUTION EXAMPLE OF 3.32s.The processing time for the multi-graincomputa-
OSCAR COMPILER

C PROC_RAM SAMPLE FOR OSCAR 100 CONTINUE
REAL A(300,300),IR300,300),C(300,300) X(I,I)= 1,0
REAl, X(300)300),Y(300)3001,7_,(300,300) IIOCONTINUE
REAL V 1(300),V2(300) ,V3(300),V4(300) RF,TURN
REAl, DI END
COMMON/COM I/VI C

C MT 1 SU P,ROUThNE MATADD(X,Y,Z)
131=0.0 REAL X(300,300),Y(300,300),Z(300,300)
VI(l)= 1.0 DO 1201= 1,300

C MT2 DO II0Jffi 1,3(X)
DO 110 li= 1,3(Xl Z(I,.1)= X(I,.I)+ Y(I,J)
DO 100Jl= 1,3'_0 110 CONTINUI{
A(II,J I)= I1+J1.300 120CON'rlNt;I,_

100 CONTINU E RETU RN
110 CONTINUi{ END

C MT3 C
DO 130 12=1,300 SUBROUTINE MATSUlt(X,Y,Z)
I) O 120 J2= 1,300 R1:A I. X(300,300), Y(300,300),Z(300,3(X1)
la'12,J2)= 12-.12+I DO 120 I= 1,300

120 CONTINUI{ DO ll0J= 1,300
130CONTIN U li Z(I,J)= X(I,J)-Y(I,.1)

C M'I'4 I10 CONTINUE
CAI.L MTGEN(C) 120 CON'rlNU F.

C MT5 RI{TI.IRN
CA1,1.MKVEC(A ,li,C) li NI)

C MT6 C

CAI.I. M'I'VI{C(A,V2) SUI|ROUTINE MKVEC(A,B,C)
C MT7 P,I:.A1, A(300,300) ,B(300,300),C(300,300)

CAl.I. MTVliC(II,V3) RFAI. I)V,R I,TA,TII,TC,SA,SB,SC,D I,D 2,113
C MT8 COMMON/COM I/V 1(3001

CAI.I. MTVEC(C,V4) I)O I(XII= 2,300
cM'r9 Dv--V_(l.l)

CAI.I. VI"CSUIRV2,V3,DI) RI= 0.'{14"DV (a) A Inacrol'low graph.C MTI0 TA= A(I,I)'DV
IF(I) I.cl'r,o,0)TI lE N '1'1{= I1(I,I)"1)V

C YlTll TC= C(I,I)'DV
CAI,I. MA'rADD(A,I],X) SA= TA "TA

C MTI2 NII= 'rlI,TP,
CAI.I. MA'rSUIt(B,C,Y) SC= Tc,Tc

C M'rl3 DI= TA-TIl s a-'l
DO 170 13=1,300 D2= 'FI|-TC _!
130 160J3= 1,300 D3= TC.TA /
Z(13,J3)= C(13,J3)/DI V1(I)= (NA+ Sl.l+SC)'R I* (D I *D2'133)

l

160 CON'I'INUIi ICl()C'ON'I'INtJI{ _J
170 CO N'rlN LJI,'. RI-TURN

C MTI4 END
I,_I.SF. C

C M'rl5 SU llrou'r_E M'rVliC(A,V)
CAI.I. MA'rSUII(II,A,Y) REAL A(3(II,3(X)),V(300)

CM'n6 COMMON/COMI/Vie300) .,_ rr,
C:Ai.I. MA'I'AI)I)(C,II,X) DO II0 I= 1,300 //-...---_,_._,_/A./_/]cM'r17 v(1)=o.0 .._... _ :.,"P,,_
I)O 190 14= 1,300 DO IOOJ= 1,300
Dc.)180.14= 1,3rX) V(I)= V(I), A(I,J).VI(J)
Z(14,J4)=C(14,J4)'DI*V4(14) I00 CONTINUI{

18(I CON'I'INUI_ I I0 CONTINL;li
190 CON'I'INUI _. RI-TURN

C END

I'.'NI)IF C

C SUIIR OUTINI. VI-CSU I](S,V,R)
I'_N13 RI(AL S(3001,V(3(X)),R

C DO 100 I= 1,300
SUIfl,IOU'I'INIi MTGliN(X) R= R+ S(I).V(I)
R EA I. X (300,3(XI) 1(X)CON'I'INUI'_
DO 110 I= 1,300 RI,YI'URN
I)O 100J= 1,3(X) ENI)
XflO)= 0.0

(b) A Inacrotask graph.

Fig.8 A sample program with 17 macrotasks. Fig. 9 Macroflow an(l macrotask graphs for Fig. 8.

36

tion using 3 PCs, each of which has 2 PEs., namely, 6 PEs, [161 lt.Kasaharact.al. "A Multi-grab1 Parallelizing Compilatiorl
was 1.83s. lt was also observed frolll execution traces that Scheme on OSCAR," Proc, 4rh Workshop on Languages and Com-

pilers for Parallel Computing, Aug, 1991.
the dynamic scheduling overhead was negligibly small. [171 N,P,Jouppi, "'ltae Nonuniform Distribution of lnstruction-t.evel

and Machine Parallelism and Its Effect on Performance," IEEE
Trans, on Comput,, vpi. C-38, No.12, pp,1645- 1657, Dec,1989,

5 CO NC LU S I O NS 1 81I¢.,G,Coffman J r,(ed,), Computer and Job-shop Scheduling The-• pry, New York : Wiley, 1976,
119] M.R.Garey and D,S.Johnson, Computers and Intractability : A

This paper has described OSCAR FORTRAN Guide to the Theory of NP-Completeness, San Francisco : Free-

parallelizing compiler very briefly. The compiler realizes man, 1979,1201 C,t).Polychronopoulos, Parallel l_rogramming and Compilers,
multi-grain parallel processing, which combines the KluwerAcademicl)ub,, 1988,
nlacro-datal'low computation, tile loop concurrentization [211 V,Sarkar, "l)etemdning Average Program Execution Times and

and the near fine grain parallel processing. The proto- '[%eir Variance'", l)roc, Sigplan'89, June 1989,
122] V,Sarkar, l_artitionil_g and Schedulil_g Parallel Programs for Mul.

type compiler with some restrictions has been working on tiprocessors, MIT Press,1989,
OSCAR. Currently, tile authors are enhancing the pro- [23] II.Kasahara and S,Narita, "i_ractical Muhiprocessor Scheduling

totype version to a practical version, which allows us to Algorithms for Efficient Parallel Processing," IEF.E Trans, Com-
realize the combination o1' the macro-daufflow and the put.,Vol,c-33, No, li,pp. 1023-1029,Nov,1984,

Icx_p _'oncurrentization on a multiprocessor supercompu- [24] H.Kasahara and S.Narita, "An approach to supercomputing usirlg
multiprocessor scheduling algorithms, " in Proc. IEF.F. 1st Int'l

ter. Conf. on Supercomputhlg, pp,139-148,1)ec. 1985,
125] F.Allen, M.Burke,R,Cytron,J,1;'errante,W,llsich and V,Sarkar, "A

REFERENCES Framework for Determining Useful Parallelism," Proc, 2hd ACM

[11 A.V.Aho, R.Sethi and J,I).Ulhnan, Compilers: Principles, Tech- hlt'l. Conf, on Supercomputing, 1988.
niques, and Tools, Addison Wesley, 1988. 126] J,leerrante,K.J.Ottenstein,J,D.Warren,"The Program l)epen-

121 U,Ranerjee, Dependence Analysis for Supercomputing, Kluwer dence Graph and Its Use in Optimization," ACM Trans. on Prog,
Pub,, 1988 l.ang, and Syst, Vol.9,No,3,pp,319-349, July 1987.

1311),A,Padua, D,J,Kuck and l),ll.Lawrie,"lligh-speed multiproces- 127} ILS,Baker,"An Algorithm for Structuring Flowgraphs," J, ACM,
spr and compilation techniques," IEEE Trans, Comput,, Vpi, C-29, Vol.24, No, I, pp,98-120, Jan. 1977,
No.9,pp.763.776, Scp, 1980, 1281 M,l]urke and R,Cytrolh "Inteq_rocedural Dependence Analysis

14] l).A.Padua, and M.J.Wolfe,"Advanced Compiler Optimizations for and Parallelization," Proc, ACM SIGPLAN'86 Symposiun_ on
Supercomputers," C.ACM, Vol.29, No, 12, pp, 1184-1201 ,Dec. 1986. Compiler Construction, 1986.

151 l),Gajski, I),Kuck, l).l._lwrie amt A,Sameh, "CEDAR," Report 1291 M,O'Keefe and It, Dietz, "l-lardware ltarrier Synchronization:
UIUCDCS-R-83- 1123, Dept. of Comptaer Sci,, Univ, Illinois at Static Barrier MIMD," Prcx:, 1990 lnt'l Conf. on Parallel Processing,

Urbana-Champaign, Feb. 1983. pp. 135-42, Aug. 1990.
161 l).D,Gajski, l).J,Kuck, l).A,Padua, "l)epcndence Driven Compu- [301 ll.Kas',dlara, ll.Honda, S,Narita, "Parallel Processing of Near Fine

ration," Proc. of COMPCON 81 Spring Computer Conf,, pp.168- Grain Tasks Using Static Scheduling on ()SCAR," in Proc, II_F.I'?,
172, l:eb. 1981, ACM Supercomputing'90, Nov. 1990,

171 II.F.,llusmann, l),J,Kuck and l),A.Padua,"Autonmtic Compound [31] I I.llonda, M,Iwata, ll,Kasahara, "Coarse Grain Parallelism l)etec-
Function Definition for Muhiprocessors," Proc. 1988 Int"l. Conf, on fion Scheme of Fortran programs," Trans, IEICE, Vol,J73-l)-l,
Parallel Processit_g,Aug. 1988, , No,12, 13ec,1990 (in Japanese).

181 M.Wolfe, "Muhiprocessor synchr¢,nizatiotl tbr cotacurrent loops," [321 F.G.Gust_vson, W.I.iniger and R,A,Willougt,by, "Symbotic Gcn-
llil'.'l: software, Vpi. pp, 34-42, Jan, 1988. oration of an Optimal Crout Algorithm for Sparse Systems of

191 M.Wolfe,Optimizing Supcrcompilels lpr Supercomputers,MIT l.inear liquations," J,ACM, vo1,17, pp,87-109, Jan, 1970,
Press, 1989. [331 l t,Kasahara, Parallel Processing Technology, Corona Publishil_g,

I101 C.l).Poly¢'hrollopotJlos and l).J.Kuck, "(]uidcd self-scheduling :A Tokyo, (in Japanese), Jun, 1991.
practical scheduling scheme for parallel supercomputers," llilili 1341 S,S,Munshi and l].Simons, "Scheduling Sequential l._)ops or1 Par-
Trans. Cotuput., Vol,c-36,12, pp. 1425-1439,Dec. 1987. allel Processors," SIAM J. Comput., Vpi, 19, No,4, pp.728-741, Aug,,

[11] l).J.Kuck, E.S.l)avidson, l),ll.l.awrie and A.lt.Sameh, "Parallel 1990,
Supercomputing Today and Cedar Approach," Science, Vol.231, 135] M,Girkar and C,l).Polychronopoulos, "Optimiz.ation of l)ata/Con-
pp,967- 974, Feb. 1986, trol Conditions in Task Graphs," Proc, 4rh Workshop on l.anguages

1121 J.A,l:ishcr, "The VLIW Machine: A Muhiprocessor for Compilin_ and Compilers for Parallel Computing, Aug, 1991.
Scientilic Code," lliEI_ Computer, Vpi. 17,No,7, pp.45-53, Ju1,1984, 136] l-l.Kasahara, l-l.llonda, M,Iwata and M,ltirota, "A Macro-dataflow

[131 R.P.Colwell, et,al,,"A VLIW Architecture for a Trace Scheduling Compilation Scheme for l lierarchical Muhiprocessor Systems,"
Compiler," IF.IZE Trans, Comp,, Vo1.C-37, No,8, pp,967-979, Proc, Int'l. Conf, on Parallel Processing, Aug, 1990.
Aug. 1989, [371 [l.Kasahara, W.Premchaiswadi, M, Tamura, Y.Maekawa alld

[14] J.R.Ellis, "Bulldog: A Compiler for VI.IW Architectures," MlT S.Narita, "Parallel Processing of Sparse Matrix Solution Using l'ine
Press,1985. Grain Tasks on ()SCAR," Proc, lnt'l, Conf, oll Parallel Processing,

1151 A,Nicohiu and J,A.l:isher, "Measuring the Parallelism Available Aug. 1991.
f_r Very l.o_lg Instruction Word Architectures," IEEE Trans. on

Computers, Vpi. C-33, No, I1, pp.968-976, Nov.1984,

37

Coordination Language Design and Implementation Issues

Steve Lucco and Oliver Sharp, UC Berkeley

One can think of a parallel program as a group of sequential sub-computations
which cooperate to solve a problem. To exploit existing code and optimization tools,
programmers usually choose to write these sub-computations in traditional impera-
tive languages such as C, Fortran, or Lisp. A coordination language expresses data
exchange and synchronization among such sub-computations. We are investigating
the effectiveness of coordination languages as tools for concise expression and efficient
implementation of parallel programs. In our presentation, we will outline some design
and implementation issues critical to the expressiveness and performance of coordina-
tion languages. Using these criteria, we will compare emoting coordination languages
including Strand, PCN, Linda, Jade, Delirium, and extended Fortran dialects.

Most existing coordination languages, including Linda and the extended Fortran
dialects, are embedded; they consist of a set of non-deterministic coordination primi-
tives which are added to a host language program. We are investigating a new type of
coordination language, which we call an embedding language. Our language, Delir-
ium, is one example; Strand and PCN have also been used as embedding coordination
languages.

An embedding language program is a separate text that specifies a framework
for accomplishing a task in parallel; sequential sub-computations called operators are
embedded within that framework. This organizing principle makes parallelization
easier. Instead of scattering coordination throughout a program, creating a set of
ill-defined sub-computations, a coordination language programmer precisely defines
operators and embeds these operators within a parallelization framework. One can
completely discover the topology of the program's parallel execution simply by reading
its coordination code.

This type of coordination language has four advantages over embedded languages.
First, because they are separate program texts, embedding language programs can
express synchronization using a unified notation such as a functional or logic la.n-
guage. In contrast, extended Fortran dialects and languages like Linda consist of a
collection of discrete synchronization primitives. Second, embedding notations sup-
port hierarchical abstraction of coordination. One can create and re-use complex
patterns, such as binary reduction, through flmctional abstraction. Embedded lan-
guages can't support abstraction because individual embedded primitives appear a,s
separate statements within a host language program, and they can only indirectly
control the execution order of other statements in the program. TI.ird, embedding
notations have a coordination semantics that is distinct from the semantics of the

language in which computation is expressed. Finally, sub-computations are encapsu-
lated. That is, they have unique, well-defined entry and exit points. Debugging is

38

easier because individual sub-computations can betested in isolation, on the target

parallel machine or a more familiar sequential one.
On the other hand, embedding coordination languages are more difficult to im-

plement than embedded languages. The primitives of embedded languages generally
have a direct translation to operations on an abstract machine or the underlying
multiprocessor, whereas existing embedding languages are declarative; they specify a
dataflow and require the coordination compiler to map that dataflow onto the under-
lying machine.

Further, because they exist as a separate text, embedding language programs do
not have direct access to the data dependence semantics of the sequentiM language.
On distributed memory architectures, it becomes difficult for the coordination com-
piler to balance computational load or even enforce correct behavior without this
information. Some preprocessing of the sequential language program is necessary to
provide this information to the coordination compiler. This information can be pre-
sented and processed in the form of annotations such as those defined in Jade and in
Fortran D.

We believe that any attempt to use a coordination language as a tool for specifying
parallel program behavior will evolve into a coordination system with the following
components:

• A coordination language and coordination compiler which includes explicit sup-
port for data parallelism.

• A sequential language (Fortran, C, C++) preprocessor that gathers information
and transforms sequential programs into sets of operators.

• An annotation language for transmitting and presenting information gleaned
by the preprocessor to the coordination compiler (and the user). Ours is called
Dossier and is intended to be readable by humans as well as by programs.

• A runtime scheduling system that can exploit opportunities for fine-tuning that
are discovered by the coordination complier. There are a variety of optimiza-
tions that a run time system can perform, including the adjustment of grain
size based on execution behavior and the pipelining of adjacent loop nests.

We have successfully implemented several large, irregular parallel programs on
both shared and distributed memory multiprocessors using this organization. Dur-
ing the talk, we will present a case study that shows how each piece of the system
contributes towards the final goal of achieving efficient execution on a variety of ar-
chitectures.

39

Designing Imperative Programming Languages for Amdyzability:
Parallelism and Pointer Data Structures

Laurie J. Hendren*

Guang R. Gao
School of Computer Science

McGill University

Abstract

The rapid advance of computer architectures has provided important new challenges for programming lan-
guage designers and compiler writers alike. One of these challenges is to provide programming languages that
are analyzable so that compilers can effectively exploit the level of parallelism that is necessary for effective
use of such architectures. Historically, the analysis of scientific programs using arrays has made crucial use of

information such as arraY dimension and size, the mathematical structure of arrays, and the regularity of the
looping constructs used for programming with arrays. In this paper we argue that, just as arrays are important
in scientific programs, pointer data structures often play a central role in non-scientific and symbolic programs,
and therefore the analyzability of pointer data structures is critical.

To illustrate both the importance of analyzability for programs with pointer data structures and the solu-

tion methodology proposed in this paper, we propose a programming language mechanism which significantly
enhances the analyzability of pointer-based data structures frequently used in non-scientific programs. Our
approach is based on exploiting two important properties of pointer data structures: structural inductivity

and speculative traversability. Structural inductivity facilitates the application of a static interference analysis
method for such pointer data structures based on path matrices, and speculative traversability is used to exploit
parallelism by allowing aggressive traversals of linked pointer data structures.

In this paper we give an overvi._w of our approach to designing analyzable imperative languages. We give a
concrete example of applying the techniques to exploit fine-grain parallelism in while loops that traverse linked
list structures. The effectiveness of our approach is demonstrated by applying it to a collection of loops found in
typical non-scientific C programs. In addition, we outline how our approach can be used to exploit coarse-grain
parallelism, and we give some challenges open in this area.

1 Introduction

In the past decade, the dramatic improvement of VLSI technology has led to modern high-performance micro-
processors that support some level of fine-grain parallelism. Even with today's RISC processors, some degree of
instruction-level parallelism is required to fully utilize the architecture. This increase in fine-grain parallelism,
and the development of parallel architectures supporting more coarse-grain parallelism has has provided important
cl_allenges for programming language designers and compiler writers alike. It is becoming increasingly important
I.o provide programming languages and associated compiler support such that user programs can be effectively an-
alyzed in order to effectively utilize the underlying architectures. In particular, it is critical to provide cornpile-time
analysis that results in accurate alias analysis and data-dependency information for complex data structures, q?his
l)aper argues that such analyzabilily is an important principle of program language design and implemenl, ation, and
t,l_at ii, is particularly critical for the efficient mapping of non-scientific programs to architectures supporting some
level of parallelism.

*The work supported in part by FCAFt, NSERC, and the McGill Faculty of Graduate Studies and Research.

40

The importance of the analyzability has been demonstrated by the considerable success of automatic paral-
lelization and optimization of large-scale scientific numerical programs. In such scientific programs, arrays a,re the
most important data structures, and the programs using these array structures call often be analyzed effectively.
The keys to such analysis are:

• Arrays are frequently defined oil rectangular index regions with dinaensions, shapes, and bounds known to
the compiler.

• Array operations are often encapsulated in "well structured" loops (for loops without gotos) with the iteration
space of the loop matching the index regions of the arrays.

,, In such loops, the arrays are frequently accessed ("traversed")in a regular fashion. For example, the index
expression is often an aft]na fllnction of the loop indices.

The mathematical structure of the arrays and the regularity of their accesses in embedded loops has lead to
the development of a variety of dependence analysis, loop transformation, and parallelizati_,n techniques [Ba,n76,
Ban88, ABC86, ACK87, KKP+80, PW86, Wo189]. Although many of these techniques were l)i0neered in the
areas of vectorizing and parallelizing compilers, these techniques are also being applied to architectures supporting
instruction-level parallelism. There has also been work in programming language design to enhance the analyzability
of arrays [X3J90, ItWe90, GYDM90, ANP89].

llnfortuna(;ely, the analysis and optimization of non-scientific programs has not been so successful. In this paper
we are interested in the analyzability issues for real life non-scientific programs. There is little dispute that maay
such programs are currently written in imperative languages like C, and there is no sign that this trend will slow
down soon. In such programs, dynamically-allocated pointer data structures play a central role. To fully exploit

parallelism in such programs on we need to provide mechanisms for specifying properties of such data structures
that can be used to improve the compiler analysis.

To illustrate both the importance of analyzability for programs with pointer data structures and the solution
methodology proposed in this paper, we propose a programming language mechanisrn which significantly enlmnces
the analyzability of pointer-based data structures frequently used in non-scientific programs. Our approach is based
on two important properties : structural inductivity and speculative traversability. Structural inductivity facilitates
the application of a static interference analysis method for such pointer data structures based on path matrices,
and speculative traversability is utilized by a novel loop unrolling technique for while loops that exploits fine-grain
parallelism by aggressively traversing such data structures. The effectiveness of this approach is demonstrated
by applying it to a collection of loops found in typical non-scientific C programs. For high-performance RISC
architectures, our approach resulted in a speedup of 1.17 and 1.43 over the optimized code produced by the native
C compilers on SUN SPARC-based machine, and a DEC MIPS-based machine respectively. We also illustrate how
our approach can also be used to expose more instruction-level parallelism for architectures supporting multiple
instruction issuing/processing such as superscalar/superpipelined or VLIW machines.

The paper is organized as follows. In section 2 we present a more detailed outline of the challenges of conlpiling
imperative programs with pointer data structures for machines with instruction-level parallelism. In sectiou 3,
we introduce programming language constructs which enhance the analyzability of programs by providing the
programmer with a means of specifying two important properties of pointer data structures frequently fotmd
in non-scientific programs: speculative traversability and structural inductivity. In section 4 we give a concrete
case st,udy to show how such mechanisms can be effectively applied to unroll while loops that traverse such data

structures. Also in section 4 we present the results of applying the method to optimize a collection of loops for
ItlSC machines, and we show the applicability of the techniques for exposing instruction-level and coarse-grain
parallelism. Lastly, we provide our conclusions in section 5.

2 Parallelism in the Presence of Pointers

In this section we outline the challenges of compiling for parallelisrn in the pres_nce of pointer data structures, lJl tlm
first, subsecl.ion we review the techniques currently used for instruction scheduling for instruction-level l_aralh_lism

41

and we show how inaccurate alias analysis for pointer structures can greatly reduce tile effectiveness of these

techniques. In the second subsection we discuss a high-level loop transformation that is used to increase instruction-
level parallelism for programs with arrays, and we discuss the difficulties of applying similar transformations to
pointer data structures.

2.1 Instruction Scheduling

In compiling for architectures with instruction-level parallelism, instruction scheduling is a crucial component.
That is, in order to effectively utilize the architecture, the compiler must take a sequential list of instructions, and
rearrange the instructions in such a way as to increase parallelism (reduce execution time) while preserving the
original meaning of the program.

Instruction scheduling is commonly performed for RISC architectures [Krig0]. In pipelined RISC architectures,
it is desirable to arrange the code such that successive instructions can be issued to the instruction pipeline one

per cycle Some operatic,ns, like a read from memory or a floating-point arithmetic operation, require more than
one machine cycle to complete. However, one does not necessarily have to wait for an instruction i to complete
before scheduling the next instruction j. Due to the pipelined design of the architecture, it is possible to schedule
instruction j one cycle after another instruction i ifj does not depend on i. Overlapping the execution of instructions
in this way decreases the total execution time by introducing one form of instruction-level parallelism. Another
type of instruction-level parallelism is _present in architectures such as VLIW or superscalar machines which allow
more than one operation to be scheduled at the same time. In such architectures the compiler must analyze the

program in order to determine which operations may safely be issued in parallel.

(1) rl <-- a
(2) r2 <-- b

(1) rl <-- a nop
(2) r2 <-- b (3) r2 <-- rl + r2
(3) r2 <-- rl + r2 hop

a = a + b; (4) a <-- r2 (4) a <-- r2
c - c + d; (5) r3 <-- c (5) r3 <-- c

(6) r4 <-- d (6) r4 <-- d
(7) r4 <-- r3 + r4 nop
(8) c <-- r4 (7) r4 <-- r3 + r4

nop
(8) c <-- r4

(a) C Program (b) Instructions (c) Naive l-tlSC schedule

(1) rl <-- a

(2) r2 <--b cycle 1: (1) (2) (5) (6)

((il i) (6) r4 <-- d cycle 2: (3) (7)

(3) r2 <-- rl + r2 cycle 3: (4) (8)
(7) r4 <-- r3 + r4

() (4) a <-- r2
(8) c <-- r4

(d) Dependencies between instructions (e) A good RISC schedule (f) A parallel schedule

Figure 1: Scheduling example 1: a and c are scalar variables

We illustrate instruction scheduling with the small example program given in figure l(a), Translating this
program ilxt,o machine instructions yields the sequential list of 8 machine-level instructions as given in figure l(b) 1.
Now consider the problem of mapping these 8 instructions to a RISC architecture that requires two cycles for a

1Note that we use the notation a <-- rl to indicate storing rl into the memory location for variable a, and rl <-- a to indicate
loading rl from the memory location for variable a. The actual memory location for a could be given by an offset to the stack pointer
or frame pointer, or an address of a global,

42

load from lnemory and two cycles for an addition, If we take the naive approach of scheduling the instructions
irl the same order as we generated them in figure l(b), then the best that we carl do for our RISC architecture
is tile schedllle given in l(c). Note that due to the 2 cycle latency of loads and additions, we had to insert 4 nep
i,JstrtJctions. For example, we had to insert a nep between instructions (2) and (3) because we needed an extra
cycle to wait for the load to r2 to complete before we could compute rl + r2. We can improve upon the schedule
of figure l(c) by noting that the 8 instructions do not necessarily need to be executed in the order that they were
generated. For example, if a and b are different variables, then the load of a does not, depend on (does not need
to proceed) the load of b. Thus, if we have a compile-time analysis that can determine that a, b, c, and d are ali
distinct variables (they ali refer to different memory locations), then we can represent the partial order with the
dependency diagram given in figure l(d): Starti,lg from this partial order we can produce a much better schedule
(8 cycles instead of 12 cycles) as shown in l(e), This improved schedule requires no extra nep instructions since
all load and add instructions are scheduled at least two cycles before their results are needed, We can also use the
partial order to produce a parallel schedule suitable for an architecture that can issue more than one il_struction at
the same time. Figure l(f) gives a parallel schedule that can issue 2-4 operations simultaneously at each cycle. "_

(1) rl <-- O[a]
(2) r2 <-- b

(1) rl <-- 0[ai nep
(2) r2 <-- b (3) r2 <-- rl + r2
(3) r2 <-- rl + r2 nep

a->val = a->val + b; (4) 0la] <-- r2 (4) 0[ai <-- r2
c->val = c->val + d; (5) r3 <-- 0Ici (5) r3 <-- 0[c]

(6) r4 <-- d (6) r4 <-- d
(7) r4 <-- r3 + r4 nep
(8) 0[c] <-- r4 (7) r4 <-- r3 + r4

nep
(8) 0[c] <-- r4

(a) C Program (b) Instructions (c) Naive RISC schedule

(1) rl <-- 0[ai

(_) (2) r2 <-- b
(6) r4 <-- d cycle 1: (1) (2) (6)
(3) r2 <-- rl + r2 cycle 2: (3)

4) nep 3 (4)
cycle

(4) O[a] <-- r2 cycle 4: (5)
(5) r3 <-- O Ici

_)6 cycle 5: (7)() nep cycle 6: (8)(7) r4 <-- r3 + r4
(7) _op
_, (8) 0[c] r4<--

(s)

(d) Dependencies between instructions (e) A "good" RISC schedule (f) A parallel schedule

Figure 2: Scheduling example 2: a and c are pointer variables

This small example illustrates that the compiler can exploit instruction-level pa.rallelism if it can transform a
sequential list of instructions to a partial ordering of instructions and then apply a scheduling algorithm oJl this
l)artial order, llowcvcr, as illustrated in the example given in figure 2, the success of this approach relies heavily

on accurate compile-time alias analysis. In our first program, each of the variables were scalars, and thcr(,forc
well-establisl_ed compile-time techniques can be used to determine that a and c refer to different nlen_ory local ions
(that is, a and c are not aliased) :_, However, in the program given in figure 2(a), a and c refer to dynamically-
allocat.cd pointer data structures. As indicated in the instructions given in figure 2(b), the memory reference to

2This is the schedule if we assume operation latencies of I. If we assume the same latencies as in the RISC case, then t.hcre
will be empty slots between the cycles. The compiler may move more independent operations to these slots, thus exploring merc
instrucLion-level parallelism,

3lh fact, off,en times Ibis analysis ce.n |)e as simple as determining that a and c refer to diiferent oifscts o_l the stack.

43

a->val and ¢->val is through an extra level of indirection. 4 Due to this indirection it is difficult to determine
whether or not a->val and c->val refer to the same memory location, and compilers are not, in general, able to
perform this analysis at compile-time. As illustrated by figure 2(d), this lack of precise alias analysis for pointer
data structures leads to the introduction of possibly spurious edges in the dependency graph. For example, if
we cannot determine whether or not a->va1 and t->va1 refer to the same location, then we must introduce a

dependency between instructions (4) and (5). The negative effect of such extra dependencies is illustrated clearly
with the RISC schedule given in figure 2(e) and the parallel schedule in figure 2(f). In both cases the schedules are
considerably worse than the equivalent schedules for the scalar case given ill figures l(e) and l(f).

2.2 Loop Transformations to Increase Available Parallelism

There has been considerable effort spent on developing compile-time techniques that transform scientific programs
iii such a way as to expose more parallelism. In order to introduce the notion and benefit of loop transformations,

let us consider loop unrolling, a transformation technique that was developed for parallelizing and optimizing
compilers for scientific programs and arrays [DH79]. As shown by the example in figure 3, loop unrolling essentially
t,rarlsforms a _or loop into an equivalent for loop in which there are multiple copies of the body. Loop unrolling
was initially developed as a technique for reducing loop overhead and for exposing instruction-level parallelism for
machines with multiple functional units. More recently it has also been applied in conjunction with instruction
scheduling for pipelined and lZISC architectures [WS87, Sri91, Muk91]. By increasing the size the body of the loop,
the instruction scheduler can often produce a shorter schedule for the unrolled loop.

for (i = I; i <= 120;i = i + 3)

for (i = I; i <= 120 ; i++) { a[i] - a[i] • b + c;
a[i+1]= a[i+1]• b + c;

a[i] -'- a[i] * b + c; a[i+2] = a[i+2] * b + c;
}

Original Loop Unrolled Loop

Figure 3: Loop Unrolling for Scientific Programs

Now let us consider the problem of performing a similar transformation on while loops with pointer data
strlmi, ures. In figure 4, we give three program fragments that were extracted from the source code for the GNU
C coznpiler 5. The first loop, initialize, simply traverses a list initializing each key field to y. The second loop,
last_item, traverses a list to find the last item. The third loop, reverse, destructively reverses tlm list.

if (lp != LIST_NULL) prey = LIST_NULL;
{ next_lp= ip->next; _hile (lp != LIST_NULL)

uhile (lp !=LIST_NULL) while (next_lp!= LIST_NULL) { next_lp= ip-> next;
{ lp->key= y; { lp = next_lp; ip->next= prev;
lp = ip->next; next_lp= next_Ip->next; prey = lp;

} } lp = next_lp;
} }

last = lp; lp = prey;

Initialize each element Find lasl item Reverse the list

Figure 4: Three typical loops on pointer data structures

At, first glance it would appear that the loops in figure 4 are not really suited to techniques like loop unrolling.
The pot, entiM problems include:

4We use the statement rl <--0[ai to indicate that rl should be loaded from the memory location that is at an offset of 0 from the
location stored in variable a.

'We have modified the presentation of these loops so that they ali use the seine form and variable names.

44

• In the case of arrays one can compute the index of array elements and reference many elements in parallel
(cE±], a[±+l], cE±+2]). However, the pointer loops appear to be inherently sequential, and the list must
processed by traversing each element in turn.

• In the array example it was straightforward to compute the loop bounds and increment for the unrolled loop.
In the cast of pointer loops we have no idea of the length of the structure, and no simple way to construct a
termination condition that results in an equivalent unrolled loop.

• F,ven if we could access rnore than one item at a time, it would appear that loops like lasl_item have no
(:Omlmt.ation to do on each item, and therefore may not be good candidates for loop unrolling.

• In tlte case of arrays the loop body will only modify the values within the structure, but not the structure
itself. That is, the shape and size of the arrays remain the same. In the case of linked structures the loop
may actually change the struettlre of the list itself. This is true in the case of reverse,

3 Analyzable Pointer Data Structures

As illustrated in the previous section, there are many challenges for effectively compiling programs for instruction-
level parallelism. In particular, we illustrated the negative effect of poor alias analysis for pointer data structures,
nnd tlm difficulties encountered in designing loop transformations for pointer data structures. These difficulties
arise because unlike data structures such as scalars and arrays which have a fixed shape and size, pointer data

structures have dynamically changing shapes and sizes, In addition, programmers use dynamic data structures to
ilnplement a wide variety of structures including singly-linked lists, doubly-linked lists, circular lists, nested lists,

binary trees, threaded trees, and graphs. Even though the programmer may use pointers in a very constrained
lllallner (for example, the programmer may use a certain type of node to build only non-cyclicM lists), the compiler
has no way of knowing what sort of structure the programmer has in mind, and therefore the compiler cannot
exploit any properties that are specific to that structure. In addition, the compiler has no knowledge of the size or
length of a dynamic data structure,

In this section we introduce two characteristics of pointer data structures that allow better compile-time analysis,

'l?hat is, we give some examples of how to make a programming language more analyzable. In the first sub-section we
i_tt,roduce the class of slructurally inductive data structures and we illustrate how we can use path matrix analysis to
provide accurate alias analysis for this class of data structures. In the second sub-section we introduce speculative
tr,.vcrsabilily, a property that allows us to perform loop transformations without knowing the length of a data
structure.

li'or practical reasons, including the wide-spread use of C for non-scientific programming, we have chosen to
develop our approach relative to the programming language C. In fact, our techniques require only very small
syntactic extensions to C that could be implemented with a straight-forward preprocessing step. However, one
should not assume that the notion of designing analyzable programming languages is restricted to C, arm we hope
that others will take the challenge of designing better, analyzable programming languages that, are suitable for
architectures supporting instruction-level parallelism.

3.1 Structurally Inductive Pointer Data Structures and Alias Anal sis

In order to provide more accurate alias analysis for pointer data structures, we would like prcgrammers to be able
to classify their data structures as either inductive or non-inductive. An inductive linked structure is one in which
there are no cycles, and each node has at most one parent. Inductive structures include linked lists, nested lists, and
trees, while non-inductive structures include DAGs and cyclic graphs. Inductive structures have nice properties tbr

analysis, and techniques for alias analysis, dependence analysis, and parallelizing transformations for this class of
structures llave been developed [Gua88, LH88, IIN90]. The exploitable properties of inductive structures include:
(1) the component pieces of the structure (the head and tail of a list,, or the left and right sub-trees of a binary
tree) never share any storage, and thus computations on the components are non-interfering, (2) breaking any link
yields two independent pieces, and (3) a traversal of any series of linked nodes never revisits the same node more
than once,

/45

Our approach to exploiting the analyzability of inductive structures is to allow tile programmer to indicate
wl_ich pointer data structures have this property. In order to discuss our language extension with respect to C,
we introduce a high-level recursive type statement, reetype, Each rectype statement consists a list of field names,
with each field having either a scalar type, or a recursive reference to the type being defined. As illustrated by
tlm example for linked lists as given in figure 5, the reetype statement can be translated by the coxnpiler into the

traditional recursively defined pointer structures in C, Note that the compiler can generat_e both the apl:)ropriatc
C types for nodes and pointers to the nodes, and constant representing the the empty structure (LIST_NULL).

#DEFINE LIST_NULL 0 /* name of the empty list */

rectype LIST [inductive]

{int key; typedef struct LIST /* nodetype for ordinary lists */
LIST next_ { int key_

} struct LIST *next_

} LIST_NODE, *LIST_PTR|

(a) (b)

Figure 5: A rectype and its C implementation

As illustrated in figure 5(a), we provide the option of indicating if a particular rectype has the inductive
property. It should be noted that both inductive and non-inductive recursive structures are implemented with the
same C data types, Thus, we treat the inductive specification as a directive, rather than a type. The programming
language designer has a choice of how to use this directive. The easiest, and least safe, approach is to take this
directive as a promise from the programmer that all structures built with this type will be inductive. This is
analogous to allowing arrays without bounds checking. Another, and perhaps preferable, approach is to use tlm
directive to aid the compiler in choosing the correct sort of alias analysis to perform for thai, dater type. Thus, an
analysis best, suited to inductive structures can be used for each rectype which has been labeled as inductive. Just
as dependence analysis is a natural choice for analyzing array references, path matrix analysis is a natural choice
for ind uctive structures [tIN90].

Path matrix analysis is an interprocedural anMysis technique that was specifically developed for inductive data
structures. The technique exploits the special properties of inductive structures in order to provide accurate static

analyses to: (l) safely deterrnine if pointer data structures t e guaranteed to be inductive, (2) perform alias analysis

and dependency analysis for ali pointer variables that point to nodes of the inductive structure, and (3) detect
non-itlterfering computations.

We illustrate the use of path matrix analysis for the program fragment presented in figure 6. This program first
calls a function to build a list, and then executes a while loop to reverse the list. At, the beginning of the loop,
orig.lp points to the first item, while at the end of the loop, new_.lp points to the first, item of the reversed list,
and or±g_l.p points to the last cell of the reversed list.

orig_lp = build_list(n); /* build a list with n items */

lp = orig_Ip; /* orig_Ip points to original head of list */

prey = LIST_NULL;

while (lp _= LIST_NULL)

{ next.lp m ip->next; /* get next node */

Ip->next = prey; /* reverse link of lp */

prey = lp; /* get ready for next iteration ,/

lp = next_lp;
}

new_lp =prev; /* new_lp points to new head of list, and

orig_Ip now points to last element */

Figure 6: An example program with the reverse loop

lrl order to demonstrate how the analysis works, we used our path matrix analysis tool ° to process the prograln

_'l'his is an interprocedural analysis tool that is written in SML [HN90, Hen90].

46

(I) eriE_lp i-build_list(n)

i_ ii-o,,;g,tp(.,®/i
I o,.@.lplE si iii
(2) lp - orlg_Ip

I, II o,,,ig_lp(.,o)i Ip(.,Q) I
o,,;,q_tpIi s s

(3) prey = LIST_NULL

i....... ' li o,'i9_lp(,,®)llp(,,®)lP,'ev(o,o)
• ,_

orig_lp S S

i_p ,, '"s ,s
prey S.......

......... LAST ITERATION OF WHILE LOOP FIXED-POINT CALCULATION

(4) next_lp = 1p->next

I 11orig_lp(.,o) lip(.,,@) I prey(',®) I next lh(®,®)
o ri 9_lp S S?• ,

lp S iV'
prey(S "t"N +) S, .,

next_lp S......

(5) Ip->next = prey

I 11,,o,@O,(.;0),1,!p(.') I next.lp(Q,®}
orig_lp S......

I lp N "_ S ,,,

nezt,ip S ,,

(6) prev= lp

I I1 °_.rig'-lP(",°) prey(i,,) next,lp(Q,@)
,,

orig, lp S

prey N + S
-,,_xt_t_ s
(7) Ip = next_lp

I . . II Orig-lP(*,°)llP(®,6} I p_("')l
oiCig_lp "S . "
lp s

..prey N "v S

.................. END WHILE/REPEAT

(8) new_lp = prey

I li o"@-tp(°,e)l n_-;_(®,e) I

Iorig-'P ll ' s I s? 1_LII (s + N+) s

Figure 7: Partial trace of the path matrix computations

47

given in figure 6 and we extracted pieces from the trace of the analysis as given til figure 7, For each program point
in the trace, we give the path matrix that summarizes the relationships (or paths) that exist between each pair of
pointer variables (also called handles) live at that point, Also) note that each handle is decorated with a pair that
looks something like (.,®). The first item of the pair corresponds to "nilness" of the handle itself, and the second

item corresponds to the "1illness" of the next field of the handle (. means definitely not nii, o means definitely nii,
a)ld Q means that it could be either). Let us consider the following points in the path matrix analysis,

Program Point (1): The first statement in our program fragment is a call to a procedure bui:l.d..list that builds
a non-cyclical list, Although we |lave not shown the path matrix analysis for this call, we see that the
resulting path matrix contains only one live handle, lp, and it has (,he relationship S wit.h itself, Note that the
relationship S between two handles x and y indicates that these variables point to the same node, The fact that
there is only one entry in the path matrix indicates that there are no other live pointer variables (handles) that
can be reached from the head of the list lp, and that the analysis of the procedure call successfully determined
that the structure pointed to by lp is indeed inductive. If the analysis of the call had not been successful (for
example, the programmer may have created a cyclic structure), then a less accurate alias analysis mechanism
must be used,

Program Point(2): The path matrix computed for program point 2 contains two handles, lp and orig_lp. Note
that the entries reflect the fact that lp and orig_lp point to the same node.

Program Point(3): In statement 3 we see the first occurrence of the nil poivter (LIST_ULL). You can see that
the handle prey is definitely nii, and it is not related to any other handle.

Program Points(4) to (7): We have given the path matrices computed for the last iteration of the while loop
fixed-point calculation. You can think of these path matrices as approximating the state of the data structures
Ibr ali iterations of the while loop after the first iteration. Note that at program point (4) the relationship
between lp and next_lp is always N 1 (exactly one next link), while the relationship between prey and orig_lp

is (S + N +) (they point to the same node, or the, e is a chain of one or more nexts from prey to orig_lp). Also
note that there is no relationship between prey and lp. This corresponds to (.he fact that the original list is
now split into two distinct pieces, the reversed part starting at prey and ending at orig_lp, and the unreversed
part starting at lp,

Program Polnt(8): Finally, at program point (8), we see the relationship of (S' + N +) between the new head of
tlm list new_lp and the original head orig_lp, The S corresponds to the case when the original list only has
only one item, and the N + corresponds to ali cases for lists with more than one item,

'l']kis exalnple shows that we can get very accurate alias analysis for inductive structures when we apply alias
al_alysis techniques that have been carefidly designed to take advantage of the special properties of such s(,ructures,
[)ldee_l, the analysis provides accurate information even though the structure is being destructively traversed, This
illustrates (,he point that one must be able to capture special properties of data structures at the programming
laHgl_age level, so that the appropriate compiler analysis techniques can be developed and used for those structures.

3.2 Speculatively Traversable Pointer Data Structures

Ia addition to providing properties that lead to better alias analysis, we must also deal with the problem of not
k,lowizig the length or size of pointer data structures. In order to fully demonstrate this problem, let us return
to the problem of unrolling while loops, l_ecall that for loops that operate on arrays can be easily unrolled by
si)llply modifying the counter and termination conditions of the loop. However, with while loops on pointers, the

situation is much more difficult. Consider for example tile initialize loop given in figure 8(a).

In order to efrect some sort of unrolling, we can try the brute-force approach of duplicating the body of tlm
loop, along wit,h the appropriate conditionals. Figure 8(b) gives an example of this approach for unrolling the
i.itialize loop 3 times. Althougll clearly seman(,ically equivalent to the original loop, this approach does not appear
to iml)rove, the code. The loop overhead is not improved because we need to do just as many tests, and the
i.s(,rt,('(,i()ns in the body remain sequential.

In figure 8(c) we give a good strategy for unrolling this loop, In this case tw() extra list pointers, "lp2 and lp3
at(; il,troduced to give three independent pointers into the list, As a result, the l,hree statements updating the fields

148

Ip2 = Ip->next;

while (lp t= LIST_NULL) lp3 = Ip2->next;

{ Ip->key = y; while (lp3 t= LIST.NULL)

lp = Ip->next; { Ip->key = y;

if (Ip t= LIST_NULL) Ip2->key = y;

while (lp t= LIST_NULL) { ip->key = y; ip3->key = y|

{ Ip->key = y; ip = Ip->next; lp = ip3->next;

lp = Ip->next; if (lp I= LIST_NULL) lp2 - Ip->next;

} { Ip->key = y; Ip3 = ip2->next_

lp = Ip->next; }

} while (lp _= LIST_NULL)

} ' { lp->key - y;

} Ip = Ip->next;
}

(o.) the original loop (b) The brute-force approach (c) A good unrolling

Figure 8: Loop Unrolling for the initialize example

lp->key, lp2->key and 1p3->key can be executed in parallel, and the number of tests is reduced to 1/3 o1' the
original loop. However, this unrolled loop is not necessarily semantically equivalent to the original loop. The most
blatant problem is that we don't know how many more items will be in the list, and the speculative computation
of lp2 and lp3 may cause run-time errors that would not occur in the original loop. This leads us to define the
property of speculative traversability. The idea of a speculatively traversable structure is that traversing the empty
structure yields the empty structure. Thus, without knowing the length of a list, we can safely traverse the next k
items without causing a run-time error. More formally, we define the following important property.

Definition 3.1 Let t be lhc type of a speculatively traversable pointer data structure with scalar fields st, s.2, ...,
s,,, and recursive pointer fields rl, r2, ,. ,, rn. Ifp is the pointer representing the empty structure for type t, then
for each ri the following equality holds: p->rl = p.

Note that a speculatively traversable recursive data structure is really a different type than an ordinary recursive
data type [)ecause we have changed the meaning of operations on the empty structure, Therefore, to capture this

idea we define a new type statement, specrectype as illustrated in figure 9.

#define LIST_NULL list_nil /* name of the empty list */

static LIST_NODE llst_nil_node; /, node for implementing empty list */

static LIST.PTR list_nii; /, pointer to the empty list */

void init_LIST_NULL() /* code to initialize the empty list*/

specrectype LIST { list_nil = glist_nil_node; /* set pointer to empty list node 6/

{ tnt key; list_nil->key = O; /* set each scalar type to approp, zero */
LIST next; list_nil->next = list_nii; /* set each recursive field to self */

} }

typedef struct LIST /* node type for speculative list */

{ tnt key;
struct LIST *next;

} LIST_NODE, *LIST_PTR;

Figure 9: A speculatively traversable specrectype and its C implements.rien

Note tllat, the iml)iementation of the specrectype definition is identical to that of the rectype except for
the definition of the empty data structures. That is, we have implemented the empty structure so that we can
speculatively traverse the data structure (extra traversals on the empty struc, ture will always result in the eml)ty
structure),

4 Loop Unrolling for Analyzable Pointer Structures

As we discussed in section 2.2, loop-based transformations are important components of compiling for instruction-
level parallelism. In this section we present a new loop unrolling technique that applies to structurally inductive
and speculatively traversable pointer data structures. In the second part of this section we provide experimental
results that indicate substantial performance gain for our loop unrolling technique.

In order to demonstrate a wide variety of loops we consider the six loops presented in figure 10. The first
loops are the ones that we extracted from the source code of the GNU cc compiler, while the last three loops we
constructed to provide loops with different characteristics. The sum loop is typical of a loop that is traversing _
structure while accumulating a final value. The count loop is an exanaple of a loop that performs sonle action on
a subset of the items in the list. An important characteristic of this loop is that it contains a conditional in the

body. The find loop is typical of a loop that does not traverse the entire list. The characteristic of importance in
this loop is the more complex termination condition.

' if (lp != LIST_hULL) prey = LIST_NULL;

{ next_lp ,, lp->next; while (lp != LIST_NULL)

while (lp != LIST_NULL) while (next_lp != LIST_NULL) { next_lp = lp-> next;

{ ip->key = y; { lp - next.lp; ip->next = prey;

lp = ip->next; next_lp = next_ip->next; prey = lp;

} } lp = next_lp;
} }

last = lp; lp = prey;

I..itialize each element Find last item Reverse the list

sum = 0 ; cotmt=O;

while (Ip != ORIfl_NULL) while (lp !- LIST_NULL) while ((ip != LIST_NULL) &&

{ sum += Ip->key; { if (Ip->key -- y) count++; (Ip->key != y))

Ip = Ip->next; lp = ip->next; lp = Ip->next;
} }

Sum ali elements Count ali elements equal to y Find first elemen_ equal _o y

Figure 10: Some different sorts of loops on pointer data structures

4.1 A New Loop Unrolling Technique

[':ach of the loops given in figure 10 traverses and processes a linked list one item at a time. That is, for each

iteration of the while loop, one item of the list is processed. The basic strategy of our loop unrolling is to transform
tile original loop into a loop which processes more than one item on each iteration. For example, as qlustratcd in
figure 11, we could have three pointers into the list, and process three items of the list on each iteration of the while

loop. The advantages of such a transformation include: (1) loop overhead is reduced, (2) the size of the loop body
is increased, thereby providing more flexibility for traditional optimizations like dead code removal and instruction

scheduling, and (3) in many cases available parallelism is increased because the operations on different list items
may proceed independently.

We have isolated two general patterns for performing such while loop transformations. In figure 12 wc give the
two patterns and _he equivalent 3-unrolling (there is an obvious generalization for k-unrolling). Ali of our example

loops, except for reverse, fit pattern A. Pattern B is typical of loops, like reverse, that are updating the structure
of the list as it is traversed. Note that in both cases, the unrolling of the pattern consists of two adjacen{, while
Ioc)l)s. The first loop processes k items for each iteration, and the second loop as processing the remaining t,_i[o['
the list, in the case that the length of the list is not a multiple of k.

The following is a concise summary of the loop unrolling method. An example of applying this method is given
in figure 13.

5O

Iteration i

lnl lp2

Figure 11: A loop traversal for a 3-unrolling

lp2 -- traverse(lp);

_v2= traver_Ov); lp3= trivets(lp2);
lp3 -- traverse(lp2); willie (cond(lp, lp2,lp3))
wh|le (cond(lp, lp2,lp3)) { new_lp - traverse(lp3);

body(lp);(body(lp);
body(lp2); body(lp2);

while (cond(lp)) body(lp3); while (cond(lp)) body(lp3);
{ body(lp); lp traverse(lp3); { newAp = traverse(lh); lp = newAp;-- body(lp); lp2 -- _raver_(lp);

Ip = traverse(lp); lp2 - traver_(lp); lp = newAp; lp3 = traverse(lp2);

while (cond(lp)) while (cond(lp))
{ body(lp); { newAp = traverse(lp);

body(lp);
lp = traverse(lp); lp = new_lp;

} }
(_) Pattern A and Unrolling (b) Pa.ttern B and Unrolling

Figure 12: Patterns for unrolling 3 times

51

Detection: Each while loop is examined to see if it fits the pattern A or B. In either case; the loop must obey the
following properties:

1. The condition, coLd(lp) must be some boolean expression defined on the variable lp and this variable
must be of specrectype.

2. The body of tile loop must be divisible into two non.interfering sub-pieces, body(lp)'and _raverse(Ip).
This analysis can be done by simple symbolic inspection for some loops, or it can require palh matrix
analysis for more complex loops like reverse. Tile traverse(lp) computation must be a traversal of a
rectirsive field of the speereetype.

Unrolling: The loop is unrolled by introducing new variables lp2, 1p3, ..., lpk of the appropriate specrectype
and producing a pair of new loops as illustrated in figure 12. The kth copy of the body is created by replacing
each occurrence of lp with Ipk.

Conditional optimization: 'The naive loop unrolling creates the conditional "coLd(lp) &_ coLd(lp2) _& ... &&
cond(Ipk)'. This can often be greatly simplified. For example, using property of speculatively traversable
structures defined in section 3.1, we can simplify "(lp != LIST..NULL) && (lp2 != LIST_NULL) &d_ (1t93 !=
LIST_NULL)" to "(lp3 != LIST.NULL)".

Loop body optimization: We note that in the unrolled loops there are many adjacent copies of tile body of the
original loop. This often provides further opportunities for traditional optimizations such as copy elimination
and dead code removal. Figure 13(c) illustrates the use of dead code removal for the loop last.

Parallelization: As a final step we determine if the different copies of the body are independent. In determining
this we can make use of the fact that a particular linked structure is inductive. For example, in the case
of inductive structures, we can guarantee that the k different variables lp, lp2, ..., lpk refer to independent
nodes.

next_lp = Ip->next;

next_lp2 = next_ip->next;

next_lp3 = next_Ip2->next;

while (next_lp = Ip->next;

(next_lp !- LIST_NULL) &R next_lp2 = next_lp->next;
next_lp3- next_ip2->next;

(next_lp2 }= LIST_NULL) && while (next_lp3 != LIST_NULL)

next_lp = ip->next; (next_lp3 != LIST_NULL)) { lp = next_lp3;

while (next_lp != LIST_NULL) { ip = next_lp; next_lp = next_ip3->next;

{ lp = next_lp; lp = next_lp2; next_lp2 = next_ip->next;

next_lp = next_ip->next; lp = next_lp3; next_lp3 = next_Ip2->next;
} next_lp = next_ip3->next; }

next lp2 = next_ip->next;
- while (next_lp != LIST_NULL)

next_lp3 = next_ip2->next; ' { ip - next_lp;

} next_lp - next_Ip->next;
while (next_lp != LIST_NULL) }

{ lp = next_lp;

next_lp = next_Ip->next;

}
(a) Original Loop (b) Unrolled (c) Unrolled and optimized

Figure 13: Unrolling last

4.2 Experimental Results

In this section we present some experimental results obtained by applying our loop unrolling techrliques to the six
loops presented in figure 10.

Eirst let us consider the example of unrolling the loop lasl,. In figure 13 we show the original loop, the unrolled
loop, and the unrolled loop after both the conditional and body have been optimized. Note that these optimizations

52

are straight-forward applications of tile speculatively traversable property and dead code elimination. Due to tile

resulting reduced loop overhea, d and the removal of unneeded computation in the unrolled version of lasl, we would
expect improved performance of the unrolled version over the original loop. This performance improvemer_t is
confirmed with the experimental figures in table 1. This experiment was performed using the original loop, and
optilnized unrolled loops for k equal to 2, 3, 4, 5, and 10. In each case, the transformation was performed aL the C
source level, and then the resulting unrolled loop was compiled using the native ce compiler with the -0 optilllizer
option. For each unrolling we give the time in microseconds required to execute the loop for lists of length 10,100,
and 1000. In addition, the speedup is indicated in parentheses. We note excellent speedups ranging from 1.12 to
2.21 for ali cases except for the 10-unrolling run on a list with 10 elements. In this case, the cost of the speculative
trt_versal outweighs the other benefits. Also, for both architectures, we note that a 3-unrolling results in very good
performance for all lengths of lists (speedups ranging ft'ore 1.21 to 1.88).

SPAR.C 7

I... N li O,,iginal li Unto, (231 Un,'oU(3).. U, roU(4) Un,'o.it(lO)
10 1.72 1.50(1.15) 1.42(1.21) 1,_4(1.12) 2:46(0.70)

100 15':40 11.60(1.33) 10.40('i.48) 10,00(1.54) 9.60(1.60)

-1000 152.00 102.00(1.49) 102,00(1.49) 104,00(1.46) 88,00(i.73),,,

MIPS 8

[NII Original 11 U.roU(2) I Un,'oU(S)I Unron(#)[UnroU(lO)
10 2.i4 1 66(1.29) 1.52(1.41) 1.67(1.28) 2.95(0.73)

-- 100 20.'23 12.42(1.6'3) 11.17(1.81) 10,86(1.86) 10.86(1.86)
" 1000 202.33 121.8'7(1.66) 107.81(i.88) 102.34(1.98) 91.40(2.21)

Table 1: Timings for lasl

We have also performed a complete set of experiments on each of the six loops presented in this paper. For each
loop we experimented with the effect of the technique with a variety of C compilers, and for each C compiler the

effect when used with or without the -0 optimizing option [IIen91], Table 2 summarizes part of those results for
the case of 3-unrolling and using the native cc compiler with the -0 option. This resulted in impressive speedups

tor all cases on the MIPS architecture (average speedups of 1.19 to 1.49), and good speedups on most case_ for
the SPAI_C architecture (average speedups of 1,03 Lo 1.17), By studying the code produced by the various cc

compilers, we note the following reasons for this speedup: (1) reduced number of })ranches, (2) reduced number of
instructions, and (3) better instruction scheduling due to the increased size of the block body.

It ISI)ARC MIPS

10 I 100 I.... 1000 10 [100 [1000
last 1,42(1.21) 10.40(1.48)102.00(1.49)' 1.52(1.41) 1'1.17(1.81) 107.81 (1.88)
initialize 2.14(1.00) 21.00(1.00) 242,00(0.96) 1,70(1.26) 13,83(1.47) 134.37(1.51)
reverse 2.40(1.13) 22.60(1.06) 212,00(1.16) 1,77(1.26) J3,98(1.45) 136,71(1.49)
count 2.80(1.06) 23.20(1.17) 224.00(1.21) 2.95(1.14) 27.50(1.19) 274.20(1.20)
sum 2.16(0.99) 17,20(1.08) 174.00(1.03) 1.70(1.26) 13.75(1.48) 135.15(1.51)
find 1.78(0.78) 12.60(1.21) 122,00(1.15) 1.91(0.82) 14.14(1.15) 135,15(1.20)

average [[(i.03) (1.'i7) I (1.17) (1.19) (i.42) (1.46)

Table 2: Speedups for six benchmarks with an unrolling of 3

4.3 Using Path Matrix Analysis to Enhance Parallelism

The obserw_l, ioll that our loop unrolling technique lead to better instruction scheduling on R ISC machin¢_s sllows
l hat techlliques like this are very illll)ortant for the effective exploitation of parallelism avaflal)le in today's ad-

7Sl>Al(Cstation 2, Stm release. ,t.1 cc compiler
Sl)E(_STATION 5000, M IPS cc comI)iler

53

vanced architectures. Furtllermore, using more refilled alias analysis based on path matrix method, more precise
dependence information can be produced to guide instruction scheduling. This is particularly important when one
copy of the loop body may not have enough parallelism to match what can be supported by the target architecture.
As the future generation of high-performance architectures will have substantially more parallelism at ali levels,
and the benefit of the proposed method will become even more significant,

body(lp) body(lp2) ... body(lpk)

I'ip = trav(lpk)

Figure 14: Dependencies in a parallel k-unrolled loop

Consider an unrolled loop of the form given in figure 12(a). If our path matrix analysis determines that each of
the variables lp, lp1, ..., lpk refer to distinct nodes, and the body of the original loop only refers to the node plus
some scalar variables, then we can build a dependency graph with the basic structure as shown in figure 14. Note
that each of the statement sequences body(lp1), ..., body(Ipk) are totally independent, and the only dependencies
a,re due to the traverse statements. Ample parallelism between iterations may be exposed which can be effectively
exploited by the target architectures.

4.4 Handling Coarse_Grain Parallelism

Althoug_l we have concentrated on instruction-level parallelism, our techniques are also useful for more coarse-grain
l)arall_:lism [Ilen90, tINg0]. For example, consider a while loop in which each iteration performs a relatively large
task. Ira t.his case, we can use our analysis to determine when it is safe to speculatively traverse the structure while
allocat ing each iteration, or group of iterations, to different parallel processes.

In addition, we can use the inductive property and associated alias analysis tools to determine when two or
more recursive procedure calls may execute in parallel. For example, consider a program which operates on a tree
by processing the root node, and then recursively processing the sub-trees. If our analysis Can determine that t]ae

structure is in fact inductive, that is determine that the sub-trees are non-interfering, then we can allocate each
recursive call to a parallel process.

Ilowever, even when we can detect when it is safe to execute different iterations or procedure calls in parallel,
the effective exploitation of coarse-grain parallelism is complicated by the following problems.

Locality: Many parallel architectures have a multi-level memory hierarchy irl which memory accesses to local
data are considerably faster than memory accesses to non-local data. In order to exploit such arcl_itectures
ii, is beneficial to map the data structures in such a way as to minimize non-local references. With array
data structures this can often be achieved by mapping the arrays by rows, columns, blocks, or other regular
mapl_ings, tlowever, with pointer data structures, the shape of the data structure changes dynamically, and
such regular mappings are difficult to perform statically. Even if a mapping is made dynamically, small
pointer updates in the structure (for example, reversing two sub-trees) may invalidate the mapping.

Size: In order to determi_.e the grain-size of a parallel process, it is often useful to know the size or length of the
data structures. For example, with arrays or vectors, one can often divide one process into approximately

54

equal sized sub-processes that work on equal sized pieces of the vector or array. Once agaia, tills is difficult
to do for pointer data structures. For example, if a tree data structure is not balanced, then tile size of

the sub-trees may vary considerably, and we cannot use the sub-division of the data structure to guide the
subdivision of the process into equal sized processes.

In order to make some progress on the problems due to locality and size, we plan to pursue our approach oi'
extending the programming language to allow the programmer to specify more properties about the data structure.
For exarnple, the programmer may actually have some encoding in the data structure that gives the length or size
of the data structure. We would like to make this encoding explicit so that the compiler can make use of this
information.

5 Conclusions

Current and future generation of high-performance architectures support instruction-level parallelism. 'ro produce
efncient code for such machines, a compiler must be able to analyze programs and detect opportunities for opti-
mization and parallelization. This motivates the central theme of this paper: analyzability is an important principle
for programming language design and implementation.

In this paper we focused on the analyzability issues for real-life non-scientific programs. Many such programs
are being written in imperative languages like C for many different hardware platforms, and there is no sign that
this trend will slow down soon. Therefore, we feel that one challenge for researchers in the areas of programming
language design and implementation is to work towards solutions that: (1) are easily assimilated and adapt,:d by
the community programming in C-like languages, and (2) will lead to effective use of current and future high-
performance architectures.

We illustrated the negative effect of poor alias analysis for pointer data structures, and the difficulties el_coun-
tered in designing loop transformations for them. These difficulties arise because unlike data structures such as

scalars and arrays, pointer data structures have dynamically changing shapes and sizes. In addition, programmers
use dynamic data structures to implement a wide variety of structures including singly-linked lists, doubly-li_ked
lists, circular lists, nested lists, binary trees, threaded trees, and graphs.

\'re have proposed a programming language mechanism which can be utilized to design analyable pointer data
structures with two important properties : structural induclivily and speculative traversability. We illustrate how
can use palh malrix analysis to provide accurate alias analysis for structural inductive data structures. We have
also described a novel while loop transformation method to aggressively exploit fine-grain parallelism for poillter
data structures which are speculatively traversable and we have provided experimental results that show that the

transformation results in significant performance improvement. In addition, we discussed how our approach can be t

used to exploit more coarse-grain parallelism, and we outlined the outstanding problems in this area.

Based on the results of the research presented in this paper, we have decided to imph'.ment our approach iri
McCAT - the McGill Compiler-Architecture Testbed currently being developed by our research group al. McGill
[ItGMSgl]. McCAT provides a unified approach to the development and performance analysis of compilation
techniques and high-performance architectural features. This will allow us to performance experiments on a wide
range of benchmark programs and architectural models and to further refine our method.

55

References

[ABC86] Todd Allen, Michael Burke, and Ron Cytron. A practical and powerful algorithm for subscript del)en-
dence testing. Technical report, IBM, 1986. Internal Report.

[ACK87] R.andy Allen, David Callahan, and Ken Kennedy, Automatic decomposition of scientific programs for
parallel execution. Conference Record of the Fourteenth Annual A CM Symposium on Principles of
Programming Languages, pages 63-76, January 1987.

[ANP89] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel computing. ACM
TOPLAS, 11(4):598-632, October 1989.

[Ban76] Utpal Banerjee. Data dependence in ordinary programs. Master's thesis, University of Illinois at
Urbana-Champaign, 1976.

[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, Boston, MA,
1988.

[I3H79] J.J. Dongarra and A.R, Hinds. Unrolling loops in fortran. Software-Practice and Experience, 9:219-226,
1979.

[Gua88] Vincent A. Guarna Jr. A technique for analyzing pointer and structure references in parallel restructur-
ing compilers. In Proceedings of the International Conference on Parallel Processing, volume 2, pages
212-220, 1988,

[GYDM90] G. R. Gao, R. Yates, J. B. Dennis, and L. Mullin. An efficient monolithic array constructor. In
Proceedings of the 3td Workshop on Languages and Compilers for Parallel Computing, Irvine, CA,
1990. To be published by MIT Press.

[lien00] Laurie J. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis, Cornell Uni-
versity, January 1990.

[Iten91] Laurie J. Ilendren. Experiments on while loop unrolling for pointer data structures. Technical Report
ACAPS Note 29 (in preparation), McGill University, 1991.

[HGMS91] Laurie Hendren, Guang Gao, Chandrika Mukerji, and Bhama Sridharan. Introducing McCAT - The
McGill Compiler-Architecture Testbed. Technical Report ACAPS Memo 27 (in preparation), McGill
University, 1991.

[IIN90] Laurie J. Hendren and Alex Nicolau. Parallelizing programs with recursive data structures. IEEE
Transactions on Parallel and Distributed Systems, 1(1), 1990.

[llWe90] P. tludak and P. Wadler (editors). Report on the programming language Ilaskell, a non-strict purely
functional language (version 1.0). Technical Report YALEU/DCS/RR777, Yale University, Department
of Computer Science, April 1990.

[h:KP+80] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Analysis and transformation of
programs for parallel computation. In Proceedings of the Fourth International Computer Software and
Application Conference, October 1980.

[Kri90] S.M. Krishnamurthy. A brief survey of papers on scheduling for pipelined processors. SIGPLAN
Notices, 25(7):97-106, 1990.

[Ii,1188] James R. Larus and Paul N. Ililfinger. R.estructuring Lisp programs for concurrent execution. In Pro-
ceedings of the A CM/SIGPLAN PPEALS I988 - Parallel Programming: Experience with Applications,
Languages and Systems, pages 100-110, July 1988.

[Muk91] Chandrika Mukerji. Instruction scheduling at the RTL level. Technical Report ACAPS Note 28, McGill
University, 1991.

56

[PW86] D. A, Padua and M, J, Wolfe, Advanced compiler optimizations for supercomputers. Commu1_icalioTts
of the A CM, 29(12):1184-1201, December 1986.

[Sri91] Bhama Sridharan. Creation and transformations of the abstract syntax tree, Technical Report ACA PS
Note 27, McGill University, 1991,

[Wo189] Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitnlan, London and MIT Pr_,ss,
Cambridge, MA, 1989. In the series, Research Monographs irl Parallel and Distributed Colnputing.
Revised version of {,he author's Ph.D. dissertation, Published as Technical Report UIUCDCS-I1-82-
1105, University of Illinois at Urbana-Champaign, 1982.

L

[WS87] Shlomo Weiss and James E. Smith. A study of scalar compilation techniques for pipelined supercoml)ut-
ers. In Proceedings of the Second International Conference on Architectural Support for Pr'ogrammiT_g
Languages and Operating Systems (ASPLOS II), pages 105-109, 1987,

[X3390] The FORTRAN Technical Committee of ANSI X3J3, June 1990. FORTRAN 90, Draft of th¢_ lliterna-
tional Standard.

5'7

Compile-Time Parallelization of Prolog

Hakan Millroth, Uppsala University

Previous attempts at developing parallel Prolog systems have focused on exploiting
AND-parallelism, or OrC-parallelism, or both. In this work we parallelize Prolog by
exploiting parallelism in its fundamental control structure: recursion.

We have developed a compilation technique [2,3] in which recursion over recursive
data structures is compiled to bounded iteration (for-loops) over vectors (the vectors
are somewhat analogous to binding environments). The technique is based on an
analysis of the unification patterns of recursive programs in Reform [5] computations. L

(Reform is a new inference systems for logic programming which handles recursion
differently from SLD-resolution.)

This compilation technique gives a more efficient parallelization of recursive pro-
grams than is possible with a system based on SLD-resolution. In a parallel system

based on SLD-resolution it takes O(N) time to spawn all N recursive calls to the
program. In our model, the time complexity for getting all recursion levels into work
is bounded only by the time it takes to distribute the input data of the program. This
may take O(log N) time (on, for example, a machine with tree topology) or O(1) time
(in case the input data is already distributed).

We discuss the application of this technique to parallelization of Prolog [4,6]. The
basic idea is that parallelization takes places only across recursion levels: the recur-
sion levels of a program, including the head unifications at each level, are computed in
parallel. The sequential left-to-right depth-first backtracking scheme of Prolog is re-
tained within recursion levels. (If needed, communicating processes are implemented
by sequential co-routining using the delay primitives of Prolog.)

This approach has some appealing consequences:

1. lt gives the parallel program a natural and easy-to-understand parallel reading.
The programmer can write efficient parallel programs by obeying some simple
rules of programming. The programmer is relieved, to a large extent, from
explicitly constraining unproductive concurrency.

2. lt gives a natural partitioning of the computation and its data, since nondeter-
minism and producer-consumer relationships are often locM to the individual
recursion levels. Since we execute the individual levels sequentially, the amount
of nondeterminism and data dependencies within recursion levels is completely
insignificant for the efficiency of parallelization.

3. There is a simple mapping of the program onto a parallel machine whose pro-
cessors are organized in a ring: adjacent recursion levels are mapped to adjacent
processors. The inter-processor communication on such a machine will mostly

58

be between neighboring processors, since it is unusual that data is passed be-
tween nonadjacent recursion levels in a logic program. We thus achieve predom-
inantly local communication, which is crucial on a distributed memory machine.

4, The workload will automatically be spread evenly among the parallel processors,
assuming that each recursion level of the program contains approximately tlm
same anaount of work, This assumption seems reasonable for many Prolog
programs. Consequently there is not much need for dynamic load balancing.

llcnce we have an efficient method for parallelization of well-structured Prolog
programs. What to do with unstructured problems? One approach is to parallelize
_,_well-structured metaprogram that controls the computation; cf. Foster & Taylor's
scheduler-worker method [1].

References

1. I. Foster & S. Taylor. Strand: New Concepts in Parallel Programming, Prentice-
Ha.ll.

2. H. Millroth. Reforming Compilation of Logic Programs, Ph.D. Thesis, Uppsala
University, 1990. (Summary to appear at Int. Logic Programming Symp., San Diego,
CA., October 1991)

3. H. Millroth. Compiling Reform, (to appear in) Massively Parallel Reasoning
Systems (eds. J. A. Robinson &: E. E. Siebert), MIT Press, 1991.
4. II. Millroth. Efficient Parallelization of Prolog, (to appear in) Parallelization of
Inference Systems (eds. B. Fronhoefer L: G. Wrightson), Springer-Verlag, 1991.
5. S-A Tarnlund. Reform, (to appear in) Massively Parallel Reasoning Systems (eds.
J. A. Robinson & E. E. Siebert), MIT Press, 1991.
6. S-A Tarnlund, H. Millroth, J. Bevemyr, T. Lindgren & M. Veanes. The Reform
Machine, in preparation.

59

C,onll iling C,rysta,1 for Massively Pa,ralld Ma,chines

IBx tellde{I A I}stl'a,{:t

IX'l_,PiJla,6ht-ii Youllg-il (.,hoe

l)epa, Ptment ot' Computer SchBnce

Ya,le Unlvmslty
New lta,ven, CT 06520

the n-marl na@ya,le,ed u choo@y a,le,ed u

7 October 1991

1 Int,roduct,ion

'l'lte Ch'yst_d project ha,s focused oil nla.king the t.a.sl¢ot' l}rogra,mming Jlla,ssive.ly l}a,Pa.ll{,.lnl_chinc, s

'pPa.ctica.l while not sa.{'rificillg th{.,efli{,iell{'y oi' I,l_e[.aPget {:ode, Our {'{}llll}ila.t,iolJ sl, l'a,l,egy is {,{}sl, a,l'[

fr{}lll a, lligh-level l}rol}leln sl}eciiica.l,io_l, a.l}ply a. Se{luence of ol}l,illliza.tiolls tuned for l}a.Pticula.l'

I}aPa.llel iila.chin{,s, a.nd fillally gellel'a.l,e ('ode wit,II {'xi}licit, {'{}Jl_Wtlulli{'aL.t,i{}tlOf syttcltl'{:}lliZa,ti¢}ll, 'I'll{'
{.'{.}llll}Ul,a,t,iOll a.l-ld da.la, a.l'{, {lisuPibllt.e{l I}as{,{Ioil I,he a.lla.lysis of {'{}lJk)Jltllli{'al,i{}ll I}at.lel'lls ilo til(,
l}POgPaaJlalld the cost. of {'{}lu_lul_i{'ali{}l_I}Pi_tilives of t,he ta,l'g{:t,_acl_i_e.

'Pa.king adva.lttage oi' the la.el, thn,I,n_any a,lgoPil.l_s exl_il}it, _a,l,uPa,l pa,ra,llelis_ whm_ t'or_ula.ted

_a,thema, tically, our a,pl}POacl_to para,llel prog_'a,m_ning is to use a, purely functiona,i la._guage ii la,t,
re_e_jlbles nla.the_al, ica.l llota.l,io_. 'l'l_e la,nguage ha.s l_igheP-order opera._,ors a,nd da,ta, sl,ructuPes,

therel}y ma,king tile exl.ra,ction of l)a.ra.llelism fa,r sin_l)ler _n{I allowing us to t'ocus o_ rh{, global

c{}l_l_u_ica.tiol_ issues for massively p;mtllel ma,chines, 'rite sinll}l{,r se_l_a_ttics of the la._gua.ge
allmvs us to formulate a rigorous theory of l}rOg-;Panlol}till_iza.t.ion l.}la.l,is in{lispensa.ble both il_
t,ll{' a.lll,olllal, ic a.na.lysis of con_n_u]li{'a.l,ion l}a.t.te|'l_s a.l_{It.J_{:explicit sl}e{:lfi{'a.tion o1' usel'-{l{:fi_e{I
n_al>l)i_g strategies,

1.1 The Principle Fea,tures of Crysta,1

1_, or{l{_Pto develop a, theory of tile la.n_gua,getl_a.t, is useful in 1}P;_ctit.'e,the Ia._gua,ge lllUSt Ila,ve

{'lea._ selna._ti{:s a_t{lor{lePly a,lgel}Pa.ic l}ml}erties, The nlodel ot' con_lnunica,l, ion must truly relle{:t

l;l_{,l}hysical {'hara{'teristi{'s, lt _r_l_slI}e a.I}stra.{-te_ough to be concel}l.ua.lize{l l}y tile l}rogra._ll_n{,I,
a.ll{]sin_l}le enough to I)e ir_corl}ora,ted i_to a con_l}iler,

To I.Itis ml{l, we]lav{: {lefin{,{I l lie ('P?,'sl,a.I I'ull{'t,ioi_al la_ig_la.g{,witl_ Sl}{,{'ial(la La. tyl}{,s I.lla.I '

e_l}o{ly locality a,n{l st,ru{'tura.l intbPmatio_l in I}ot,l_ tl_e I}rol}lenl anti 11_{;1}hysica,I {l{-}l_a.i_ls,'l'l_e
l_{}velcia.ta types a.Pe inde,t do_r_i._z,_.,which elnl}o{ly the geoln{,ll'ic sl_a.l}e {}I'data structl_p{,s su{,h

a.s _l_ll.i{lilne_sioua.l a,PPa,ys. tr{,{.,s,a._{I I_yl}eP{'t_l}es,a ll{I ¢l_/t_/,/i(Irl,_,\vl_i{'l_g('_{,Paliz{, t l_{,_1{,1i{}_of
{lislI'ibul,e{I data sll'tl{:l,lll'es, _J_il',\'i_l,<til{, {;{}llv{'l_t,i{}l_a.I_{}l,i¢}_jsoi' al'Pays a.l_{lI'_J_{:l,i{}_ls,

Since i_l{Iex{Iotllai_ts {,ml}etl': 1.1_{,shap{, of a {lal,a liel{I, 1,l_egeollletl'y of t.he set of i_{li{,es i_{li{'al,{,s
tile {lislribl_lio_l ,}1'til{, <lnla el{,j_{,llt.s, 'l'l_{,_'{,l'{}P{,.a _lal}l}i_lg t'1'o_)_{}_e index d{:}tl_a,il_ (,o a_{}l,h{,P,

<'all{.,da_l bMca' do_,_,_i,_*_*<_rl_hJ,%'_,c;_.n I>e use{l to repl'eS{:lll, the {-ha,llge of slta.I}e ot' the dist, Pibut,ed

{lata liel{ls. This is a.t lhc heaPl, of t.he global Ol}l,ill_iza.tio_ oi" C,Pys{:al prog;l'a.ms. O_{'.e a suita.ble

morphism ha,s beml chose_t, a, systen_a.tic tPa._lst'ormal,ion oi' tile l}rogPan_ P{,sults in _ new l}Pogralll
wit.l_ illli}roved beha.vior.

6O

The language allows cltfferent, levels of abst, ra.ct;ioxl:a.t,onllic fllllc'lioznn for SOClUenlt,ia,l ¢'ollnl_LiI,a.t,ic_ll
ml a. silicic l_roc'.ossorl da,t,a. Iic,lds for dat, a pa,ra,llel c'ompllt, a,l:iolll allcl IiiAhor-orcler I'UJlCt.ioXlst'c_Z'

al,ol_ic: al, the uext, level ot' the I_iera.rchy, l:lul._uch power of al>sl.raclic,_l i,sob_.a.il_c,cl at I,lle _-'Xl_el_n¢'c_l'
t,a.rget,code l_C:rI'orn_a.t_c'c.......it_ l_a.rt.icular, for t,lte _Ik,l 1) t,ype _._l'luachinos, P,ofornl_lla.l,ing a. l_igll-ord_,r
(',rvsta.l l_rOgra_l using _la.t.a.fields (fir,st, order fu_tct,ions delit_ed ow:r iL_dexdoma,Ln,,-;)is a,na,logous t_

tur_livl,_ geueral rec'ux'sive clefi_Jtiotls int,o t;ail rec:ursive ones, You _a.it_ c.,fficiet_c:ya,t. t,l_e expeu,s'e of ,

a l_sl,v'act.ion a.l_clelega_c:e, ']'l_e lirst, order versiou i_ c'.oucepLua.lly _nore co_plex bc,ca,.use t,he pa,rallc,I

st,J"_c,t,uro of a.u a.lgorithm nl_st, be directly exposed, (For"i_xa,xnple, a. FF'I' nel,work iu Its eltt,irety

must, be de/inecl a.s a._ inclex clmnain,) The high-order version uses recursiou t,o clo t;he t,rick (for
exa._ple, only t:he basic but, t,c,rily pa,t.tern is defined,a, ncl t,he FF'I" _et,,,vork is genc,ra,t,e.d by wa,y of

r_,c'ursiol_),

1,2 Progr_-muuing Metl:todology

'l'l_e l_mCess of clc_signillgp;_.rallel I_rogra.n_s l_as I_ol,h i'c:_r_l_a.land infor_llal aSl_ec:l.s,'l'l_c, l'or_al aSl_C,('t,
-_c:l_a,s l_rO_l'_._ tra.s_,,s't'_l'_ati_, is l_echa_lizable, For exa_l_ple_ ol_ce a._ i_clex _loz_ai_ _c_rl_l_is_

is specified, t.he deriva_tiou c_t'the t_ex,,'dat, a field t'n'o_l t.he origilla.l definls, io_ is a.utoll_a.l,abh-,, Note
Ileal, tll(,re a.re x_orestri('liol_._ c_l l.lxe shal_C, (_1't.he (Iomaill nor o1_ til(, (Iollla.i_l rr_orl)hislll ils(,lt', a.s

I(_l_ga.s it. has an illverse,

'l'ho iul'orl_lal asp(,cl z'e(lll]r_,nin_si,_l_t,iilt.o I,Jl(, heida.riot of t,l_ea l,_c_rith_l, SOLl_el,in_es (:ve_l a. lellll_a
or t.wo, l]',xc:el;)tfbr very re_lric'tecl classes of I)J'ol)Jelns, clet,c_z'n_il_i_ t.l_(, ril411t.(lc_nai_ _L'l_l_isl_

'l'l_e role of l,]_ec'ol_lpiler is l,o a.lit.ol_al.e l.]_eproc'ess o(' fi_cli_ a.pl_rc._l_riaL.e_c._rl_l_is_l.,,. ()_'

li))(Is classes of progral)ls t l_al arc, I.)r(.)adc,llou_ll I.c)(.,ll¢'ollll)a.,,.;,si)lt.(,r(,nli))_ allcl ('ril.ica.I al)l)li¢'ati(>ll
_r(.,a.s,yet, rost,ric:l,ive e_lc)ugl_lt)a.ll(:)w l l_ec'o)))l)iler t.c:),_ivo a rea.sol)_l)lc,solut,ic.)nwit.bin a rtmsonal)l(,
_1111011111,Of l,]111(' ;),,lidrc,,,-;o_lrC'c,,

In l-.l_e_onera,l c'a.sewhore t,ho cmul:)iler is lilnit, ed i_ it,s ca,l.)abilit.y(since it can_Lol,prove general
t I_ooro)lls al_t.oma.tic'a.ll,y), l:lle i_ext I)esL thing is t:o l)rovide a. lall,g_la_e and l)rof41'a,nl_lling(,nvix'onulc_llt

iii v,.'llich t,l_e insigl_t, of 1,1_eprogra.inmer Ca,l_ be expressecl a,ncl ilrll)le_exltecl, For exalnple, l,lle
Sl)ecificat, iou ot' cloLna,i_lmOrl>hisms a,llows new da.t,a,tiolds t,o be a,ulolllat, ica/ly derived, 'l'l_c, C,rysl,;_l

I_et,_da_,.gua,_e [9] providos sttch capabiliI_ies,

1,3 The Cryst, al Approac'l_ t,o Ccm_l)ilatiou

'l'l_c, C,ryst.al function_al la_Auaae ra.clically sin_ll_lifi(,st l_e data. del)e_cteuc'y a._a.lysis necessary for
s,_'_ltl_esizi_ l_arallel c'olll,rol si ru(.'lures, 'l'lle il_L,c,rl)rc,l.al.ioll c)l' t.l_c,i_clex clc:_nai_s a_Lclcla.t.a lielcln

a_ll_il.s eilic:ie_t s_,ora.gc,lx_a_laa;e_le_t, whic'h, i_ c'C_lVC'LIt.io_a.lt'uuct_io_l la.ngua.,_e inll_lenle.nta, tionls, is
cliflicult t.o clo.

'l'l_e v_ovel c'onll)ilatio_ t,c,c;l_niq_es incluclo Sylll,]l(',sis o1' pa.ra,llol c'o_trol ,_l,rllc'l, lll'OS, _-l.ll|OHlill, J('

layc_t, _cl clisl ril_lt.it:_nc_l'(la la, ,_ent_ra.tic_l_1' (,xl_lic'it.c'otl_l_l_v_ic'al,iml f'rcJ_l_I_rC_,_ra._rc,t'c,rc,_¢'(-,i_a.t-

l>rO\'icl_'s,s_lcl_inll'or_nlaliot_, 1.1_(,seI.ecl_z_i¢l_e,,,ar_, l_,¢'c,ssaz'y for a_l,v ('c._l_il(!l' l,a,l'g('l, ill l_ di,sl,ril)ut,('cl
I_lul_ory a,rc:hil,ecgnres, For l_roble_ls tidal are (l,vvn_zliici_ _lat,ur(,, I,l_ex'c,_list,ril)utio_ of (l_ut,_allcl

l,asl,:,,-;is l_a._cllc,dby t.l_.,I'll_l.i_l_.,sy,_l,¢-,l_,utilizin_,_I)c)IJl I.II(' ,",l_LI.i¢' allal,S'si,,-, (_l_l, aill(,(] ;_1 ('c_ll_l)il_,I. I_'

a_cl l.I_ecly_a._ic _lef_e_l(lel_c'ya_lcl profile of c'u_l)Ulalio_ /4al.l_ev'_'cld_ll'iv_,_t,J_(,(,xc,('_t.i()_,
Inxcl_,a.li_ \vit.l_t,l_e two l'¢,l;_I<,<lissll(,s c>l'ulli_i_llizi_g cc.>_l_l_ln_i(';_t.ioll_v(,rll(,;_(Ia_ld _l_,l_,rnllillillg

clat,a. layout a._lcl l_a.cl (lislL'il_Utiot_, t.L_ec'_l)iler first. _lc,t,_,ri_lil_estile r(,la.tivl! I_t'aI.io_ of I,l_c,cl_l;_

61

struct.ures in a. virtua.l ¢lom+dn atlcl theft aggregates clorltlguous l)a,rts oI' t.llc,<.l+t.l,+l.strtLc:tures l,o I)(,

lila.l>l)ed illl,o a.single processor su a.s to collvert a.s lllally l'(,l'e.rollCe+ill t+l_t,,.iOtll'cL,pl't.J_l'i'trltt it,,'-.,l>t.J_,sit>It'
illt.o lOC'_tlInetilory access, For the retxta.ining re.fc-+rencc,s reqtlirillg iIit.C,l'l>l'oc'ess<JrC'c)ItlllltllliCa.ti(:_ll,t,ILe

colupilc, r ti'ies to mtt+tch tile l'efel'ellce patterlts with _xIil)rat'y o['+Lggrc,ga t(: ('oitllittillictttloll ()l)(,rtt, t,ol+s

alld chooses the olles which trllnianlze network congest, ion +rod orc,rhea.el,

2 The Crysta,1 Language

Briefly, the language provides va,rious data types a,nd operations over them, a set of constrtlctors for

(lel:ining new d_ta types, functiona, l a,bstraction for crea.ting functions, +rod t'tln(:tioll a,l)l)licatioll, A

l)rogra.tn is a set of possibly mutua.lly recursive definitions, The syntax has be(,n k('l)t simple, witl_
nlost language constructs exl)J'essed in prefix notation, except tbr simple a.ritllmetic functions, which

are infix, and the ltst a.nd set comprehension that uses the stancla, rd set comprehension notation
witlt keywords added.

2.1 Crystal Programs

A Crysta.l l)rogra, l/1 COllSistso['a. set oi' tllUttlally recursive clefi.nilio'trsa,lLddi'cectives, Iii tl,e tlll,<_l'a.(:tiv(,
version, a+nexpression is evalua.ted in the sl,a,lldard environment augltxe.llted by tile. deiillit, iulls, lit

tile con li)lied version, input is indica, ted by ('a,llittg t,llv sl)ecia,l fun(:l,ioll Stdln a.l_d oul, I)Ut is (l()ne I)y
' cl(,iilling the special l'tlnc't,ion StdOut,

A d+:/hzilion lla.s t.h¢,['orlll r+ : "1' = r a._i(l l-)illds ++i.o t,l_e wt.l_(, oI'+ (,v+_It,al,c,cl i_ tl_(, ¢'t_rrt,v_t

et_vit'o_llnent a,ug_itenteclsiluulta_eOl_sly with a.ll t,lle ot,l_er+le[i_itio_s. 'l'l_e 7' is the tyl>(, i_l'orltla.t i()_
used by tl_e colnlJiler i_ tl_e _t.lloc'a,t,ion of resotlrc'+e,s.

Expressions are i_ductively I)ttilt up I'ro_t tile cul_sta,nts and tlm identifiers by t't_(:tiott a l)l)lic:a-

liol_, I)o1.1_prefix a.nd infix, the l)ri_nitive cia.ta,structure tbl'ms, the set. a,nd list COml>rehertsiot!, a,nd

tl_<,conditional expressiol_, For any type expression 'I', e':7' iJadicat(,s t,lla,t the value ut'c is (+l'type
'1",

'Cliven a.ny expression c[x], whicl, ma.y or ma,y not conta.in the val'ia.I)le x, fn(x):'l'{c[x]} (l(,_,utes
a function whose value at _.,o[' tyl)e '1' i,,,tit(: va,tue of c eva.luated i_ file ctlrrel/l, el_virol_l_e_lt witll
,v])()tlll(I _c.)'l:,

._\,_exl)ression ma,y also I)e l)ro\'ided wit.li a. loca.l envirot_mnt:

+ where{ di ,,,d.,, }

il_clic'a.testl_a.t the UXl)ressioi__ is to be, eva.lua,ted in the c'urrc,l_t c,nvirov_r_c:l_ta.uglne_te¢l witl_
clefi_itio_s di,

'l'l_e general forn_ for tl_e co_clilio_a] expression is

,,vl_t,r+.,l.l_(,bi's a.re lJoolc,a_ ('Xl._r<,ssi+J_s,I_,+)_,'_+_sg_larcls, a._,(l l,l,c, _i's +,i'<,C,Xl)r(_ssiu_scii' t.l,(, sa,_<,
tyl)('. 'I'I_+, valine,oi' t,l_(, ('c+Jv_t'lilicJvla_l<,xl>rc,ssi<_is ,'/,. ii' 011(' /J/. is ti'tlC' +t,+Clutltc'rwise U_,cl('fi_('cl..'\

sp<'cial sy_tbol, cleltot+e(lelse, rC.+l)res(,_t,sLilt, ¢'o_jt_ct, io_ of t,lle llOgi.t.li(Jll cii' t,l_eot,l_er gua.rcls.
\,'_.'hc+,r_more tlla.n o_le gua.rcl is tr_le, +t_ a.rl)itra.ry c']_oi¢'.elea.cls to li<:J_(lc.,t,c+rl_illisril.,wlnicl_will trot.

1)(' acldressed here.

62

l:,t J': 7' × 7'--7' he al, associat,ive l'unctiotl ovor Suit,v data tyl)_' 1' a,l<l k,I /= listt/l /,,}
bl, _tlist wit.li (,leltielttS l'rolll 7', 'l?he operator reduce is delinud I)y

reduce(/,/): f(lt,f(I,2,,,..f(I,,-l,l.)..,))

'l'llv ¿)l>erator scan is (l(,till<,(I by

scan(f, I) = list { rltl , Iii,, }
,,

Wll('l'O III I -" i/l, a,n(l llli+ I = /('Itri,li), Note l,llat reduce cajl als(J I)(, {l(,fiii(,(l c)v(,r sets, l)tll scan
(';lllll()l Sili('e ii. ;tSStllilesall or(l(.,ring of tl_e elellll,lltS,

2,2 Index Domains

An /,dcx do_.ailt D consists of a. sol of elelnent,s (calk,d indices), a set of functions ft'ore D to D
(callt,d coljlliluzlicatioJl Ol)eral.urs), a set of l)redical_,s, aacl the coil_tl_unication cost associa.ted wit li
I';l(']l ('OHI I11U II ical io]_ (ii>el'al C)l',

Iii _,ssuz_cv.a_ it_(lux (lu_ain is a data t,,'lm witl_ cut_munir_diul_ cost ass(_cia.t(:dwiul_ oacl_
l't_nct,i(_ {_r ul)+,ratt)r. 'l'lt(, r(,uso_ li,r _ll;tkil_g t l_(, dis_illcliull is Illat i_ld(,x (lu_lai_ls will usl_ally
I)e [i_i[<, at_(I riley ;tr(, t_._e_li_ d(.,fining dislril)_llv(I Ilala structur(,.,, (as I't_llcliolls (_,'t,l's(._l(, i,_d<,×

co_sid{,rud t.o I,(, l'u_cl.it)_,_t)w,r a_ i_dc,x do_ai_ ¢'o_,,dslingol'a s¢,l(:[+or(l<_,r¢,(!lmirs o1_a reclal_g_llar

a_(I li_, over wl_icl_ 1,1_(,I)ar_tll¢'lcc,ll,I)l_lal io_ i,,_(l(,lin¢,d. So we classify i_(lex (lot_ai_ls i_lo cerl.aili
I,'i_ld_(st_,cun(lor(lcr tyl)(,:)actor(ling l.u Iluw llley are to he il_t.erl)rete(I (for (,xa_tl_le, as ti_(' or
space coor(li_at(:,s).

'1'1_(,linle coorclillal.c,s <';_ b_,oleic,croci I)y l,l_c,co_pilc;r aI_cl il_ll)lc:,_tlc_t_,(las a lc)oi) wl_ose I)o<ly
_ay c:{_l_in a,_+signl_l(,_tslo _rl'ay ele_e_ts ii' sue:l,a ,,+i(l(;ell'ect ¢'al_I)(, clu_(' sat'oly, A lim_ rlom.i_+
c;t_l I)e ..+(_i-il_fillit,e a_l(I (lel)<:l_ils(:)_ lhc t'uncllon l.llal is beil_g (lel'i_l(,d+)vt,r ii, l,'or each ¢,xuctlt.i_J_.
t l_os(,(lut_+_i_,<+l(,_,_(,_t.+'.+tl_at ar(' acl t_+,llygei_c,ral¢:,<l¢Itl_'i_gcoi_lJt_tation are ¢'utltroll<:+,dlJy t.l+etl,':.;(+u l'

t l_<,_i_li_li;,:+tl, ioI_ CJl)+,ralor. ,\liiliiilalizati<J_l ¢>v(,r;+i.,.+v_ni-it_liltit(,,_loi_ai_++'()rI'(,.,+l>_+)li_l._lc) _ti_l)i_tilitl_,tl

lllillillli_]iZali(Jll+, wl_icl, +,+i_t_lat(,._wl_il(,-lool)S.

Basic I_tdex Domains

l:xat_l)les of basic classes of i_,(lex doma,ins include tl,e interval, t l,e ltypercttl)e, and tree ¢lu_lai_s,
l_l tiwi.,+lJap('r we o,_ly _(:e t.h¢,interval i_(lc,x d_naiJ,.

.,\ll i_lcr+,al dora.iii, d(>lloted interval(m..), where _i+ali(l _+are itlt,(,gei's atl(l _r__<_. i._all illd+,x
(loillairl wllos+' (,l_.,inolils at(, l lle s(,l, .[' integc'i's I _i+._i_+ I. nl + 2,,,,.. } witll llil: usual ilileI_+'I'
fuli(,lioil,_ ali(l l)r('(lical(',_. 'I'I_(, ('ottlllltlllicatioll Ol)eral,ors are prev: i _- i - I ail(l next ' i _ i-l- I.
witll c,,lllllltli,ir;tli(_it c(..i I. I'I_(, ()lWr;il{_rs Ib alld ub r(,l_irll lli<, l_\v(,r l)(_llild (i_i)alld IIi+, iil)l)_'i'
l)t)tllltl (.)_)['tll(,illt, er\'al d(Jlil_ill i'{,._l)(,ct,i\'(,Iv.\Viil,ll ill :__>n. w(,tl(,liil(, lli(,iIl(li,x (l()Iii_lill I(,I_+, IIi,
>._tll_¢,_,:;c(,l_tt l_t prev _ll_l next I_av_,i'_'\'(,r,s(,(II_<,+_l,i_lg,

Index Donlain Constructors

(_liv+,_,i,,¢l(,x (l()l,_ti,_s lP +tt_(Ilc. w<.,ca_ _+'_:_tlsll'_l('ltl_+'il'l)rodtlct (1)_.:1'.').(lisjoi_lt ,,_,io,, (('CJl_r(J(ltl(',
(1)-F 1'.'),+t_(I l'_t_cti(,_+..,l)_tc(,1) /'.'. irl II_t, _,..,l+alw_l,\',

63

,'fill('(, index dotlla.itls are lirst. ('lass ol).j(,('t.s,ii. in I)ossil)le to (lefil;(, a flew itl<l¢,×doillaiji as tIL(,

,,'allle of a recursively de,lijle(I l'ull('tioli, l"or exa,nll)l(', let Lt be soine index dolna.in, a.nd O[,4(.f(a:))]
be sotlle index domaiil expression, 'l'll(,ll

A = fn(;c) " 7'{ b°(z) -_ B[_, 1}b,(a.)- O_A(/(._)),

defines a.n index dolna.in for ea,ch ,c iii T, with suitM)le gua.rds b0 and bl. In tllis wa.y, quite colnl)lex,
(lata.-dependent index (lomaills ca,n be constructed.

Index Domain Morphisrns

hlciex doina.in nmrl)hisms formalize tile notion of tra,nsforming one itldex doma.in into a,nother. In

tltis paper we define a, specia.l class of known a.s "resha.pe morphisnas" simply tc) be a, bijection
, t ,Lbetween t,wo ro(mx dol_lai_ts.

llere are examples of soine useful reshape nlorl)hisms:

An (i.ffi'ne.rnou)his,m is a reshal)e nlorphism tha.l, is an rffine futlction ft'ohi otle l)r(_(luct of

int,ervals to anoLher. Arn,,,;iJlOrl)hisnis IIJlil',,'a.ll t,y'l)es of 10op t,ra.Jlsfortlla.l.i()lls (ilktercl|aJDge, per-

_l_ut.atio_, skewing) [2, 3, 0, 22.23], _._d tiros(, fbr dorivitmg sysl,oli(' algoritl_ms [11, 1.9, 2{1,S]. l;br
exa.llll)le, ii'/)l = interval(0,3)a.l_d 1),_= interval(0, (j), t ltelt g = fn(i,j) ' i)j x l),__{(j,i)' D., x l)l}
in ml affine _nOl'l)llistll l llal efl'(,('liv(,I.v I)(,rlbrulusa 1ooI) int(.,r('lla.t_g(,.

Anot;her example ill_st, ra.t,es a. slighl.ly i_or(: interest.ing ('o(lo_lia,itt /'.' of kilo niorl)l_is_l_ g by I,a.ki_lg
the itnage of a. ['unctio_t g/.

l)o = interval((), 3)

D = I)o x 1)o

E = image(D, g') where t 9'= fn(i,j):D{(i-j,i + j)} }

g = fn(i,j):D{(i-j.i+j).E}

g-t = fn(i,j)'E{((i + j)/2,(j- i)/2):1)}

\&;h(,_ever it. is legal lo a l)l)l5 l l_is a.fIilte tt_orl)ltist_l t.o a 2-1(,v(,Inested loop stru('tur(.... c¢)llsisl.(,_tt
witl_ the data. (le.pendet_('ies i_ tile loop I)o(ly [l. 2..I, 5. T. 22]) a structure t ltal is si_tilar, I)t_t
"skewed" l'ronl the original, is ge_lerat, e(I. Tile _llost, COillnlO,l case is when eleme_lts of tl_e inner

loop oa.tr I)e execul, ed i_ l)a.rall(,l but ol_l,v l_alf of l,l_e elet_let_l.s m'(' a(:live i_l ea.cl_ it(,ra.l,iotl of tile

o_tl.erloop, lt_ tl_is exmnl)le, tll(,itl(lex (lon_ai_t l<' Ila.s I_oles, al_d soguaMs in the loops ltlust test

wl_etl_e: i + j a_td i - j are evml, since only l,l_(,se points correspond l.o tit(, integra.! poinl.s iii D.

There a.re ntlillerolls other t'ortl_s of resllal)(, _ltorphisll_s rm_gi_lg ['ro_ "l)i(we-wise a ffi_te" til()>
l)l_isms t'or li|ore COml)l(,x loo 1) lrallS['orlnal, i()l_s [IS]. I.o l.l_ose l,]lal are llllll, ll;l,]ly re('tlrsive witl_ the
prograin (to be lransforn_(,(])for ,,ls'_a_lli(. dala dislribulio_.

2.3 Dat, a Fields anal Data Fi('ld Nf()l'l hisms

l)ata tid(Is genera.lize t.l_e_oliot_ of _list.ril_tle(l da,l,a.sl.ru(;l, tll'OS a,lld re('_trsively (lelina,ble t'uncl,io_ts.

Definition. :\ d.t(_ ,/i_hl is a l'utl('li()tl over so_te i]trlex (lonlain D itll,o soitie d()_la,itl of rallies V.

l.Jsua,lly, V will I)e l l_e i_l,eg(;rs or l,l_e tloatil_g l)oint nul||l)ers; llc)wever, for lligh(:r-order da,ta,
fi('lds, ii, ca,li I)e so_te do]tiaitl of data, tiel(ls, l)a,l,a fields uttify t l_¢,t_ol,iot_ of (lisl,ril)ul(,d dal,a,

64

structures, such as ar,:ays, and functions. A para, llel COml)uta,tion is Slm,.:ified by a, set of da,ta field
definitio,is, which ma.y be mutua,lly reeursive,

'1'o illustrate the use oi' da,ta, fields, consider the lbllowing program seginellt written iii SOllle
imperative lauguage (assuming there are no other sta,tements assigllillg values t,o A):

float array A(0.,n,0.,n);
if i=O or j=O then A:-el;

' for i:= 2 to n do {

for j := 2, n do {

A(i,j) := A(i-l,j) + A(i,j-l) } }

Let V be the data type of flea,ring point numbers. In tile notaLiol, oi' d..,i.a, fields, tile above is
written a,s

D0:domain = interval(0, 7_)

D:domain = prod-dora(D0, Do)

a:dfield(D, V) = fn(i,j):DI i = 0 V j = 0 -+ el I
t else --+a(i - l,j) + a(i.j - 1) J

New da,ta fields ca.n be derived using index domain morphisnls.

Definition. Ada, t,a ,[ield 'mo'.l_l_,ism induced by a,ll in_lex do1_la,ill I_lorphislll g' D- E. is a
ma,Pl)iltg

:/" ' (/'.' -- I,')- (1) -- I.')'..- .o:/

where D --. V a,nd E -- V are sets of da,ta tields.

Given a da,ta, field a' D -- V and a, dolnain inorpllism g 'D -- E, wha,t we generally wa,nt is to

liud the new da,ta, field a such that, 9*(a) = a, In order to solve this equa, tion we need the inverse
of g--that is, g needs to be a, resllape morphism. Then given g a,nd g-l, w_, can formally derive
(_,= 9-1"{a) = a o r3-I .

3 Prograan Tra,nsfbrma, tion

Data, fields and doma,in rnorplfisms are sema,ntic elltities that are represented in a, programming

la,ngua,ge. Semantica,lly, a, new da,ta field can be defined as the colnposition of a data field and a,
domai n morphisnl.

, We a,ssume a,n equa,tionaI theory of the Crystal language with the usual a,lgebra,ic identities and
the inference rules. We ca.n formally tra,nsforln the origina,l progranl into a, more efficient one,

For simplicity, we begin witll a, program consisting of one definition'

,, : f.(:,,).1){r,M}.
where rl[a,] is an expression in a: possibly conta,ining a,, Tlkrough a.ii a.bt_se of' nol,a,tion, we a,lso tls<,

a 1o denote the da.ta field defilled. Next: h,l llle resl_ape tlJorpltislll 9 a.lld il,_ ill\'er_¢, be g/ivc,Ii1,3

9 =fn(:'')'D{r2'E} ',_1 g-_ =fn(:q)'l'.'{r:_'l)}.

S,._a, ntically, what we wa,lll, is a da,l,a [ield ft, sal, isfyi_tg & - a o .q-_. llowever, nlerely exccul, il_g
I1_, progra_ 9 -_ followed I)y. does _ot decrease l,lle co_nnlul_ica,tio_l cost,, \,Vl_a,t we want is a, _t,w

definition of & that does not contain ei'ther a,, g. or g-l. A stra,tegy for obt_ini_tg a new delinitio_t
for f_ fro_ the definitions of (z, g, and g-_ is t,lte following:

65

1. Using the identity a = 6 o g, repla.ce a.ll'occurrences of a with _,o g in tile definition of a.

2. Using _ combination of unfoldings efg _nd g-l a.nd wrious other identities given in the

theory, elirnina, te ali occurrences of g a.nd g-I from the result of the first step. A very useful

tra,nsformation turns out to be tile 't/-a.bstra,ctio,l, where we provide a. l'u,lcLion with duln,lly
arguments in order to unfold it.

4 The C,rystal Meta language

Since the progra, m tra.nsforma, tions used a,bove a,re a,ll mechanizable, we ha.re defilmd a metalanguage

in which these tra.nstbrnmtions can be defined, a.nd which furthermore a.llows the user to experiment
with other transforma, tions [9, 24].

Meta,-Cryst_l borrows ide_ts from ML [10] and 3-Lisp [21]. lt consists of basic constructors

and selectors for each of' the constructs in C,rysta.1 and opera.tions tha.t lnanipula.te programs and

a. set of operations tbr manipula.ting the progra.ms, such a,s folding and unfolding, substitution,
a,nd norm_liza, tion or beta-reduction. Using meta-abstraction, the reshape transforma,tion ca,n be
defined in terms of primitive ma,nipula.tions oi' the constructs.

5 The C,ryst,a,1C,olnpiler

The C,rystM compiler collsist, s oi' tllree 1na,jet stages: the t'ront-m_d, the nliddle-a.na.lysis, a.lld the

back-end a,s shown in l'igure 1. The frond-end builds the a.bstra,ct syllta,x tree a.nd other necessa.ry
data, structures for an input C,rystal I)rograan.

The middle-a.na,lysis col_sist,s of the l,ra.ditiona,I sema.ntic a.nd dependellce a.na.lyses, the more
novel reference pa.ttern and donla.in analyses, a.nd otller source level t,ra,rlsfbrnlatiolls. At, the hea,rt

of the compiler is a. n_odule for genera,tiJlg exl)licit COlnmullica.tion h'oln sl la,red-menlory progra,lll

rotbreJ_ces [12, I-I, 15]. Index ¢loa_a.i_ aligz_J_et_t,[i3. 16] cottsiclet's t,l_el;rol;leg_J ofopt, it_iziz_g spa,ce
a lloca,tiOll for a.rrays ba.sed oil the cross-reference pa.items between a.rra,ys.

The a,vailability of massively l>a,ra,llel nlacllines opens up Ol)pOVtunily Ibr I)rogra.lns wit,li large

sca,le pa,rallelism to ga.il_ t,rettw,ndous performa,nce over those tha, t do not, We have recently obta,ined

new results in progra,_n dependel_cy a,nalysis (more a.ccura.te dependency test in the presence of

conditiona,1 statements [17]) and developed new loop tra nsfortna, tion techniques [18], both resulting
il_ more l)ara,llelisnl tl_a.n existing techniques.

'l'he back-end contains the code generators a.nd the run-time systems. The code genertttion
is done iii two separa,te steps, In the first step the Crystal code gener_tor produces procedure

calls to tl_e communicatiol_ routille SUpl)orted by the run-time system together with *Lisp code for
1,1_e(',M/2 or C co,le for l,lie ltyl_ercube _ultil)rocessors. Tile sequentia.l code witl_ the run-tilne

lil)rary routines form the inlerl'a.ce between tl,e l)a,rallelzing conll)iler and tile single processor (e.g.,
supersca,la, r azchitecture)('olllpiler, as showl_ il_ Figure 1.

Iii the second, code geltera.tion is dol_e by i_vol;i_g a vendor-sul)lmrted COml)iler to compile *Lisp

or C, into lower-level or l_la,cl_il_ecode. 1_, the case of the Connection Ma.chine 2, the *Lisp ten,plier

ge_tera,tes I)AI(IS ;,Ist.ructiol_s, wllicl_ we found ca,_ be further optin_ized t)y a. simple exp're,s'a'iort
co/_zpih'r that provides significant, perl'orlna.l|ce i_)lprovements a,s sl_own il, the next section. Since

tl_e_, 'l'l_inking h,l,;cl_i_es lta,s developed a, _lew it_struction set witl_ the so-ca, lied slice-wi,sc (la,t_t

rel;resontal, ioll ilia.t, allows far better colltrol of t l_e Iinderlying Ila.rdware allrl l.llt_s oflk:rs _llu(,l_

bettor lmrf'orma,l_ce. [l_lt'ort_lrla.t,ely, TMC is _ot ('o_n_nitted lo Stll)porti_g *l,isp targeted I.o the

slice-wise il_strll('l ions. (1onse(ltlel_t]:. ot_I' ('ii I'l'('l_lal_l_rOacll of * l,isp-Paris-la',xpressio_l co_lpiler will

66

Crystal Source Code

i Preprocessing]
(AST, Data Dependence Graph,] Front-EndL Domain Information) J

--'----''------''''''----''--'----''''''''--,---m.....-.-

(Phase Decomposition)

I
! Domain Alignment] Middle-Analysis Modules

1
[Space-time Analysis]

FMinimct'i'- General -Communication 1 _ITime-index FLife-sp an]

|Domain Common Analysis / /Management IAnalysis /

L_A_nalysis Subexpression (Communication| |(Array I(Storage
Elimination. Library) ,J LCompaction) LManagement

I I I

I Sequential to Run Time Library Routines /

-)
Code and Calls

I

{ Back-End

(Optimizer]

. . -.. Linker jt j Implementation I Implementation) "]_
N_ oll CM-2 I°'a_iPSe/z, ./ 7 / \ "_

InCUBE, etc

_ [iPSCi_ 0,CUBE64(X)_ {iPSC,86(1

l"igtlre t' Struc't.ure of t,lie ('rysl.a.l ('.oliil)iler.

liOf be used for a,ny fill, ili'O (level¢_lirilonl:. A (lil'(,c'l pal, li to S(lliie I<ill(I of ilil,erlil(,(liat,(, co(l(, will I)(,
ta,ken llistea,(I.

67

Ma,rhine #Nodes l'ea, k Mflops/node Nomina,1 Mftops/node

iI)SC/2 (Yale) 6=1 . 1.10 0,65 ,

i I)SC,/8(J0 (()It.NI,) 128 80.00 6.00 10.00

11CLIB E 2 (Sa,ndia,) 102,:1 8.00 1.00

C.M-2 (Seduto, TMC,) 8096 (512 I;'I'LI) 7.00

Table 1: Tile performa,nce of parallel ma,chines used,

6 Perfbrmance Results

'l'wo benchmark i)rogrml_So one ['or wea.l.her [orecasl, illg an(l tile ol, ller for senliconductor siJnula.t,io11,

are used t,o exa.nline t.he I)erl'(Jrilla,lce ()l' tile <'o_lll)iler-gelleral.e(I code oil l ill'oo MIM i) llyl)('l'clll)('
nlultiprocessors, Ilaniel3'. llltel ii)S('/2, iPSC/,_60, and n(:l.l[]l:2 6.1()0, a.nd I,Ile SlM l) ('onl_ecI.io_l
MachitLe.

Tlm llighest nlegallop ra.t:es obl, a.illed using the cotnpiler generated code on these four ma,chines

are givell in Table 2 a.ltd Table 3. As a ret>ren(.'e, we also give the lmak a.nd nonlinaJ mega.Ilo I) ra,res
of ca.cii of the four ma.chilies in Table 1,

6.1 Machine ColIlfig'lIlrat, ioll and System Soft,ware Used

'l'he lntel iPSC/2 with the 80386 proces:or located ttt. Ya,le ha,s 64 procossors, runs t.J,iix V/386 3,2

for]lost operal.iJlg systenl, NX 3,2 for l.he lIo(les, a.,,d provides Inl,el 3.2 (" colnpiler.
'l'l_e iPSC/8(i0 tlta.cltille (iPS("/2 witlt i,q(i0 Itode i)rocessors)locat.ed a,t Oak Ridge Na,tiolla.I l,a.bs

(OI{NI,) llas 128 processors, I)llt al, lllosl (J'l IJroceSSOl'Sase used for tlzis exl)eri:llezlt. 'l'llis Illa.clli_le

l_;_st,lle (: COml)iler SUl)plied by tile l)ort.la_¢l (Irol_l).

The nC U13E6.100 located a,t Sandia National Labs has 1K processors a.ll.llough only 64 processors

are llse(I for otlr exl)erilllo_ll, li li}is _'1 Still "l ;ISits ['rolll,-end mid provi(los tl_e NCC. 3,11 (' co_tll)iler.
Tile ti_lfing restllts for l.lle (.:o_ecl.io_ h,'laclline 2 are measured on an 8I(processor C.M-2 wllere

c,acll l)rocessor has 2,56I(I)it.s o[' n_e_l_ory a_d ca.eh group of 32 processors sllare a. 6.l-bil, Fh)a.l,illg

]'oi_ll l,i_lil,s. ('hl sot'twavo versioll 6.0 a_td *l,lSl) co_ll)iler 6.0 are t_s(,(I. 'l'he *l,isp ('o_lll)iler

,,_,l_erates IL,\R1S illsl.rtl('liOllS \vl_i('l_is iii I I_e s()-called ./ie'hl-,,i,,w (lal, a fl_rlllal,,

.'_.n e×pl'essi()l_ col_ll)ih'r devel()pe(I al. h'atl(, g(.'ll('l'tl.l,e,q oI)l.illtizetl [iel_l-wise (IN'lIN illsl I'11CliOIIS

wllere tile _llt,_llory ac'c't,ss_,s are greallv re(ltlct,d. 'l'lle i)ol'['_)r_la_ce rest_lls willl all(I wil,l_()tll, I.Ile

e×l_res:/io_ co_ll)iler arel)rese_ted li_r file iwoal)l)licatiol_s. Ali results o_ Ilie (.:o_l_eclio_ h'laclli_le

ar('exl.ral)olal, ecI 1,oa ['ttll C.M-2 willt (i.l[(processors, i.e., 21'((i,.t-bit [Ioalillg;-poil_l ul_ils.

6.9 Shalloxv \Vttt, er E(luat, i(m Solver

Sl_allow wa.ter (,qua.tio_l is used t.o l_odel l.l_eglobal niotions of a.l.mOsl_heric llows lit weal, her li)re.casl,,

Tile algorit, h_ is it.era.five, operal.i_g o_ a. lwo-dil_le_siona,l grids, \vitli local co_nput, a,tio_ a.t each

grid poi_lt, and (lala. excl_allges belwee_t neig;hl)ori_tg grid poi_l,s, The (".rystal progrmn for tills
sl_allow equa.l;io_ sc)lver is give_ il_ tile al_l)('l_dix,

'fable 2 l)l'ose_lt,s ill(' ox(,Cllli()ll l il_l(,alld _llo,e;a[IoI) rales oi'this aPl)licatio_l ['or dif['erelll I_aclli_(,s.

ll_ lhis experi_leill. 6.1 l)ro('o,ssor,s al'('IlS('(I ['()1' eacll o1' [lie lilt'ce. MIM]) nlacl_i_(,s. 'l'll_, l_l'¢)blel_lsize

68

Ma,chhle Total Thne C,omptit_tion C,onununica, tion Mflops

Seconds Secorids % Seconds %

iPSC/2 85.208 80,392 94.3 6.8_.f6 5,7 24.00

iPSC/860 11,805 10,371 87.9 1,552 12,1 1.73,21

nCUBE 2 31.269 29,479 9,4,3 2,377 5,7 65.39

C,M-2 (*MSP) 67,862 d3,530 6,1,1 24,332 35,9 18.10,00

C.M-2 (*LISP/C',MIS) 47,,t72 23,152 ,1,_,,_ 24,320 51.2 26:10,00

'l:a,ble 2: 'l'he 1)erforma, nce of Sha,llow-wa,t,er Equa, tioii Solver

used is 256K×120 (a,rea. × itera,tion). For the C,onllection Ma,cllilie, a, riiucll la,rger problem size,
16Mx 120, is used. Due to tile difficulty witll the node co,lll)iler of tile iNG()c:liili, we areil't al)le

to get inuch beyond 2 nlega.Nol)s per processor. Given th(,,sa.nle l)roblerll size. the ('olnpt, ta, tioll oi,
an il)SC/860 processor is 8 times fa,ster tha.n (liar of a:n iPSC./2 processor while its comnltll,i('.a.tion

ca,pability is a,bout 4.5 times faster, thus resultillg in a,higher l)ercelll, a,ge o1' (:olllirlunica, tio,i overll0a.d

for the il)SC./860. (_tla,(lra.l)lillg; the l)rol)l(,ili size, f'c)r i1>S(.'/860 iricroa.ses the (.oral ra.to to a.I)oilt 180

mega.flops, with the 1)er('enta.geo1'corrlniul_i(,a.tiol_ovorhea.d slightly higher a.t 13['ronl shorl,-rrlessa.ge
scil(I/receiw; to long-lllessage senti/receive.

For l,his ,tpplica,tioii, (',M-2 lla,s a, lllore significa,iit corrllllullica, tion overhea,d, a,bolll, 60illtel'-

processor corliillllliica, tioli. One possil)lc expla, iia,tioli fbi' the higher percentage communica,tion

eve,rhea,el for the C,M result is the tbllowiilg: l']a,ch processor ori a. hyp(;rcul)e naa,chine COlilputes

a, sub-grid, a,nd the cia,ta excha, l_ge involves only tile I)ounda, ry grid I)oilits wherea, s the ea,ch C,M
processor itera.tes ovc?rtil(: virtlia.l l)rocessors, [or('illg tlie (la.ta lliovetil(-,iit of ali grid I)Oilll.s eith('r
]Jy a,ctlla.l (:OllllrlUlliCa,l, ion I)o.l,weC,li pl'OC.essors o1' tiy ioca.l ('OI)yillg wil,]liii l)i'o(x_ssors,

'1'1,(,Sl)(:(.:(lll I) oP(-'X('('lil iOII I ilii(' ()v('r ili('r('a.siilg nlliiil)('r ()[lil'O('('SSOl'S Oll tile,So llia.('ililiOS i.ll'(' siiO_Vli

iii l,'igurc.,s l.(ii,) ii.lid l(I)), 'I'll(, lirlli)lt!nl size, tise(l is ii.ii 1_x 120 for Ilyl)(!l'('ll I)o illa.C.llilies, a.nd .'1M × 12el

['oi' CM-2, As ii C,M-2 ('alillOI I)O,(,Oilligtil'Od ilil, o llla.iiy diii'ere, III. siz(.,.s, tlic .1l_ l)ro('.essor COliligui'a.l, iOli

is used a.s the ha,sis. SOllie o1' (lie i)oiiits in l;'igtir(, Ii(b) a.re extra, l)ola.1;e(l f'l'Olll tile tiniillgs oil Olle

llla.chiiio size with diii'oi'eli(lillllll)er oi virl_ila.l I)ro('.essors (Vl)-ra.tios). \¥e ca,li de tills beca,slle vp-

ra.tie is the predolilina.lil, fa.ctor for dc,l.erniin]lig tli(, coiill)lita.tiOll tilrie a.n(l coninlunica.tiori time
I)etween _dj_u:.ent l)ro(:essors.

6,3 Bohr Code

Ilolir co(Ii: is a,n a,pl)lic'atioil usiiig lrlC)iltc!-carlo rile!tiled [kil' SOlili(;oiltlticl, or siillliia,tioiis, I1 (7Olit.a,iils

iillt.liy iii(lol)eriderit tria.ls (llilla.X is tlie lee:al a.rra.y size)iii oa,(:li tria.l) wllicli ca.ii ii(._ doilo ('.OllCiil'l'oiil, ly

Oll (litl(,l'elll; processors, witli ii globa.l re.(lll('l, iOli Slllllllla.l'iZillgj the l'OSult til' ii.li tria,ls,

Ta.bio 3])rosenl, s til(, oxOClll.iOli tilllC-, a.iid lll(,ga.flo I) ra.los Per this t".c)_lc), ,.cjiiliila.r to the _LI)ow;> ii,ii

rio(les a.re used Per tile l.lii'_o M lM D iiia.('hiilos Per I:llis I)ericlii/la.rk, 'l'lie l)i'ol)lenl size used is ,'IK ×.'1

(1,ria.Is× lillla.X)for til(, M1MI) liia,('llillC'Sa,ii<l756I{× 6./ lhr i,l!e ('.M.
,r-Jili(,otile olily (;Olllllilllli(!_tl;iOll iio(_(lc,(Il'()i' this a.l)l)li('a.tioli is ii glol)M ro(lu('ti()li a,l,(lie oil(I eP

l)rcJgra.lii eXo('utioll> C'OlrliliUlii('al.ioli l,ilii(, is ii]lliosl, l-i ilogligil)le l)ol'lioli eP I.i)i, al ox('(iiil, iOll I,iliie,

69

Maclline ']'oi.al 'l'inle (',olllputa, tion C,orrllJlunical, iol) Mllops

Secoltds Secollils % Seconds %

iPSC,/2 12.413 12,331 99,3 0,()Sl 0,7 26,:10

iPSC/860 3,3"18 3,:.120 99,2 0.02s 0.S !)7.87

riC,[!]ll'_ 2 8,148 S,l 1.5 99,6 0,0:13 0,.I .10,22

CM-2 (*LISP) 45.054 z13.926 97.5 1,128 2.,50 2370,00

C,M-2 (*LISP/CM1S) '31.4{i0 30,3,50 96.5 1.110 3,53 3,100,00

Ta,ble 3: The perfornla,nce of Bohr code

The Sl)eedups of Bollr code on different lna,chines aze shown in Ii'igures l(c) a,nd l(d), The
i>robleln size used here is 4Nx.l lhr tl_e three MIMD ma,chines, and 16Nxl0 tbr C.M-2.

l;i_)'ol)(,a,inillg spec,dlll_ rc,sill(on l,he CM-2, the s_l.llleproblem size nlus(, I)e used for a,ll Illa,chille

sizes. 1)ue to (,lie lleavy use of lnelllory o[" this a,l_plicaitoll, the largest problenl size cam fit on

a .ll(-l)rocessor configuration will rllli oil a, 161,_-processor nlacllilie wit li one virtual processor per

llode, C,onseque_ll, ly, a. la,rger nla,chille will b(, Ilsc-,l'ulonly with a larger I_roblell), llellce l.lle Sl)eedu p
resull, s are ollly given for l,llreu collliguratioils, .,\.gaill. we exlral)olat(, t.lle sp('edUlJ rc,sult,s based oll
;1 Sillgle l)hysic'a,] I'III:LC]IilI(. _ size, ,'_,¢:¢'o1'¢1i113 l.o file [.illlill_ l'OSlllt, [.lie Sllli.l.]] percelita.ge of tile rPdll(:l, ioli

lillle iildicates tile accllr_,cS' oi' extropolatio,i althoLigll, iii isolalioJl, a g;loa,bal reduction depellds oJz
tl_t, I_lacllille size as well as tile I_rOble_ size,

References

[1] J. 11, Allen. Dcl_en,d_::r_cc,,l'.a/y,s'is ibr ,%_b,._':'_'ip!I:ariabl:,s and ll,_'.,1pp/iea/ion 1,oProgran_. 'i_ra_,_'-

fea'ma/ion, l)hD lhesis, l{ic(, [l_liversits', April 1983,

[2] ,1.1(. Allen a_d N, l,_e_l_edy, ;_[o_alic loop inl,ercha, l_ge, 1_, P/'oc(:c'di.g,_ of/]_ ,_'I(,'I)]..,IA:'X.I
,S'ympo,sium on Co_lpil_ _' ("o_l,_lrl_'lio_, i)ages 23316, ACM, 19S.l,

[:_},I,l/, Allen a)ld 1';, l(e_)l_edy, .,\utol))atic tv'a_lslal.ion of I:OII'I'I/:\N l>rogra)_s to vector Ibr)n,
.,l (',,11 ']'ran,saclio_,_, o/_ PrOfl/'._mi_f] l;a/_:].afl:S a_d ,_'yslc'm._,9(.1):.191- ,5.:12,1(1 1987,

[I] ii, lla_er, jee. l)ata clel)en(le_l<'e i_ or_linary progra,ms, Master's l,l,esis, !.Jniversity of Illinois a.t
[Jrl)ana-Chal_ll)a.igll. Nove_l)er 197(i,

[5] [J. Ba_erjee. Speed'.l: oi' O+'</i/+<+r,qPrograms., l>ltl) thesis, [I_tiv(,)'sity of Illinois al: [Irba_a,-
(:l_alnl)aig_, O<'lol)er 1!)7!),

[(;l 1,1.Ila_l(.'rjee, :\ t.hc'c.)ryc:)l'l,,)c)I) i)er_l_utat,i_)sl. 'l'c,c'l_rlic'altel)orr, lv_lc,I('_)rl)(>ral.ic)_, IUS!).

[7] _I. l:g,_l'kc,a_l,_l1{. ('ylr(.)l_. lr)tc'rl_mC'c,cl_lr_-xl_lC'l,(',,clc,i)('c,,,_al.v.-,i.,,_-_),cli)arallc,lizatic.)_, 1,_ /-'_'o-
('_((li_fJ._'of lhc ,S'/(,'l'l,.'l :\: 'X6. l !}S{;.

[SI ._'laril,a ('he_l, Youl_g-il C',l_oo. anti .}illgkc, l,i. (.:olnI)ilil,g I_a)'all('J l)rogran_s by Ol)lilvlizi_g
I)erlLr_llal_ce, ,]u._'_a/ of ,S'ul:__'co_l)p.ti_f], 1(2):171 -207, ,l_lly 19,_s.

7O

I: oli ,,I.... i+ino o 1P8C/2 "' / I_ -
¢

o nCUBE/_ ,, ,,,,,.'_

/I
40 I0

• • lD

UJ

,s "

5

q

/
......... _........... I.............. I.. ., _ I 1 i. ,_o 40 _o _o 4o o'o

NurnberofProee._sors Number oPProee,_,_or,_(K)

(+_)Si)<'c'dttl)oI' Shallow-w+t.t,vt' ('uclv (I)) Spevclul)of Slla,llow-w+x,t,er (',ode on C,M-?-

olt ll+Vt)erc'ul)eM+t,cllines

.o- o IPSC/2 , /:,, - I+- -

, --_//'/// o CM--_
'o LS_O

40 I0
In.

m ffl

_o

................... L............ L _.......... I .. l................................. k_o ,m _o _o 4o eo
Number oF Proc'e_sors Number of Pro¢:e_sors (K)

(c Spuc'dup oi' Bc.)hr('(::)(I(,t:)i, tiylJ¢'H'llt)t' ((I) ,_l_+.'(-:+_Itll)of l+(:.)hv(It.)<.l(,(.:))l(:M-2
Macltillvs

l,'igtlre 2' Speed uI)S ot' Sll+lllow-v,,'at,eJ' and Bt':>llrApl)lic'+l.tions

[9] Youllg-il Choo a,lld Ma.rilla. Che]l, A t,lmory of i.>;l.,'allel-l:>rogran_Ol_(,i_,,izal.ion. 'l'ochr_ica,l Rel)oJ't

YA I_,I_U/DCS/TI+.-608, Dept. of C',oinlJt_l,or ,,qc:i(_,nce,Ya,le l..It_iversil,y, ,1t_ly 1!)88.

[10] M. Clot'don., R.. tvlilner, +t.t_clC. \.\"attsworl.ll. lS'di?+,bzt+,'fi/t],CI,'. SI)rittgc,r-V'(:rl_,g, ifl.;rlit_, 1!)7!).

[11] 1{,.Karl), 1{,.Mill(,r, +t._(IS. \,Vi_ogr+t.cl. 'l'ltcr`+)rg;t.t_iz_-_l,io_l <.Jl'co_lll)t_lal.io_lsFor t_il'cJrt_l r<:,c't_rr(,)_c'(,

eClUa.l+ioi_s.,]+:+t+r?+¢tloi' lh+ .,I('M. l-l(:l):5(i:i .90. ,Jt_l5' l!)(JT.

71

[12] Jillgl,:e Li a.nd Marina, C',llen, (lenera,ting explicit comnlunicat;io_ls fi'oln sllared-melnory pro-
gra.nl referen ees, I n Procecdi'ngs of ,._"ltpe'rco'mp_lli'ng'90, 1990,

[13] Jingke Li and Marina Chert, Index doma.in a.lignznent: Miniluizi_g cost. o[' cross-rei'erel_ce
between distributed arra.ys, Iii 7'hc l:'roeeedin,q,';of lhc /h'd ,S',l/m/Jo.,,'ilmlon lhc l;)'o'lllicrs of

Massivel9 Parallel C:'omp'ul,alioJt, 19!t0,

[l-i] ,lingke Li a.lld Marina (.'lien, l"cuc(:(.diltg,s oJ' IIt_ II'ork,s'hop (m l_l'ogl',_n.ln,ill,g l,alz(l'llagc,'_a lul
"t i(,ompHe,rc for Permllel Co'n_pul,i')zg, cha.pter hutoma.ting the (:',oordina,t;io_Jof lnterprocessor

C,olnlnunica.tion, MIT Press, 1990.

[15] ,lingke Li and Ma.rina. Chert, Compiling comnlunica.tion-efl3ciellt programs for massively pa.r-
a,llel machines. IEEE 7)'a,rtsactio'n, on Parallel and Distributed ,_.'y.s'te'm..%1991. '

[16] Jingke Li mid M_u'ina. C,hen. The data, a,lignment pha,se in compiling programs for distributed-
nmmory lll_tchines. Jo'u,'rnal of Parallel and Di.s'trib'ltted Computing, 1991.

[17]],ee-chung Lu a.nd Marina. ('.lien, Sub(lotJla.in dependency l,esl, ['or lllassively pa.ra.llelis)n. I1,
P't'oce_dit_g_'of " c ' ,,5up _"rcoI)_,lJlt{'trig'90, 199(I.

[18] l,ee-chung Lu and Marina, (',hen. A unilied fra,mework for sysl,ema,t,ic a.pl)lica.t,ions of loop
tra,nsforlna, t,iolls. Teclltlical lleporl, 818, Yale l,,Illiversity, Augt_sl, 19.9(I.

[19] l).I. Moldova, n. On t,l_e a,na.lysis a.nd s,,,_ll,l_esis oi' vlsi a.lgoritl_ms, ll'_l;,'l',_ 7;r(msa,ct,ions o'tt
Co'mpulers, C,-31(11):1 121.-26, Nov. 1982.

[20] 1). Quinl, on. Autonlatic sh,ntl_esis oi' sysl.olic arra,ys fi'oin ullifor_rl recurrent equa.tio_s. In
l-)roeeedi'tzgs of l I tit. A r_'tz'lt(tl,S'gnq.)o,,,'i'umott, (.'otup'ut,er A rehit.e.'el'urc. Imges 208- 1.'-1,198.:1,

[21] 13ria_ (',a._t.well S_ill_. ll(,Ileclion a_(I .se_)a_lics i_t lisl), iI_ l"l('l,(_lh .,l_n.'ualA("lll ,£'/]_npu._i'ltm

, , '[, ,o tz P'ri'nciplc,_ of l)_'or.l.t,(tt))nl,in9 i,(ttt9lt_tf]r,',, pages 23--35, Sa.lt, l,ake (,_ .v. tlt, a.l_. ,]a._luarv 1.98.:1,
A ''(I_l.

[22] M.,J, \'Voile, Opli'mi.:ing 5'upcrcompilr'r,,,'fo.r ,_"ltl)C-.reonq)'ltle_,_,,Phi)l, ll(,_is, l.I_iw, rsit.y of Illinois
J "1 ,at. Ur _ana-(.hanal)aig_, l)el_l, of C,ol_ll)ul,er Science, 1982.

[23] M.J. Wolfe, Opli'n_,izin9,5"uper(,'o'mpile'n_.'J'or ,S"lq)er'cornp'utet,s. MI"I' Press, (',a,_)_bridge, Mass,,
1989.

[2-1] :\]la.n Ya,ng, Desigl_ a._d inll_l(,_nent,a l.io_ of _l_e(,a.-crysta.l: A lrlel,ala_g_aCe for para.llel i)rogrmll
optitttiza.t, iot_, 'lk,cltnical report., Yale Ut)iversity, 1989,

72

A New Method for Compile--

Time Granularity Anaxlysis:

An Extended Abstra,ct

X. Zhong, E, Tick, S, Duvvuru,

L. Ha.nsen, A. V. S. S_stry and R. Sunda,r_u'a.ja, n

University of Oregon

Abstract

We present a new granularity analysis scheme for concurrent logic programs, The main

idea is that, instead of trying to estimate costs of goals precisely, we provide a compile-time

analysis method which can efficiently and precisely est,imate relative costs of active goals

given the cost of a goal at runtime. This is achieved by estimating the cost relationship

between an active goa,l and its subgoals at compile time, based on the call graph of the

program. 1tera¢ion parameters are introduced to handle recursive procedures. Compared

with methods in the literature, our scheme has several advantages: it is applicable to any

program, it gives a more precise cost estimation than static methods, and it, ha_s lighter
runtime overheads than a.bsolute estimation methods.

1 Introduction

The importance of grain sizes of tasks in _ para,llel comput,'ttion ha,s been well recognized [6, 5, 7],

In pra,ctice, the overhead to execute small grain tasks in parallel may well offset the speedup

gained. Therefore, it is important to estimate the costs of the execution of tasks so tha,t at

runtime, t_tsks ca,n be scheduled to execute sequentially or in parallel to achieve the maximal

speedup.

Granularity ana,lysis can be done at compile time or runtime or even both [7], The compile-

time approach estimates costs by st,_tically analyzing program structure. The program is pa,r-

titioned statically and the pa,rtitioning scheme is independent of runtime parameters. Costs of

most ta,sks, however, are not known until pa,rameters a,re insta,ntiated at runtime a,nd therefore,

the compile-time a,pl)roa,ch ma,y result in inaccura,te estima, tes, The runtime approa,ch, on the

other hand, dela,ys the cost estimation until execution _nd can therefore make more accurate es-

tima,tes. However, the overhea.d to estima.te costs is usua,lly too large to a,chieve efficient speedup,

and thereh)re the a.l)proa.ch is usually infea.sil)le. The most l)romisil,g a.pproa,ch is t.o try to get a.s

73

much cost estimtttion information as possible at compile time and make tile overhea,d of runtime

scheduling very slight, Such approach has been taken by Tick [10], Debr_y ct al, [2], and King

arid Soper [4], In this paper, we adopt this strategy.

A method for the granularity _nMysis of concurrent logic programs is proposed. Although the

n lethod can be well _pplted to other languages, such a,s functional langu_ges, in tills paper, we,

discuss the method only in the context of concurrent logic progr,_ms, key obserw_tton behita-t

this method is that task spawning tn many concurrent logic program la,tlgua,ge lmpletl_enta,l, ions,

such asFlat Guarded Horn Clauses (FGHC) [12], depends oI,ly on the rel_ltive costs of ta,sks,

If the compi!e-thne analysis can provide simple and precise cost rela,tionships between au a,ctive

go_tl and its subgoMs, then the runtime scheduler can efficiently estim_te the costs of the subgoa,ls

based on the cost of the active goal, The method achieves this by estimating, _t compile time,

the cost relationship based on the cml graph and the introduction of iteration parameters,

2 Motivations

Compile-time granularity a,nalysis is difficult beca,use most of the information needed, such as

size of a, (l_ta, structure _uld number of loop iterations, a,re not known until runtime, Sa,rka,v [7]

used a profiling method to get the frequency of recursive and nonrecursive function calls for a,

functiona,1 language, tIis method is simple and does not have runtime overheads, but can give

only a rough estimate of the a,ctual granularity.

In the logic programming community, Tick [10] first proposed a method to estim_te weights

of procedures by analyzing the call graph of _ program. The method, _ts refined by Debr_y

[1], derives the ca,ll graph of the program, and then combines procedures which a,re mutually

recursive with each other into a single cluster (i.e,, a strongly connected cornponenl, irl the call

gr_Ll)h). Thus the ca,ll graph is converted into _n a cyclic gra.ph, Procedures iii a cluster are

assigned the same weight which is the sum of the weights of the clust,er's children (the weigllt,s

of lea,f nodes a,re one, by definition). This method has very low ruJltinle overhead; however,

goal weights are estimated sta,tica,lly and thus ca,nnot capture the dyn_m_ic change of weights a,t

runtime. This problem is especially severe for recursive (or mutually recursive) procedures.

As a,n example of the method, consider the naive-reverse procedure in Figure 1.1 Examining

the call graph, we find tha, t the algorithm assigns a weight of one to append/3 (it is a lea,f), and

a, weight of two to nrov/2 (one plus the weight of its child), Such weights are associated with

every procedure invocation and thus cannot a,ccurately reflect execute time,

Debra,y et al. [2] presented a compile-time method to derive costs of predicatc, s. The cost of a,

predica,te is assumed to depend solely on its input a,rgument sizes. Rela,tiolaships between input

a,nd output a,rgument sizes iii predicates _re first derived ba,sed on so-ca,lied data del)mlde,_lcy

IThe clauses in the nrev/2 program do not have guards, i.e., only head unification is rcsponsil_le for commit,

74

nrev([],R):- R=[], 0_

append([H[T],L,A) :- A=[HIAi], appond(T,L,Ai), bac/cl.onrc'_:

back lo appe'nd

l;'igure 1: Na,ive Reverse and itsC,a,ll C;ra,pll

gl'apl_s az_<lthen recurrence e<luations of' cost functions of predicates a,re set, up, 'I'liese equa,tions

a,re then solved at coinpile time to derive closed forms (functions) for the cost of predica,tes _ul<l

their input a,rgument sizes, together with the closed l'ornls (functions) betwem, the output and

input _u'gument sizes, Such cost a,nda, rgument size fUllctions ca,li be ewflua,ted a,t runtizne to

estima,te costs of gee,Is, A similar l_Pl)roa,cll Was also proposed by King a,nd Soper [:1]. Such

appro,_ches represent a trend tewa,td precise esti,lla, tion, For nrov/2, l)ebra,y's lilel,hod gives

C,ost,,,,.,,(n.) = 0,5n 2 + 1,571 + 1, where n. is the size of the input a,l'gulnent, 'l'his function can

thell be inserted into the runtime scheduler, Whenever nrev/2 is invoked, the cost fullction is

eva,lua,ted, which obviously requires the wflue 'n, tl_e size of its first argument, If the cost is

i_igger tha, n some preselected owu'head threshold, the gee,1 is exec.uted in para,llel; otherwise, it

is exectitc, d sequentially.

The method described suffers from several dr_Lwb_cks (see [13] for t'urther discussioll), l?irst,

there ll_a,y be consider_ble runtime overhead to keep tta,ck of a,rgtlment sizes, which a,re essentia,l

for the cost, estima,tion a,t runtilne, Furthermore, the sizes of the initia,l illput a,rgulnents have

to I_egiven by users or estinlated by the progranl when the progl'a,ln begills to execute, Secotl(l,

within the uml>rella, of a,rgulnent sizes, dift'erent lne|,rics may be used, e,g,, lisl lel_gl,h, ter_ll

depth, a,_(l the value of a,n il,teger a.rgunaent, lt is unclear (fro,_ [2, ,I])llow to correctly choos_,

metrics wl_icl, are l'_'.[eva.nt tbr a, given predica.te, Third, tile. resulta, l_l, reclil'rellCe equa, l iollS for

size rela,tionships a,nd cost rela,tionsllips can I)e fairly colnplica.ted,

11.is there('oro worth rv_leilyillg the dra,wba.cks of tile above two a,l_13roa,cl_es, lt is a.lso

75

cle_u' that there Is a tradooff between precise estt,na.tion a.nd ru,ltiul¢, overl,¢,ad, lzl f'_Lct,'I'icl<'s

appro_Lch and Debray's a,ppro_ch represent tw(,, extremes In the gr_tnula, rlty estimation spcctrulll,

Our intention here is to design a mlddle-of-the-spectruln method: fa,lrly accura, te estima, tio,i,

al)plicable to any proced|lres, without lncurri||g too much runtinm orc,rhea.d.

3 Overview of the Approach

We a,rgue here, as in our earlier work, that lt is sufficient to estlmate only rclativc costs of goMs,

This is especiMly true for an on-demand runtime scheduler [8], Therefore, it is importmlt to

capture the cost changes of a subgoal and a go_d, but not necessarily the "absolute" gra.nula, rity,

Obviously the costs of subgoals of a parent goal are always less than the cost of the pa.rent

goal, and the sum of costs of the subgoals (plus some constant overhea.d) is equal to the cost

of the parent goal. The challenging problem here is how to distribute tlw (:ost of rh(, pa,rellt

goal to its subgoa.ls properly, especially for a recursive call. Ii'or institute, consider the na.ire

reverse procedure nrov/2 a.gMn. Suppose goa.l nrov([1,2,3,4] ,lt) is invoked (i,e,, (:la.use two

is invoked) and the cost of this query is given, what _u'e the costs of nrsv([2,3,4] ,R1) a.nd

append(R1, [1] ,R)?

lt is clear that the correct cost distribution, del)ends on tile runtillle state of the pr()gra,,J,, l,br

example, the percent_ge of cost distributed to nrev([1,2,3,4J ,R) (i.(;., a,sone of tl,e subgoa,ls

of nrev([1,2,3,4,SJ ,T) will be differe||t from th_tt of cost distributed to nrev([1,2J ,R), ,lh

C_l)ture the runtime state, we introduce an iteration parameter to model the runtime st_t(:, a,nd

we associate an itera, tion pa.rameter with every active goal. Since the cost of a, goal depends

solely on its entry runtimc state, its cost is a function of its iteration pa,ra|nete|'. Several intuitive

heuristics are used to capture tlm rela,tions between the itera.tion parameter of a. parent goal a.nd

those of its children goals. To ha.re a simple a,nd efficient ,_lgorithlll, only tile AND/OR cml

graph of the p|'ogra.m, which is slightly different from the stancla,rd ca,li grs,pl,, is (:onsiclered tc)

obtain these iter_rtion rela.tionships, Such relations are then used iii tile (leriva, tion of recurrence

equatimls of cost functions of an active goa.l and its subgoals. Tl,e recurrence e(lua.tions axe

derived simply based on the a,bove observation, i.e., the cost of a.n active goa,l is (;qu_l to the

su|llmation of tile costs of its sul)goa,ls.

We then proceed to solve these recurrence equa.tions for cost t'u,,ct,io,,s I)ol,toln lip, li,'st lh,'

the lea.f nodes of the lno(lili(_d AND/OI1. ca.li gra,l)ll, which can I.)eol)ta.ined iii _t siJzlila,r way iii

Tick's modified algorithm by clusterillg those mul,u_lly recursive nc_(les l,ogc,t,ll(_rirl 1,1_(,AN I)/OR

ca,li gral)h of the l)|'ogr_ml (see Section 2). Afl, p.r we o[)l,a,ill a,ll the cost I'll_,(:l,io_s, (:osl, distribution

functions a.re derived a,s tbllows, SUl)l)OSethe cost of a,_ active goa.l is give_, wt., first solv(_ for its

it,er_tion para,meter based on the cost t'unctiol_ derived, Once the il,oratiol_ l)a.ra._llel.er is solved,

costs of its subgoa,ls, which a,re ftlltCl,iolls o[' tlmir ltera.tion pa.ra,meters, ca._lI)e derived based on

76

the assumpLion that i,hese ilera, tion pa,ra,meters have rel_tionsllips witll t,he itera, i,ion pa,ra nlc-;te,'

of their parelit, which are given by the heuristics, This gives l,h(, cost, disl, rlbtll,]oll fUilCl,iollS

desired ibr the subgoals,

To retcH), our collll)ile-tllile gra,nul_rll, y a,n:flysis procedure consists of the following steps:

1, t;'orln the call graph of the progra.nl a.nd cluster nlul, ua.lly l'ecilrsive nodes ot' l;lle

lnodilied AND/OIl, c_ll graph,

2, Associa.te each procedure (node) in the ca.li gra,ph with a.n it.eral.ioll pa,rairleWr

ttnd use heuristics t,o derive the iteration l)ar_tnmter rela.tions.

3, l,'orni recurrence equations for the cost functions of goals a.l_(lsubgoa,ls,

q, Procee d Imttom til) iii the modified AND/OR c_ll grtq_h to derive cost functions,

r_, Solve for itel'a,tion paraineters a,nd then derive cosl. distribution funcl.ions for

ea,ch l_redicai.e,

4 Deriving Cost Relationships

4,1 Cost Functions and Their Recurrence Equations

'l?o derive the cost relationships for a progra.lll, we use a. gra.ph (7 (calleil a.n e\NI)/Oll ca.li

gra, pli) t,o capture l,he l)rogra.in strucl, ul'e. l?orllla.lly, 6' is a. triple (N, E, ,4), wl,ero N is a set o['

l)rocedures denoted as {Pl,p2, p,,} a,nd E is t_ set of pa,lr nodes suclt tlia.t (pi,p_)C E it' _uld

only if p2 a.ppea,rs as one of the subgo_ds in one of the cla,usesofpl. Notice tha,t l,here might

be niultiple edges (pl,p2) beta, use pl might can p2 in multiple clauses. 4 is a l)a.rtition ot' tlJe

multiple-edge set E sucll t,hal (])1,1)2) a,nd (Pl, Pa) a,re in one elelllent of A ii' _md only if p2 a.lld

Pa a,re in the body of tit(., sa,llle clttuse whc_se hea,d is Pl, Intuitively, !1 dellotes what subgoa,ls are

ANl) proc(,sses,, a_t%era l)plyillg ,.i to edges leaving <)u_,a, node, edges axe lm,rtitiolled into clusters

wllic}l correspozld to ('l;tuses and l.hese cia.uses a.re themselves OI{. processes, I"igure 2 shows a,Jl

('Xa.lllple, wllere tile O1{ bra.llches are la.beled witll a bar, a.lld AND bra/lclies a.re urilrla.rked, Leaf

fa.cts (t._-,I'lliilialclauses) a.re deliol.ed as eiiipty nodes,

As in [1], we modify (7 so i.ha.t we can cluster a.ll those recursive a,nd mutua,lly recurs(w,

procedures togetlier a.nd foriii a, directed acyclic gra.ph (DAG), This is acllieved by tta,versing G

a,ud finding a,ll strmlgly-connected coniponents, It, l,his tta.versing, tile difference betweell ANl)

a,nd Ol1 nodes is imlliateria.l, a.lld we simply discard the I)ai't,itionA, A procedure is recurs(re

if alibi only if l.he l)roced lire is iii a strongly-connected colnl_onent, After ((odes are clustered

iii a st,rongly-coiilie(.'l.e(l COlill)()llent iii (.,', we ['orln a. I)A(I (/', wliose no(les are tllose stroiigly-

t'l)lili('('l('(l ('Olill>Oiielil, s (Ii' (,' ali(I o(IgeS are siiliply t,lie coll(,cl, ions (ii' l,li(, e(Iges iii (,', 'l'his siX, li

('a,Ii I)(' _l('('l>llllllislied I)y (iii ('fli{'i('lll, algoritlilli I}i'oposed l)y Ta,rjaii [9],

/I

qsort([], S) :- S=[].

qsort([MIT] ,S):-

split(T,M,S,L),

qsort (S,SS),

qsort (L,LS),

append (SS,LS, S).

split([], M,S,L) :- S=[], L=[].

spIit([HIT],M,S,L) :- H < M l

S=[HJTS], split(T,M,TS,L), back lo q_'orl
split([HJT],M,S,a) :- H >= M i

L=[HITL], split (T,M,S,TL).

Figure 2: Quick Sort: FGHC Source Code a.nd the AND/OR ('.ali Gra.ph

'File cost of a.n active goa,1p is determined by two fa.ctors: its entry runtime sta.te .s during the

progra.m execution a.nd the structure of the progra,m. We use a.n integer n, called the iteraliort

parameter, to a.pproxima.tely represent sta.te s. Intuitively, n ca.n be viewed a.s a.n encodil,g of a.

program runtime sta.te. Forma,lly, let $ be the set of progra.m runtime sta.tes, M be a. ma.l)lfillg
=

from 5' to the set of natura.l numbers N such that M(s) = n for s e S. lt is ea.sy to see tha.t the

cost of p is a, function of its itera.tion para, meter n. lt is also clea.r tha.t the iteratiotL l)a,ra.lllel,cr

of a, subgoa.l of p isa. f_!nct:ion of n. lterea.fter, suppose Pij iS the jth subgoa, l iii the i th cla.use of

p. We use Iii(n) to reli_sent the itera.tion pa.ra,meter of Pij. The l)rohlem oi how to deterl||ine

function Iii will be d},:cussed in Section 4.2.

To model the structure of the p|'ogram, we use the AND/Oll call gra.ph G as a.ll _Lpprox-

ilna.tion. In other words, we ignore the attributes of the da,ta,, such as size and d¢,l_elldcltcies.

We first derive recurrence equa.tiolls of cost functions between a, l)rOCCdU,'¢, p a l,d its subgoa.ls I_y

looking at G. Let CostT,(n)denote l,he cost of p. Three ca.ses _trise in tills dc,rivatioJ_:

Case 1: p is a, lea.f node of G' which is non-recursive. Tills i,,cl,ldes cas_s whero

that p i.,.a. built-in predicate, lit this case, we siinply a.ssiglt a. coltstaat c as (',osb,(',.).

c is the cost to execute p. For instal|ce such cost can be chos(,n as tl,o l,u,lJ},¢,r oi

nlachine instructions in p.

l:br tl,e next two ca.ses, we consider noil-lea,f nodes p, with the followi_lg cia.uses (()li pro-

Cosses)

(;'1 : P :- l)ll_...,l)l,,_.

78

I'[' Irl TI ' ' ' " ' ' rlI_I_ , ,'

C2' p :- P21, . . . , P2n2.

Ck : p :- Pk] , . . . , Pknk.

Let the cost of each clause be Coster(n) for 1 _<j _<k. We now distinguish whether 0,' not p is
recursive.

Case 2: p is not ,'ecursive and not mutuMly recursive with any other procedures.

We can easily see that :,'_L

k :', _

Costp(n) _<_ Coster(n). (1)
j--1

Conservatively, we a.pproxinlate Costp(n) as the right-hand side of the above inequal-

ity.

Case 3: p is recu,'sive o1' mutually recursive. In this case, we must be careful in the

approximation, since minor changes in the recurrence equations can give rise to very

different estimation. This ca.n be seen for splil: in qsort example in Section 2.

To be more precise, we first observe that some clauses are the "boundary clauses,"

that is, they serve as the termination of the recursion. The other clauses, whose

bodies have some goals which are mutually recursive with p, are the only cla,uses

which will be effective for the recu,'sion. Without loss of generality, we assume for j >

u, Cj are all those "mutually recursive" clauses. For a nonzero iteration parameter

n (i.e., n > 0), we take the average costs of these clauses as an approximation'

k

1 _ Costc_ (n) (2)Costp(n) - k - 'u
3=u+l

and for n = O, we take the sum of the costs of those "boundary cia.uses" as the

boundary condition of CostT)(n)'

Costp(0)= X: Costc,(0).
j=l

The above estimation only gives the relations between cost of p and those of its clauses. T}.

cost of clause C o can be estimated as

nj

' s C.:(,o, tc,(n) = Headj + X: C°stvj,.(/im(n)) (3)
m,'-I

where CHeadj is a constant denoting the cost fo,' head unificatiozl of clause C'j and Ijm(n) is

the iteration pa ranmter for the _77°' body goa,l. Substituting '_ ' ;' ',,,, . lxlua, tton 3 ha,ck into Lquation 1

or 2 gives us the recurrence equations for cost functions of predicates.

79

4.2 Iteration Parameters

There are several intuitions behind tile introduction of the iter_Ltion l)ara.lllelel'. As we tllentiotl('d

above, iteration l)arameter n represents a.n encoding of a l)rogra.m runtillle sta.te as a positive

integer. In fact, this type of encoding has been used extensively in progranl verification, e.g.,

[3], especially in the proof of loop termination. A loop _ terminates if a.nd only it is possible to

choose a fu:_ction M which always maps the runtime states of/2 to nonnegative integers such

that M monotonically decreases for each iteration of/.:, Such encoding also makes it possible

to solve the problem that once the cost of an active goal is given, its iteration parameter ca.n

be obtained. This parameter c_n be used to derive costs of its subgoals (l)rovided tilt iteratioll-

pa.rameter functions lm are given), wifich in turn give the cost distributioJl ful_ctiolas.

Admittedly, the encoding of program states may be fairly complica.ted, llence, to precisely

determine the iteration-parameter functions for subgoals will be coinplica.ted too. Iii fact, tills

problem is statically undecidable since this is as complicated as to precisely determine the

I)rogram runtime behavior at compile time. Fortunately, in practice, most l)rograzlls exl,ibit

regular control structures tha.t can be captured by some intuitive heuristics.

To determine the iteration-paranmter functions, we first observe tllat there is a,silill)le co,lser-

vative rule: for a recursive body goal p, when it recursively ca,lls itself I)a(:k again, the itera.tion

parameter must ha.re been decreased by one (ii" the recursion ternlinates). 'l'llis in silllila.r to

the loop termination argument. Therefore, as an approximation, we ca,n use I.,,,(_.) = 7_- l

as a conservative estimatio_ for a subgoal Pim which hal)pens to be lJ (sel|'-recursive). Other
heuristics are listed ms follows:

!il. l%ra body go_fi Plm whose predicate only occurs in the body once and it is not

lnutually recursive with p (i.e., not_i'a :ii.Strongly-connected component oi"p), Ii,,, (u) -
, ,

!i2. If Pim in mutually recursive with p a.nd its predicate only occurs ollce in tl.e body,

Iim(n) = n- 1.

{i3. i['Pim is mutually recursive with p and its predicate occurs l tinms iii tlJ(' body, wllere

I > 1, lira(n) = u/l (this is il,t'c,,,_'¢irdivision, i.e., the floor function).

The intuitions behind these heuristics are siml)le. Heuristic !il represczlts tile case where

a goal does not invoke its parent. In allnost ali programs, this goal will process izaforllla.tion

supplied by the parent, thus the iteration paramet(,rremains unlnodilied, lleurisl.ic !i2is I)i_se(l

on the previous conservative prillcil)le, tleuristic li3 is ba,sed on tl,e illllliliolt l]la l tl_(' il,(,ralioll

is divided evenly for lnultil)le ca llees. Notice for the si*,_ation in I_eurisli(: !i:$, w_.,va li also _se

our co_servative principle. I{owever, we avoid use of the conservative i,:'i_cil_l(:, if l_ossil)l(,,

8O

beta, use the resultant estinla(,ion of C,ostT,(n) ma,y be a.n exponmltia.l funct.iorl oi' 'u,, wl,ich, for

most I)r_tctical progra.ms, is not correct.

J ne,'e heuristics have been derived from experimenta,tioll wit, h a ilurnber of l)rogrmlis, placing

a premium on the Simplicity of I(Tz)[13]. A rema.ining goal of future research is I.o further justify

these heuristics with larger programs, a,Jld derive a.lterna, tives. '"'

4.a An Example: Quicksovt

After we ha.re determined the iteration-pa.ra.hinter functions, we have a system of recurreltce

equa.tions for cost functions. These system of recurrence equa, tions can be solved' in a. botton_-

up nla, llner in the modified gra.ph G'. The problenl of systematic_Llly solving these recurrence

equa.tions in genera.l is discussed in [13].I-[ere, we consider a. complete exmnple for tile qsort/2

l)rogra, lll given iii 1;'igure 2,
-t t ,

The bounda,ry condition for (-,OSl,q,ort('t_,)i,%." that (,oSl, qaort(O).is equal to the consta.llt execlll, ioll

cost di of qsort/2 cia.use one. The following recurrence equa, tions are derived'

" S(,o,.tq_,ort((O) = d_
_ , "q

(.,ost,_._o,.t(n) = (.,ostc,_

\¥ith }tcllristic !i2, we lla.ve

Cos l.c'2 = d2 + Cos t._l,lit(u) + 2Cos t,l_,,,.t(tt / 2)

wllero d.__is the constant cost for the hea.d unitic¢_tion of the secoll(l cia.use of qsort/2.

Similarly, the recurrent(, equa,tions for Cost.rplit('tl,) are

("osts,Nit(O) = d3

(7:ost.swil(,_) = ((.',ostc_ + Costca)/2

[?Ur t,herlllOre,

(",ost(,,, = Costca

= d4 + (,ostsptit(7_, - 1)

wllere _1,_is t,llc consl, allt cosl. t'or thc, llead unificat, ioll of l.lle sccolDcl (a.l_¢l tile 1.1_ird) cia.use o1'

split. \Vo first solve, lit{, recul'reltc,., e<llta.th)_s lbl' split, \vlticll is il_ l l_' low_,r [_'\'{'l il_ (,"a l,d

a_t_] tl_e_l s_)lx'_, l.l_e i'_'c_rr_'_cv e_l_al, io_s for qsort. 'l'llis gives t_s (:oslw/,t(t_) = d._-t- d._t_ wllicll

81

ca.n I)e a,pproxima, ted _s d4n a,nd Costrts,.,,.t(7_,)= di + d_ log n + d,tn log ',., wllicll is tile well klhuWtl

a.ver,_ge comt)lexity of qsort.

IPina,lly, it shouhl be noted tha,t it is necessary to distinguish betweetl tile recursiv¢, a,lld

nonrecursive cia,uses here and take the average of the recursive cltulse costs a,s a,n a,,pproxilnatioJt,

If we simply ta,ke the sunamation of all cia.use costs together as the approxim_tion of the cost

function, both cost functions for spli'c and qsor'c would be exponentia, l, which a,re not correct.

More precisely, if the sumnla,tion of ali costs of clamses of sp'l_i'c is ta,ken a.s Go..'t.,ptlt(n'), we will
h_ve

Costsptit(lz) = da "t-2(d4 -I-Costsplit(71_-'- 1))

The solution of Costs;_tit(n)is an exponentiaJ funct, ion, which is not correct,

5 Distributing Costs

After we ha,ve derived functions of the itera,tion pa,rameter for e_tch procedure, wt, a,re now ready

to derive cost distributing formula,e for a giveu procedure a,nd its body goa,ls, The first step is

to solve for the itera.tion l_arameter 'n,in Equa,tion 3 assuming tha, t C,ost.('n) is given a,t runtilne

a,s C'1), Assuming that cl_tuse i is invoked in runtime, we _pproxima,te ('ostc-,,,('n,)a,s ('. a,nd solve

Equation 3 for n. l.et n = 1;'(Cp) be the symbolic solution, which de.pends on the runtinm value
I , 'lt

of (.ostl_(n) (i.e., CI:)._ we can easily derive costs of its subgoals of clatlse i as we ca,n sinlply

substitute n with F(C1,)in Cost,7,....(lira(n)), which gives rise to the cost, distributiug functiotls

we need to derive a,t co_npile time.

.:_ s reconsider the nrev/2 procedure, 'Pile cost, equations are derived as follows:

"t . , -I , I

(.,ost,_,._o(',.) : (,ost,_,._0(u - 1) + Cost,7,7,,,,,l(,.)

(.,ost,,,,._.(O) : cl

I _! " S(,osl,,_m)e,_d(n) -- (.o,.t,,pT,e,_d(77-- l) -F C'.

(!,ost../)pe,,d(O) -- Ce

\\'e can easily derive tile closed forms for these two cost functions as (',ost./q,,,_,t(.,) = . x (.'. + c,2

which can be approximaWd as C. x '.., a,nd Cos/,.,._.(_l.) =' C_ x, /2. Now. given tile (',ost.,._,,('..)

as C',., we solve for n. and have . = .V_c',. ' Ilence, we ha,re Co,.! st.,_,,_,(.. - 1) = (-i.('"V_c'. - 1)'2/`2

aJld (',ostapve,_d(n) = C'_"_ These a.re the desired cost distributil_g t'uncl,io_s.V (-;'.'

lt shouhl be poinl, ed out tha, t in solne cases, it is 1lOt llecessar 3' to lirst derive the cost

functions and then derive the cost distril)uting functions since we can si_ply (lerive l:lie cost
©

82

distributing scheme directly from the cost recurrence equa,tions, For exa,nll)le, consider the

I,_ibona.(:cifunction, where the cost equa,tions are

Cost/ib(n) = C'/+ 2 × Cost/i_,(_,/2)

C,ost/ib(0) = C,'1

Without a,ctuMly deriving the cost; functions of Cost/;ib(n), wt}:ca,n simply derive the cost dis-

tril)uting relationship from the first equation as Cost yi'_(',J2),/': (Costiib(n)- 6f)/2,
¢ , , ,, ,,,', ,t 10 1 , , t

Als() note that at compile time, the cost dlstl'lbUtli<ie'ttino{lons . should be Slnlph fled _s much
',!,,,,,_,,[' /'

a,s l)ossil)le to reduce the runtime overhead. It is everl WoVtliwhtle _twrificing precision to get, a

simpler functiolt, Therefore, a conserva,tive a,pprot_ch should be used to derive t,lte til)per boulld

of the cost functions. In fa,ct, we can further silnl)lil[y the cost function derived iii tile following

way. If the cost function is of a, polyllonaia,1 fornt such _s q0nk + cln k-1 + ... ck, we simplify it

as keon _' a.nd if the cost filnction is of several exponential c0mponents such a,s cia'S+ c2b" where

b > a, we simplify it a.s (el + c2)b '_. This will simplify the solution of the iteration parameter

a.nd the cost distributing function a,nd hence simplify the evalua,tion of them a,t runtifiae.

5.1 Runtime Goal hlanagement

The _tl)ove cost relationship estimation is well suited tbr a, runtime scheduM' which a.dopl,s a,n

on-delnalid scheduling policy (e.g., [8]), where PEs ma,inta,in,a, loca,l queue for a,ctive goa.ls and

once a, PE becomes idle, it requests a. goa,l from other PEs. A simple wa.y to distribute a. goa,l to

a requesting PE is to migra.te a.tl a,ctive goa,l in the queue. The scheduler should a.dopt a. policy

to decid,, which goal is going to be serlt. It is obvious tha,t the ca,ndidate goal should ha,re the

maximal gra,in size a,mong those goals in the queue. Hence, we can use a. priority queue where

weights of goals a.re their grain sizes (or costs). The priority is that the bigger the costs a.re,

the higl,er priority they get. Beca.use the scheduler only needs to know the rela.tive costs, we

ca.n a,lw'a.ys a.ssume the weight of the initial goa.1 is some fixed, big-enough nunll)er. Ba,sed on

this inilia,l cost a,nd the cost, distributing formula.e derived a,t compile tiine, every tilne a. new

clause is invoked, the scheduler derives the relative costs of'body goa,ls. The body goa,ls are then

enqueue(t into the l)riority queue ba.sed on their costs.

Solne bookl<eeI)ing 1)rol)lents a.rise ft'ore this api)roach. First, even i,hough we can siinplify

tlm cost distril)uting filnctions at COml)ile time to some extent, the runtime overhea.d may still

be la,rge, sil_:'.e for ca,eh 1)rote(lure invoca_tion, the scheduler ha,s to ca,lculate the weights ot" the ,,

I)o(ly goa,ls. ()no solutioll to this problen_ is to let the scheduler keep tracl< of a. lnodulo counter

and whell t,le CoIltellt Of' tile counter is not zero, the scheduler sinlply lets the costs C' the

bo{ly goa, ls be the salne a,s tlia, l, of their pa,rent, Once the contetll, of file count, er becotlles zero,

tit(' c()st,-(lisl,ril)lll,ittg l'lJlL('t,i()llsare tlse(l, li' w(, (:a,zl clloose an a,l)l)rOl)riat(, ('_Jtlttl,ittg l)erio(I, t,ltis

83

i I

metlmd is rea,sona, ble (one counter increment h_s less overhea.d tha.n tile eva lua,tioll of the ('ost

estimate).

Another l)roblmn in this a,pl)ro_ch is tha, t for long-running l)rogra,nls, costs illa,y be(:ollle

n(_ga,tiw;, i.e,, the initi_tl weight is not la,rge enougll, Since we require ()l_ly relative costs, _L

solution is to reset a,ll costs (including tlmse in the (lueue, a,nd in SUSl)ended goa,ls), whell sollle

cost becomes too sIn_ll. C,ost resetting requires the incrementa,l overhead of testing to deterlllill(:

when to reset.

6 Conclusions and Future Work

We h_ve proposed a new method to estim._te the rel'_tive costs of procedure execution for a.

conctlrrent language. The mel_hod is simila.r to Tick's static scheme [1(}], but gives a more

a.ccur_tte estima.tion a,nd reflects runtime weight cha,nges. This is a,chieved I)y the introduction

of an ite)'a,tion pa,ra,meter which is used to model recursions.

Our method is ba,sed on the idea that it is not the absolute cost, but ra,ther the relative

cost tha.t m,_tters for an on-dema.nd goa,l scheduling policy. Our method is also a.mena,bh: to

implementa, tion. First, our method ca,n be applied to any program. Second, the resulta, nt

recurrence equa, tions can be solved systema, tica.lly. In comparison, it is uncle_r how to fully

mecha,nically implement the schemes l)rOl)osed in [2, 4]. Nonetheless, our lllethod llla,y reslllt in

a,n inaccurate estima,tion for some cases. This is because we use only tile call graph to model

the l)rogram structure, not the data.. We a.dmit that further static a,na lysis o[' l)rogranl stru('tllre

such a.s a.rgument-size relationshil)s can give more precise estimations.

Future work in gra.nularity a.na.lysis includes the development of a more systema.tic and

precise method to solve the (terived recurrence equations, lt is also necessary to examine this

zllethod for l)ractica.l progra.ms, l)erforming benchmark testing on a mllltil)ro(:essor to sllow til(,

Illility of the method,

Acknowledgements

E. Ti(:k was SUl)l)orted by a.n NSF Presidential Young Investiga.tor award.

References

[1] S. K. Del)ray. A Rema.rk on Tick's Algorithm for Compile-Time Glanularity Analysis.

Research note, Del)artment of Coml)uter Science, University of Arizona, .iu l_e 1989.

[2] S. I(. Debray, N.-W. Lin, a,nd M. Itermenegihto. Task Granularity ,kl,alysis iii l.ogi(: Pro-

grams. Izi SIGPLAN (,'onfcreTwe o. Programming Language O_,s'i(.p_a_ul Implcment(,.,lio_,

81+

l)ages 174-188. A(.;M Press, ,June 1990,

[3] D, Gries. ,5'ciencc of P'rogramming. Springer-Verlag, 1989.

[,'1]A. Ning aAtd P. Soper, Gra,nula,rity Control for Concurrent Logic l>rogra, lns, In Inter natio't_al

C'o'mpute_' Conference, Turkey, 1990,

[5] 1), I/|'ua, t|'a,chue a,nd T, Lewis. Gr_in Size Determina, tion for Pa,rallel Processing, IEEI:_:

,_'ofl,wa're, l)ages 23-32, ,}a,nua,ry 1988.

[6] C,. McGreary a'nd II. Gill. Automa, tic Determixia,tion oi' Gra,in Size for Efficient Pa,rallel

Processing, Commm_ications of t/tc A C'M, 32:1{)73-1978, 1989.

[7] V. Sa,rka,r. Partitioning and Scheduling Parallel Programs for Ez'ec'lttioT) o'l_M'altip,rocesso'rs.

MI'I' Press, C,a,nll)ridge MA, 1989,

[S] M, Sa(,o and A, G0to. l!;va.lua,tion of the l(L1 Pa,ra,llel Syste|n on a, Sha,red Memory Multi-

l)rocessor, In /FII) l.l:o'l'ali,t_.g(.;'o_]>rel_.c(:o7_,Parallel P.ocessi'rzg, l)a,ges 3()5--318. Pisa., North

llolla, Jl(l, Ma/ 1988, t

[9] li.. 1);,Ta,rja,n. Data ,5'lructurcs a'lTd Network Algorithms, volunle 44 or Regiorml C'onJ?'re_ce

So.its i't_,Applied Mo thr'malics. Society for Industria,1 a,nd Applied Ma,thema,ti(:s, Pllila,(lel-

phia, PA, 1983.

[10] E. Tick. C,ompile-Tinle Gra,nula,rity Ana,lysis of Pa,ra,llel Logic Programming Languages.

Nf"l() (;eT).eral,io)), Co_)tp'u,lil_.:),7(2):;_25-.-337, ,}a.nua,ry 1990.

[11] E. Tick. Pa,.allcl Lo:ric Plv:/.a,'m'mi'l_g, MIT Press, Ca,mbridge MA, 19911,

[12] N. Ueda. Gua,rded Horn C,la,uses, In E.Y, Sha,piro, editor, C'or_curre_l P'.olo:/: C,'ollected

I)al)ers, volume 1, pages 1,:10-15(i. MIT Press, Ca,mbridge MA, 1987.

[13] X. Zhong, E, Tick, el al. 'l_owa,rds an Ef[icient Coml)ile-Tillle Granularity Alia,lysis Algo- ,

ri(,l,m. Technica,l li.el)orr C,IS-Tl/.-91-19, University of' Oregon, i)ol)a,r(,mellt of (',Olnl)uter

Sci(,l,(:e, S(,I)tember 1991.

, 85

GST' Grain-Size Transformations for Efficient Execution of

Symbolic Programs

Extended Abstract
q

Andrew A. Chien and Wuchun Feng
achien @cs. uiuc. edu fcng@cs, uiuc. edu

University of Illinois

Department of Computer Science

1304 W, Springfield Avenue

Urbana, IL 61801

October 1, 1991

1 Introduction

Controlling grain size is a key issue which spans programming approaches and machine

architectures in parallel systems. The ability to effectively adjust program grain size, is

a critical component of achieving efficient, portable parallel programming. A number of

programming models have_ been used to express application programs with large qua.nrl-
ties of fine-grained concurrency. Unfortunately, despite rapid improvements in processor

architecture, we currently cannot exploit such fine-grained concurrency efficiently. Even if

such architectures were available, portability issues motivate the development of grain-size

control techniques. We are pursuing the construction of a grain-size transformer system

which merges grains, increasing the execution grain size for more efficient execution.

2 Background

We are building programming systems for MIMD, distributed-memory mactfines. We focun

on such machines not only because they represent a scalable hardware architecture, but

also because they have no built-in policies for data movement. From a software perspective,

they represent the cleanest slate. Their message-passing structure makes communication

86

.&__ . _ ,4,

explicit, forcing the software to manage it and allowing it to be optimized explicitly. Despite

our focus on a particular machine organization, the techniques developed are applicable to

any machines for which increased locality improves performance.

If progranl granularity can be adjusted over a sufficiently wide range, the programs

which express fine-grained concurrency can be executed efficiently on both fine-grained and

medium-grained architectures. The fine-grain programs can become the basis for portable,

parallel programming on a family of distributed memory machines.

We would like to support both numeric and symbolic computing which involve com-

plex data structures. The issue is the complexity of data structures and the prevalence of

pointers, not the computational methods or even the application being solved.

We have been actively involved in the design'and implementation of Concurrent Smalltalk

(CST) [1] and Concurrent Aggregates (CA)[2], both concurrent object-oriented program-

ruing systems. These systems were initially developed to program the J-machine [3], a

fine-grained MIMD distributed-memory machine. We describe our developments in the

context of an object-based concurrent system [4]. However, our techniques should be di-

rectly applicable to most Actor languages [5, 6] and as similar to fold/unfold transformations

[7] in committed-choice logic languages [8, 9]. Extension to other p:_gramming paradigms

which do not bind program and data closely, such as functional programming approaches,

may require a different approach.

3 An Approach to Grain-Size Transformation

The objective of grain-size transformation is to adjust the dynamic execution grain size to

increase the efficiency of execution. We defi._e a computation grain as the unit of work

performed in response to a message arrival. Computation grains are terminated for two

reasons: remote data access and synchronization. Our approach addresses both causes

by constraining data placement and merging units of synchronization based on invocation

relations. We constrain data placement in a process called abstract placement. The merging

of synchronization units is termed object coalescing.

We assun_e that the program has been initially formulated to express concurrency at the

object level. Consequently, transformations to increase task granularity involve attempts

to productively merge objects and their invocations. Our program transformations produce

an al_stract data placement, a set of constraints which the run-time system must enforce for

corrt, ct execution, as well as program code optimized to execute with that data placement.

Tog(,iher the abstract data placement and optimized code constitute a new program with

a l_rg(,r execution grain size.

l';l[icient invocation in message-passing machines requires knowledge of data placement.

87

I I

In recent years, the distance betweeIl shared-memory and message-passing machines has
decreased. Shared memory machines now have memory hierarchies with locality, and

message-passing machines support shared address spaces. However, one hnportant remain-

ing difference is that message-passing machines have distinguished local and non-local access

mechanisms. This implies that the most efficient forms of local and non-local invocation

require distinct calling sequences in message-passing machines. Constraining data place-

ment allows us to avoid using the e_,_pensive remote-invocation sequence in many cases. In

contrast, shared memory machines use automatic data relocation, encouraging compilation

to a uniform, local calling sequence. i

4 Abstract Placement and Object Coalescing

Abstract placement involves the constraining of data placement in a program execution.

Define the data. placement constraints, C, as a set of locality sets'.

C ={lso, isl,ls2,...)

Each of the locality sets, Is, contains objects. Each object is a member of exactly one

locality set.

lsm =:,{obji, objj, objk , ...}

Membership in the same locality set implies a data placement constraint. All objects

in a locality set must be placed together 1. Additional data placement constraints can

reduce communication and linkage requirements, but for maximum benefit, such constraints

should be added in accord with the invocation structure between objects. Data placement

restrictions can be used to reduce the number of invocation overheads along a chain of
references.

Object coalescing involves the merging of synchronization units to reduce synchroniza-

tion overhead. The idea is analogous to the notion of reducing blocking in real-time systems

[10] While abstract placement can reduce communication requirements and linkage over-

head for tasks, it may not increase the execution grain-size. In our model, objects are units

of synchronization and hence exclusion. Invocations, even if they are local, cross these

object boundaries and thus may suspend, terminating the grain.

We define a similar formalism for synchronization units. We define the set of execution

objects, as distinguished from user-defined object boundaries, as a set of synchronization

1More precisely, it must be possible to address them in the same address space and use the local invocation
mechanisms, including inlining, to couple computation amongst them.

88

sets, These sets are units of exclusive access with respect to program execution. Initially,

each object belongs to a unique synchronization set, Object coalescing transformations join

the synchroaiza.tion sets, reducing synchronization overhead. Typically, object coalescing

requires both objects to already be members of the same locality set. In such circumstances,

the synchronization of the new unit can be achieved efficiently, Object coalescing can be

used to reduce the number of synchronization operations along a path or reduce the interface

concurrency of a multi-access data abstraction, such as an aggregate in CA.

Naming Issues In order to formulate issues of data placement in a dynamic storage allo-

cation environment, we must be able to identify data structures and their interrelationships.

In order to effect our grain-size transformation (place.nent restriction and object coalesc-

ing), we must identify their point of allocation, Acquiring the full knowledge required to

identify all program data structures would require full program execution and therefore is

not feasible. Instead, we have adopted a scheme based on the notion of alias graphs [11] to

name objects at compile time. With alias graphs, we can identify the allocation points for

root, intermediate nodes, and leaves of nested structures, providing the necessary control to

implement data placement decisions and object coalescing. The advantage of alias graphs

is that they can be extended or compressed to trade off compilation cost for more accu-

rate alias information. In a grain-size transformer system, the amount of alias information

(the depth of the graphs) is related to the amount of transformation we wish to do, The

compilation cost increases for more aggressive modification of program granularity.

Inferring accurate aliasiag information can be difficult, depending on the complexity of

program structure. In Larus' Curare system for parallelizing Scheme, alias graph structllres

were inferred, but programmer annotations could be used to refine alias graph information.

We are pursuing a similar approach for deriving object invocation an d sharing relationships.

Several reasons suggest that our system may be able to derive enough information to sig-

nificantly transform prograI_, grain size. First, many symbolic computations use multiple

layers of static structuring - data abstractions built with objects, constructive program

reuse, These layers can be effectively deduced and combined. Second, repeating sequences

of structures such as pairs in a list can deduced and used to increase grain size on sequence-

oriented phases of computation. Third_ aggregate data abstractions which involve bulk

allocation such as in Concurrent Aggregates allow the expression of data-parallel opera-

tions, a natural target for grain-size adjustment [12].

Transformation Conditions Merging of locality sets and synchronization units is not

done arbitrarily. In each case, we must assure appropriate conditions to avoid changing

program functionality or reducing performance, While the merging of loc_',,lity sets does

not alter a program's functional behavior, it may afl_ect its performance. Constraining two

89

sets of objects to be placed together limits their collective concurrency to that available

at the local node 2, Naturally, this limit increases ill significance as tile set size increases.

In addition, there is a physlcM limitation to the memory resources at a computing node,

A more relevant restriction is the desire to keep storage units small, leaving the run-thne

system with some opportunity to perform load balancing tbr computation and memory
usage.

Merging synchronization units is quite tricky. Synchronization units are part of the

programming model and merging them arbitrarily may cause deadlock. In order to deter-

mine when units can be merged safely, we need sharing and invocation information. We
,

obtain this b_formation from conventional control and data flow analysis of our programs.

To deduce sharing relationships we use alias graphs as well. Static study of a number of

programs leads us to believe that there are many cases in which merging can be done safely.

We are currently collecting dynamic statistics to reconfirm our findings, While merging

synchronization domains can reduce synchronization overhead, it also limits concurrency

within the synchronization unit. Typically, the concurrency within a single unit will be

limited to a single thread.

The basic idea is to allow a programmer to specify concurrency at a fine-grain, easing

program construction and enhancing portability. Typically, this involves specifying small

data components and expressing the concurrency in operations on them. The compiler

adjusts the specified program grain-size to an execution grain size suitable for the execution

engine at hand. The net effect is to increase the size of structure components and the
amount of work associated with each invocation on that structure. In order to achieve a

real increase in grain size, we must simultaneously deal with issues of data locality and

synchronization

5 Dynamic Techniques

The program transformation techniques we have described can also be used dynamlcally.

The approach we are pursuing here is directly analogous to the dynamic optimization tech-

niques used by Chambers and Ungar in SELF [13, 14] to reduce invocation overhead in

object-oriented systems. Instead, we are studying the use of dynamic program optimization

to reduce linkage overhead due to data placement. Speculative application of these tech-

niques must be based on knowledge of the dynamic characteristics of concurrent object-

oriented programs. We are currently pursuing such a study. Data location transformations

and code customization can be done without deadlock-safety concerns and will give correct

execution so long as the customization is reversible. The sharing information required for

2Future distributed memory machines may use multiprocessor nodes, but current machines only have
uniprocessor nodes,

9O

object coalescing could be derived frora reference counting, if used for storage reclamation.

However, even with _uch information, assuring that an object will never be shared requires

some analysis.

6 Summary

Grain-size adjustment is an issue which must be addressed by any portable parallel pro-

grammlng system. We are developing a program transformation system which constrains

the placement of data and transforms control structures to increase the execution grain

size of object-based concurrent programs. While it is too early to say how successful this

approach will be, we are confident that a combination of automatic and programmer-aided

techniques will give us the ability to transform grain sizes over a modest range. The ultimate

product will be a modestly portable parallel programming system.

References
q

[1] W. Horwat, A. Chien, and W. Dally, "Experience with cst: programming and imple-

mentation," in Proceedings of the SIGPLAN Conference on Programming Language

Design and Implementation, pp. 101-9, ACM SIGPLAN, ACM Press, 1989.

[2] A. A. Chien and W. J. Dally, "Concurrent aggregates (ca)," in Proceedings of Second

Symposium on Principles and Practice of Parallel Programming, ACM, March 1990.

[3] W. J. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, M. Larivee, R. Lethin, P. Nuth,

S. Wills, P. Carrick, and G. Fyler, "The j-machine: a fine-grain concurrent computer,"

in Information Processing 89, Proceedings of the IFIP Congress, pp. 1147-1153, Aug.
1989.

[4] P. Wegner, "Dimensions of object-based language design," in Proceedings of OOPSLA

'87, pp. 168-82, 1987.

[5] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems. Cam-

bridge, MA: MIT Press, 1986.

[6] G. Agha, "Concurrent object-oriented programming," Communications of the Associ-

ation for Computing Machinery, vol. 33, pp. 125-41, September 1990.

[7] 'l?. Kawamura and T. Kanamori, "Preservation of stronger equivalence in unfold/fold

logic program transformation," in Proceedings of the International Conference on Fifth

(;'encration Systems, (Tokyo, Japan), pp. 413-421, ICOT, 1988.

91

[8]V. Sara.swat,K. Kahn, and J.Levy,"Janus:a steptowardsdistributedconstraintpro-

gramming," in Proceedings of the North American Conference on Logic Programming,

(Austin, Texas), October 1990. i

[9] I. Foster and S. Taylor, Strand: New Concepts in Parallel Programming. Prentice-Hall,
1990.

[10] L. Sha, R. Rajkumar, and J. Lehoczky, "Priority inheritance protocols: an approach to

real-time synchronization," IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175-
8_,, 1990.

[11] J. R. Larus and P. N. Hilfinger, "Detecting conflicts between structure accesses," in

SIGPLAN Conference on Prograrnmin 9 Language Design and Implementation, pp. 21-
33, ACM, 1988.

[12] P. Hatcher, M. Quinn, A. Lapadula, B. Secrets, R. Anderson, and R. Jones, "Data-

parallel programming on mired computers," IEEE Transactions on Parallel and Dis-

tributed S_Istems, vol. 2, no. ;3, pp. 377-383, 1991.

[13] C. Chambers and D. Ungar, "Iterative type analysis and extended message splitting,"

in Proceedings of the SIGPLAN Conference on Programrnin 9 Language Design and
Implementation, pp. 150-60, 1990.

[14] C. Chambers and D. Ungar, "Customization: optimizing compiler technology for self,

a dynamically-typed object-oriented programming language," in Proceedings of SIG-

PLAN Conference on Programmin 9 Language Design and Implementation, pp. 146-60,
1989.

92

Using Domain-Specific, Abstract Parallelism
Ira Baxter and Elaine Kant

Schlumberger Laboratory for Computer Science
8311 North RR 620

Austin, Texas, 78720-0015
baxterQslcs, slb. com, kant@slcs, slb. com

Abstract

Discovery of potential parallelism in low level code is difficult, especially in the absence of problem domain
knowledge. Au alternative is to explicitly represent maximal potential parallelism in atmtra_t program components.
A transformation system refines a program composed of such components into a concrete program. We discuss an
experimental system in which we are installing such facilities. An example refinement sequence is provided.

1 Introduction

Compiling problem-domain independent program representations for parallel architectures is often difficult
because of the need to infer opportunities for parallelism. Because safe inference of parallelisni must be con-
servative, the inferred parallelism is often considerably less than that actually available in the applications.

This problem leads to a demand for tools such as E/SP [SMD+89], ParaScope [BKK+89] and MIMDizer
[Cor90], which identify points of potential, but unverifiable, parallelism and query the programmer to de-
termine a less conservative version of the truth. Inference and query-the-programmer are both methods for
rediscovering the parallelism. Ali of this would be unnecessary if the knowledge of what was parallel at the
time of program construction were not lost.

An alternative approach we are pursuing is to capture the inherent parallelism (actually, absence of
execution ordering constraints) in an abstract program in a domain-specific fashion. Then a transformation
system would refine not only the program but also the parallelism information into the concrete program.
In this fashion both the expense of the conservative inference and the need to query the programmer are
minimized.

In this paper, we give a short example of an abstract domain-specific component whose full parallelism
is "refined away" (rather than rediscovered) until it is usable on a particular target machine. We also briefly
motivate the need for non-tree-structured internal representations.

2 Problem Domain

SINAPSE [KDMW90] [KDMW91] is an experimental tool to synthesize mathematical modeling programs for
a variety of similar applications. These have, to date, been primarily acoustic wave propagation problems,
typically used to validate geophysical models for oil exploration.

SINAPSE accepts specifications of typically 20 to 50 lines, and produces C, Fortran, or Connection Ma-
chine Fortran programs that solve the differential equations related to the problem domain by using a finite
differencing method. Resulting programs are typically 500 to 1500 lines in size; lines are often very dense.

A number of programs generated by SINAPS_. have produced useful scientific results for Schlumberger
modelers after some post-generation hand optimization. The work described here is part of research aimed
at automating that optimization.

Synthesizing modeling programs requires knowledge of the wave propagation problem domain, knowledge
about solution techniques for problems in that domain, general programming knowledge, and control knowl-
edge to sequence the synthesis process. This class of program provides many opportuniti_._ for data-parallel
computation [HS86]; consequently, knowledge of potential parallelism and when to use it is also useful.

93

3 Synthesis Process

User-specified algorithm schemas are refined by repeatedly replacing schema components with lower-level
schemas or parame_.er values. These component replacements are taken from knowledge bases selected by, or
computed directly from, the specification. Rather than being the initial abstract program, the specification
simply directs the choice of schemas and parameter values.

Algorithm schemas are stated in terms of a high-level programming language called "algSinapse," which
includes assignments, conventional control constructs, array and scalar computations, references to parame-
ters, and references to other algorithm schemas.

Generic programming knowledge as well as application domain knowledge is needed to produce efficient
programs. Much of the programming knowledge is in the form of algorithm refinements that expand con-
structs such as parallel enumeration or matrix multiplication into built-in constructs or a combination of
loops and scalar operations depending on the target architecture and language. Rather than having a runtime
library of special-case methods (e.g., different matrix multiplications for diagonal arrays), SXNAPSEderives
the special methods directly. This is accomplished by substituting representations, determined by explicitly
represented properties of interest (e.g., DIAGONAL-ARRAY or SYMMETRIC), for references to values, and
simplifying away unneeded operations and combining similar terms. This avoids the need to rewrite such

libraries for each new target language. The approach is made feasible by the use of Mathematica [Wolgl],
a symbolic manipulation language as an implementation platform. There are also a number of optimizing
transformations.

One of the problems of refining abstract schemas into real programs are inefficiencies introduced because
of necessarily conservative analysis of the original schemas. These come about simply because schemas, while
optimized maximally on an individual basis, may be more optimizable when combined.

One can resolve this problem in a number of ways, of which SINAPSE currently uses two:

• General purpose optimization techniques, and

• Special case algorithm schemas.

SINAPSE has an optimizer which moves static computations outside of loops. Abstract computations are
often placed inside a loop in an originating schema simply because domain knowledge tells us they are usually
loop-index dependent. Only when the expression is actually instantiated can we determine the actual loop
dependency. If domain knowledge tells us that some expression is always loop independent, then it can be
encoded outside the loop in the schema.

The optimizer simply moves blocks of code earlier into the computation as long as this is consistent with
the data-fl_w constraints. This often moves code outside of loops. The moved code is placed in parallel

with the earliest statement it can precede. Thus, a free side effect of running the code motioner is the
conversion of unnecessary sequencing constructs into parallel execution constructs. A special mechanism
detects when expressions dependent only on loop indices can be moved outside the loop. The values of these
expressions will be cached in a array. More specifically, storage for the array is allocated, code to fill the
array is generated outside the loop, and the cached values from the array are referenced in3ide the loop. We
plan to add a common-subexpression eliminator.

Considerable payoff also occurs when the problem or target domain dictates certain properties of the
code; one can then optimize a schema in advance of supplying it to SINAPSE, thereby avoiding the expense of
dynamic optimization at program synthesis time. A price is paid for this: manual encoding of such optimized
schemas at synthesizer-construction time, and conditioning the instantiation of the special case schemas on
the domain property.

94

4 A Weak Representation for Parallelism

SINAPSI_ currently represents abstract programs as tree schemas containing various control constructs rep-
resenting explicit classes of parallelism:

• seq[sl, s.]
Sequenci, ng of state-changing constructs si

• doSeq[s,j, ib, ub]
Iteration of star, ement s requiring sequential execution with index j in range lb... ub

• par[sl,sz,...,sn]
Arbitrary execution ordering of state-changing constructs si

• doPar[s, lbl,ubl], lh2,ub2],...,b'., rb.,ub.]]
Parallel execution of (possibly compound) statement s instantiated with simultaneous assignment of
loop indices ji

doPar provides much of the opportunity to generate data-parallel programs for the Connection Ma-
chine 2 (CM2), written in CM Fortran 90. As an example, the following construct:

doPar[A[j] -" B_] , k- Cb'],II", l,size(A)]]

is converted into l;he Fortran 90 array statement:

AI1: size(A)] = B[I: size(A)] • k - C[I: size(A)]

When the rank of a target array does not match the rank of a source, then the Fortran 90 intrinsic function:

SPttEtD(value, a_isNurnber)

is generated to expand the source array along necessary axes.
SINAr'SE algorithm schemas also allow the expression of computations on entire arrays, which pass through

virtually unchanged to CM Fortran. SINAPSE replaces entire-array operations with doPar equivalents when
the target is sequential Fortran 77. lt is then trivial to generate corresponding sequential code for any par
and doPar constructs.

An explicit concessiolt to data parallelism used in our representation is a variant of doPar:

makeArray_f(jl,j2, . . . ,jn), b'l, lbl, ubl], _2, Ib2, ub2], . . ., [jn, Ibn, ubn]]

which constructs a rank n array for which each element value is defined by the function f, usually instantiated
as an expression over the index variables.

While this seems to work well for pure data-parallel constructs (for SIMD target machines such as the
CM2), this representation is too weak to represent more general parallelism. Consider four computations A,
B, C, and D, with the requirements that A occur before C, and that B occur before C and D; the present
primitives can at best express only overly-constrained versions of the requirements, thus losing the ability
to explicitly represent the potential parallelism. The partial order in which finite-difference equations must
be evaluated is one such example. In general, tree-structured representations cannot capture partial orders
(without resorting to some kind of context-sensitivity).

5 Proposed Representation

We are considering using a variant of "Unified Computation Graphs" (UCGs) [WBS+91] to represent pro-
grams. Such graphs are ba_ed on simple data-flow graphs, with the addition of shared data, control-flow
arcs (similar o program dependence graphs [FOW87]) and "exclusion constraints" between nodes. Exclusion
constraints I revent two or more parallel activities from simultaneous execution, and are usually associated
with acce_, _ overlapping parts of a shared data structure.

In Figure 1, we show computations as bubbles, data- and control-flow as solid arrows, and exclusion

dependencies as a dashed arc with no arrows. Primitive computations in bubbles are represented as trees.

95

UCGs assume global shared data among computations, while pure dat_-flow assumes no shared data. We

have added a representation for data shared among particular nodes, and show the storage shared by two
computations with an enclosing dashed arc. Computations not sharing data with others are not necessarily
functional; each may still have internal state. Parallel-prefix operations may be represented either by reduc-
tion operators over data aggregates, such as the Fortran 90 SUNoperation, or explicitly via n-ary trees on
explicitly represented operands. We currently do not represent pipeline parallelism or multiple simultaneous
activations of each operator [AG82].

We mix notations by writing (sub)UCGs isomorphic to purely parallel (respectively sequential) constructs
as their textual par (respectively seq) equivalent.

5.1 Refinements on UCGs

A refinement is a type of transformation that introduces detail (i.e., removes possible models). Several
generic refinements of standard UCGs are possible:

Rc,,,n_, Refine a computation into a sub-UCG (Figure 2).

R1_ow Refine a data-flow carrying a complex data structure into multiple data-flows carrying parts of that
structure (composing this with the previous action produces data-parallel computations when data-flow
components are homogeneous).

Rab,t,-act Group parallelizable computations into a single computation.

R,,erge Merge a set of parallel computations into a single computation.

R_er, al,ze Sequentialize a pair of parallel activities by adding control-flow arc.

R, eq_,,ce Refine an exclusion constraint arc into a control-flow arc going in either direction.

New refinements possible because of the enriched representation:

R_to,-e Refine data-flow between nodes into control-flow plus shared storage.

Rco,zle,ce Coalesce several shared storage regions into one.

6 Example

In this section, we sketch the refinement of a domain-specific component into good CM2 code, given our
proposed representation.

We present an equivalent Fortran 77 code _agment first, abstracted _om a real modeling prGgram,
to ensure that the reader initially sees what a conventional compiler sees. A conventional compiler must
determine which of these steps can be executed in parallel, knowing nothing of the intent.

DO I00, ix=K+I,K+N

DO I00, iy=K+l,K+_

100 padarrayCix,iy)=muCix-K,iy-K)
<...lots of unrelated code...>

DO 128 iy=1,N

DO 128 ix=l,K
128 padarray(ix,iy) = padarray(K+l,iy)

DO 129 iy=l_N
DO 128 ix=N-K+I,N

129 padarray(iz,iy) = padarray(_-K,iy)
DO 132 ix=l,N

DO 130 iy=1,K

130 padarray(ix,iy) = padarray(ix,K+l)

DO 131 iy=N-K+I,N

131 padarray(ix,iy) = padarray(ix,N-K)

96

Computation Data/Control flow Exclusion

Dependency Shared data

Figure 1" Representation of Parallelism

97

132 CO_TI_JE

This code actually pads an N × N array (nu), producing an (N + 2, K) x (N + 2, K) array (padarray)

with a K-wide "taper" region along ali edges. This is a common operation in modeling codes on variables

representing properties of space when taper boundary conditions are used [IO81]. The intent is to fill the
taper boundary areas with copies of the nearest edge of the original array; a conceptual view of this operation

is provided in Figure 3. The resulting array has nine regions. The taper edges are filled with copies of the
corresponding edge of the original array; symmetry leads one to the conclusion that the corner regions of

the padded array must be filled with values from the closest corner of the array. Each region is defined as

the set of elements selected by the cross-product of a particular range of indices; the upper, left hand corner

has range [i, 1, K], [3', 1, K], etc.

We give an abstract program schema defining the domain-specific notion Pad(array), using case analysis
to determine in which region an element resides:

Pad [originalarray ,g] isSchema

_N :=AxisSize (originalarray) ;

makeArray [
case [

l<=i<=K and I<=j<=K: originalarray[l,1]; (* upper left corner *)

l<=i<=K and K+I<=j<=K+|: originalarray[l,j-K+l]; (* North side *)

' 1<=i<=K and K+|+I<=j<=|+2*K: originalarray[l,|]; (* upper right corner .)

K+I<=i<=K+| and I<=j<=K: originalarray[i-K+l,1]; (* West side *)

K+N+I<=i<=|+2*K and I<=j<=K: originalarray[l,1]; (* lower left corner *)

K+N+I<=i<=|+2*K and K<=j<=K+|: originalarray[|,j-K+l]; (. South side *)

K+N+I<=i<| and K+J+I<=j<=|+2*K: originalarray[|,N] ; (* lo.or right *)

K+I<=i<=K+| and K+|+I<=j<=J+2*K: originalarray[i-K+l,J]; (* East side .)

K+I<=i<=K+| and K+I<=j<=K+|: originalarray[i-K+l,j-K+1]; (* niddle *)

], (* case *)
Ii,I,I+2*K], tj,I,|+2*K]]

This schema provides for maximum (data) parallelism; every element can be computed independently,

and thus the entire computation takes only O(1) time on an appropriate architecture. It could be used by

SINAPsg whenever padding is required; no rediscovery of parallelism is required.

However, the computation would still be unneces_,arily inefficient on a SIMD machine such as the CM2,

for which a data parallel operation requires ali processing elements (PEs) to perform the same instruction

and then synchronize. Each PE must synchronously execute the entire case statement body. Assuming one
machine instruction for each operand and operator, each case requires about 15 instructions, so the nine
cases require about 13,5 instruction times.

We can lower this cost by eliminating runtime evaluation of the case bounds. The cases conveniently define

SIMD-compatible partitions of the instruction strearnvJ. SINAPSg assumes that a case construct preci_ly

covers its cases, with no overlap; thus ali case clauses may be executed in parallel:

seq[N:=AxisSize(originalarray) ;

allocate(padarray,N+2.k,|+2*k); (. creates storage for padarray *)

pax[
doPar [padaxray Ii,j] :=originalarray Ii-K+ I,j-K+ I],

[i,K+I,K+N],[j,K+I,K+_J]; (* middle *)

doPax [padarra7 Ii,j] :=originalarray [i-K+l, I],

[i,K+I,K+N],[j,I,KJ]; (. West side *)

doPax [padarray tj,j] :=originalaxray [i-K+l,NJ,

[i,K+I,K+N],[j,K+N+I,J+2,K]J; (* East side *)

doPax [padarray tj,j] :=originalarray [I,I],

[i,I,K],[j,I,K]]; (* upper left corner *)

dopa/[padarray tj,j] :=originalaxray [I,j-K+I],

[i,I,KJ,[j,K+I,K+NJ]; (* North side *)

98

i

doPar[padarrayIi,j]:=originalarray[I,|],

[i,l,K],[J,K+7+I,|+2*K]]; (* upper right corner *)
doPar[padarrayIi,j]:=originalarray[7,I],

[i,K+|+I,7+2*K],[j,I,K]]; (* lo.er left corner *)

doPar[padarrayIi,j]:=originalarray[7,j-K+1],
[i,K+7+I,7+2*K],[j,K,K+N]]; (, South side ,)

doPar[padarrayIi,j]:=origlnalarray[7,7],

[i,K+7+l, and K+7+I,7+2*K]]; (. lo.er right *)
3; (, par *)

padarray] (* seq *)

Bach of these cases now maps directly onto a Fortran 90 array primitive, and each would execute in just a
few instructions on a CM2. However, the CM2 has only one set of data-parallel processors, so each "parallel"

case competes for the data-parallel processor resource. Static resolution oi"this resource contention requires
serializing access to the s_t oi"data-parallel processors, and consequently 9 units of time are actually taken.

This can be reduced to 5 (as in the original hand-coded fragment) by combining steps. Consider Figure 4;
in stage 1, after copying the original array (1 unit), we expand the copied array along the X-axis (1 unit in
both directions); in stage 2, we expand the expanded _.rray along the Y-axis (1 unit in both directions).

To make progress towards this reduction in effort, we apply the following refinements:

• Group (Rabstr, ct) some parallel activities, with the intention of merging them (/_er0e), and

• Order (Rser, at,,e) some parallel activities, to eventually ensure that certain properties are present when
needed.

The result is shown in Figure 5.

The activities so grouped can be combined into a single data-parallel primitive. This is because after
copying to the center, and filling east and west edges, we have entire edge rows ready to replicate vertically,
as shown in Stage 2 of Figure 4. Consequently we can rewrite the three steps:

pare
doPar[padarray[i,j]:=originalarray[I,I],

[i,I,K],[j,I,K]]; (* upper left corner *)
doPar[padarrayIi,j]:=originalarray[I,j-K+I],

[i,I,K],[j,K+I,K+7]]; (* 7orth side *)

doPar[padarrayIi,j]:=originalarray[I,7],

[i,l,K],[j,K+7+I,7+2*K]]; (* upper right corner *)
] (* par *)

as the single step:

doPar [padarrayIi,j] :=padarray[K,j],

[i,I,K],[j,I,7+2.K]];(* upper edge ,)

We similarly optimize the code for filling the lower edge.

99

On the CM2, copying from one array to another is cheap only if the copied array has the same size and
alignment in memory as the target. When the source is smaller than the destination, changing the alignment,
the communication costs are high (roughly 100 times slower than the aligned case!). We can do little about
the cost of copying originalarray. However, we need not suffer as great a cost when ft|ling the east and
west edges; we can take advantage of the fact that an aligned copy of the east edge of the original array
is present in the target array, and copy that instead. This optimization requires that we add additional

computation-ordering constraints (R, er_auze) to ensure that copy-original-to-center occurs before filling the
east or west edges. Having accomplished that, we can rewrite:

doPar [padarrayIi,j]:=originalarrayIi-K+I,I],

[i,K+I,K+N],[j,I,K]];(* West side *)

as:

doPa/[padarrayIi,j]:=padarray[i,K+I],
'[i,K+I,K+N].[j,I,K]];(* West side *)

Again, we can do the same for the east side, producing a computation in the form shown by Figure 6.

A final equivalence simplifies a set of parallel computations, each of which is connected to ali of their
descendants, into a simple sequence:

eeq[N:=lxieSize(originalarray);
allocate(padarray,N+2*k,N+2*k);_* creates storage for padarray *)

doPar[padarray[i,j]:=originalarray[i-K+1,j-K+I],
[i.K+i.K+_],[j.K+I,K+N]]; (* middle *)

par[doPar[padarray[i,j]:--padarray[i,K+I],
[i,K+I,K+|],[j,I,K]]; (* West side *)

doPar[padarray[i,,j]:=padarray[i,K+N],
[i,K+I,K+N],[j,K+N+I,N+2*K]];(* East side *)

];
par [doPar [pads/ray [i, j] :--padarray [K+I, j],

, [i.I,K],[j_I,N+2*K]]; (* upper edge *)
doPar[padarray[i,j] :=padarray[K+N,j],

[i,K+II+I,7+2*K], [j,l,7+2*K'I] ; (* lower edge *)
];

padaxray] (* seq *)

At th_ present 'time, SINAPSE represents the Pad component in essentially this form, rather than refining
it from a more abstract description.

At ft1al code-generation time, we generate code in any order consistent with the partial order over the
computaLions and produce the following CM2 Fortran 90 code:

C c_py original array
padarray(K+I:K+N,K+I:K+7)=mu(1:7,1:7)

C _ill Westiedge
+adarray(K 1:I+7,1:K)=SPREAD(padarray(K+l:K+N,K+I) 2)

C Fill East edge

padarray(K+1:K+N,K+7+I,:7+2*K)=SPREAD(padarray(K+1:K+N,K+N,2)
C j, !_illupper boundary

]_adarray:'(l:K,I:7)=SPREAD(padarray(K+I,I:7),I)
C Fill lower boundary

padarray(K+N+I:7+2.K,1:7)=SPREAD(padarray(K+N,1:ll),I)

lt is interesting to compare this to the original hand-generated code. At no point must we rediscover
the parallelism from a complex, highly optimized target language code, as done by conventional compilers.
The same efficiency has been achieved from an abstract specification that could be used to generate code for

100

multiple architectures and languages. On a MIMD machine with low communication costs, we could assign
one processor per result-array element, and specialize the case statement for that processor at synthesis
time, providing effectively unit time execution of the padding operation. For a high-communication cost
MIMD machine, we might refine the original component into 9 parallel tasks with no shared storage, and a
final assembly step.

Since we avoid the discovery process, we also avoid the requirement to harness the often necessary problem
domain knowledge to aid this process. Conventional compilers do not have this knowledge, and thus the
application programmer must be somehow brought into the process, making compilation partly manual.

7 Lessons

For the CM2, a good strategy for generating code seems to be:

• Represent computations with functional code fragments expressir g data parallelism over regions (this
should allow us to target other parallel architectures _ weil).

• Convert the functional fragments to side-effecting fragments over the same regions.

• Reduce operation count by merging parallel data-parallel operations on adjacent regions.

• Reduce communications cost by aligning data.

For data-parallel architectures with regular communication topologies, misaligned data in operations can
be very expensive. A model of the communication costs would help to focus attention of the synthesis system
on points needing optimization. The actual optimization can be accomplished by copying to an aligned array
(creating a singly-assigned temporary variable) and allowing code motion to move the copy step to a point
where the copy is only evaluated once.

8 Conclusions

We have found tree-structured representations of parallelism to be overly constraining, and are moving
towards representations including partial orders. Such representations will allow us to both directly encode
domain-specific components with maximal parallelism, and hence enable us to perform optimization and
resource assignment based on the potential parallelism.

SINAPSE is also being enhanced in several other areas. More detailed knowledge about problem domains
such as 3D ultrasonic wave propagation is being added. Solution techniques such as finite-element methods
as alternatives to finite differen-ing are contemplated. We are currently adding programming knowledge
about multiple target languages. We hope to eventually generate production quality modeling programs for
parallel machines.

References

lAG82] Arvind and Kim P. Goestelow. The U-Interpreter. Computer, pages 42-49, February 1982.

[BKK+89] Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, Kathryn McKinley, and Jaspal Subhlok.
The ParaScope Editor: An Interactive Parallel Programming Tool. In Proceedings of Supercom-
puling '89, pages 540-550. ACM Press, November 1989. ACM Order Number 415892.

[Corg0] Pacific-Sierra Research Corporation. The MIMDizer User's Guide. Pacific-Sierra Research Cor-
poration, 12340 Santa Monica Blvd, Los Angeles, CA 90025, 1990.

[FOW87] Je_.nne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence Graph
and Its Use in Optimization. A CM Transactions on Programming Languages and Systems,
9(3):319-349, July 1987.

[tlS86] W, Daniel Hillis and Guy L. Steele. Data Parallel Algorithms. Communications of the ACM,

29(12):1170-1184, December 1986.

i01

[IO81] Moshe Israeli and Steven Orszag. Approximation of Kadiation Boundary Conditions. Journal
of Computational Physics, 41:115--135, 1981.

[KDMW90] Elaine Kant, Francois Daube, William MacGregor, and Joseph Wald. Automated Synthesis of
Finite Difference Programs. In Symbolic Computations and Their Impact on Mechanics, PVP.
Volume P05. The American Society of Mechanical Engineers 1990, New York, NY, 1990. ISBN
0-791800598-0.

[KDMW91] Elaine Kant, Francois Daube, William MacGregor, and Joseph Wald. Scientific Programming
by Automated Synthesis. In M. Lowry and R. McCartney, editors, Automating Software Design.
AAAI Press, 1991. To appear.

[SMD+89] K. Sridharan, M. MeShea, C. Denton, B.Eventoff, J. C. Browne, P. Newton, M. Ellis, G. Gross-
bard, T. Wise, and D. Clemmer. An Environment for Parallel Structuring of Fortran Programs.
In E.C. Plachy and P.M. Kogge, editors, Proceedings of 1989 International Conference on Par.
ailel Processing, pages 98-106, 215 Wagner Building, University Park, PA 16802, August 1989.
The Penn State Press.

[WBS+91] John Werth, James C. Browne, Steve Sobek, T. J. Lee, Peter Newton, and Ravi Jain. The
Interaction of the Formal and the Practical in Parallel Programming Environment Development:
CODE. Technical Report TR-91-09, Department of Computer Science, University of Texas at
Austin, April 1991.

[Wo191] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addision-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1991. Second Edition.

L

i

i

102

Figure 2: Refining node B

103

I
aaa a N dl ddd

aaa a N d _ ddd
aaa a d ddd

.i

,,, aaa a N d ddd

Original
WWW W Array E EEE

bbb b ,, S c ccc

,,/
r I1bbb J b S c ccc

bbb b S c ccc
bbb b S c ccc

Figure 3: Padding an array by filling new boundaries with copies of edges

104

aaa a N d ddd

O-- Copy of __p.
WWW W Original E EEE

Array

bbb b S c ccc

Stage 1

aaa a N d ddd
aaa a N d ddd

aaa a _ d dd_
I e
|

aaa : a N d | ddd|
e. :
a |

: :
o

o

: Copy of ,:
|

WWW : W Original E i EEE
.' Array :
0 |

| e
| e

: :
bbb ': b S c : ccc

e |

I I

: :
| l

bbb I b S c : ccc
I

bbb | b S c : ccc
_ :, _ _ _ ; ccc

Stage 2

Figure 4" Padding operation optimized for Connection Machine

105

Figure 5: Refining parallel padding

106

Figure 6: Final representation of padding for data parallel machine

107

Applying Abstract Interpretation to Indentify Vectorizable Numerical Code in Logic
Programs 1

Arvind K. Bansal 2 and Dilip S. Poduval
Department of Mathematics and Computer Science

Kent State University
Kent, OH 44242, USA

E-mail: arvind@mcs.kent.edu and poduval@mcs.kent.edu

The solution of real world problems require the efficient integration of both symbolic and quan-

titative computation. In recent years, logic Programming paradigm has become quite popular for
symbolic computation due to its nondeterministic and declarative style of programming which sup-
ports alternate solution, and the use of inherent polymorphism (multiple possibly infinite) wllich
allows same piece of code to be used for different data types. However, the current implementation
is slow, due to the extensive use of recursion, sequential data structures such as lists needed to
support the declarative style of programming, and the lack of explicit declaration of monomorptlic
(single) types resulting into run time overhead of memory allocation. Current efforts to improve
the run time efficiency :falls into two categories as follows'

1. exploiting inherent control parallelism- AND parallelism, OR-parallelism, and stream par-
allelism- in AND-OR tree computation model which uses concurrent spawning of processes
and their synchronization.

2. exploiting data parallelism on associative Supercomputers to handle logic programs with large
knowledge bases, and

3. Optimizing compilers based upon global data flow analysis

Approaches to incorporate parallelism in logic programs can be broadiy described as follows"

1. User declared parallelism and synchronization information suitable for low level parallel logic
programming etc., and

2. User transparent incorporation and integration of parallelism.

3. Compile-time global data-flow analysis to detect AND, OR, arid stream parallelism in a pro-
gram and to perform different types of optimizations such as identification of determi_listic
code and to transform different class of programs to integrate all three types of parallelism.

\Ve are interested in the last model which forms the basis of a parallelizing and oi)timiziilg
compiler in logic programs. Although parallelizing compiler seems quite promising, the execution
speed of vectorizab]e numerical code with large data-size is much faster (1 to 2 billion floating
point operations per second) on vector supercomputers such as pipelined vector supcrcomput(.rs

1Supported in part by NSF equipment grant no. CDA 8820390
"-'Furure Correspondence

108

oi" iilassive parallel SIMD computers, compared to 50 - 100 KLIPS (50 to 100 thousand logical
inferences per second) for the current implementation of parallel logic programs. In imperative
languages such as Fortran, the efficiency of the parallelizing and vectorizing compilers for scientific
llum('rical computation has been successfully demonstrated.

A major part, of the vectorizable numerical code is given by definite iteration because same
set of statements are executed for every element of one or more sequences. A simple example
of vectorizable numerical code (written in Fortran like language) to add two matrices is given in
Example 1.

Example 1:
do20 I= I to 10

20C(I)= A(I3 + B(2"1+ 3)
Note that the value of the index used to access the elements in the vector B, increments peri-

odically with a constant offset of 2 in each iteration step and the initial offset is 3.
Vectorization of such iterative programs replaces the innermost loop by a vector operation. In

the vector notation M..N:P, M stands for the lower bound of a vector-subrange, N stands for the
upper bound of the subrange, and P stands for the constant-offset in the index value to access the
vector element in next step. The corresponding vector code for the above program is C(1..10:1) =
A(I..10:1) + B(5..23:2).

A major issue in identifying vectrizable code is the sequentiality caused due to the lack of avail-
able values for a variable, or the change of the value of a variable in the previous steps. In both the
cases, the following statements have to wait for the values from the previous statements. While the
absence of a value for a variable is purely a synchronization issue, the sequentiality caused due to
change of value is due to destructive nature of variables in imperative languages. In logic programs,
the absence of destructive nature of variables avoids the sequentiality caused due to the later restric-
tion. The only sequentiality is caused due to dependence caused due to nonavailability of a value
which has been identified using compile-time producer-consumer relationship- the first occurrence
ot"a variable produces a variable and following occurrences consume variables - analysis. In contrast
to imperative languages, the problem of vectorization in logic programs is quite different due to the
presence of nondeterminism, the use of lists to simulate vectors, the lack of explicit monomorphic
type declaration, the lack of support for iterative constructs, and the lack of destructive variables.

An apt)roach to develop efticient parallelizing compiler which integrates symbolic and numeric
computing under the framework of logic programming will incorporate

1. applying abstract interpretation to identify type infermation of the variables in various pred-
icates,

2. applying abstract interpretation to identify vectorizable numerical code,

3. applying abstract interpretation to identify producer-consumer relationship necessary to de-
rive data dependency,

4. transforming non-vectorizable numerical code using tail recursive programs to iterative pro-
grams which can easily be transformed to vectorizable code,

5. transforln vectorizable numerical domain in logic programs to be efficiently execlltable code
oll v('('tor Sll[)(?r(.OlTll)l_ters _

109

6. identifying deterministic code for code optimization by removing the overhead of handling

multiple environment caused by multiple clauses 3.

7. identifying different types of parallelism in a logic program,

8. developing parallelizing compiler exploiting AND, OR, and stream parallelism in symbolic

domain. This c_n be done using program transformation to existing model, or compiling the
symbolic domain and non-vectorizable domain to an extended variation of warren abstract
machine.

9. developing interface for parallelizing compiler in symbolic domain and vector codes on vector

supercomputers

10. Extend warren abstract machine to handle non-vectorizable iteration, derived type informa-

tion, along with AND, OR, and stream parallelism.

In this paper, we describe an application of abstract interpretation to identify the vectorizable

numerical code. This vector analysis scheme derives definite iteration, the information about bound

and indices, identification of vectors simulated by lists or functors, and the derivation of vector-size.

The vector analysis scheme is based upon extending abstract domain from type domain to the

abstract domain as vector domain. Vector domain is a superset of type domain and includes vector

related information along with type related information. However, we differentiate between the

two different modules, namely abstract interpretation in type domain and abstract interpretation

in vector domain since the output of type domain is also used for producer-consumer analysis,

identifying different types of parallelism, and identifying deterministic code - codes which have no

alternative solution. The vector analysis scheme has five components, namely, generalization, vector

unification, vector summarization, concretization, and iteration analysis. The first four components

are used to propogate and collect the information in the vector domain and the last component uses

solving a system of linear equations to derive the vector-size information, and the identification and

disambiguation of index and bounds for iterative constructs simulated using tail recursive programs.

We describe various schemes and explain the algorithms. We also discuss the current issues to

integrate AND, OR, and stream parallelism with vectorization.

3Multiple environments are handled implicitly (one at a time) in Prolog by backtracking and unbinding, while,
they are explicitly handled in OR-parallel implementations

ii0

Data Locality

Monica S. Lam

Computer Systems Laboratory i

Stanford University, CA 94305

Previous research on parallelizing compilers for sequential imperative progrltmming languages con-

]

centrated on the extraction of parallelism. Recent results in the area indicate_ that the extraction of
. I

parallelism is only the first step. The discovery of a large amount of parallehsm does not necessarily

translate to a gain in performance because the overhead in synchronization and communication can ren-

der parallelization ineffective. Improving data locality, thus reducing the communication overhead, will
become even more important as processor speeds continue to increase much faster than communication

and memory access rates. The study of parallelism must therefore be coupled with the study of locality.
While standard scalar optimizations aim to reduce the total instruction count in a program, locality

optimizations rearrange the computation to reduce the cost of data accesses by taking better advantage of
the memory hierarchy. We take a three-tiered approach to the problem: First, we try to group operations

that use the same block of data as a unit of computation allocated to a processor. In _thisway, the cost of
fetching the data is amortized across ali the operations using the data. If this technique does not reduce
the communication adequately, we try to allocate the computation and data to proce_ssors in a way that

minimizes interprocessor communication. Lastly, if communication is unavoidable, twe try to hide the
latency of the communication by overlapping the data fetches with computation on otlher data.

We have been focusing on two different computation domains which require different techniques

in gathering the information necessary for locality optimizations. They are dense matr'i'x computations
where a fully automatic compiler approach is feasible, and coarse-grain tasks where linguistic support is
necessary.

1 Dense Matrix Computations

Our data analysis in the domain of dense matrix computations focuses on those array refere)ces whose
indices can be expressed as affine functions of the loop indices. We have developed a reuse analyzer that
identifies those iterations that use the same data[4]. The idea is based on finding the kemel of a matrix

constructed from the index functions of an array access. This analysis provides the information useful for

all the three locality optimizations described above. We have succeeded in using the information to block
computations automatically, we are currently investigating the topics of better computation placement
and prefetching.

To successfully convert codes in practice into their blocked version, we need to combine the ba-

sic blocking transform with other loop restructuring transforms such as loop permutation, reversal and
skewing. We model these transformations of permutation, reversal and skewing and their combinations

This researchwas supportedin part by DARPAcontractN00014-87-K-0828.

111

as unimodular matrix transforms[5]. This approach applies not only to code whose dependences are

representable as distance vectors, but 'also to the more general domain of direction vectors as weil. This

formulation reduces the locality optimization problem to finding the best matrix transform that exploits
the reuse discovered in our reuse analysis.

Our algorithm can automatically block codes such as matrix multiplication, a successive over-

relaxation (SOR) code, LU factorization without pivoting and Givens QR factorization. Performance

evaluation reveals that blocking can improve uniprocessor workstations by a factor of 3 to 4; its impact

on multiprocessor is even more significant as it reduces memory contention, permitting a near linear
speed up on multiprocessor systems.

2 Coarse-Grain Parallelism

The high-level data reuse pattern, that is necessary to exploit coarse-grain parallelism effectively, is hard

to extract automatically from a program. Fortunately, this level of information is well understood by

the programmer of file application. We need only to provide linguistic support so that the programmer

can easily convey the information to the optimizer. Existing imperative parallel programming languages

generally require the programmer to express the parallelism in terms of low level control. Not only
is the programming task difficult and error-prone, it is impossible to extract the high level data usage

information from the program.
We have developed a parallel programming language called Jade that allows a data-oriented expression

of parallelism while fully supporting the imperative programming paradigm[l, 2, 3]. Starting with a
sequential program, a programmer simply augments those sections of code to be parallelized with side

effect information. The Jade system automatically infers from the side effect information the allowable
parallelism between these sections of code, which are also known as tasks. The Jade system finds not just
static parallelism but also parallelism that can only be derived at run time. Using Jade can significantly

reduce the time and effort required to develop a parallel version of an imperative application with serial

semantics. Jade has been implemented as extensions to C, FORTRAN, and C++, and currently runs on

the Encore Multimax, Silicon Graphics IRIS 4D/240S, and the Stantbrd DASH multiprocessors.

The responsibility of blocking the computation to promote data reuse falls on the programmer. Jade al-

lows the programmer to express the side effects of an arbitrary unit of computation in terms of user-defined
objects, rather than memory locations on individual read/write operations. This support of abstraction

enables the programmer to use his application knowledge in choosing the right granularity of synchro-

nization. The Jade language allows the programmer to express the intbrmation simply and directly. The

programmer need not reduce the information down to low level control constructs; the system automat-

ically coordinates the hardware resources to pcrfoml the computation correctly and concurrcntly. By
hiding the low level details from the programmer, the program is easier to write and it is more portable.

Moreover, with the side effect information specified by the programmer, the system can further optimize

the program by better data ,and computation placement and data prefetching.

Jade is designed to be compatible with compiler optimizations. Since the language does not have

any implicit communication operators, a compiler can optimize individual tasks as if they are simple

sequential codes. Automatic parallelizing techniques, such as blocking, can be applied to the more
regular parts of the computation, thus enabling the programmer to concentrate on the more application

specific form of parallelism. By combining both language technology and compiler optimizations that

tbcus on data locality optimizations, we hope to develop a system that can exploit parallelism in a wide

112

array of applications.

The research described in this talk is performed jointly with Michael Wolf, Martin Rinard, Daniel
Scales and Jennifer Anderson.

References

, [1] M. S. Lam and M. C. Rinard. Coarse-grain parallel progrm'nming in Jade. In Proc. ThirdACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, April 1991.

12] M. C. Rinard and M. S. Lam. Semantic foundations of Jade. In Proc. 19th Annual ACM Symposium

on Principles of Programming Languages, January 1992.

[3] D, J. Scales, M. C. Rinard, M. S. Lam, and J. M. Anderson. Hierarchical concurrency in Jade. In
Fourth Workshop on Languages and Compilers for Parallel Computing, August 1991.

[4] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proc. ACM SIGPLAN 91

Conference on Programming Language Design and Implementation, pages 30-44, June 1991.

[5] M. E. Wolf and M. SLam. A loop transformation theory and an algorithm to maximize parallelism.
IEEE Transactions on Parallel and Distributed Systems, October 1991.

113

Compiling FP for Data-Parallel Systenas

(Extended Abstract)

I Clifford WMinsky* Deb Banerjee I
f

Department of Mathematics & Computer Science
Dartmouth College

Hanover, NH 03755

Abstract

In data-parallel programming, operations are performed simultaneously oll ali elements of

large data structures. Backus's FP functional language promotes this view. FP provides a
large set of data rearrangemenet primitives, and a useful set of functional combining forms that
are applied to entire data structures. We present an overview of an FP compiler that generates
progr;.*nls capable of exploiting data-parallelism. The FP compiler determines the effects Of data
rearrangement functions at compile-time, thereby avoiding creation of large intermediate data
structures, and reducing communication overhead. FP and its compiler are formally specified,
reducing ambiguity concerning constructs of the language and results of the compiler.

1 Introduction

l(,_cel,t developments in computer design have made it possible to expoit a particular forln of inas-

sire l)arallelism: data-parallelism [11]. Examples of data-parallel systenls illclude the (_o_lllectiolj

,_'[_tChil,,?. (@[_0], l,lle ICL/DAP, t,he MPe [4], nlitzen [6], and ILIAC-IV.

Iii data-parallel systems, distinct elements of data structures are stored in distinct processors.

S<Jl'tware data structures are then aligned most naturally to the physical eonfigurat, ioll of processors,

wllicll is typically a multi-dilnensional grid. Because processors operate synchroilously, operatiolls

at,-' pert'orJned on entire data structures. Data-parallel programmillg style is very difl'erellt t'ro111

col_vetlLiollal programmillg. In conventional languages, iteration a_lcl recursioll are used to l>evforl,,

Ol_erations on iv dividual eleJnexits of data structures. In data-parallel l)rogralJ_lning, oi:)eral.iolls 1,o

('oml)irle and rearrange data are applied to entire data structures, making iteration and r(_('ursio_

l)e-('_ll)hasis of iterat;io_ m_d recursion makes realization of etficient parallel i_nl)le_(-_,,_tatio_s

l_,_(:l_ easier. The programs in Figure 1, written in a. conventional notat, ion employi_g iterations, bol.l_

su_ ali elements of a vector V. Sophisticated analysis is required to determine that sin mlta_e()_m

,;\al_,ation of the body of the first program's loop will not yield significa_t performance ir_l)rovt!lnel_I.

(l_ipeli_ed processing is more appropriate), while simultaneous evaluation is appropria.t,e for 1.1_,
S_,COlJlJ i._l"ogr alli.

"clif ford. ual ±nsky@dartmouth. edu

ldeb. baner jee@dartmouth, edu

114

Summation Program I Summation Program 2

S := O; for i in l..Ig(JVj) ao

for i in O.. JVJ-I do for j in 0..JVJ-I do
S := S + V[i] if j mod 2i = 0 then

VEj] :: V[j] + VEj+2i-I]

Figure :' Summation Programs

I,irJliting iteration and recursion makes data-rearrangement much more important. For example,
I.o sul_ corresponding elements of two vectors, the data-parallel style dictates the following steps.

1. Corresponding elements of the vectors are first paired so that corresponding elements reside
within the local memory of a single processor.

2. Nex(,, every processor adds the two elements stored in its local memory.

'l?he first step of data-parallel vector addition involves data-rearrange_nent. Using PP, it has

beel_ o,r experience that the number of operations that rearrange data far exceeds the number
i,_:.,ecledto combine values. Without a methodology for optilnizing data movement and reducilig

t.lle llulr_l_er of intern_ediate data structures produced from data rearrangement, compiled programs

,:,uld perf'orlll very poorly. Wadler also describes techniques for eliminating intermediate data
structures in ftlnctional programs [21][22]. His optimizations are adapted for linked data structures,

sucl_ as lists, and require enhancement to take advantage of vector indexing operations that occur
iii data-l)arallel l._rogramming.

A particular class of data rearrangement functions is amenable to compiler analysis and opti-

J,lizat, ion. A ro_ti_.9 function copies (a subset of) values from input to output in a data-independent

z,la_lev. That is, the actions of a routing t'u_ction are entirely dependent on the shape of the in-
l_Ul,, vatller than the particular value of the input. Reversal of the order of elements in a vector

is a routing function, t:,ecause Ciae ultimate destinations of elements in the vector ._,reunafrected

I,y t,la_:,ll'values, l:Iy contra_st, a t'unction that sorts elements of a vector is not a routing function,

si,,c,. ,I,.stinations oi' elements are entirely dependent on values. 'rbe class of expressible routillg
l'_J_cl,i¢Jllsis quiLe large, and may exceed the requirements of most applications.

lJJllerellt resource limitations of data-parallel architectures also impose additional restrictions

_,J, it,¢_ral.iol_and recursion. In general these constructs are implemented most efficiently whel_ pro-

cessovs ave able to conduct different activities simultaneously. However, in functional programming
sy,sl,,,_.s, tile acl, ivities of processors may involve complex stack manipulation, garbage collection,

a_,_l proc_:ss ntigration tasks. These tasks would easily overwhelm the relatively modest cornputa-
_.io,,al l:,,)wev and s_nall local memory space of processors in data-parallel systems. Irl the CM-2, for

¢_xa_l)le, ea_:h processor contains a 1-bit ALU, and can access at most 8K bytes of local memory.

I(,';tlizing t.hCelimitations and opportunities of data-parallel systems, the FP language [3] see_ls
_x,.ll-s,_it._.¢lfor compilatiol,. I;'P has a large set of data rearrangeme_tt l_rirnitives, and a useful set of

t,,,,,'t ,,_;tl co_r_l,i,,ing forms that encourage a style of programming where operations are applied _.o

,.J_l.ir,' _J;_l,astructures. Currently, we have implemented a prototype system tllat translates I,'P l,o

('M-I",,rl r;t_l [19]. C.',.)mpilatiol, employs "structure inference" to deterlnine tile form of i_ll,ul,s all¢l

115

_,lll,l,lJl,s 1,oali ,.xpressions [23]. We apply optimizations during corrlpilation to limit the number of

il_Le,'llmdiat¢_data structures and 'amount of data movement inclJrred from data rearrangmlmnt [8].
Sillce we are currently translating FP programs to an imperative language, and since we illlpc_se

l_lany restrictions on FP programs, it may seem that our approach dilutes many of the adva_Jl,agcs

_,1:t'ulJctional programming.. To the contrary, even with the restrictiolls we iInpose, FP progrm_lllillg
provides important benefits. First, the combining forms of FP enable easy composition of progrmli

ullits. Our structure inference system helps to dctermine if function composition is meaningful, for
f'ailure of structure inference implies the presence of a program error. While composition of l,'P

programs is extremely natural, composition of imperative language programs is relatively difficult,
because name conflicts may arise, and because data dependencies may not be satisfied. To see this,

c.o!jsider t_he difficulties constructing a program to sum two vectors, A and B, by composing the
two summation programs in Figure 1. The composition requires many name changes. If col_ll)lex
daLa dependencies were more prevalent between the two programs, the composition would be evell
harder to perform.

A secoiid advantage in favor of FP is demonstrated by Backus [3]. FP has a well-developed
algebra, mlabling program improvements to proceed automatically and reliably. By contrast, im-

provements to imperative language programs, especially those involving global analysis, are often
difficult _o perform correctly.

I"P is difficult to compile because programs contain no description of the data structures they
are manipulating. Structure iaference has been a key discovery that enables us to infer descril)tio_ls

of inputs and outputs of ali functions in programs. This inference technique is described in Section

'2.1. Structure inference produces type information and can statically compute vector lengtl_s. Sil_ce

vector length determination is undecidable in general, we have had to restrict the class of progralas
suitable for structure inforence.

lnt'erred structure information is utilized by a formally described compiler that produces low-

level language programs. The compiler is described in Section 2. Encouraging prelimirlary perfof
n_arJce results for the compiler are examined in Section 3.

We assunle that the reader has no knowledge of the FP language. The next subsectioli provides

aJ_ overview of FP. The final subsection of this section reviews other implementations ot,.parall_.l
t'_l,lcliollal programming languages. As this paper appears in a logic prograrrll_lizlg rotund, w_,
grat.jully acknowledge the important contribution of Prolog in making our ideas realizable. '1'1_

ti_,'_at of this paper is very much an extended abstract; we intentionally eli_ni_a_e r_ucl_ detail.

'1'1,,_reader is encouraged to examine other references for greater detail [23][8].

1.1 The Data-Parallel FP Dialect

J_Jl_,_Backus described PP in his Turing Award lecture in 1978. Concurrent with publical, ion of

t"1', h'lag6 [15] described a massively parallel computer system, called the FPM, for evaluat, i_g 17I:'.
Development of the FPM was never completed,

A_ li'P program is a finite collection of (possibly inutually recursive) function definition,s, ti'w_ry
t'u_ction definition describes a partial function mapping over FP data objects. Function defi_til.ions
_:ol_sis_.of primitive functions and functionals that combine functions. Ali functions are sl:ric_.--for

ali fu,_ctions f, f(J_) = J_, where J_ denotes the error value.

Certain subexpressions wit;hin FP function definitions are designated for parallel _:;valuaCi_:)_.
(.:urre_tly, these subexpressions may not be recursively defined, and may not contai_ il,_;ral.ic_.

I';-_rallel l:P fu_ctions map over parallel FP objects, which may I:_ scalar values, tul_l¢_.s(tix_l-

116

lel_gl,ll sequellces of ob.iects), or vectors (finite but unknown-length sequences of similarly structured

ol,j,_ct.s). Vectors and tuples may be nested, producing for example vectors of tuples. A vector

uf sr elelnents--xl, ..., x,l--is denoted [zl,.,,, zn], A tuple of n elernents--a_l,,.,, zn--is denoted

(,l,...,a:,,). ,
'l'_d_,l,:1 describes the set, of primitive parallel IPP functions used in examples of this paper.

l,'ullCtiOllS a,re combined with five special functionals_higher-order functions that take other func-
tiolls as a.rgumen{,s and return functions over parallel PP data objects. The functionals are detined

iii 'l'al_le' 2. Due to data dependencies, Backus's original definition of the insert functional requires
s_,tJl¢:,llJult,il)le of r_ parallel time steps for evaluation on an n-element vector, even with an unlim-

iu.d Illllllber of processors. The pairwise insert, by contrast, requires only ['lgni parallel time steps
wlleil a l_plied to n-element vectors,

I,'ulitr.ion Name Function Description

l"_'i_itit,e (;'O'ml,utatio, al Functions

fYl +Y2, if x= (Yl,Y2};A_ldit,ion(+) +(x)
±, otherwise.

Yl x y=, if x- (Yl,Y2};Mult,iplicat, ion(x) x (x) = _1_, otherwise.

l'_'iTllilive R.out.iT_.9 FTLnc't.io71.s ..

yi, ifaJ= (Yl,...,Yn) and l_<i<_ n;'l'tlple Selection(in) La(a:) - 2, otherwise.

[[[a21, l'''''a_m,1]'''''[a:l,n'''''xrn,n]]'

'l]'a,_sposition(trans) trans(a:) J if z = [[zla,... ,zl,n],..,2, otherwise.

I)isl,ribt_l,e-left(distl) distl(z) = if = (z,[y,,,,,, y,d>;
2, otherwise.

l)ist.,'ibut, e-right(distr) di.str(z) = J if, = ([x,,..., x.,,],y);2, otherwise.

[(aJ,,yl>,...,<Xn,yn>],

I'ai,'i,,g(pair) pa±r(z')= if X "- <[a21,... ,Xn], [_1 , . . ,_n]>;

Z, otherwise.

Table 1' EP Primitives

117

[u_rl,ctmn, al Name Functional Description

'.,omposi_t,on(f o,g) f o g(z) f(g(z))

{ [I(z,),...,/(_)], if, -[xi,...,zm];Appliy-all(af) c_f(z) = 2_, otherwise.

" I

- '.? . ' (fi(x) .. fr(z)>, if li(x)7_ I;. rap.l_Ln,g([I1 ... J',_]) [/1 .. f,_]i(z)= '" -
' ' ' ' 2_, otherwise.

[y, ifx=[y];

Pairwise [n,sert(/f) lr(x)- I f((/f([zl, ,zn]),/f([xn+l,...,X2n)]>),

if z = [zl,...,z2,_];

2_, otherwise.

Tab he 2" FP Functionals

1.2 FP Programming Examples

Backus's original matrix-multiply program is presented below.

del RR = ac_(IP) o PairUp.

def lP = /(+) o _(x) o pair.

def PairUp = a(distl) o distr o [12,transo92].

Function NN is provided: a tuple of two matrices, each represented by a vector of vectors. The

PairUp function forms a matrix of pairs of every row of the first matrix with every column of the

s_-;coud. The aa(IP) function then applies the inner-product function II= to each row-column pair.

We still need to show that the NN program specifies parallel activities that a compiler can exploit.

if literally translated, the PairUp function could produce a large number of intermediate data

sl;ructures. However, creation of these intermediate data structures is avoided with our compilation

r.,<hniques. The Ii= function is evaluated simultaneously on a matrix of row-column pairs. Since

__.:,,(:hproduct is computed essentially in constant time, and the summation of products is performed

i,l r.in,e proportional to the length of each row, the entire program specifies a logarithmic tiltte (in
the length of each row of the first matrix) parallel procedure.

This function definition exemplifies the style of programs suitable for data-parallel evaluation.

[(outillg functions (PairUp in this examgle) often dominate, because they are necessary for dis-

tributing data to the appropriate functional units for computational operations. Recursion and

it.,erat.iott are far less important than in other functional programming languages. Some of the ben-

_til:s of t.hese const,ructs are subsumed by the extensive set of routing functions provided with FP,

;t.i,c] the apply-ali and pairwise-insert functionals. Certainly, recursion and higher-order funct.iotis

a.r_._illlportant programming tools; however, many useful programs can be produced without them.

1.a Related Work Parallelizing Functional Languages

[)_.veIopment of parallel functional programming languages and systems has been ongoing for many

\,-_a.rs. .Most systems developed and proposed so far consist of heterogeneous (M[MD) processes.

118

I)atafl_,w languages [16][18] expose parallelism at the instruction level'the finest grain possible. II,

<o,,trasttodata-parallellanguages,instructionsare executed asynchronously.The ld language [18]

ill_',_rl_orates regular data structures similar to arrays, called I-structures. Typically a computational

l,r¢_:,,._.-is initiated at each element of an I-structure, expoiting a high degree of available parallelisln.

Our co,Jtpiler also implem-nts regular data structures (FP's sequences) as arrays, and can spawn

processes at. each array element.

'ttt,: HDG (Highly Distributed Graph Reduction) system [7], ParAlfl [12], and various parallel

Lisp alld ScheLne implemen.tations [13] have language evaluators located at each processor. In

c_._t,tra>t to ctataflow systems, these systems exploit mainly course-grained parallelism. Due to

II,t. t_tl_erent resource limitations of data-parallel systems, data-parallel implementation of HDG

al.,l)ears l,o be impractical.

t'arAlfl progran_s contain explicit statements directing the mapping of processes to physical pro-

,',:.ss_,r_. This mapping problem is substantially reduced in data-parallel systems because processes

are always mapped to distinct virtual processors, and the mapping of virtual to physical processors

is l;,ortbrn_ed automatically according to problem size. Much work has been conducted in the devel-

_;,l_l,t_?tltof CM-Fortran [19], determining proper physical layout of data to reduce inter-processor

c,,llt|,tunication [14]. At this early stage in its development, the Connection Machine FP compiler

_,._tt_:rates CM-Fortran programs enabling it to obtain reasonably good layout of data structures.

Mou and Hudak have developed a data-parallel functional language, called Divacon [17]. Futtc-

r+io,_sdesigtLated for parallel evaluation are evaluated in a divide-and-conquer manner. With two

,:o,t_l,tutlication functions, mirror and correspondence, PDC schemas can be compiled into efficient

co,le si+litable for evaluatton on data-parallel architectures. Additional communication primitives

w,+,,ll<l t_,ake programs easier to comprehend and produce, but may complicate compilation.

Ble,!loch [_,resents "scan primitives" to replace memory access operations in PRAM models,

resull;iag ia more realistic performance analysis [5]. Blelloch also demonstrates how scan can

silttplifv algorithm description. Data-parallel FP implements the insert functional that is similar,

:,lg_::,l,raically, to the scan operation.

FP functions _hat exploit data-parallelism are defined over entire data structures. By contrast,

I_ltg,Jag,_s such Rs Cryst.al [9] decompose problems by specifying values of individual computational

_.l,+t_t_._,tswith recursiot_ equations. Similarities do exist, in that user-defined routing functions are

.,I.,,-.,'iti,_,l with 'access function mappings," which are similar to recursion equations.

Malty researchers have already recognized the opportunities for optimization provided by routittg

t,_t_ ons. For example, APL compilers tag arrays with information about ravel and dimension

,,rd,:.r .,,:_t.hat evaluation of routing functions can be avoided entirely in some cases [10].

2 Compilation

(.),_r ,'<,_,_l,il_r operatos i_ titter phases. In the first phase, structure inference deterttti_tes ttte

str,_ct.,tre ,:,["ittputs and outputs of ali functions designated for parallel evaluation. The secol,d

t,l_;t.-,+ _<.s structure inference information to emit an intermediate-language program. [n the fit_al

i,l_;t.-:,:,staadard dataflow optimizations are performed on intermediate-language programs to avoid
r, ,t,+_,t;_.t_,r.data movemeztt at_d data structure creation.

119

2.1 Structure Inference

A slruclure is an abstraction of the form of a data structure. Function ,_d describes tile set of

wJlues denoted by a structure. Ground structures and ,DI are inductively defined as follows.

• Scalar types inr, real, and bool are scalar structures. If s is a scalar structure,)_4_s]] is the
set of ali values representable in scalar type s.

• For n _> 0, if sl,..., sn are structures, tuplen(sl,... ,sn) is a tuple structure.

.4d|tuple,_(sl,...,sn)l -- {(xi,... ,mn)[xi E .hd [sil, for 1 <_ i _< n}.

• If s is a structure, and n is a non-negative integer, array(n, s) is an n-element array structure.

M [array(n, s)] = {ix,,..,Zn][XiEM[s],for 1_< i< n}.

Notice that every structure denotes a nonempty set.

If sl and s2 are ground structures, sl ---*s2 is a structure mapping denoting the set of all partial

fu,ctious from the set of values ,hd[sl] to the set of values .hd[s2].
We posit the existence of disjoint, denumerable sets of length variables and structure variables.

A non-gro_ndstructure contains length variables (and more generally, length expressions) within
array structures--rather than just constant lengths, and structure variables in addition to scalar

st,ructures. Structure s_ is an instance of structure s if there is a binding 0 of non-negative integers

to length variables, and structures to structure variables, such that s_= O(s). When sl and s2 are
non-ground structures, *sl -. s2 is a denotation for the following class of partial functions'

' ,s, -- s2 = {,hd[s_] -_ M[s_]ls 1 -- s2 is a ground instance of s, --s2}.

The purpose of structure inference is to deduce a most general structure mapping that charac-
terizes each function within an FP program. The inference system possesses a set of axioms, one

for each primitive function, and a set of inference rules, one for each functional. When a function
f is inferred to belong to the class of functions sl ----s2, we write f • sl --- s2. Some of the axioms

and inference rules used by the inference system are listed below.

Multiplication(x)

tuple2(real , real) ---,real

Pah'ing(pair)

tuple2(array(n, a), array(n, ft)) ---. array(n, tuple_(c._,/3))

C.omposit ion (o)

f'fl--'7

g._--,_
fog "c_-.-_ 7

120

A pply-a 11(c_)

oe(f) " array(n, ot) _ array(n,/3)

Each inference rule is conditional and specifies how deductions are to be performed. In each

i'llle, tile conclusion below the line is derivable if thepremise above the line can be demonstrated.

_l'lle inference rule for composition will generally require syntactic unification of the input structure

for j" with the output structure for g.

E×atnple 2.1 Using the inference rules above, Lhc following deduction tab'leau can be created for

Itl_' t'ullction C_(X)o pair, which occurs within ,1414(page 5).

x • tup.le2(real, real) _ real pair' tuple2(array(n,real), array(n,real))

c_(x) • array(n, tupl%(real, real)) --* array(n, tupl%(real,real))

--. array(n, real)

4(x) o pair' tupl%(array(n, real), array(n, real))

---, array(n, real)

2.2 Compiler Specification

'llte c(,ttlpiler emits ir|lperative intermediate-language programs. The intermediate language llas

bceil cl,_siglled to be translatable to lower-level, machine-specific languages, and to be amenable t'or

l_erforlning dataflow optimizations.

Tile only construct in the intermediate language uniquely suited for data parallelism is the for

all-[OOl). This construct has the form below.

for all I < i< trdo

<statements>

'l'!le sylltactically enclosed <statements> are evaluated simultaneously on u- I processors. Pro-

cessors are arrayed within a space defined by nested for all-loops. Each processor within an

,_-dilit,_.llsional space is assigned a unique n-tuple of indices (/1,/=,..., in), where each /j lies within

a tix,'d l_umeric range. To evaluate the above for all-loop within n enclosing loops, each proces-

sor is assiglied a unique n + l-tuple of indices (il,i2,...,in,in+l), where l _ in+l < u. At each

l,rocessor, izldex variable / will be assigned the n + 1st element of the processor's identifying tuple.

'I,_ associate program variable names with structures, the compiler makes use of "structure-name

tr,_.,es.'' A structure-name tree is a structure whose leaves (scalar structures) are program variables.
iX st.ructure-nanqe tree t' is a variant of a structure-name tree t if there is a substitution o" of new

v:triat,le l_ames for those appearing in t such that t' = ct(t). For example, tuple2(A, array(n, B))

is a st.ructure-name tree, possessing a variant tupl%(C, array(n, D)). We use a function t,arial, t to
t',)llSl, l'Ut'[, v}-tl'ialltS from structtlre-nanle trees.

_1_1,,:, ,'Otnl, iler makes extensive use of a syntactic function _. Oil(tr, [q) "= (t2, [_)]]pr,;duc,,s _,
.,,talc'lltent. Lo copy a data structure described by, a structure-name tree /.2 to a new data str_lcture

,I,_s,_'l'i,,:.,t by tl, which must be a variant oft2. The index expression list.s {and fcontaill indexiJig

i,lt'or_Jt_tiow_ from enclosing for all-loops.9 is defined recursively below, based on the possil_l_.'
.'41.1"11C] 1.1l'_' ['OrlIIS.

121

• When A and B are variable names:

"D_(B, [_) :=(A, [3"])] =

B[_ •=A[2].

• "D[(tuplen(t_ ,..., tn), [q):' =(tuplen(*a ,.. • ,in), [)'])]] =

l(t, [q) =(_1,[31)1;...;_1(_',[q):=(_,,bl)].

• 'Vi(array(n,e),[q)"=(array(n,_),[31)]=
for all 0 < i< n do

_Ut', [<i]):-(t '-,,J,i])].

The compilation function, C_f "t]f, produces an intermediate-language program equivalent to

FP fuzlction f; t is the structure-name tree describing f's input; and i'is a list of index variables

produced from enclosing for an-loops. C also returns a new structure-name tree describing its

output. C is defined recursively, based on the form of the FP function to compile. To reduce space,

we list just a few of the rules defining C, below.

• (:[[pair' tuplei(array(n , tl), array(n, t2))]i'=

(for all 0_<_i< n do

V[(t_, [_,i])" =(tl, [_,i])];

vi(G, IVi]):-(ti, [<i])],
array(n, tuple2 (/'1, t_))),

' = variant(t)and t_ = variant(tT).where t 1 1

• (.'_x "tuplei(A,B)]F=

(C[_.--A[_× B[_,
C),

wll_re C is a new variable name.

• cUo u._,]-i'=
(5',.;.5'f,

13),

wl,ere (Sg,ti> - C[[g " I,]Y, and (SI,t3) = CII'tillS.

• CI_(. f) ' array(n, t)]}F =

(for all 0 _< i.< n do

S/,

array(n, t')),

where (5-'y, t') = C[f, t](-i', i).

Example 2.2 We continue Example 2.1 by describing the intermediate-language prograrli pro-

duced [-,y compiling _(×)o pair, which is found within the I_M progranl (page 5). _h'.call tllat

t ll,_ illl'_:rred illput sU'uct.ure for this functioll is tuple2(array(n , real), array(l_, re.al)). We c_,llsl.ruct

t st.ructur,'-name tree frorll this input structure by replacing ali scalar types witlJ uxlique variable

naIll_s. The initial list of index variables provided to function C is empty, denoted by e. Con_pilatio_

t,roceeds "bottom-up," according to the following steps.

122

1. CIpair ' tuple2(a,'rayIn, A), array(n, B))]e -

(for all 0 _< i < n do

C[i]:=A[i];

D[i]:=B[i],

array(n, tuple 2 (C, D)))

'2. CIIx • tuple2(C,D)]j =

(E[j]:=C[j] x D[j],

E>
3. Clla,(x) • array(n, tuple2(C, D))]e =

(for all 0_< j < n do

li[j]" =C'[j] x DO"],

array(n, t;2))

,I. C[[a(x)o pair " l,uple2(array(n,A),array(n,B))_e =

(for ali 0 < i< i_do

C'[i] "=A[i];

D[i]::B[i];

,for all O_<j < 7_do

E[j]'=C[j] x O[j],

array(n, 12"))

2.3 h_termediate-Program Improvements

\Vl_ih:' we l_ave successfully translated FP to all imperative intermediate language, the resultil_g

l,rograllls call be greatly improved. For example, the final program of Example 2.2 can easily be
sllort, elied t,o the following more condensed form.

for ali 0 < i < n do

E[i]'=A[i] x B[i]

I i_ Ll_is sectiol_ we introduce a number of transformations on intermediate-language progran_s that

c;lll redtlce tlleir storage requirements and improve efficiency. These t_ransforrnations are based

¢,,, staJ,clard progral_ improvement techniques. They have been specialized to FP's intermediat.,_,

I:_l_g,Jag_:. Because cont_rol structures of the intermediate language are quite simple, and prograllls

l',:, geJ,,rally sixlgle-assiD_ment, the transformations require only local analysis within straight,-lilie

s_g_t_et_ts of statements.
We tirst. review some stmldard definitions [2], adapting them to the intermediate language. Azl

assiglllllenL statement of the forln A[_ := e defines variable A. If a variable B appears in tJ_e

rigt_t,-l_m_d side of the assignment statement, the statement uses B. A definition of A reaches to a

s: of A (tl_e definition and use must be distinct statements) if there is a s_;raight-line stateme_t,

setluelic¢-! from the definition t,o the use, and there is no intervening definition of A. Note t,l_at,

il,_l,erative languages generally require dataflow graphs to determine reachi_g definitions.

D,_finition Propogation If a statement A[_ := el is _he o_ly definition of A t_hat react_cs to

_ _,,_.nl B[j] '= e_, tl_e_ ali occurrences of A[_ in e_ can be replaced by el. l_s_,a_ces _,l'

,I,"tillili,,ll I,l'OtJogatiori are easily detected. Any clet]nitioii of a variable A t.lial, reaclies I,o _1_i]s,, `",tI

• 123

,'1 lllUSt be the only use; tile compiler will not ernit intervening definitions of A. A more powerful

deiillition propogation rule can also be defined to accomodate syntactic differences betweeli the

,I,:til..'.d variable, A[_, and its use inside e2.

Dead-Code Elimination Ira program contains no uses of a variable A, and A is not an out.pul, of

tilt, program, ali definitions of A may be removed. Typically, dead code will appear after clefillicio,ls

liave been propogated.

Loop Fusion Loop fusion can create straight-line sequences of statements amenable to definition

propogation and dead-code elimination out of adjacent for all-loops. Two for all-loops with

identical bounds can be incorporated into a single loop [1], as follows. Suppose there are two

adjacent statements within the intermediate-language program of the following form.

for ali l< i < u do

Sl ;

:forall I< j < u do

$2

\Vllellwe let$3 be t,lleresultof replacingindex j by i throughout statement $2, the following

sLatelnentisequivalentto the above statements.

for all I< i < u do

S_ ;

$3

'l'he equivalence holds as long as index i occurs nowhere within statement S2--a requirelllelll, tllal,

ca,, .)_, upheld quite easily by the FP compiler in its choice of index names. Refinements t_o t,llis

il,,l,rov('nlellt rule can be devised to accomodate differing bounds on for all-loops.

'l'lle dat, aflow optimizations described here may seem ad hoc, providing very little indication

;:,l,(_tlt. tile achievable pertbrmance of compiled programs. We have also developed a formal (lescrip-

tioxl of routing functions, using a t_ormalism we call "access function mappings." Compositioll of

access t'ullction mappings eliminates redundant copying. The intermediate-lmlguage improvements

of tllis section have been selected to produce the same effects as composil, ion of access function

lnal:)pings.

3 Performance Measurements

\Vii, li t.l,_' iml.)rove.nlellts n mntioned in Section 2.3, program MM (page 5) has been co|Ill)ileal I,() til(.

il_t_,rll,:diate-language program in Figure 2. A cursory inspection sllould delllonst, rat, e tll¢_ (:lose'

si_r_ilarity between this program and one written in a more conventional language. We view tl_¢_

r,.,sults of tills program a_d others as successfu) demonstrations of the cOral)lie". Acl, ual perl'or_na_(:e

t,f tills program corroborates tl_ese favorable results.

I'ert'or_na_ace ot't,l_e compiled MM program running on the CM-2 is chart, cd in l"igure 3 Tin_(-s

l,rt:s(_t,ed i_ this grapl_ (in milliseconds) are averages over a nun_ber ofexl)eriments. Vl'-ral, ios

i_clicat_: l,roblem size. For each rp-ratio 2", the input matrix dimensions are 26 x {21+'' and 21+'' x 2_;.

'1'1_,:,l,rogra_n of Figure 2 has been slightly modified, replacing the for-loop I,hat (:Oml)Utes/+ wit, Ii

124

(I) for all 0 _<j < n do

(2) for all 0_< / < rn do

(3) for all 0_< k <pdo

(4) H[j, i, k]: :A[j, k] x B[k, i];

(5) for x:=l to [lgn] do

((J) for all 0 <_k < pdo
(7} if _ rood 2x : 0 then

(S) H[j,i,k]:=Hb',i,k]+ Hb',ii'k + 2x-1] ',

(9) li[j, i]: =H[j, i, 0];

Figure 2: Compiled Version of MM

'a syst_em library call. Multiplying 64 x 512 by 512 x 64 matrices on 8K processors (and 256 floating
poillt, processors), yields 13.4 MFLOPS (32-bit foating point multiply instructions per second). By

colnparison, the CM library routine for computing matrix multiply, performed on two 128 x 128
i_lat.ric_s (giving the same number of multiplications), yields performance of 36.5 MFLOPS. We are

_:_Jlcouraged thai. our performance is within a factor of three of the highly optimized system routine,
a lt,hollgll the system routine is capable of operating on much larger matrices than the program of

l:igure 2.

Matrix MultloIv Performance

200

: 150 i 1 157 I cross vp-set move•,- _ spread

lO0 _ 93 _ _ multiply

I--

, g

I_I CM_I .

v0-ratl0 v0-ratl0 vo-ratt0
64 128 256

Figure 3: MM Performance

In addition to total times, the performance graph also breaks down individual activities within

t.he program. The "cross rp-set move" phase sets the processor grid to three dimensions when the
for all-loop at line (3) of the program in Figure 2 is entered. The "spread" phase copies each

t,,au'ix ac,'oss three dimensions. The "multiply" phase multiplies corresponding elements. Finally,
tlio "(.'M_/+" pliase sums across the third dimension of the product array. While commurtication

¢lo_,il_a.t,es t.otal evaluatioll time at ali rp-ratios, this communication is essential for the algorit, llm.

'l'al,le 3 describes the degree of improvement in performance of a compiled version of the MR

l),'ograllJ bofore algolafter the improvements suggested in Section 2.3. This version of the MMprogram
i,_.'rf'or,zLsinteger arithrnetic, which can be slower on the CM-2 than floating-point. Problem sizes

,_r,, sH,aller titan those presented in Figure 3 because the unimproved programs exhaust memory

,,:sotlrct.s loag i,efore the improved versions.

125

Times (msecs).....

Matrix Dimensions Unoptimized Optimized
16 x 16 and 16'x 16 113 15

,_

32 x 32 and 32 x 32 278 21

64 x 64 and 64 x 64 2,045 63

Table 3: Effects of Program Improvements

4 Summary

We have described a compiler for a dialect of Backus's FP language. The compiler generates

illt,ermediate-language programs suitable for data-parallel evaluation. The dialect of FP we have

selectmd for compilation retains the simple algebraic properties of the original FP language. Further,

we can perform structure inference on ali programs written in this dialect to describe input and

output structures of ali program expressions. The intermediate-language is similar to conventional

languages currently available for data-parallel systems. In fact our compiler was easily adapted to

directly produce CM-Fortran programs. We have defined a set of program improvements that take

advantage of the single-assignment nature of intermediate-language programs.

We have a number of outstanding research objectives. We end this paper outlining these goals.

Iteration and Recursion The chief limitation we currently impose on FP programs is tllat they

should be non-recursive and non-iterative. Backus detined FP to permit no programmer-defined

l_igher-order functions, though these restrictions are removed in FFP.

The restrictions on iteration and recursion can be partially lifted by imposing structure preser-

vation on these constructs. For example, assuming that function f maps every structure c_ to

al_other structure c_, the following inference rule for iteration holds.

.f : _----_ Ct

p:a --* bool

while p do f :_ --

1t' ali iterative and recursively-defined functions preserve structure, the number of processes

Ji,.,eded for function evaluation will always be fixed at the beginning of evaluation. On the other

lialld, Jnore dynamic allocation of processes will result in a more expressive language, with perhaps

poorer performance due to the overhead of dynamic process management.

Programmer-Defined Routing FP defines a large set of routing functions. While it is possible

t.o claim that the existing supply of routing functions is sufficient and "natural," many situations

arise in which programmer definition of new routing functions, using the existing set, is at best,

ul_gaillly. The PairUp function clearly exposes these difficulties. We have been experimenting with

a notation for programmers to directly describe routing functions, without recourse 1.o a special

set [8]. We have also enhanced the compilation function to generate code for progralnmer-defined
l'out, il_g functions.

Incorporating Machine Characteristics into Compilation On massively parallel a rcllitec-

tures tA_ere may be different message transmission facilities within the same multi-computer system.

126

[,I {,It¢_C',M-2 ['or example, message transmission between physically adjacent processors can be up to

t,wo orders oi' magnitude faster than transmission between arbitrary processors. As a consequence,

,.)ii the CM-2, the copy statement in line (2) below should be evaluated as a general message

transmission when c is greater than some threshhold value, say 100.

(I) for all 0 _<i< n do

(2) _ B[i]:=A[i + c]

\¥h_'ll c is less than the threshhold, the program above should translnit values along physically

adjacellt processors in c steps. The specific value of c for which different message transmission

l'acilil,i(:s should be utilized is dependent on the technology of the multi-coniputer system. To

rec.ogl_ize and exploit these tradeoffs, we may need to translate the intermediate-language to a

lower-level language in which comnmnication facilities are ekplicity specified.
(

Acknowledgements

\'\"¢'tllallk Pushl)a l_ao for her editorial comments. Research facilities have been generously provided

I,y I)art, Jnouth College and the University of Victoria.

References

[li F.E. Allen & J. Cocke, A Catalogue of Optimizing Transformations, Design and Optimization

of Compilers (R. Rustin, ed.), Prentice-Hall, pp. 1-30, 1972.

[2] A.V. Aho, R. Sethi & J.D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-

Wesley, 1986.

[3] J. Baclcus, Can programming be liberated from the von Neumann style? A functional style

a,ld its algebra of programs, CACM, 21(8), pp. 613-641 (Aug. 1978).

[_1] K.E. Batcller, Design of a Massively Parallel Processor, IEEE Trans. Computers, vol. C-29,

1'1'. 83 (j-zlzl (Sepl,, 1980),

[5] (.4.E. 131elloch, Scans as Primitive Parallel Operations, IEEE Transactions on Computers,

58(11), pp. 1526-38 (Nov. 1989).

[6] D.W. Blevins, et al., Blitzen: A Highly Integrated Massively Parallel Machine, JourT_al of

Parallel aT_d Distributed Computing, no. 8, pp. 150-60 (1990).

[7] G.I_. 13urll, Implementing Lazy Functional Languages on Parallel Architectures, Parallel Com-

I, Ut_'r_;: Object.-orieT_ted, Functional, Logic (P.C. Treleaven, ed.), John Wiley & Sons, 1990

(C.lJapt,er ,5).

[_] 1). Baneriee & C. Walillsky, An Optimizing Compiler for PP* _ A Data-Parallel Dialect oi"

[i'l', to appear ill 3td h_ter'nalional Symposium on Parallel and Dish'ibuted Processing, Dallas

(1),,('. 1991).

127

[9] M.C. Chen, A Parallel Language and Its Compilation to Multiprocessor Machines or VLSI,
13lh Annual ACM Symposium on Principles of Programming Languages, PI). 131-39 (Jail.
1986).

[10] L.J. Guibas & D.K. Wyatt, Compilation and Delayed Evaluation in APL, 5rh Annual ACM
_t , , ,,.ymposzum on Principles of Progmmming Languages, Tucson, AZ, pp 1-8 (Jail 1978).

q

[11] W.D. Hillis & G.L. Steele, Jr., Data Parallel Algorithms, CACM, 29(12), pp. 1170-83 (Dec,
 986).

[12] P. Hudak, Para-Punetional Programming, IEEE Computer, 19(8), pp. 60-70 (Aug. 1986),

[13] Parallel Lisp: Languages and Systems, 1989 US/Japan Workshop on Parallel Lisp (T. Ito
& R.H. Halstead, Jr, eds.), in Lecture Notes in Computer Science, Springer-Verlag, vol. 441,
1989.

[14] K. Knobe, J.D. Lukas _ G.L. Steele, Jr., Data Optimization: Allocation of Arrays to P_educe
Communication on SIMD Machines, Journal of Parallel and Distributed Computing, 8, pp.

102-18 (1990).

[15] G.A. Magd, A Network of Microprocessors to Execute Reduction Languages Part_s 1 and II,
International Journal of Computer and Information Sciences, vol. 8, no. 5, pp. 349-385 (1979),

and vol. 8, no. 6, pp. 435-71 (1979).

[16] J.R. McGraw, The VAL Language: Description and Analysis, ACM TOPLAS, 4(1), pp. 44-82,

(Jan. 1982).

[17] Z.G. Mou & P. Hudak, An Algebraic Model for Divide-and-Conquer and Its Parallelism, The

Journal of Supercornputing, vol. 2, pp. 257-78 (1988).

[18] I{.S. Nikhil, ID Version 88.I Reference Manual, Computation Structures Group Memo 284,
Laboratory for Computer Science, MIT, 1988.

[19] Cg-Fortran t_eference gan_al (Version 5.2-0.6), Thinking Machines Corporation, Cambridge,
M assachussets.

[20] L.W. Tucker & G.G. Robertson, Architecture and applications of the Connection Machine,
IEEE Computer, 21(8), pp. 26-38 (Aug. 1988),

[21] P.L. Wadler, Listlesslless is Better than Laziness: Lazy Evaluation and Garbage Collection

at. Compile-time, 1984 ACM Symposium on Lisp and Functional Programming, Austin,, l_p.

45-52 (Aug. 1984).

[22] P.L. Wadler, Listlessness is Better than Laziness II" Composing Listless Punction, 1985 Work-
shop on Programs as Data Objects, Copenhagen, in' Lecture Notes _n Computer Science,

Springer-Verlag, vol. 217, pp. 282-305, 1985.

[2:3] C. Walinsky & D. Banerjee, A Functional Programming Language Compiler for Massiw_ly

Parallel Computers, I990 ACM Conference on Lisp and Functional Programming, Nice, Pl).
131-38 (June 1990).

128

Improving compilation of implicit parallel programs
by using runtime information

John Sargeant

Dept of Computer Science

University of Manchester
Manchester M13 9PL

England

(jsQcs.man.ac.uk)

Abstract

In our quest for the "Holy Grail" of efficient implicit parallelism, we have opted for
a conventional architecture with physically distributed but virtually shared memory (the
EDS machine), and a Large Grain Graph Rewriting computational model. On programming
languages, we hedge our bets, but the work described here uses a (strict) functional language.
This set of choices eliminates many of the problems and brings those which remain into sharp
focus. "All" we need to do is achieve efficient dynamic load balancing, high granularity, and
good data structure locality.

We are investigating an approach whereby the program is first compiled with monitoring
code inserted, and run (using relatively small data sets) to produce statistics which are fed
back into the compiler which then produces optimised parallel code. For strict functional
programs, the production of statistics is straightforward, although automatically using them
effectively is not. The paper discusses a number of issues, including the effect of higher-order
functions and other more advanced language features, and various practical problems.

This work is embryonic, but the method seems to have significant advantages over static
analysis or hand annotation, and also provides extra performance information for tile pro-
grammar,

1 Introduction

We are interested in hardware and software for scalable, wide-purpose, implicitly parallel sys-

tems. In such systems, the programmer is responsible for expressing parallel algorithms to
solve a problem, and writing them in a language with implicit parallelism. For scMability, the

machine needs to have physically distributed memory, although it may well be logically shared.
Efficient mapping of' the program onto the machine is the responsibility of "the system", not of

the programmer. This mapping involves (at least) the following tasks:

• Detection of tasks which can correctly be executed in parallel.

• Deciding where to execute the parallel tasks (load balancing).

• Detection of tasks which are large enough to be efficiently executed in parallel (granularity
control).

129

• Minimising overheads due to data communication (data locality control).

This will be discussed here in the context of strict (higher-order) functional programs, as
these represent the simplest useful case, although we are actually interested in more general

cases. In the strict functional case, it is straightforward to detect potential parallel tt_sks at

compile time. Likewise, it is generally agreed that load balancing has to be done at runtime,
and many mechanisms have been investigated. The interesting question is which part of "the

system" should be responsible for granularity and data locality control. Section 3 discusses the

options for this, but first I describe the environment in which this work takes place.

2 Background

2.1 The EDS project

The work described here is a (very small) part of the European Declarative System (EDS)

project[3, 4, 2]. This is a large ESPRIT II project, involving ICL, Bull, Siemens and many
smaller partners. The main aim of the project is to produce a parallel database machine,

although there is some work on LISP and Prolog implementation.

The EDS hardware consists of conventional (SPARC) processors, each with local memory,

connected by a high-bandwidth multistage switching network. Although the store is physically
distributed, it is globally addressable, and the hardware is therefore well suited to our purposes.

The mainstream EDS software consists of a UNIX-like operating system, and a compilation

route from ESQL (an extended version of the SQL database query language). The datab_tse uses
"static" parallelism in the sense that the data is distributed according to a compiler-generated

di0tribution function, and the computation is done where the data is. Our role in EDS is to

investigate more dynamic forms of parallelism, and the work described here is part of this.

2.2 The Large Grain Graph Rewriting computational model

The basic principles of the LAGER model are as follows:

• By default, conventional stack-based serial execution takes place. At _ point where paral-

lelism can be generated, the compiler plants both serial and parallel code. At runtime, a
test is done to see if the parallelism is actually needed. If not, serial execution continues.

• If parallelism is required, a packet is created which encapsulates a parallel task (called
an instance in EDS terminology). The stack location which will receive the result of the

instance is assigned a special value called a hole. The spawning task continues serially.

• When the spawned instance terminates, it fills in the hole. If the spawning process needs

value which is still a hole, it suspends until the hole is filled in, and another process is
run if possible.

• Remote data accesses also cause suspension. In the EDS machine, data is copied in
sectors (of 128B) and is cached by the virtual memory system. The totai number of

instances executed is therefore the number of parallel processes started, plus the number

of suspensions due to holes or sector copies. We define the granularity to be the _verage
number of instructions executed per instance.

130

A version of LAGEI_ [10] is implemented using C and macros which expand to calls to

low-level EDS parallelism handling primitives. We have a compiler, called FTC [9] which takes
the FPM internal format of the Hope+ compiler [6] and produces C-LAGER code. This use of

C, as an assembly language is very convenient, but has the disadvantage that an lnline process

switch (on a hole or remote data access) involves switching a whole C runtime stack. Together
with the need to save and restore all the SPARC registers, this makes such process switches
uncomfortably expensive, and we therefore work quite hard to minimise the number of them.

Other features of LAGER, including a version implemented as an abstract machine code

and its translation to SPAI_C machine code, are described in [8]

2.3 An example program

The following Hope+ program grows a balanced binary tree and then sums it.:

data Wree(num) == Leaf(num) ++ Node(Wree(num) X Tree(num));

dec grow : num -> Tree(num);

--- grow(O) <= Leaf(O);

--- grow(n) <= Node(grow(n-l),grow(n-l));

dec treesum : Tree(num) -> num;

--- treesum(Leaf(k)) <= k+l;

--- treesma(Node(n,m)) <= I + (treesum(n) + treesum(m)) div 2;

treesum(grow(12));

The significant part of C-LAGER code produced by the compiler is as follows: For grow:

Spawn(int,result_l,grow(argl - I));
result_2 = grow(argl - I);
TestHole(result'l);

result = mk_tuple3(2, result_l, result_2);

and for treesum:

Spawn(int,result_l,treesum(locall[I]));
result_P.= treesum(locall[2]);
TestHole(result I);

result = I + ((result_1 + result_2) / 2);

Spawn is a rnacro which tests whether parallelism is required _nd if so creates an instance

to do the parallel task. Testttole tests for a hole and causes a suspension if a hole is found. In

general, if n tasks can be done in parallel, the compiler plants n-1 Spawns and leaves the last
one to be done serially. This requires fairly straightforward static analysis, which also detects

trivial (le. non-recursive) functions and avoids trying to Spawn them.

To achieve good speedup for even this very simple, obviously parallel, program is surprisingly
difficult, lt is necessary to control granularity by ensuring that only the Spawns high up in

131

the execution tree actuaUy create parallel tasks. For near-linear speedup, it is also necessary
to cause the treesums to be executed where their data is, and to reconcile this with the needs

of the dynamic load balancing. There are a number of traps and pitfalls, even in getting the

basic mechanisms right. These issues are discussed in detail in [11].

2.4 Some experience with a parallel application program

Howard [5] wrote a relational database implementation in Hope+. The program loads a
database and then allows SQL queries to be made on it. The program is quite unusual in

being a substantial functional program (around 1500 lines of Hope+) which was writteI, from

the beginning with parallelism in mind. Relations are implemented as tree structures, and

queries as transformations on trees. The need to generate significant parallelism from relatively
smaM data sizes (to dow detailed simulation) meant that fairly inefficient join algorithms were

used. The program is therefore not competitive with conventional SQL implementations, but
is a good example of irregular manipulations on non-trivial data st. actures.

Poor results +_ere obtained by just taking the code produced by the FTC compiler, be-

cause too many unnecessarily small processes were spawned. On the other hand, attempts to

distribute the data and then follow it around (using hand-modified code) also produced poor

results, because less parallelism was exploited and the data following and load balancing inter-
fered with each other. In the end, the best results were obtained b: compiling purely serial code,

and then inserting Spawns in carefully chosen places. By this technique, reasonable speedups

(up to 10 with 16 processors) were obtained. However, this performance was far from optimal.

Consider the following sample figures, obtained from the EDS machine simulator [7]

PEs Instances Copies Granularity Speedup
I 1 0 27193142 1.0

2 902 576 30200 1.9

4 3541 1554 7758 3.5
8 7754 3011 3588 6.0

16 19542 5794 1457 9.0

The instances figure is the number of instances started plus the number oi" suspensions,

as described above. The granularity is the total number of instructions executed divided by
the number of instances. Speedup is simulated runtime divided into the 1-processor simulated

r,Jlntime. As the number of processors is increased, the granularity falls sharply, because of

increasing numbers of sector copies, and also because increasing numbers of small processes are

being generated, showing that the load balancing becomes less effective. Clearly the scalability
to large numbers of processors is poor.

The conclusions we drew from this ._xercise were:

• It's possible to get reasonable results for small numbers of processors by straightforward
load balancing, provided that the instances spawned are carefully chosen.

• For more scalable results, more sophisticated distribution, including some data following,
would be required.

• The program was too complex _o do this by hand. A better understanding of the tradeoffs
should be obtained on smaller programs first.

132

• In order to tackle real programs eventually, much better tools are needed. The following
sections suggest what some such tools should do.

3 Approaches to the mapping problem

A mentioned above, the process of efficiently mapping an implicitly parallel program onto a

parallel machine with physically distributed memory involves control of granularity and data
locality. There are a number of approaches to this problem.

3.1 Static analysis

Static analysis is of limited benefit, because we are dealing with dynamic properties of programs.
For instance, the sizes and shapes of computation trees are not known statically. Likewise, the

sizes and shapes of the data structures produced and consumed by computations are not known
st_ttically. Neither, in general, is the pattern o(_aring of data. Higher-order functions reduce

still further the amount which is known at compile-time.

However, it is obviously important to obtain as much information as possible statically, and

there are a number of things we can do. The easiest case is to recognise trivial (ie. non-recursive)
functions as not being worth spawning. The current FTC compiler in fact does this.

A slightly more sophisticated technique is to place a partial ordering on functions, by saying
A _> B if A calls B (so mutually recursive functions are equal in this ordering). For instance,
consider the following fragment of a matrix multiplication program:

....elemmult(val,nil,col) <= val ;

--- elemmult(val,rh::rt,ch::cZ)<= elemmulZ(val+(rh,ch),rZ,ct) ;

--- rowmult(row,nil) <= nil ;

--- rowmult(row,h::Z) <= elemmulZ(O,row,h)::rowmult(row,t) ;

--- matmult(nil,b) <= nil ;

--- matmult(h""t,b) <= rowmult(h,b)::matmult(Z,b) ;

A compilercan determinethatmatmult > rowmult > elemmult and thereforeprobably
deduce that the right thing to do is to spawn the calls of rowmult from matmult 1

Program transformation has a role to play. For instance, the treegrow program above can be

transformed into one where the data structure is consumed as soon as it it produced, and thus

improve its performance by avoiding remote data access. 2 This would take away the point of the
program as a benchmark, and could not be dora, for more complex cases such as the database

example. On the other hand, it does suggest a powerful use of program transformation, in
reducing the distance between the production and consumption of data structures.

Abstract interpretation ma)' also be useful, for instance in determining whether data struc-
tures can be shared or not. However, since abstract domains are limited to a smaU number

of"discrete points, abstra.ct interpretation, as with ali these techniques, necessarily gives infor-
mation about discrete qualities (defined or not defined, shared or not shared etc.) and we are

1 ['or rea._ons not relevant here, it's better to spawn the smaller computation, and do the larger one serially.
2My thanks to David Lester for pointing this out.

133

interested in continuous quantities. The sort of thing we want to know is whether f(z) is big
enough to spawn, or whether g(p, q) references p more frequently than q or vice-versa.

3.2 Runtime heuristics

Runtime techniques, on the other hand, have to work with very limited information to be

acceptably efficient, and so are inevitably heuristic in nature.

]_br instance, lazy task creation[l] is a useful technique to improve granularity and reduce idle

time, by avoiding premature commitment to serial execution, and favouring tasks higher in the

computation tree to those lower down. However, Aharoni[12] shows that lazy task creation alone

does not prevent the system from spawning many small tasks, especially for programs which
have insufficient parallelism to occupy ali the processors. Aharoni in _,rn suggests an adaptive

scheme where the computation tree is locally expanded breadth-first to reveal its shape, and

the generation of parallel tasks is adjusted according to the information this provides. Aharoni
shows that the method adapts very quickly to changes in the nature of the computation tree,

and produces some impressive results. Unfortunately, breadth-first expansion is essential to the
technique, and is unacceptably inefficient compared to the depth-first stack-based evaluation
used by LAGER and similar models.

In the past, we have favoured the use of runtime mechanisms where possible. However,

mechanisms using simple, purely local, information tend to be ineffective, whereas using more
complex, global information makes them expensive. A good example is the search for a "throt-

tle" to control the excess parallelism which wrecked the Manchester Dataflow Machine[13].
Early proposals involved hardware to schedule individual tokens. This didn;t work because the

hardware didn't have enough local information to get the scheduling right. The solution we
eventually adopted involved a data structure which was a fairly complete representation of the

computation tree, and this would probably have b,een very expensive in a large-scale machine.

3.3 Annotations

The usual solution to the problem is to give the problem back to the programmer, in the form
of annotations. This is currently the best available technique we know of, but there are a

number of reasons for considering it undesirable as the complexity of programs, and the size of
machines, increase.

• Annotations are a hassle, and require considerable skill to get right. At least that was
our experience with the database program described above.

• Annotations may be machine-dependent; a small shared-store machine will tlave very
different requirements to a large distributed-store machine. Annotations therefore need
to be parameterised by machine characteristics.

• Annotations need to be introduced or modified when existing code is ported or incorpo-
rated into new programs. There is some loss of modularity, as the user of a function has
to know something of its runtime characteristics.

• In, for instance, divide-and-conquer programs, the same set of function calls has very
different characteristics depending on its position in the execution tree. Annotations

therefore need to be parameterised by this position, or something equival,nt.

134

J

It seems, then, that the inability of either static analysis and runtime heuristics to solve the

problem forces us to use complex, heavily parameterised, annotations. Ttmre is one other way
to find out the properties of a program: by running it.

4 Outline of the technique

The basic idea is to run the program, on relatively small data, with profiling code inserted.

The statistics thus collected are analysed by an "expert system" (parameterised by the char-

acteristics of the machine) which produces a set of recommendations which are fed back to the

compiler, which then produces optimised parallel code. The problem then divides into finding
suitable measures, and deciding how to use them. The first of these turns out to be straightfor-

ward, at least for the class of programs we're dealing with. The second is, of course, the hard

part.

4.1 What measures should we use?

We require measures which are independent of the actual execution order of the program, and
which scale sensibly with the problem size.

One important measure is the total amount of work required to execute a function, ie. the

cost of execution on one processor, which we'll call C1. This is what a standard execution pro-

filer, such as prof, gives you. Another is the length of the critical path through the program, or
equivalently tile time taken if arbitrarily many processors are available, ignoring all overheads

of parallel execution. This is C_. The ratio

C1/Coc, = II

is known as the average parallelism of the program. II is a good abstract measure of program

parallelism and is independent of the actual execution order. It is straightforward to plant code
which will accumulate these figures. Each function passes back its result, plus values for Cx

and C'_. At a point where several expressions could be evaluuted in parallel, the overall value
of C1 is the sum of the individual C1 values, and the overall Coo in the maximum of the C_

values. Analogous measures D1 and D_ can be defined for data structures.

4.2 Calculating cost functions

let C_(E) be the 1-processor cost of evaluating expression E (e.g. the number of clock cycles

required), C_(E) be the infinite processors cost, V(E) be the value returned by E, where E is
one of the following:

a constant. K

a builtin function or operator, op(E1... En)
a user-defined function, f(E1 ...En)

a conditional expression, if EO then E1 else E2

135

In principle, CI(E) and Coo(E) can be calculated as lbiiows. Constants are assumed to be
created by sequential code, the cost of which can be statically determined:

Cl(K) = Coo(I()= StaticCost(K)

For a builtin function, C1 is the cost of evaluating the arguments, plus the cost of executing

the builtin itself. This will often be statically determined, but in general may be a function of

the values of its arguments (e.g. the cost of allocating a memory cell may depend on its size):

Cl(op(E1. . .En)) = CI(E1) +... + el(En) + StaticCost(op, V(E1)...Y(En))

Since we are assuming strictness, the argument expressions may be evaluated in parallel,
so Coo is the maximum of the Coo values for the subexpressions, plus the cost of executing the

builtin (assumed to be done serially):

Coo(op(E1...En)) = max(Coo(E1)...Coo(En))+ StaticCost(op, V(E1)...V(En))

For a user-defined function call, C1 consists of the cost of evaluating the arguments, the

cost of the call itself (assumed to be the same for any function call of n arguments), and the

cost of evaluating the function given the values of the arguments:

CI(f(E1. ..En)) = CI(E1)+ ... + Ct(En) + CallCost(n) + Cl(f(v(E1) ... V(en)))

Again, the argument expressions ,_an be evaluated in parallel, but ali must be evaluated be-
fore the function can be called, and the call itself is assumed to be done serially (no distinction

is made between the costs of serial and parallel calls irl this abstract model):

Coo(f(E1. ..En)) = max(Coo(E1)...Coo(En)) + CallCost(n) + C_o(f(v(E1)...V(En)))

The C1 cost of a conditional expression is the cost of evaluating the condition, plus the cost

of evaluating the selected expression, plus the cost (assumed static) of executing the conditional
itself:

Cl(if EO then E1 else E2)=

CI(EO)+ StaticCost(ifthenelse)+(if(V(EO)= true)then CI(E1)else C1(E2))

Since the evaluation has to be done serially, the e(luation for Cinf is similar:

Cn(if .EO then E1 else E2)=

Coo(EO) + StaticCost(ifthenelse) + (if(V(EO) = true) then Coo(E1) else' Coo(E2))

The equations for Coo reflect the influence of data dependencies on the program. When

expressions can be evaluated in parallel, the maximum Coo value is taken. When data depen-

dencies require serial evaluation, the Coo values are added. Although it is necessary to execute

the program to find C1 and Coo, because they depend in general on some V(Ei) values, the

136

actual execution order does not matter- it could be serial or it could b_ some arbitrary parallel

order. For data structures without sharing (i.e. trees), D1 and Doo a'.e easy to calculate. Such
a structure is one of:

a constant, K

a tuple containing other structures, tuple(S1...Sn)

It's convenient to define

Di(I() = Dto(I()= 0

The D1 cost for a tuple is the sum of the cost of the subtrees plus the space occupied by

the tuple itself, including any (static) overhead:

D:(tuple(S1. ..Sn)) = Di(S1) +... + D:(Sn) + n + StaticCost(node)

for D_o, we take the maximum and add 1 to give the critical path length:

Doo(tuple(S1...Sn)) = rnax(Doo(S1)...Doo(Sn)) + 1

The inherent parallelism of a data structure can be defined by

D1/Doo = DH

For instance a simple list has DH = 1, reflecting the fact that operations on it are likely to

be serial, while a balanced binary tree of n levels has DH - 2_/n.

The definition of D_ also works for general acyclic graphs. Unfortunately, the definition
of DI is dubious in the presence of sharing, since a shared substructure will be counted once

for each time it is referenced. Although it's not difficult to define D: for a graph in terms of

the total space occupied by the graph, this is expensive to calculate in general. Instead, we

will stick with the above definition of D:, and therefore of DH, even for graphs. Apart from
practical considerations, it may be reasonable to define DH this way, because if a structure is

referenced from n places, n parallel processes can use these references to access the structure
at the same time.

.ii
4.3 Accumulating raw data

The compiler plants code which accumulates values for C1 etc., based on the above definitions.

In practice, of course, the equations for a number of primitives can be combined, to give more
efficient code. Each function call returns a tuple containing its actual result, plus the values of
C1 alld Coo.

Producing D1 and D_ figures is similarly easy. Each heap cell is extended with two integer
fields. When a tuple is created, the values of D1 and Dinf are calculated from the values stored

ii: the substructures, according to the formulae above, and stored in turn. The values can then

137

be reported each time a structure is passed as an argument to, or returned as a result from, a
function.

The figures produced need to be associated with the points at which functions are called,

rather than the bodies, in order to distinguish between calls from different places. I,br instance,

consider the matrix multiply example above. The call to rowmult from matmult deals with a

whole row, so will consistently have a high C1. The recursive call within rowmult itself will

vary in size depending on how much of the row is left. The analysis should show that doing

rowmult and matmult in parallel is a better bet than the elemmult/rowmult pair.

To avoid confusion between static and dynamic meanings of the word "call" , we will refer

to the place in the program text where a function is called as a callpoint. The monitoring code

accumulates, for each callpoint, figures such as the number of calls, the means and standard

deviations of C1 and Coo, and of the D1 and Doo figures for the parameters and the result,

For instance, the code for the body of the treegrow function looks as follows:

r eturnv al* grow (arg 1)

{ inr result, Cl=O, Cinf=O;

if (0 == argl)

{
result = mk_tuple2(I, 0);

Cl += 2; Cinf += I;

}
else {

result = mk_tuple3(2,

update(grow(arg_mon(argl- 1,0, _STATS[4])), _STATS[4]),

update(grow(arg_mon(argl - 1,0, _STATS[5])), &STATS[5]));

Cl += 5 + Cl_cost(&STATS[4]) + Cl_cost(aSTATS[5]);

Cinf += max(2 + Cinf_cost(&STATS[4]), 2 + Cinf_cost(&STATS[5]));

}
Cl += 2; Cinf += 2;

return(pack (result, Cl,Cinf));

} /, end of function grow ,/

The resultof the functionisof type returnval,iea recordcontainingthe resultand values

for 6'1 and Coo. Within the function, these are represented as variables, which are updated at

various points. The statistics are held in a global array, STATS, with an entry for each callpoint

(so the first recursive call of grow is callpoint 4, and the second is callpoint 5).

A number of utility functions update the stats, pack simply creates a record containing

the result, C1 and Coo. This record is used by update to update the stats for the callpoint.

arg_mon updates the values of D1 and Doo for an argument. Ct_cost and Cin.f_cost recover

the appropriate values to put into the expressions for the overall values of C1 and Coo for the
function.

Using ca.llpoints rather than lumping ali calls to a function together clearly gives more

accurate results. However, it is not necessary to stop there. In general, the behaviour of

a function may depend on its position in the overall call tree. I'br instance, if A calls B, the

behaviour of B may differ depel_d on whether A was called from P or from Q. However, detecting
this requires more expensive monitoring, and iml,lies a cost at "real" runtime, since if there

138

really was a difference the calling mechanism would have to know which route it came from.

Using static callpoints seems a good compromise between complexity and accuracy, but more
experience is needed to confirm this.

Another question is what are sensible values to accumulate. There are many possibilities,
for instance:

Averages: Average values for C1 and Coo for each callpoint of each function. Likewise, average
values for D1 and Doo for the data structures they consume and produces.

Standard deviations: SDs for the above measures. Of course the SD can be calculated on

the fly - it's not necessary to keep all the values.

Histograms: A more accurate picture of the spread of values may be required than that

provided by a simple mean and SD. Thi_ could be done by keeping histograms showing
how many times the values fall within certain ranges.

Correlations: It may be useful to know how the values of C1 and Coo for a function, and D1

and D_ for its output, vary with the values of D1 and Doo for the arguments.

Other statistics which could be useful are the number of data structure accesses done by

a function and maybe the amount of data it creates (different from the output D1 because it

includes garbage, but excludes structures provided as arguments and counts shared structures

only once). A function which does a high proportion of data references to computation should
be sent to its data, whereas the load balancing should be free to do what it wants with a

function doing little data accessing.

4.4 What should we do with them?

The most immediate benefit is that we get values of II for the program, and for its components.

This suggests a maximum number of processors on which it is sensible to run the program
(especially if II is small and varies little with data size), and identifies serial bottlenecks. This

is itself very useful; it takes naive programmers some time to come to terms with Amdahl's
Law.

The next easiest case is sets of callpoints which can be executed in parallel and which have

consistent values of C1 (ie. a low standard deviation). If two or more have high mean (:1,

they should be executed in parallel, otherwise not. When callpoints have widely varying Cls,

(eg. in recursive divide-and-conquer programs) things are obviously more difficult. A promising

technique is to attempt to generate parallel tasks for those instances of such callpoints which

are higher up the dynamic call tree. This is explored in more detail in the next section.
Functions which act as net producers or consumers of data. can be identified by correlating

the D1 values of their parameters and results with their C1 values. Generally ,;peaking, pro-

ducors of large data structures should be load balanced, whereas consumers should follow their

data. Functions which produce large, parallel data structures, (large D1, small Doo) even if
they themselves are serial, can also be identified, and are candidates for enforced distribution
in order to distribute the result data structure. An example of this occurs in the database

program, which initially reads in the database serially, but the data structure thus created is
then used in parallel.

139

Clearly an analyser program which works well for large programs on large machines needs
to be very sophisticated. Nevertheless, the ease with which a substantial amount of information

can be extracted suggests that the technique has promise.

4.5 Using information about call depth

The depth of each call can be cb eked in the monitoring code, and correlated with C1. The
information isn't normally available in the live code, but it would be possible to pass the call

depth as an extra parameter. The overhead of this wouldn't be large, since it would only b°e

necessary to do it for calls near the top of the call tree. However, the absolute call depth does

not in general give the right information. For instance, the full version of the treegrow program
has a "loop" to generate a series of trees:

dec itergrow :num X num -> num;

--- itergrow(ts,O) <= ts;

--- itergrow(tsize,count) <= itergrow(treesum(grow(tsize)),count-l);

The recursivecallswithinthetreesumand grow functionshavehighlyvariableCI. Counting

theabsolutecalldepthisnot adequate,sincethedepthatwhich treesumand grow arecalled

variesas itergrowrecurses.However, the callsto treesumand grow from withinitergrow
providegood startingpoints.Ifthesecallpointscarlbe identifiedas roots,the computation

can be distributed with very good granularity. What we really want to know, therefore, are
call depths relative to nodes which are the roots of parallel subtrees. The problem therefore

reduces to the problem of identifying such nodes. This is crucial, since if they can be found

reliably, good granularity can be obtained without using sophisticated runtime load balancing
heuristics, and indeed the load balancing in general becomes much less critical.

There are several ways in which we might attempt to detect these nodes. They represent
places in which the computation "changes mode" and would therefore be expected to be related

to specific callpoints, as in the example. They can probably be identified on statistical evidence

(high C1 and H, few calls in total etc.) but in fact they can probably be found statically from
inspection of the static call graph.

5 Higher-order functions

Higher-order functions are important in the functional style of programming. In general-purpose
parallel programming they are arguably even more important, because it is desirable to have

libraries of standard functions which manipulate data structures using parallel algorithms, and
such functions are in many cases naturally higher-order.

However, such functions present a number of problems. Consider one of the simplest of such
library functions, map.

--- map(f, nil) <= nil;

--- map(f, h: :t) <= f(h)::map(f, t);

In principle,the callto f can be eva]uatedin parallelwith the recursivecallto map. So

should it be? The writer of map cannot know, because it depends on the properties of f. It

140

is therefore necessary to use information about f at runtime to decide whether to spawn a

parallel task or not. One way to implement this is to represent f as a pointer into a table which
contains, as well as the code pointer, a value which indicates whether f should be evaluated

serially, spawned in parallel, or made to follow its argument, etc. (In the case of a partially

parameterised function, the table pointer will be part of a packet containing the argument
values already collected.)

For statistics-gathering purposes, it is necessary to treat the call to f rather differently to a
first-order callpoint. For some programs f may be always big enough, or always too small, but

in general it will be different for different fs. It is therefore necessary to record statistics for

each f. Again, this can be done by representing f as a pointer into a table, in which the figures
are accumulated.

As before, there is a tradeoff between the amount of information gathered and the accuracy

of the results. It is not clear, for instance, whether it is necessary to keep separate statistics for

each function for each higher-order callpoint, or whether functions used this way have consistent
behaviour across callpoints. Likewise, it is not obvious whether it is sensible to use information

from ali the calls to a function (including the first-order ones) .in deciding whether to spawn it
when used this way.

6 Results

One option to the FTC compiler plants code which can be run serially to generate the statistics.

A very primitive version of the analyser exists. It does some granularity analysis, but currently
makes no a,ttempt to deal with data locality issues.

Currently, the software is not sufficiently stable to produce interesting results from large

programs. Itowever, the appendix shows some statistics produced from the matrix multiplica-
tion program mentioned earlier, and discusses some of the things the figures show. I do not

claim that the program is beyond the wit of programmer to annotate (although there are one

or two surprises). I do claim the converse, namely that most a annotations a programmer might
write on that program can be generated automatically.

7 Open issues

7.1 The question everybody asks

Itow do you know that your test data is large enough, and covers all the cases? Of course

this can't be answered rigorously, but intuitively the results should be robust given reasonable
testing.

For a program to be worth this treatment, it must either have a large runtime on real
data, or be expected to run many times. After all, 100MIP serial workstations will soon be

commonpla.ce. Conversely, it will be quite reasonable to run programs for, say, a few minutes

on such workstations to produce the statistics, thereby gathering a great deal of information.

lt is hard to imagine that a program which runs for]0 minutes (slowed down by, say a factor
of 3 by the monitoring) will behave radically differently when run for 10 hours for real.

3]say most rather than all, because with this very regular program there are, of course, special-purl)ose (,ricks
to di,;tribute the data evenly etc.

141

The statistics are additive; results from runs with different data can be combined in sensible

ways. Although quantitative results are produced, they do not have to be exact. It is not

necessary to test every case provided that all the substantial parts of the program are run.

For instance, in a database implementation, it would be necessary to test all of the various
join algorithms implemented. But this testing w(,uld be necessary anyway, as part of the normal

development of the program.

7.2 Different programming styles

The techniques described above rely on the fact that, for strict functional programs, the relevant

statistics are independent of execution order. For more general programs, this is not the case.

For instance, in an imperative program using locks or barrier synchronisation, the value of
Coo can be affected by whether a process on the critical path is held up by a lock or barrier.

In a lazy functional la.nguage implementation, the is a similar dependence on whether shared

values are evaluated on the critical path or elsewhere. There is a further problem in this case
in measuring the size of lazy data structures.

I conjecture that the techniques described above can probably be adapted to work in these

cases; the nondeterminism is localised and results obtained from one evaluation order are likely

to be approximately correct for others. There are, however, classes of program for which

evaluation order critically affects performance, for instance in branch-and-bound algorithms
and some nondeterministic logic programs. In such caset it is necessary to have a detailed
understanding of the problem to know what a "sensible" evaluation order is.

7.3 "Software engineering" and practical problems

A tool is only useful if it fits well into the overall process of producing software. There are
several areas where quite a lot of work would be needed to develop a production tool.

Combination of results. There have to be sensible ways of combining results from different

runs, and from different modules, preferably without explicit guidance from the user.
This does not seem to present any problems in principle, since the results are essentially
additive.

User interfaces. A helpful user interface is required to ease the process of going through

the cycle of testing, results production, and feedback, while ensuring that all significant
parts of the program are properly tested. It is also necessary to present the information

extracted from the statistics in a suitably concise and meaningful way.

Robustness. It is important that small changes to a module (which move callpoints around,
for instance) do not require the whole process to be done all over again. On the other

hand, it is necessary to detect when a change to a module does affect the way it should
be executed, and even the way other modules should be executed.

8 Conclusions

Large-scale implicit parallelism is difficult. We need the best tools we can produce. It is
unclear at present exactly what tools are required, and which parts of the "system" should be

142

responsible for the va,ions pa,rts of the mapping problem, However, this paper has suggested a

new l_bour-saving device.

It is too early to be confident of how effective the approa.ch will be, but the quantity of

interesting, quantitative, informa.tion which can easily be produced is promising.

9 Acknowledgements

Tile Lager computationa.1 model and its C implementation are largely the work of Ian Watson.

When tllis paper says "we" it usually means "Ian and I". Various past members of the EDS
and Flagship projects contributed to the software, notably Paul W_tson, Nigel Paver and Mark

Greenberg. The work required to produce the FTC compiler was greatly reduced by being able

to use the Imperial College Hope+ front end.

References

[1]' Lazy task creation: a technique for increasing the granularity of parallel pro-
grams E. Mohr, D.A. Kranz & lC. H. Halstead ACM Conference on Lisp and FunctionM
Programming, Nice, France, June 1990.

[2] A process and memory model for a parallel distributed-memory machine P.
Istaverinos, L. Borrmann ConPar 90, LNCS 457, pp 479-488

[3] EDS Hardware Architecture, M. Ward, P. Townsend, G. Watzlawik ConPar 90, LNCS
457, pp 816-827

[4] Design and simulation of a multistage interconnection ,etwork, R. Holzner, S.
Tonma,nn, ConPa.r 90, LNCS 457, pp 385-396

[5] A Relational Database Management System in a Pure Functional Language,
C. lioward, MSt.dissertation, University of Manchester, 1990.

[6] Hope+, N. Perry, Report IC/FPlC/LANG/2.5.1/7, Imperial College, London, 1988

[7] EDS Parallel Machine Simulator, N.C. Paver, EDS report, EDS.UD.3I.M001, Univer-
sity of Manchester, 1990

[8] Large Grain Graph Reduction on a RISC Architecture, N.C. Paver, MSc. disser-
tation, University of Manchester, 1989.

[9] FTC: the FPM to Lager-C Compiler, J. Sargea,nt, EDS report EDS.UD.3I.M002,
University of Manchester, 1990

[10] C-Lager Definition, I. Watson, EDS report EDS.UD.3I.M004, University of Manchester,
1990

Iii] Some experiments in controlling the dynamic behaviour of parallel functional

programs J. Sargeant, I. Watson, Proc. Workshop on the Parallel Implementation of

Functional L_Lnguages, Southampton, June 1991, Southarnpton University tech. report
CSTR 91-07, I)1)103-121.

143

[12] A strategy for the run-tlme management of fine-grain parallelism, G. Aharoni,

Y. ,Farber, A. Barak, Proc. Workshop on the Parallel Implementation of FUnctional Lan-

guages, Southampton, June 1991, Southampton University tech. report CSTI_ 91-07, pp
227-245.

[13] Control of parallelism in the Manchester Dataflow Machine, C.A. Ruggiero,

J Sargeant, Third International Conference on Functional Progra,mming Languages and

Computer Architecture, September 1987, LNCS 274.

A Results for the matrix multiplication program

The following is the full version of the matrix multip_cation progra'", with callpoints (as num-

bered by the compiler) indicated in curlies. Of course this is not claimed to be an efficient

matrix multiplication program.

dec elemmult: num X list(aura) X list(num) -> num ;

.... elemmult(val,nil,col) <= val ;

--- elemmult(val,rh::rt,ch::ct) <= {6}elemmult(val+(rh,ch),rt,ct) ;

dec rowmult: list(hum) X list(list(hUm)) -> list(hum) ;

--- rowmult(row,nil) <= nil ;

--- rowmult(row,h::t) <= {21}elemmult(O,row,h)::{22}rowmult(row,t) ;
J

dec matmult: list(list(hUm)) X list(list(hum)) -> list(list(hum)) ;

--- matmult(nil,b) <= nil ;

--- matmult(h::t,b) <= {i5}rowmult(h,b)::{16}matmult(t,b) ;

dec kroneker: hum X hum -> num;

--- kroneker(i,j) <= if (i = j) then I else 0 ;

dec position: hum X hum -> num;

--- position(i,j) <= iO0*i + j ;

dec genrowpos: hum X hum X hum -> list(hUm) ;

--- genrowpos(i,j,n) <= if (j > n) then nil

else {I3}position(i,j)::{14}genrowpos(i,j+l,n) ;

dec genmatpos: hum X hum -> llst(list(num)) ;

--- genmatpos(i,n) <= if (i > n) then nil

else {9}genrowpos(i,l,n)::{lO}genmatpos(i+l,n) ;

dec genrowkron: hum X hum X num -> list(hum) ;

--- genrowkron(i,j,n) <= if (j > n) then nil

else {ll}kroneker(i,j)::{12}genrowkron(i,j+l,n) ;

dec genmatkron: hum X hum -> list(list(hum)) ;

--- genmatkron(i,n) <= if (i > n) then nil

else {7}genrowkron(i,l,n)::{8}genmatkron(i+l,n) ;

144

dec printlist: list(num) -> list(char);

printlist(nil) <= nii;

--- printlist(h::t) <= {17}numtostr(h) <> ", " <> {18}printlist(t);

dec printmat: list(list(hum)) -> list(char);

--- printmat(nil) <= nil;

--- printmat(h::t) <= {19}printlist(h) <> "\n" <> {20}printmat(t);

let n == 20

in let ml == {1>genmatpos(1,n)

in let m2 == {2}genmatkron(1,n)

in {5}termout({4}printmat({S}matmult(ml,m2)) <> "\n");

The compiler works out the sets of callpoints which can be executed in parallel, which are:

[123 tsl [4] [s] [B] [78] [9 i0] [113 [12] [13]
[14] [Is 16] [17 Is] [19 20] [21 22]

Sets of 1 callpotnt are not interesting (unless we wa,nt to do forced data distribution). Sets
of more than 2 occur in some programs (eg. doing matrix multiplica.tion with quadtrees rather
than lists). For the pairs, on this 20*20 data size, we get the following'.

I: "genmatpos from toplevel" one

Cl = 2942, Cinf = 161, DI = 840, Dinf = 40

2: "genmatkron from toplevel" one

Cl = 2542, Cinf = 161, D1 = 840, Dinf = 40

The first line gives the callpoint number, identifies the callee and caJler, and gives the

number of calls. In general, the maximum, and mean values of the various stats, along with

a crude histogram are given, although when, as here, there is only one call, a more compact

format is used. The D1 a.nd Doo figures for the result are always given, those for arguments are

given when they are non-zero (le. for structured arguments only).

The units in which C1 and Cinf are measured are currently pretty arbitrary, and the system
is totally untuned. Very roughly, a C1 in 4 figures certainly justifies spawning a task, one in 2

figures Usually does not. These two functions are, of course, only called once and are big enough

to be worth doing in parallel. Notice the large, parallel, data structures which are produced
(the matrices, of course).

7'. "genrowkron :from genmatkron" 20

i stat max mean SD <I00 IO0-1K IK-IOK >IOK

Cl 122 122 0 0 20 0 0

Cinf 82 82 0 20 0 0 0

D1 40 40 0 20 0 0 0

Dinf 20 20 0 20 0 0 0

8: "genmatkron from genmatkron" 20

t star max mean SD <I00 IO0-1K IK-IOK >IOK

Cl 2415 1208 732 1 7 12 0

145

Cinf 157 115 33 5 15 0 0

D1 798 399 242 2 17 0 0

Dinf 39 28 8 19 0 0 0

9: "genrowpos from EenmaCpos" 20

! sta_ max mean SD <100 100-1K 1K-IOK >1OK

C1 142 142 0 0 20 0 0

Cinf 82 82 0 20 0 0 0

D1 40 40 0 20 0 0 0

Dinf 20 20 0 20 0 0 0

10: "Eenmatpos from genma_pos" 20

! scat max mean SD <100 100-1K 1K-IOK >IOK

CI 2795 1398 847 1 6 13 0

Cinf 157 1,15 33 5 15 0 0

D1 798 399 242 2 17 0 0

Dinf 39 28 8 19 0 0 0

These two pairs are very similar. In each case, the smaller one of the pair (genrowcron

or genrowpos) is r_ther small, ttowever, we might weil want to distribute the output data
structure. Another argument for spawning them is that, since these functions produce data but

don't consume it, they will run to completion once spawned, rather than process switching on
remote data accesses.

Callpoints 11,I2 and 13,14 are not candidates for parallel execution, because the kronecker

and position functions can stat ic',dly be seen to be trivial. For what it's worth, the statistics
confirm this:

11: "kroneker from genrowltron" 400

! sta_ max mean SD <I00 IO0-1K 1K-IOK >1OK

Cl 2 2 0 400 0 0 0
Cinf 2 2 0 400 0 0 0

DI 0 0 0 0 0 0 0

Dinf 0 0 0 0 0 0 0

We now come to the big ones:

15: "ro_mult from matmul_" 20

! star ma_7 mean SD <I00 IO0-1K 1K-IOK >IOK

C1 3322 3322 0 0 0 20 0

Cinf 161 161 0 0 20 0 0

D1 40 40 0 20 0 0 0

_,inf 20 20 0 20 0 0 0

arg 0

D1 40 40 0 20 0 0 0

Dinf 20 20 0 20 0 0 0

arg 1

D1 840 840 0 0 20 0 O

D inr 40 40 0 20 0 0 0

1__: "maZmul_ from matmul_" 20

I46

) star max mean SD <100 100-1K 1K-IOK >1OK

C1 63196 31599 0 1 0 3 16

Cinf 218 181 44 1 19 0 0

D1 798 399 242 2 17 0 0

Dinf 39 28 8 19 0 0 0

arg 0

D1 798 399 242 2 17 0 0

Dinf 39 28 8 19 0 0 0

arg I
DI 840 840 0 0 20 0 0

Dinf 40 40 0 20 0 0 0

This is clearly the key pair to parallelise It is also clear from the sizes of the arguments

that some data following may be required, and in particular, that a good plan is for rowmult

to follow its second argument.

17: "numtostr from printlist" 400

' star max mean SD <I00 IO0-1K IK-IOK >1OK

C1 59 53 6 400 0 0 0

Cinf 27 24 2 400 0 0 0

D1 4 4 0 400 0 0 0

Dinf 2 2 0 400 0 0 0

18: "printlist from printlist" 400

a star max mean SD <100 IO0-1K IK-IOK >1OK

C1 1237 563 348 40 316 44 0

Cinf 85 53 19 400 0 0 0

D1 6 5 1 380 0 0 0

Dinf 3 2 0 380 0 0 0

axg 0

D1 38 19 11 380 0 0 0

Dinf 19 9 5 380 0 0 0

numtostr is a standard function which converts a number to a string for printing. Not
surprisingly, it doesn't take long and we can forget this one.

19: "printlist from prinZmat" 20

' star max mean SD <I00 IO0-1K 1K-IOK >1OK

C1 1302 1185 129 0 0 20 0

Cinf 88 85 2 20 0 0 0

DI 6 6 0 20 0 0 0

Dial 3 3 0 20 0 0 0

arg 0

D1 40 40 0 20 0 0 0

Dinf 20 20 0 20 0 0 0

20: "prinZmat from printmat" 20

0 star max mean SD <I00 IO0-1K IK-IOK >IOK

Cl 22774 11960 6970 I 0 7 12

Clnf 146 113 30 4 16 0 0

D1 10 8 2 19 0 0 0

147

Dinf 5 4 I 19 0 0 0

arg 0
D I 798 399 242 2 17 0 0

Dinf 39 28 8 19 0 0 0

This one may come as a serious shock to the programmer. In fact, the program spends
almost as much time printing the result matrix as it does doing the actual multiplication. The

reason is that, since the implementation does not have sharing analysis, the repeated appends
in printmat produce many copies of the array. In this case, they are largely done in parallel,

but very often production of the answers in this fashion can be a serious serial bottleneck in
otherwise parallel programs.

Anyway, taking these figures at face value, they suggest that spawning is appropriate, and

also suggest data sharing, since the output data structures are m_ch smMler than the arguments.

21: "elemmult from rowmult" 400

! star max mean SD <I00 IO0-1K IK-IOK >1OK

C1 161 161 0 0 400 0 0

Cinf I01 I01 0 0 400 0 0

DI 0 0 0 0 0 0 0

Dinf 0 0 0 0 0 0 0

arg 1
DI 40 40 0 400 0 0 0

Dinf 20 20 0 400 0 0 0

arg 2

DI 40 40 0 400 0 0 0

Dinf 20 20 0 400 0 0 0

22: "rowmult from rowmult" 400

! star max mean SD <I00 IO0-1K IK-IOK >1OK

CI 3156 1579 957 20 120 260 0

Cinf 158 124 32 20 380 0 0

D1 38 19 11 380 0 0 0

Dinf 19 9 5 380 0 0 0

arg 0

DI 40 40 0 400 0 0 0

Dinf 20 20 0 400 0 0 0

arg 1
DI 798 399 242 40 340 0 0

Dinf 39 28 8 380 0 0 0

This final case is similar in structure to the matmult/rowrnult case, but less clearcut. Should

we try to parallelise just one level of the multiplication, or two? The answer is, in part, that it

depends on the machine. The hope is that an "expert system" with knowledge of the machine

parameters, should be able to make this decision better than a programmer trying to decide
how to annotate these callpoints.

148

Generalized Iteration Space and the

Parallelization of Symbolic Programs
(Extended Abstract)

Luddy Harrison

October 15, 1991

Abstract

A }arge body of literature has developed concerning the automatic
parallelization of numerical programs, and a quite separate literature

has developed concerning the parallelization of symbolic programs.

Because many symbolic programs make heavy use of array data and
iterative constructs, in addition to more "symbolic" language features
like pointers and recursion, it is desirable to fuse these bodies of work

so that results developed for numerical programs can be applied to

symbolic ones, and generalized so that they apply to the variety of
language constructs encountered in symbolic computations. In this

paper is described a framework, called generalized iteration space, that

allows one to unify dependence analysis of array computations with
dependence analysis of pointer computations. It is shown that sub-
scripted array accesses as well as pointer dereferences can be seen as

linear functions of generalized iteration space. We are applying this
framework to the automatic parallelization of C and Lisp programs in

two parailelizing compilers at CSRD, called Parcel [Har89] and Miprac
[HA89].

149

1 Dependence Analysis of Numerical Pro-

grams

A few, quite simple ideas form the basis for virtually all dependence testing
methods for numerical programs. (By numerical programs is meant those
that consist mainly of loops that manipulate arrays of numbers.)

We begin with a definition of dependence, which is ordinarily something
like this:

A dependence exists between two memory accesses if both of them
access the same location in memory and at least one of them
modifies the location.

When the location accessed has a simple, unambiguous name like x then
the dependence test is trivial. A dependence obviously exists between two
statements like

x= I0

y=x

by tile definition.
When the location accessed is an array element the dependence test is

subtler. If the accesses occur in a loop, we have a situation like this:

do i = I to I00

i)] = R sl

L = a[g(i)] $2

The question is, are there values 1 < i,i' < 100 such that f(i) = g(i)?
Suppose that i and i_ are found that satisfy this equation. Then there is a
dependence between those st_,l._',ll_'Jat_.We might be more precise and attach
a direction to the dependence. This direction is simply the sign of i'- i. We
say that the dependence has direction ""-" "<" "-". ._ , , or - according to whether
i '- i is positive, negative, or zero.

We may have several loops surrounding the references, in which case i
and i' become vectors _ and _' of index variables, one index variable per loop

150

surrounding each reference, f(i) and g(/-i) are then expressions involving
several index variables rather than just one.

Now, if f and g are linear functions of _ and _', then linear (or integer)
programming can be used to decide if f(_) = g(_') has a solution. If this is
unacceptably expensive, then an approximation to linear programming, like
Banerjee's test [Ban79], can be applied instead (at the cost of some precision).

This has been a most dreadful compression of a very lively area of re-

search. For a complete treatment, the reader is urged to see [Ban86], [ZC90],
[PW86], [TIF86], [Wo1821.

2 Iteration Space- Time

Consider a program that consists of a single nest of n do loops. A vector
that denotes a particular setting of the index variables of the loops, defines a
point in a multidimensional space (n dimensions), called the iteration space.
For example, if the index variables, from outermost to innermost, are il, i2
and i3, then _ = (2, 7, 3/ would be the point corresponding to the second
iteration of the outer loop, the seventh iteration of the middle loop, and the
third iteration of the inner loop. We could identify _ as a point in time during

the execution of the loop. If S is a statement in the inner loop, then S(2,7,3)is
the instance of S (a particular execution of the statement S) that occurs at
time (2, 7, 3}. The iteration space is totally ordered, so that it makes sense
to say that (2, 7, 3} is earlier than (2, 8, 1).

This way of marking time is well defined independently of the iteration
variables il, i2 and i3. That is, it would still make sense to speak of the
point in time _ = (2,7,3} even if there were no variables il = 2, i3 = 7
and ±3 = 3 visible to the programmer. _ would be the point in time at
which control had entered the header of the inner loop for the third time,
after having entered the header of the middle loop for the seventh time, after
having entered the outer loop for the second time. Note how the nesting
of the loops is built into the iteration vector: each time the outer loop is
entered, the counters of the inner loops are reset to zero, like the digits of an
odometer.

Looked at in this light, f(_) and g({') are functions of time (the iteration
space) rather than of variables in the program. The dependence test answers
this question: are there times at which a[/(_)] and a[g({I)] are the same

151

memory location? The research on dependence testing of numerical programs
to date lets us say this:

When the memory locations that a program accesses are a linear
function of time, then its dependences may be decided accurately
at compile-time.

3 What Makes a Symbolic Program Non-
numerical?

In Section 1 the theory of dependence testing of numerical programs was
summarized. What is it about symbolic programs that makes it difficult to
apply this theory directly to them? Apparently symbolic programs don't
use so much a different set of programming language constructs, as a larger
set. Cursory examination of the source code of a compiler or a Unix utility
or a computer algebra package will turn up plenty of do loops and arrays.
However, there is more variety: data is organized in linked structures and
arrays (and in mixtures of the two) and while loops and procedure calling
(including recursion) are used to control the execution.

We would be making great progress toward parallelizing symbolic pro-
grams if we could make a similar statement for them as for numerical pro-
grams; namely that we can analyze their dependences accurately when the
locations they access are a linear function of time. To accomplish this, we
apparently need two things: a notion of time that pertains to recursive pro-
cedures and while loops as well as to do loops, and a way of looking at
the locations accessed by pointer dereferencing as functions of time (and of-
ten, we hope, linear functions of time), analogously to the way we viewed
subscripts into arrays.

4 Generalizing the notion of time to arbi-

trary control structures

As was pointed out in Section 2, an iteration space is well-defined quite
apart from the index variables of a loop nest. We may look at our iteration
vector _ as simply a count of the number of times control has passed into

152

each loop header (since the last time control exited that loop altogether).
Just as easily, in a program with procedure calls and while loops, we may
speak of a vector _ where each element of _ is associated with each procedure
entrance and while loop header, and the count associated with each control
flow point is incremented when control passes into that point. In this way,
we define a natural generalization of the iteration space, and thus a natural
generalization of our notion of time.

By recursion a loop may become nested within itself, or the outer loop
in a nest may become nested within the inner loop (by a call to the proce-
dure containing the loop nest, from the body of the inner loop). We must
therefore take care to define this generalization of iteration space in a way
that preserves the old definition but handles the new situation appropriately.
Suppose we look at a do loop as a tail-recursive procedure L. There would
then be two points in the program text where L is called: one outside of L
(to initiate the loop) and one in the body of L (to invoke the next iteration).
When control exits the final iteration of L it causes all the iterations to exit

(in reverse order) up to the last call to L from the outside. If we make the
rule that the count in _ associated with L equals the number of active in:
stances of the body of L, then it is easy to see that the iteration vector
for a simple nest of do loops is built exactly as _ was before. To verify this,
let the nest have three tail-recursive procedures, L1, L2 and L3. There is a
call to L3 (from the outside) in the body of LP, and another in the body Of
L3 itself, and likewise for LP and LI. The critical point is this: every time
n iterations of L3 execute, they cause the the count associated with L3 to
be incremented until it reaches n. When the n ta iteration exits, the count is
decremented by 1 (there is one fewer activations of L3), and likewise for the
n - 1 th iteration, and so on until the call to L3 from the outside is exited, at
which point the count associated with L3 is reset to zero. We are then ready

for a fresh instance of L3, in the next iteration of the surrounding loop (L2).
We've established that our new iteration vector _ is built, in the case of

a simple nest of do loops, in a way that preserves the standard definition
of iteration space. However, _ is well-defined for any point in time during
the execution of a program that consist of procedures that call one another
(whether they represent loop bodies or are ordinary procedures). This is a
most useful fact, which can be turned into an interprocedural dependence
test for a large class of programs.

Before moving on, let us make two observations about this generalized

153

iteration space. First, consider this program:

LI: do i -1 to 100

a[2i + k] = b[3i + k]

If this is our program in its entirety, then the corresponding iteration vector
has one element corresponding to the iterations of L1. The subscript _[2±

+ k] is linear in _ (since k is fixed). However, suppose that L1 is instead in
the body of a procedure f and that elsewhere in the program appears the
code

L2: do k = 1 to 100
call f

wherek isthelocationinLI and L2.Now _ hasthreeelements,forL2,f and

L1 respectively. The subscript a[2i + k] is still linear in _. If _ - (4, 1, 7)
for example, then i = (0.4 + 0.1 + 1.7) and 2i = (0.4 + 0.1 + 2.7) and
2i +k= (1.4+0.1+2.7).

Indeed, the program might be such that f is recursive, and that the
subscript expression is a function of the control flow through f as weil. In
this way, we can reason abo,,t dependences for larger and larger units of
control flow in the program.

The point of this example is to show that interprocedural dependence
testing is greatly simplified when ali of the memory locations accessed by the
program are referred to a single standard of time (the generalized iteration
space).

The second observation is this: the points in the generalized iteration
space as we have defined it do not name unique points in time during the
program execution. For example, it may happen that the body of L2 contains
two calls to f:

L2: do k = 1 to I00

call f

call f

in which case the iteration vector _ - (4, 1, 7) could occur more than once.
This is not a problem, as long as we are mindful of the fact, but it is also easy
tr remedy this by using call sites rather than procedures as the control flow

points that represented by elements of the iteration vector _. See also [Har89]
for a different notion of interprocedural time, that gives rise to unique names
for points during the execution.

154

5 Generalized Induction Variables

A do loop has two aspects: repetitive control flow and an index variable
that is a linear function of the control flow. This linkage is most convenient,
because it means that subscript functions which are a linear function of index
variables are also a linear function of the iteration space. Indeed, when we
normalize do loops so that their index variables run from 1 to an upper bound
by a step of 1, we are making this fact explicit, It is the fact that they are
functions of a single iteration space that makes it possible for us to compare
different subscript functions and test for their overlap.

When our prog.ram contains while loops and procedure calls, the rela-
tionship between the variables of the program and its iteration space is not
so manifest; we must work to establish that certain variables are linear in
the control-flow of the program. Space does not permit a description here,
but it is quite easy to develop a flow analysis (an abstract interpretation if
you like) that expresses wriables and other quantities in a program as linear
functions of the gene_'alized iteration space, and experimentation reveals that
thiz is quite robust in practice. Let us take it for granted, then, that we can
e_.tablish with good accuracy when an arithmetic variable x is a linear func-
tion of _, and what constant coefficients must be attached to each element

of _ to give the value of x at any program point.
With such a result we obtain at once an interprocedural dependence test

for array accesses, in the setting of recursive procedures and while loops.
For example, the program above that has L2, f and L1 could just as easily
have been written as three tail-recursive procedures by the the programmer.

Once we establish (by flow analysis)that k= (1,0,0} ._ and i = (0,0,1} ._
and therefore that 2i + k = (1,0,2)._, then testing for dependences between
"iterations" of L1 or L2 is straightforward. This is already an important step
toward parallelizing symbolic programs effectively, because it allows us to
apply many of the techniques developed for Fortran programs in the setting
of more general control-flow constructs.

6 Birthdates of Dynamically Allocated Data

Recall that in section3 it was claimed that we needed two things to apply
the (conventional) theory of dependence testing in the symbolic setting: a

155

generalized notion of iteration space, and a way of looking at any memory
access (whether array or pointer) as a function of that iteration space. At
this point we've established the new iteration space and claimed that it is
easy to express ordinary induction variables and linear combinations of them
as linear functions of this generalized iteration space. It remains for us to
show a correspondence between an arbitrary memory access and this iteration
space.

Suppose that an object is allocated (as by malloc) at a point S in the text
of a program, and at time 7 (the bivthdate of the object). We may identify
<S, 7>as the address of the object; it distinguishes the object from all others
(let's assume that 7 is unique during the execution of the program). Now

. suppose that (S, 7>is but one of many objects allocated at the program point
S during the execution (that is, there are other instances of S), and that each
such object points to another in a chain. Let (S, _")be the successor of (S, 3>
in this chain. If i'- i is a constant vector (for all pairs of objects (S,_) and
(S,_'> that are neighbors in the chain), then the memory locations of this
chain are a linear function of time. This will happen, for example, if the
(S,_>'s form a linked list or doubly linked list constructed by the iterations
of a loop or tail-recursive procedure, and a similar pattern would arise if
the (S,_)'s formed a tree built by a recursive procedure or even by several
mutually recursive procedures.

Now, 7 and _-'are two points in time during the execution of the program,
and it might not be useful or practical to compute them at compile time, for

there may be an infinitude of such vectors. (Similarly, it is not ordinarily
useful or practical to manipulate the individual iterations of a nest of do

loops in conventional dependence testing.)
However, if (' -- 7 is a constant vector, it is very reasonable to compute

its value during compilation. We could do it this way: when our object is

allocated at point S, attach to it the vector _ = 0 (all zeroes). Then, as the
object undergoes movements of control flow (that is, as procedures are called
and returned from.) we increment and decrement the elements of _ so that
the net effect of these movements are recorded in _. When we reach S again
and allocate another object, and link it to the object to which we attached
_, we will have _ = _-'- 7. That is, _ will be the time between the birthdate of

the t,wo objects, by its construction. Thus we can compute _9- 7 (provided
that it is a constant vector; that is, provided that it is independent of the
choice of _ and [') with computing any 7 or ['.

156

7 Dependence Testing over Birthdates

By the foregoing method we may obtain a program analysis that attaches to
every pointer, the difference in time between the birthdate of the object that
contains the pointer and the object to which it points.

Now consider a traversal during which the data structure created above
is modified. Suppose it has this form:

F' 0 *

ptr->info = 0
ptr = ptr->link

call F

and consider the variable ptr. Suppose that its value is (S, zo> at the be-
ginning of L. After the first iteration of L, ptr becomes (S, _o+ 3, and after
the second iteration, (S,/o + 2.], and so on, By the same means that we
may recognize when an arithmetic value is a linear function of the liberation
space, we may recognize that ptr is a linear function of the iteration space,
and thus that the memory accesses ptr->info - 0 are a linear function of
the iteration space. In this case we have a natural dependence test, namely,
to show that there is no _ :fi]' such that _ +] =/-0 + ?. This is precisely
the sort of equation that arose when we were testing for dependences among
subscripts, and can be solved by exactly the same means (linear or integer
programming or an approximation thereto). It is straightforward to general-
ize this idea to nests of loops and recursive procedures operating over linked
data.

In the example I've chosen the traversal of the data structure is isomor-
phic to its construction (that is, the control flow during the construction is
isomorphic to the control flow during its traversal) but the dependence test
would apply if the traversal were

F'. !

ptr->info = 0

ptr = ptr->ptr->link
call F

In this case the equation to be satisfied would be (0+ 2.3 = (0 + 2.]' subject
to] #]'. Here, the 2.]' comes from the addition of j' twice (once as each
1knk is crossed).

157

There is therefore no requirement that the construction and traversal be
isomorphic, only that they be linear in time as we have defined it.

8 Mixed Array and Pointer Dependence Test-

ing

If it is true as claimed, that symbolic programs make heavy use of arrays and
conventional iteration in addition to recursion and linked structures, then it
is important to observe that both subscripted arrays and pointers are viewed
in this framework as functions of a single iteration space. Suppose we see
two accesses like foo->a[2i+7] and bar->a[3j+2i]. Suppose further that
we obtain equations di and d_ for the birthdates of foo and bar as we did
for ptr above, and that we obtain equations sl and a2 for the subscripts
2±+7 and 3j+2i as we did for the subscript 2i+k above. Then there is a
dependence between these references only if there is a solution to

d_(_) = d_(_') and s_(_) = s2(_').

That is, the two equations must be satisfied by a single pair of time points
and _'.

9 Related Work

It has been the goal of this paper to discuss the relationship between depen-
dence testing in numerical programs and the dependence testing of symbolic
programs used in Miprac. A complete comparison of the dependence analy-
sis used in Miprac to other methods for analyzing symbolic programs (e.g.,
[LH88],[HN90],[Gua87],[CWZ90]) can't be given here since the dependence
analysis algorithm used in Miprac has not been presented completely here.
The interested reader may obtain [tiar91] which contains a lengthy compar-
ison of Miprac's methods to other research in the parallelization of symbolic
programs.

158

10 Conclusion

It is possible to generalize the notion of iteration space and linear memory
xcess so that they apply usefully to the dependence testing of symbolic
programs. We have constructed one experimental compiler (Parcel) that
applied this framework to Scheme programs with good snccess, and are cur-
rently building a more powerful and flexible system (Miprac) that applies
this framework to C, Fortran, and Common Lisp programs.

References

[Ban79] Uptal D. Banerjee. Speedup of Ordinary Programs. PhD thesis,
University of Illinois at Urbana-Champaign, October 1979.

[Ban86] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer,
Boston, MA, 1986.

[CWZg0] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis
of pointers and structures. In ACM SIGPLAN '90 Conference on
Programming Language Design and Implementation, pages 296-310,
1990.

[Gua87] Vincent Antony Guarna. Analysis of c programs for parallelizatio-
in the presence of pointers. Technical Report 695, Center for Su-
percomputing Research and Development, University of Illinois at

Urbana-Champaign, 1987. f

[HA89] W.L. Harrison III and Z. Amrnarguellat. The design of parallelizers
for symbolic and numeric programs. In Takayasu Ito and Robert
Halstead, editors, Parallel Lisp: Languages and Systems (US/Japan
Workshop on Parallel Lisp, Sendai, Japan, June I989), pages 235-
253. Springer-Verlag, June 1989. Lecture Notes in Computer Science
#441.

[Har89] W.L. Harrison III. The interprocedural analysis and automatic par-
allelization of scheme programs. Lisp and Symbolic Computation:
an International Journal, 2(3/4):179-396, 1989.

159

[Hat91] W.L. Harrison III. Pointers, procedures and parallelization. Techni-
cal Report (Work ,.lhProgress), Center for Supercomputing Research
and Development, University of Illinois at Urbana-Champaign, Oc-
tober 1991.

[HN90] L. Hendren and A. Nicolau. Parallelizing programs with recursive
data structures. IEEE Transactions on Parallel and Distributed Sys-
tems, January 1990.

[LH88] J. Larus and P. N. Hilfinger. Restructuring lisp programs for con-
current execution (summary). In Conference Record of the A CM
SIGPLAN Symposium on Parallel Programming, 1988.

[PW86] D.A. Padua rind M. J. Wolfe. Advanced compiler optimizations for
supercomputers. Communications of the ACM, 29(12), December
1986.

[TIF86] Remi J. Triolet, Francois Irigoin, and Paul Feautrier. Direct par-
allelization of call statements. In Proceedings of the SIGPLAN '86
Symposium on Compiler Construction, pages 176--185, 1986.

[Wo182] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD
thesis, University of Illinois at Urbana-Champaign, October 1982.

[ZC90] Haas Zima and Barbara Chapman. Supercompilers for Parallel and
Vector Supercomputers. Frontier Series. ACM Press,, 1990.

160

Dataflow Analysis of Concurrent Logic Languages

Ian Foster, Argonne National Laboratory
Will Winsborough, Penn State University

We present a framework for the definition and verification of static analyses of
concurrent logic programming languages. We illustrate the framework by construct-
ing an analysis to recognize consumers that receive data structures that have no other
consumer. Such information enables a compile-time decision to reuse data-structure
storage when tile consumer is done with it. The principal feature of the analyses
constructed using our approach is that they need not simulate directly the numer-
ous possible interleavings of process reductions that can occur during execution of a
paralle[program. This feature is intended to make our analyses affordable.

161

Compiler Support for the Refinement and Composition of Process
Structures ,

Ian Foster, Argonne National Laboratory ,

We present recent work concerned with the specification of spatial organization
in parallel programs. First, we describe linguistic constructs (defined as extensions
to the parallel programming language PCN) that allow specifications for the logic
and physical layout of a parallel program to be developed simultaneously, in the
same stepwise refinement process. These constructs (described in the atta, zhed paper)
provide a natural framework for the composition of programs defined in terms of
specialized topologies, such as an FFT on a linear array. They also allow us to
untangle the problems of specifying layout and program logic: the layout hierarchy
can be modified independently of program logic to alter resource allocation decisions,
changing performance but not correctness.

Second, we describe the compiler techniques used to implement these constructs on
distributed memory computers. Source-to-source transformations are used to trans-
late programs a_gmented with the mapping constructs into simpler programs aug-
mented with calls to mapping libraries. These mapping libraries encode expertise
about optimal embeddings of complex topologies in particular physical machines.
A novel aspect of the compiler is its use of a programmable transformation system
called Program Transformation Notation (PTN). This provides a metalanguage for
specifying program transformations.

I r
xu2

On tile Refinement and Composition
of Process Structures

Ian Foster

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439, USA

1 Introduction

Refinement, hierarchy, composition, and reuse are four related ideas that together form a basis for
good program design [15, 18]. These ideas are well-understood and frequently applied in sequential
programming. Unfortunately, although the ideas are in principle directly applicable in parallel pro-
gramming [2], in practice they are rarely used when designing programs for large parallel computers.
In particular, it is rare to find genuinely reusable libraries for MIMD parallel computers.

We believe that this situation is explained in part by the fact that components of parallel pro-

grams must often be regarded as having an extent in space as well as in time. Concurrent pro-
gramming notations typically allow the specification of temporal organization (e.g., do A and B
concurrently, then do C), but not spatial organization (e.g., do A in half of the machine, B in the
other half, and C everywhere). Hence, the spatial organization or layout of a program must be
managed in an ad-hoc manner, often by writing code to manipulate machine addresses. Programs
expressed in such low-level terms must be modified to execute in a different configuration or in a
sub,ct of the available, l_ru__,_),_, I,,:,,t't,, I.l_L,yarc aot easily intcgr_ttt,d i,,I.(Jlarger programs.

We address this problem by extending the_ parallel program design process to allow the logic

and layout of a program to be developed i, a single refinement process. Recall that in the stepwise
refinement methodology, a problem is successively decomposed into subproblems in order to untan-
gle seemingly interdependent aspects of the design. Each refinement step generates code defining
subprograms introduced in previous decompositions. In order to permit the refinement of spatial
organization, we reify the topology in which a program executes. A program executes initially in a
topology corresponding to the underlying physical machine. At each refinement step, the program-

mer has the option of associating refined topologies with subprograms introduced by refinement. A
refined topology is obtained by applying a specified remapping operation to the current topology.
This operation ma)', for example, alter the spatial organization of the nodes in the topology or re-
strict subsequent execution to a subset of these nodes. In this way, a hierarchy of virtual topologies
is developed, complimenting the hierarchical structure of the program logic.

This approach permits a methodical development of efficient spatial organizations in machines
for which the physical organization of computations is important. This is the case, for example, in
networks and parallel computers with non-uniform memory access times. However, we claim that the
underlying concepts have deeper significance: they provide a natural framework for the composition
(and hence reuse) of parallel programs on any MIMD parallel computer. The)' permit programs
defined in terms of specialized topologies (e.g., an FFT on a linear array, a reduction operator on a
mesh, or a self-scheduling structure [5]) to be integrated painlessly into larger programs. Topologies
also provide a natural context for the integration of data-parallel operations into a MIMD framework:
subsets of available computational resources can be defined, and workers replicated within subsets

163

to perform computations. Finally, the approach allows us to untangle the problems of specifying
mapping and program logic: the mapping hierarchy can be modified independently of program logic
to alter layout or resource allocation decisions, changing performance but not correctness.

To permit a practical vehicle for experimentation with these ideas, we have defined and im-
plemented a set of extensions to the concurrent programming notation PCN [3]. The extension:;
include annotations for specifying refinement of topologies and replication of computations within
topologies. The utility of replication is enhanced by a linguistic construct called tile port, a dis-
tributed data structure used to establish communication links between processes executing within

a virtual topology. The implementation is integrated with an existing PCN compiler for multicom-
puters, multiprocessors, and networks [8]. The extended language has been applied to a variety of
programming problems, and has proved particularly useful in a project developing and evaluating
algorithms for use in numerical simulations of climate (e.g., [6]). The design and implementation
Of such algorithms is complicated by a spherical problem domain and widespread use of implicit
methods with complex communication structure. The use of virtual topologies has simplified the
specification of algorithms and permitted the reuse of core components.

The work reported in this paper provides for the first time a truly general framework for the
specification of spatial organization of programs. In addition, it significantly extends the range of
parallel programming problems to which refinement and composition techniques can usefully be
applied. In particular, it makes it possible to define genuinely reusable libraries for MIMD parallel
computers.

Virtual topologies are often used to provide a more convenient view of a parallel computer (e.g.,
[10, 17]). However, these mappings typically apply to the whole computer and hence do not simplify
composition. Our use of ports is analogous to the use of pins to compose packages _in VLSI [13]. The
term port has also been used to describe constructs used to establish interproce_ communications
in ensembles [9]. A similar idea underlies Browne ct al.'s CODE environment, which allows tile

definition of "software chips" connected by "pins" [1]. ttowever, these proposals include no notion
of virtual topologies or of replication of ports over a restricted extent, and hence are more limited in
their applicability. Hudak and Kelly define functional notations for Sl,,', _fying process mapping and
interconnection [11, 12]. However, these proposals do not support hierarchical structures, replication,
or the composition of process networks.

The rest of this paper is structured as follows. In Section 2, we introduce the notion of topology
and define useful properties of topologies. In Sections 3 and 4, we describe an integration of topologies
into a programming notation, and demonstrate the use of the notation in examples. In Sections 5
and 6, we outline implementation techniques and contrast our ideas with other related proposals.

2 Topologies

We first define a topology, tile map l'uactioas used to construct new topologies, and certain useful
properties of topologies.

Topology. A topology is a collection of computing sites or nodes. We represent a topology X by
a < D,T > pair where the domain X.D is a vector of node names and tile type X.T indicates how
tile nodes are organized in space. For example:

X0 = <<sunl, sun2, sun3>, array(3)> (a set of workstations)
Sl = <<p0,...,p527>, mesh({17,32})> (a 528-node mesh)

We refer to topologies such as these, in which the domain contains physical names, ms physical
topologies, lt is also possible to define virtual topologies, in which the domain is a vector of integer
indices into the domain of another physical or virtual topology.

Maps. A map function M takes a topology X and generates a new virtual topology X', in which
the domain X'.D is a vector of integer indices into X.D. Maps can transform topologies in a variety
of ways. We distinguish three general classes of transformation:

Reshaping (or aliasing)" The domain of the new topology is reordered and/or its type is changed.
For example, Ma reorganizes the nodes in a topology X (which must be an 8-node array) as a 4 x 2
mesh'

Ma : X ---, X',

if X.T = array(8),
where ,\" = < < 0, ..., 7 >, mesh(J4, 2}) >.

The 0, ..., 7 in X'.D are the indices of the eight nodes in X.
Restriction: Tile new topology includes only a subset of the nodes in the parent topology. For

example, Mb and Mc define different embeddings of a 2 x 2 submesh in a 4 × 2 mesh:

/%4b • X ---. X', Mc ' X ---* X",

if X.T = mesh(f4,2}),
where X' = < < 0, 1,2, 3 >, mesh({2, 2}) >, and

X" = << 0,2,4,6>,mesh({2,2})>.

Expansion: The new topology embeds more than one node in each node of tile parent topology.

For example, Ma embeds an 8-node array in a 2 x 2 mesh by creating two array nodes in each node:

l_id : X ---* X t,

if X.T- mesh({2,2 }),
where X' = << 0,0,1,1,2,2,3,3>,array(8)>.

Maps can be composed. We say that a topology U, obtained by the application of the composition
of a series of map functions to a topology X, is derived from X. For example, the topology B =<<
0,0, 1, 1,2,2,3,3 >,array(8)> can be derived from a topology A =<< d0,...,d7 >,array(8)> by
application of the maps Md o Mb o Ma or Ma o Mc o Ma.

Properties of Topologies. In the following, let X be a topology and let U represent the topologies
U1, ..., Uk, ali derived from X.

I.indices(X) = {0,...,[D [}.

2. nodes(X,/) = {x.mi l i 6 I}

3. (Exten t) Consider a topology V derived from a topology X by the composition of maps Ml,
..., M,. Name the intermediate topologies X1, ...,X,-I, where Xi = Mi(Xi-1), 0 < i <_ n,
with X0 = X and X, = V. Define li = nodes(Xi,Ii+l), 1 <_ i < n, and I, = indices(V).
Define the eztent of V in X as:

extent(l/, T) -- nodes(X, I1)

Informally, the extent of V in .V is t],,, s_,t.of nodes in X that contain nodes in V.

4. li are disjoin! in X if extent(Ul, X) A ... N extent(Uk, X) = ¢.

5. li cover X if extent(U_,X) tj ... tj extent(Uk, X) = indices(X).

6. N are 1-to-I in X if extent(Ui,X) O ... tj extent(Uk,X), when constructed as a multiset,
has no duplicate elements.

7. li are co-extensive in X if extent(Ui,X) = ... = extent(Uk, X) C_indices(X).

ibb

3 Integration in a Pr o ramming Notation

We are interested in concurrent programming notations in which refinement and composition are
supported in a useful manner, and in which it is possible to achieve a separation of concerns between
program logic and process mapping. Strand [7] and PCN [3] both meet these requirements. Wc
choose to work with PCN here.

The Notation. A PCN solution to a programming problem is a set of programs, each with the
general form: ,,

name (argl , argk)
declarationl, ..., declarationm;

{ ep progl, progn}

where k, m > 0, n > 0 and ep is one of "II", ";", or "?", indicating that the pt'ogram calls progl, ...,
progn are to be executed concurrently, in sequence, or as a set of guarded commands, respectively.
The program calls may invoke either other PCN programs or procedures in sequential languages
such as Fortran and C.

Program calls composed with the parallel operator ii interact by reading and writing shared

single.assignment variables. As in Strand and related dataflow languages, these variables are initially
undefined, can be written once, and once written cannot be modified. An attempt to read an
undefined variable suspends until a value is provided.

PCN is supported by n _.nmpil,.r iil1,1 rllll Iilll,' Hy,tem whirh f'nsure thnt program calls in parallel

compositions execute correctly wherever they are located. In particular, it is possible to map ali
program calls to a single processor or to nul_loillly selected processors.

Program development in PCN typically proceeds via a sequence of refinement steps. For example,
when specifying a hierarchical manager/worker scheduler, we may indicate in a first program that
the scheduler is structured as a manager and two subschedulers:

scheduler() /* Program (l) */
{11' manager(sl ,s2),

subscheduler(sI),

subscheduler(s2)

}

This program defines three concurrent program calls (which we may think of as processes): a manager
and two subschedulers, connected by shared variables sl and s2. We may then refine the definition
of subschodu'l er to indicate that it consists of a submanager and some number of workers. Further
refinement steps provide definitions for the worker and manager programs.

Refining Topologies. Code such as Program (1) specifies the creation of sets of processes but
does not indicate how these processes are to be organized in a parallel computer. Experience
suggests that this decision is in general sufficiently difficult to warrant programmer intervention.
We introduce linguistic constructs which permit the programmer to develop a specification for the
spatial organization of a program.

We assume that every program executes within a context: a < X, i > pair, where X is a topology
and i E indices(X) represents the node in X on which the program is executing. By default, new
program calls in program definitions introduced during refinement execute in the same context ms
their parent program. However, the programmer also has the option of specifying that subprograms
should execute in a new context, obtained from the parent context by the application of a relocation,
remap, or replication operator.

, 166

Relocation: A relocation operation causes a program to execute on a different node within the
same topology. The new node is a function of the current context:

Relocate : <X,i> _ <X,R(X,i)>,

where R is the relocation operator.

We represent relocation in PCN by the infix _?perator ©. For example, if the current context is
an array, we may locate tile manager program off'the 0th node by writing:

manager(sl, s2)¢0

Remapping: A remapping operation causes a program call to execute within a new topology

derived from the current context's topology by the application of a map function M (Section 2):

Remap : <X,i>---. <M(X),0>.

The remapping may reshape, restrict, and/or expand the current topology. We represent remapping
in PCN by the infix operator in. For example, if the map subaxray(i, I) yields the lth of I disjoint
subarrays in an array topology, then to locate the two subseheduler programs in disjoint subarrays,
we write:

scheduler() /* Program (2) */
{11 manager(sl, s2)©0,

subscheduler(sl) :in subarray(0,2),
subscheduler(s2) in subarray(l,2)

}

Replication: A replication operation invokes a program call on each node of the current context's
topology:

Replicate '< X,i > _ < X,O >,...,< X, IX.DI-1 >.

We represent replication in PCN by quantification over the indices of the topology. For example,
we may specify that a subscheduler is to comprise one submanager (on node 0) and a number of
workers (one per other node) as follows:

subscheduler(s)

{If i over O..nodes()-I : i==O -> submanager(s,...)_O,
i!=O -> .orker(,..)¢'i'

}

As this program shows, replication allows us to define self-sizing programs that adapt automat-
ically to available resources' subschedulor I_opulates whatcvcr topology is specified in the calling
program. This permits resource allocation decisions to be decoupled from problem solving logic. For

example, removing the irt annotations from Program (2) changes the behavior of the subprograms
(both execute throughout the entire array) but does not require changes to subseheduler.

Self-sizing can also be used to control the amount of internal concurrency in a processor: a

remapping is used to expand the number of nodes in a topology by some chosen factor. This provides
more processes per processor, hence permitting overlapping of computation and communication.

Adaptive Mapping. The functions topology() and size() allow programs to define layouts
that are specialized to particular topologies.

topology() ' Returns a {type, size} term representing the current context's topology.

nodes () ' Returns the number of nodes in the current context's topology.

167

For example, we may have implemented efficient embeddings of a program for mesh arid array
topologies. We also want our program to execute (perhaps suboptimally) in any other topology.
Ilence, we specify that our application should utilize the mesh embedding in a mesh topology; any
other topology is remapped to an array:

program()
{ ? topology() ?= mesh(_) --> spawn_in_mesh(),

default - > spawn_in_array() in array
}

L'

The concepts presented in this section permit a methodical development of declarat,_. _ .;_ _
cations for resource allocation decisions, and permit these decisions to be decoupb.,t fr.,m _ ' :,*,
solving logic, In addition, they make it possible to specify the composition of paraH,q _,_-_:,

even when the programs being composed are defined in terms of alternative topolog._ _,_ • __, _.....
libraries containing a parallel FFT defined in terms of an array topology and a broa(|,'_ >_ ,, "j,
terms of a mesh can be composed with a simple remapping, This is possible be_au_ _ _a,_: _ '
individual programs is specified relative to the current context rather than in ab,_)lut_., _. _,_._

4 Communication in Process Structures

It is often necessary to establish communication channels between groups of processes when d,q_,'_
or composing process structures, The shared single-assignment variable provid_ a powerful mecha.
nism for specifying communicc,_ion and synchronization between individual proc(_.'sses We deline a
linguistic construct called the po_ that provides the same functionality for process structures.

A port is a distributed data structure with a specified number of items in each node of the current

topology. Each item is an ordinary single-assignment variable and can be used for communication
and synchronization in the usual way. A port is declared with a port declaration as a 1-dimensional
array with size determined by the declaration and the underlying topology. For example, we might
write port p[2] ; to declare a distributed port structure p with two entries, p[2*i] and p[2*i+l],
on each node (0_<i<nodes()) of the underlying topology.

We illustrate the use of ports to establish communication channels between co-extensive struc-
tures and within a process structure created by replication.

Co-extensive Structures. Consider the problem of developing a parallel PDE solver using do-
main decomposition techniques. At each step, we must perform a global reduction across ali domains

to find the maximum allowable time step, exchange boundary values between neighboring domains,
and advance the solution in each domain.

An elegant solution to this programming problem is obtained by defining the solver as the

composition of two simpler process structures: one for performing global reductions (reduce) and
one for performing nearest-neighbor communications (solve). The reduce structure is a spanning
tree with one leaf in each node of the current topology; each leaf expects to receive a stream of values
from some other (anonymous) process, and responds to each such value by returning the result of
the global reduction. The solve structure is a set of solvers, one per node of the current topology;

each solver expects to be able to send values to an (anonymous) reducer and receive reduced values.
We require a mechanism for specifying that when composing reduce and solve, a communica-

tion channel should be established between the reducer/solver process pair that is created on each
node. This is achieved by using a port. NcglecLing lhr the n,oztmlit I,he lleed to establish internal
communications and process structure witllin reduce and solve, and assuming an array topology,
we write:

pde_solver()

168

port pl1"] ;
{I[reduce(p),solve(p)}

reduce(p)

port p[I];

{[Ii over O..nodes()-I :reducer(pKiS)©'i'}

solve(p)

port pill;

{ll±over0..nodes()-1:solver(p[i])®'i'}

The pde_solverisdefinedas thecompositionofreduce and solve.The portp has one entryp li]

on eachnode ofthecurrenttopology.Both reduce and solve replicatesubprograms(reducer and

solver)throughoutthe currenttopology.The reducer and solver processescreatedon the ith

node areboth giver,p[i] as an argument. Thissingleassignmentvariableprovidesthe required
connection.

The roleof portsin thisexample can be explainedby an analogywith VLSI design.Think

of the solve and reduce structuresas VLSI cells.Each cellcomprisessome internalnodes and

communicationstructure,plusasetofpinsforconnectingtoothercells.The portconstructprovides

a mechanism for specifying how pins in different cells are to be connected. Iii this case, each port, in

solve is connected to the corresponding port in reduce.

Replicated Structures. Ports can also be used to establish communications between nodes in
replicated structures. For example, solver requires internal communication channels for the ex-
change of information between neighboring subdomains. If the solver employs one-dimensional
domain decomposition and periodic boundary conditions, then the necessary internal communica-
tion links (two input and two output channels in each process) can be established by defining two
additional ports, 1 and r:

solve(p)

port pill, I[_[],rill;

{[[i over 0..nodes()-I : solver(p[iS,r[i],r[(i+:[)Y,nodes()S,l[i],l[(i-:[)Znodes()])©ci'}

The internalstructureofreduca can be developedina similarway.

A porL can also be used in subscheduler to establish communications between workers and the
submaaager. A port s is declared and each worker is assigned its local port s I'i] as its communication
channel to the submanager. The submanager itself is given the entire port as an argument.

subscheduler(...)

port sli];

{I[i over 0..nodes()-:[: i==0 -> submanager(s)@0,
if=0 -> worker(s[i])%'ic

}

5 Implementation Notes

The language extensions described in this paper are being implemented using source-to-source trans-
formation techniques. PCN programs augmented with the additional constructs defined in previous
sections are transformed to pure PCN and linkod with libraries implementing embeddings. The

transformations are specified with a programmable transformation system called Program Transfor-
mation Notation (PTN), To d_tte, rcloc_,tioll _m(I remapping have becn implemented and applied to
several geophysical modeling problems, hnplementation of the replication constructs is ongoing,

169

The implementation is based oll a small set of simple ideas. Topologies are represented ai, run-
time by PCN process structures. Relocation within a topology is achieved by message passing within

the process structure representing the topology, Messages are terms representing relocated program
calls (e.g., the term {"f",x} represents the program call f(x)) and are interpreted as requests
to initiate execution of the specified program call. This implementation of process migration is

possible because the PCN run-time system provides access to variables (e,g., x) regardless of process
location. Remapping is achieved by spawning a new process structure on top of the process structure
representing the current topology. The spawning of the new structure is achieved by using relocation
operations. Replication is implemented in a similar way.

It is important to understand that the techniques described in this paper do not impose any
overhead on program execution, Process structures laid out using virtual topologies execute directly
on the underlying hardware without any layers of run-time interpretation. Some overhead is incurred

when laying out processes, as each virtual topology in a hierarchy must be created. However, this
overhead can be avoided when necessary by providing libraries that embed virtual topologies directly
in the underlying physical topology. This produces a "standalone program", so called because ii,
invokes no mapping code at run time.

6 Related Work

Virtual Machines. Taylor proposes the virtual machine as a means of achieving architecture
independence, scalability, and programming convenience on parallel computers [17]. This construct
encourages the programmer to view a computer as an infinite computing surface with interconnec-
tions forming a linear array, mesh, etc. Computations are spawned on this surface by recursively-
defined programs annotated with Logo-like mapping constructs (e.g., 0fwd, ©bwd in a linear array)
[14, 16]. These annotations inspired the current proposal's relocation operators.

Virtual machines have proved extremely useful in several parallel programming systems [17, 7].
ttowever, although the view of a computer as an infinite surface provides scalability, it makes it
difficult to achieve an optimal granularity on a particular computer. In contrast, the current proposal
permits precise fitting to the size of a particular machine. In addition, the notions of refinement and
composition are absent from Taylor's work.

Ensembles. Griswold c_al. propose an abstraction called an ensemble as a means of organizing
data, computation, and communication in distributed memory computers [9]. They define mecha-
nisms for mapping data and code to processors and linking ports in different processors to create
a communication network. In this respect, an ensemble is much like a physical topology. In addi-
tion, different phases of a computation can employ different ensembles, providing a limited form of
remapping. However, the ensemble concept does not support hierarchy, restriction, expansion, or
relocation, No implementation has been reported.

CODE. Browne e_ al. propose a calculus of composHion for parallel program components [1].
This allows programmers to define operators specifying interconnections between components called
software chips. Connections express data dependencies and mutual exclusion dependencies rather
than communication clltmnels; iw.verl,l.,h,,_,_, I,l.:rc ttre Ill/lily Sillli]Itl'il,iCS between these connections

and the port construct described in the present proposal, However, Browne ef al.'s calculus is very
abstract and they do not show how these ideas might be integrated into a programming notation.
The notion of virtual topology is entirely absent.

Functional Programming. Hudak's para.funcfional programming permits programmers to con-
trol mapping by means of annotations on expressions [11]. As annotations can be arbitrary expres-

170

i

sions, some degree of abstraction is presumably possible, However, the nota_.ion does not admit
notions of hierarchy, replication, or composition of process networks,

I. Kelly's Caliban system, programmers can associate moreover clauses with function defini-

tions to provide a declarative specification of processes and expected communication channels [19.],
Constructs such as pipelines and meshs can be defned and reused, However, the goal of Kelly's pro-
posal is not to specify process mapping but to provide information about, expected communication

patterns, for use by a compiler. No implementation has been reported.

Concurrent Aggregates. Chien and Dally describe a concurrent object-oriented language called
Concurrent Aggregates (CA) [4]. They seek to remove the sequential bottleneck associated with
message-passing in object-oriented languages by allowing the definition of homogeneous collections
of objects called aggregates, A run-time system routes messages addressed to _n aggregate to one of
its members, In common with the current proposal, CA allows the definition of concurrent structures
which can then be composed with other structures to build a concurrent program. However, issues
associated with spatial organization of such structures are not addressed,

7 Conclusions

We have defined a framework within which the familiar ideas of refinement, hierarchy, composition,
and reuse can be applied to the development of parallel programs. The key idea underlying this
framework is the use of spatial layout as an organizational principle', a context in which to specify
replication, composition, communication, and other important issues. We show that it is possible

for a programming notation to support a refinement methodology in which a program's logic and
spatial organization are developed concurrently. Refinement then produces a hierarchy of virtual

topologies, complimentary to the hierarchical organization of the parallel program,
The approach has a number of important benefits. First, the ability to embed virtual topolo-

gies inside other virtual or physical topologies (by remapping, restriction, or expansion) makes it
possible to build complex programs by the composition of simpler programs, This is the case even
if subprograms are defined in terms of different topologies. Second, design decisions concerning
resource allocation and spatial organization can be decoupled from program logic, as such decisions
are expressed in the composition that combines subprograms, not the subprograms themselves.
Third, virtual topologies allow the underlying physical topology to be either hidden or made visible
at various levels of abstraction. This makes it possible both to achieve portability and tc write

programs that exploit aspects of the underlying hardware. Fourth, virtual topologies provide a
convenient context for embedding various data-parallel operations in a MIMD context, For exam-

ple, it is straightforward to define programs that perform reductions, broadcasts, or SIMD/SPMD
computations within a topology.

The concepts and techniques presented in this paper form the basis for a larger project developing
a template-based parallel programming environment. A template is a reusable component imple-
menting a parallel program structure such as a domain decomposition strategy, parallel transform,
or load balancing algorithm. Virtual topologies provide an elegant framework in which to discuss
the definition, reuse, _tnd composition of templates.

Acknowledgments

Tlm development of these ideas benefited from discussions with K,M. Chandy. Thanks to Steve
I]_mlmond for his help in implementation,

This work was supported by the Applied Mathematical Sciences subprogram of the OIfice of
Energy R.esearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.

171

References

[1] Browne, J., Werth, J,, and Lee, T., Intersection of p_allel structuring and reuse of software
components, Proc, lntl Conf. on Parallel Processing, Penn State Press, 1989.

[2] Chandy, C., and Misra, J., Parall,, Program Design, Addison-Wesley, 1989.

[3] Chandy, C., and Taylor, S., An Introduction to Parallel Programming, Jones and Bartlett, 1991.

[4] Chien, A., and Daily, W., Concurrent Aggregates, Proc. ACM Syrup, on Principles and Practice
of Parallel Programming, 1990, 187-196.

[5] Foster, I., Automatic generation of self-scheduling programs, IEEE Trans. on Parallel and
Distributed Systems, Jan, 1991.

[6] Foster, I., Gropp, W,, and Stevens, R,., The parallel scalability of the spectral transform method,
Mon. Wea. [lev., March 1992.

[7] Foster, I., and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice ltall, En-
glewood Cliffs, N.J., 1989.

[8] Foster, I., and Taylor, S., A compiler approach to concurrent program refinement (in prepara-
tion).

[9] Griswold, W., Harrison, G., Notkin, D., and Snyder, L., Port ensembles: A communication ab-

straction for nonshared memory parallel programming, Proc. lntl Conf. on Parallel Processing,
Penn State Press, 1990.

[10] Ho, C.-T. and Johnsson, L., On the embedding of arbitrary meshes in Boolean cubes with
expansion two dilation two, Proc. Intl Conf. on Parallel Processing, Penn State Press, 188-191,
1987.

[11] Hudak, P., Para-functional programming, 1EEE Computer, 60-70, Aug 1986.

[12] Kelly, P., Functional Programming for Loosely-Coupled Multiprocessors, MIT Press, 1989.

[13] Mead, C., and Conway, L., Introduction to VLS1 Systems, Addison Wesley, 1980.

[14] Pappert, S., Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, New York,
N.Y., 1980.

[15] Parnas, D., On the criteria to be used in decomposing systems into modules, CACM 15(12),
1053-1058, 1972.

[16] Shapiro, E., Systolic programming: a paradigm for parallel processing, Proc. 1nrl Conf. on 5rh
Generation Computer Systems, Tokyo, 458-71, North Holland.

[17] Taylor, S., Parallel Logic Programming Techniques, Prentice Itall, Englewood Cliffs, N.J., 1989.

[18] Wirth, N., Program development by stepwise refinement, CACM, 14, 1971, 221-227.

172

List of Contributors

K, Aida, WasedaUniversity, Tokyo, Japan
Deb Banerjee, Dartmouth College, Hanover, New Hampshire
Arvind Bansal, Kent State University, Kent, Ohio
Ira Baxter, Schlumberger Laboratory for Computer Science, Austin, Texas
Marina Chen, Yale University, New Haven, Connecticut
Andrew A. Chien, University of Illinois, Urbana, Illinois
Young-il Choo, Yale University, New Haven, Connecticut
S. Duvvuru, University of Oregon, Eugene, Oregon
Wuchun Feng, University of Illinois, Urbana, Illinois _
Ian Foster, Argonne National Laboratory, Argonne, Illinois
Guang R. Gao, McGill University, Canada
L. Hansen, University of Oregon, Eugene, Oregon
William Ludwell Harrison lH, University of Illinois, Urbana, Illinois
Laurie Hendren, McGill University, Canada
Seema Hiranandani, Rice University, Houston, Texas
H. Honda, Waseda University, Tokyo, Japan
Elaine Kant, Schlumberger Laboratory for Computer Science, Austin, Texas

, Hironori Kasahara, Waseda University, Tokyo, Japan
Ken Kennedy, Rice University, Houston, Texas
Carl Kesselman, California Institute of Tectmology, Pasadena, California
Charles Koelbel, Rice University, Houston, Texas
Ulrich Kremer, Rice University, Houston, Texas
Monica S. Lain, St,._ord University, Stanford, California
Steve Lucco, University of California at Berkeley, Berkeley, California
Hakan Millroth, Uppsala University, Sweden
Masao Morita, Mitsubishi Research Institute, Japan
S. Narita, Waseda University, Tokyo, Japan
M. Okamoto, Waseda University, Tokyo, Japan

St_.,,_University, Kent, OhioDilip S. Poduval, Kent _....
John Sargeant, University of Manchester, Manchester, U.K.
A. V. S. Sastry, University of Oregon, Eugene, Oregon
Oliver Sharp, University of California at Berkeley, Berkeley, California
R. Surzlararajan, University of Oregon, Eugene, Oregon
Evan Tick, University of Oregon, Eugene, Oregon
Chau.Wen Tseng, Rice University, Houston, Texas
Kazunori Ueda, ICOT, Japan
Clifford Walinsky, Dartmouth College, Hanover, New Hampshire
Will Winsborough, Pennsylvania State University
X. Zhong, University of Oregon, Eugene, Oregon

17')t

Distribution for ANL-91/34

Internal:

J. M. Beumer (50)
F. Y. Fradin
I. Foster (30)
H.G. Kaper
G. W. Pieper
R. Stevens
D. P. Weber
C. L. Wilkinson

ANL Patent Department
ANL Contract File
TIS Files (3)

External:

DOE-OSTI, for distribution per UC_05 (58)
ANL Libraries

Manager, Chicago Operations Office,DOE
Mathematic_ and Computer Science Division Review Commiuee:

W. W. BlecZs_i _ University of Texas, Austin
P. Concus, La_:_nce Berkeley Laboratory
E. F. Infante, Urfiversityof Minnesota
M. J. O'IXmnell, University of Chicago
D. O'Leary, ' r-;" ".... ,,ermtyof Maryland
R. O'Malley, Rensselaer Polytechnic Institute
M. H. Schultz, Yale University

K. Aida, Waseda University, Tokyo, Japan
D. Banerjee, Dartmouth College
A. Bansal, Kent State University
I. Baxter, Schlum,,bergerLaborato_ for Computer Science
J. Ca_allini, Department of Energy - Energy Research
M:Chen, yale University
A. A. Chien, University of Illinois, Urbana
Y. Choo, Yale University
S. Duvvuru, University of Oregon
W. Feng, Uuiversity of Illinois, Urbana
G. R. Gao, McGill University
L. Hansen, University of Oregon
W. L. Harrison III, University of Illinois, Urbana
L. Hendren, McGill University
S. Hiranan'dani,Rice University
H. Honda, Waseda University, Tokyo, Japan
F. Howes, Department of Energy - Energy Research
E. Kant, Schlumberger Laboratory for Computer Science
H. "Kasahara,Waseda University, Tokyo, Japan
K. Kennedy, Rice University

174

q

C. Kesselman, California Institute of Technology
T. Kitchens, Department of Energy - Energy Research
C. Koelbel, Rice University
U. Kremer, Rice University
M. S. Larn, Stanford University
S. Lucco, University of California at Berkeley
H. Millroth, Uppsala University, Sweden
M. Morita, Mitsubishi Research Institute, Japan
S. Narita, Waseda University, Tokyo, Japan
D. Nelson, Department of Energy - Energy Research
M. O 'karnoto,Waseda University, Tokyo, Japan
D. S. Poduval, Kent State University
J. Sargeant, University of Manchester, U.K.
A. V. S. Sastry, University of Oregon
O. Sharp, University of California at Berkeley
R. Sundararajan, University oi"Oregon
E. Tick, University of Oregon
C-W. Tseng, Rice University
K. Ueda, ICOT, Japan
C. Walinsky, Dartmouth College
W. Winsborough, Pennsylvania State University
X. Zhong, University of Oregon

| _75

/

