
.5iAl’’Qv--MQn-
sfwxq9- /0063’

r

● 2

Server-Side JavaScript Debugging:
Viewing the Contents of an Object

Randall Simons and Jeff Hampton
SandiaNational Laboratories

JavaScript allows the definition and use of large, complex objects. Unlike some other object-oriented languages, it also
allows run-time modifications not only of the values of object components, but also of the very structureof the object
itself. This feature is powerfnl and sometimes very convenient, but it can be difficult to keep track of the object’s
structureand values throughout program execution. What’s needed is a simple way to view the current stateof an
object at any point during execution.

There is a debug function thatis included in the Netscape server-side JavaScript environment. The fiction outputs the
value(s) of the expression given as the argument to the function in the JavaScriptApplication Manager’s debug
window [SSJS]. For example, the following lines in Figure 1 of a server:side JavaScriptprogram

function myObj () {

this .myVal = 1;
this .myArr = new Array (2, 3) ;
this .myStr = new String (“test”) ;
this .myFunc = myFunc;

}
funct ion myFunc (argl, arg2) {

return (argl – arg2) ;
}
var x = new myObj () ;
debug (“x. myVal = “, x.myVal) ;
debug (’’x. myArr [O] = “, x.myArr[O]);
debug (’’x. myStr = “r x.myStr) ;
debug (“x. myFunc = “, x. myFunc) ;
debug (“sum = “, x.myVal + x.myArr [l]);
debug(”x = “, x) ;

RECEIVED
APR2m99

(?M3?Tl

Figure 1. Example code.

produce the output in Figure 2:

Debug message: x.myVal = 1
Debug message: x.myArr[O] = 2
Debug message: x.myStr = test
Debug message: x.myFunc = function myFunc (argl, arg2) { return (argl – arg2) ; }
Debug message: sum = 4
Debug message: x = [object Object]

Figure 2. Example code output.

This fhnction is usefhl for checking the values of individual variables or expressions. But it doesn’t tell you much
about more complex data structures,such as the object variable ‘x’ in the example. It would be more useful to see the
values of all elements in an arrayor properties in an object. (For purposes of this discussion, an array can be
considered a type of object. When the word “object” appearsbelow, interpretthatto include arrays also.) To aid us in
viewing object structurein our programs, we have written a recursive function called dumpObj which steps through all
the properties in an object, outputting a type, name, and value for each. Using the same example object above, a
fhnction call such as the one in Figure 3:

DISCLAIMER

This report was prepared as an account of work sponsored
byanagency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

dumpObj (“x”, x);

Figure3. Example dumpObj fbnction call.

would produce the output in Figure 4:

Debug message: number: x.myVal = 1
Debug message: number: x.myArr. O = 2
Debug message: number: x.myArr.l = 3
Debug message: String: x.myStr = test
Debug message: function: x.myFunc = myFunc(argl, arg2)

Figure4. Example dumpObjfimction output.

The code for dumpObj Function Ver. 1.0 is presented in Figure 5:

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

dumpObj Function Ver. 1.0

Purpose: Write out the structure and values of an object.

Arguments:

name = a string to label the output with.

obj = an object to output the values of (simple variables are OK) .

depth = number of levels to descend in object (default = 10).

Example: dumpObj (’’this”, this, 4);

Author: Randall W. Simons

Copyright 1999 Sandia Corporation. Under the terms of Contract

DE-AC04-94AL85000, there is a non-exclusive license for use of

this work by or on behalf of the U.S. Government.

function dumpObj (name, obj, depth) {
if(obj == null) return; // Ignore null values.

var dep = 10;
if(depth != null) dep = depth;
var cons = obj.constructor;
var type = typeof obj;

if(cons == String) {

// Output string on one line, not as array of characters.

debug(’’String: “ +name+ “ = “ +obj);

)
else if(type == “function”) {

// Format function value to output only function name and arguments.
var val = new String(eval(obj));
val = val.substring(9, val. indexOf(’’)’’)+l);

debug(type+ “: “ +name+ “ =

}
else if(type == “object”) {

if(dep < 1) {
// Cut off recursion when
debug(type+ “: “ +name+ “

“ +val) ;

depth reaches limit.
= 1?+obj);

}
else {

// Recursively call
for(sub in obj) {

dumpObj [name+ “.”

}

dumpObj for every element in obj.

+sub, obj [sub], dep-l);

}
}
else {

// If not one of the special cases above, output a simple variable.
debug(type+ “: “ +name+ “ = “ +obj);

}
}

Figure 5.dumpObj Functiort Ver.1.O code.

ThedumpObjftmction hasthree arguments:

Namtx Is an argument thatrepresentsa character stringto put at the beginning of the line after “Debug message:
Type:”, ~isis~pically thename of theobject whose values areto bedumped. Youmayalso wantto include the
name of the function thatdumpObj is being called from, to make it easy to identify which debug messages come
from where.

Obfi Is the variable name of the object whose values are to be dumped.

Depth: Is an optional parameterthatlimits how many levels deep to show an object’s properties. The default is 10
levels deep. A depth of 1 results in essentially the same output as if you just used the debug fbnction, and only tells
you what you have is an object or array. A depth of 2 outputs all the properties in the object, but doesn’t break
down those properties further.

Caution: If the object passed to dumpObj is too large, the server-side JavaScriptinterpretermay produce an error. If
this happens, “prune” the object using the depth parameter,or just specify one piece of the object to output.

Objects with a constructor of String have to be treatedas a special case because JavaScript stores them as character
arrays. Thus, the dumpObj fimction would continue to break down the string into individual characters, and print each
in a separatedebug message line similar to the way normal arrayswould be output by the function. The dumpObj
fimction looks for thattype of variable andjust printsthe string out in its entirety instead to make the output more
readable. The dumpObj output for Ilmctions is also modified so the fhnction body is not shown, making the output
more readable.

The dumpObj fimction is a versatile tool to have in your programrningtoolbox. By adding a single dumpObj function
call to your code, you can see all the details of an object, no matterhow large and complex. The power of recursion
keeps the dumpObj code surprisingly simple.

References
[SSJS] Netscape Communications Corporation, “Server-Side JavaScriptGuide V1.2”, 1998, ch. 3, section. “Debugging

an Application”, hq://developer.netscape. co&docs/mmuals/js/sewer/jsguide2/appdev.hti#lO46343

