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Abstract

Procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses are
described and illustrated. These procedures are based on attempts to recognize increasingly
complex patterns in the scatterplots under consideration and involve the identification of (i) linear
relationships with correlation coefficients, (ii) monotonic relationships with rank correlation
coefficients, (iii) trends in measures of central tendency as defined by means, medians and the
Kruskal-Wallis statistic, (iv) trends in measures of variability as defined by variances and
interquartile ranges, and (v) deviations from randomness as defined by the chi-square statistic. As
illustrated in a sequence of example analyses with a large model for two-phase fluid flow, the
individual procedures can differ in the variables that they do, and do not, identify as having effects
on particular analysis outcomes. The example results indicate that the use of a sequence of
procedures is a good analysis strategy and provides some assurance that an important effect is not

overlooked due to the use of an inappropriate analysis procedure.
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1. Introduction

Sensitivity analysis is now widely recognized as an essential component of studies based on mathematical
modeling (e.g., NRC, 1983, 1993, 1994; IAEA, 1989; U.S. EPA, 1993; NCRP, 1996). Here, sensitivity analysis
refers to the determination of the effects of uncertain model inputs on model predictions. A number of methods have
been proposed for sensitivity analysis, including differential analysis, response surface methodologies, Monte Carlo

techniques, and the Fourier amplitude sensitivity test (Iman and Helton, 1988; Helton, 1993; Hamby, 1994).

Monte Carlo techniques probably constitute the most widely used approach to sensitivity analysis due to their
flexibility, ease of implementation, and conceptual simplicity. When viewed abstractly, a Monte Carlo sensitivity

study involves a vector
XI[XI,XZ, ...,an] ) (11)
of uncertain model inputs, where each x; is an uncertain input and »/ is the number of such inputs, and a vector

y=fX) =1 y2 - Ynol (1.2)

of model predictions, where f'is a function used to represent the model under consideration, each y; is an outcome of

evahiating the model with the input X, and #0O is the number of such outcomes. Distributions

D;i=1,2,...,nl, (1.3)

are used to characterize the uncertainty in each input x;, where D; is the distribution assigned to x;. Correlations and

other relationships between the x; are also possible.

A sampling procedure such as simple random sampling or Latin hypercube sampling (McKay et al. 1979) is

used to generate a sample

Xk= [xlk’ Xogy +oes ank], k= 1, 2, cany nS, (14)

from the population of X’s with the distributions in Eq. (1.3), where nS is the size of the sample. Evaluation of the

model under consideration with the sample elements X; in Eq. (1.4) then creates a sequence of results of the form

yk =f(xk) = [ylk’ Voks +oes yn()’k], k= 1, 2, cees TlS, (15)

where yj is the outcome of evaluating the model with X;. The pairs

X Y, k=1,2, .., 1S, : (1.6)




constitute a mapping from model input, X,, to model output, y;, that can be explored with various sensitivity analysis
techniques to determine how the individual analysis inputs contained in X (i.e., the x;’s) affect the individual analysis
outcomes contained in Y (i.e., the y;'s). Analysis possibilities include regression analysis, correlation analysis, and
examination of scatterplots (Iman et al., 1981a, 1981b; Saltelli and Marivoet, 1990; Saltelli and Homma, 1992;
Saltelli et al., 1993; Helton, 1993; Hamby, 1994, 1995; Kleijnen, 1998).

Although techniques based on regression analysis and correlation analysis are often successful in identifying the
relationships between model input and output embedded in the mapping in Eq. (1.6), in many cases these techniques
fail to identify well-defined, but nonlinear, relationships (Iman and Helton, 1988; Saltelli and Homma, 1992; Saltelli
et al., 1993; Helton et al, 1998). If the underlying relationship is nonlinear but monotonic, then a rank
transformation will linearize the relationship and. result in successful sensitivity analyses with regression-based
_ techniques (Iman and Conover, 1979). However, the underlying relationship can be too complex to be linearized in
any simple manner. In these cases, sensitivity analysis techniques are needed that can identify patterns in the
mapping in Eq. (1.6) without recourse to comparisons with specialized prespecified relationships (e.g., linear or
monotonic). The ultimate test of whether or not there is a relationship between an input variable x; and an output

variable y; lies in determining whether or not the points

(x[k’yjk)sk=132y ey nSa (1.7)

constitute a random pattern conditional on the marginal distributions for x; and y;. This presentation will investigate
the implications from a sensitivity analysis perspective of a sequence of tests (i.e., hypotheses) for the relationship
between x; and y; embedded in the mapping in Eq. (1.6). These hypotheses will run from very specific (i.e., a linear

relationship) to quite general (i.e., a nonrandom pattern).

The presentation is organized as follows. Example simulation results that will be used to motivate and illustrate
the sensitivity analysis procedures are presented in Sect. 2. Then, the procedures to be considered are summarized in
Sects. 3-7. Specifically, the following five relationships are proposed as the basis for a sequence of sensitivity tests:
(1) Linear relationship: E(ylx) = Bo + By x, where the subscripts have been dropped from y; and x; for notational
simplicity (Sect. 3); (ii) Monotonic relation: E[r(y)lr(x)] = yy + ¥; r{x), where r(x) and r(y) denote the ranks of x and
¥, respectively (Sect. 4); (iii) Location (central tendency) of y depends on x (Sect. 5); (iv) Variability (spread) of y
depends on x (Sect. 6); and (v) y and x are statistically independent: p(ylx) = p(y), where p denétes the density
function for y (Sect. 7). Next, the ranking of variable importance and the use of the Iman and Conover (1987) top-
down correlation procedure to compare variable rankings are discussed in Sects. 8 and 9. Then, example analysis
results with the indicated procedures are presented in Sect. 10; Type I and Type II errors are discussed in Sect. 11;
and the robustness of analysis outcomes for independent samples is discussed in Sect. 12. Finally, a concluding

discussion is given in Sect. 13.

10




2. Test Problems

The test problems considered in this presentation use results obtained in the 1996 performance assessment (PA)
for the Waste Isolation Pilot Plant (WIPP) (Helton et al., 1998), which was carried out to support the U.S.
Department of Energy’s (DOE’s) application to the U.S. Environmental Protection Agency (EPA) for the
certification of the WIPP for the disposal of transuranic waste (U.S. DOE, 1996). In particular, the test problems
involve results (Table 2.1) calculated by the BRAGFLO model (Sect. 4.2, Helton et al., 199_8), which was used to
represent two phase (i.e., gas and brine) flow in the vicinity of the repository. The BRAGFLO model uses finite
difference procedures (Fig. 2.1) to numerically solve a system of nonlinear partial differential equations (Egs. 4.2.1 -
4.2.6, Helton et al., 1998) and requires a significant amount of computational resources (e.g., 4 to 5 hours of CPU

time on a 275 MHz Digital Equipment Corp. (DEC) Alpha with VMS for a single model evaluation).

The 1996 WIPP PA used computational procedures based on Latin hypercube sampling to propagate the effects
of subjective (i.e., epistemic) uncertainty through the analysis (Helton et al. 1998). As a result of guidance given by
the EPA (U.S. EPA, 1996), the 1996 WIPP PA used a Latin hypercube sample (LHS) of size 300 (Sect. 6.3, Helton
et al.,, 1998) from 75 uncertain variables, of which only 27 were used as inputs to the BRAGFLO model in the
calcuiation of the dependent variables in Table 2.1 (Table 2.2). To provide a test of the robustness of the uncertainty
propagation procedures used in the 1996 WIPP PA, the indicated LHS of size 300 was actually generated as 3

independent samples of size 100 each (Sect. 6.4, Helton et al., 1998). Each of these samples was generated with

Table 2.1. Definition of Dependent Variables Predicted by BRAGFLO Model for Two-Phase Flow
Selected for Use in Comparison of Statistical Procedures for ldentification of Patterns in
Scatterplots

E0:WAS_PRES—Pressure (Pa) in lower repository waste panel (region 23, Fig. 2.1) at 10,000 yr under
undisturbed (i.e., EO) conditions. Number of sampled variables: 26 (Table 2.2).

E0:BRAALIC—Cumulative brine inflow (m3) to vicinity of repository over 10,000 yr from anhydrite marker
beds (regions 20, 21, 28, Fig. 2.1) under undisturbed (i.e., EO) conditions. Same sampled variables as
EO:WAS_PRES.

E2:WAS_SATB—aBrine saturation (dimensionless) in lower repository waste panel (region 23, Fig. 2.1) at
10,000 yr after a drilling intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized
brine in the underlying Castile Formation (i.e., an E2 intrusion). Same sampled variables as E0:WAS_PRES
plus BHPRM (Table 2.2).

E2:WAS_PRES—Pressure (Pa) in lower repository waste panel (region 23, Fig. 2.1) at 10,000 yr after a

drilling intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine in the
underlying Castile Formation (i.e., an E2 intrusion). Same sampled variables as £2: WAS_SATB.

11
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Fig. 2.1. Computational grid used in BRAGFLO to represent two-phase flow in 1996 WIPP CCA PA subsequent to
a drilling intrusion. Same formulation is used in the absence of a drilling intrusion except that regions 1A,
1B and 1C have the same properties as the regions to either side.
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use of the Iman and Conover restricted pairing technique (Iman and Conover, 1982; Iman and Shortencarier, 1984)

to enforce specified correlations between three pairs of variables (the correlated pairs (ANHCOMP, ANHPRM) and
(HALCOMP, HALPRM) arc used in the calculation of the results in Table 2.1 and are described in Table 2.2) and

also to ensure that uncorrelated variables had correlations close to zero. The outcome of this sampling was 3 LHSs

of size 100 each:

RI: Xy, = Xypps Xyps oo X5l k=1,2,..., 100 (2.1)
R2: Xop = [Xogys Xopps oo Xoyysl,  k=1,2,...,100 (2.2)
R3: X5 = [X3p1, Xapo, o> X3g75), k=1,2,..., 100, (2.3)
where X = [x}, X;, ..., X5] corresponds to the 75 uncertain variables indicated in Table 2.2 and R1, R2 and R3

designate the three replicated (i.e., independently generated) LHSs.

Table 2.2. Uncertain Variables Used as Input to BRAGFLO in the Calculation of the Dependent
Variables in Table 2.1 (see Table 5.2.1, Helton et al., 1998, and App. PAR, U.S. DOE,
19986, for additional information and a discussion of all 75 variables included in the LHS)

ANHBCEXP—Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribution:
Student’s with 5 degrees of freedom. Range: 0.491 to 0.842. Mean, Median: 0.644.

ANHBCVGP—Pointer variable for selection of relative permeability model for use in anhydrite. Distribution:
Discrete with 60% 0, 40% 1. Value of O implies Brooks-Corey model; value of 1 implies van Genuchten-
Parker model.

ANHCOMP—Bulk compressibility of anhydrite (Pa-1). Distribution: Student’s with 3 degrees of freedom.
Range: 1.09 x 10~ to 2.75 x 10-10 Pa-l, Mean, Median: 8.26 x 10-11 Pa-1, Correlation: -0.99 rank
correlation (Iman and Conover, 1982) with ANHPRM. Variable 21 in LHS.

ANHPRM—Logarithm of anhydrite permeability (m2). Distribution: Student’s with 5 degrees of freedom.
Range: -21.0 to —-17.1 (i.e., permeability range is 1 x 10-2I to 1 x 10-17.1 m2). Mean, Median: -18.9.
Correlation : ~0.99 rank correlation with ANHCOMP.

ANRBRSAT—Residual brine saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees
of freedom. Range: 7.85 x10-3 to 1.74 x 10-1. Mean, Median: 8.36 x 10-2.

ANRGSSAT—Residual gas saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of
freedom. Range: 1.39 x 10-2t0 1.79 x 10-1, Mean, median: 7.71 x 10-2.

BHPRM—1Logarithm of borehole permeability (m2). Distribution: Uniform. Range: -14 to -11 (i.e.,
permeability range is 1 x 10-14 to 1 x 10-11 m2). Mean, median: -12.5.




Table 2.2. (continued)

HALCOMP—Bulk compressibility of halite (Pa-1), Distribution: Uniform. Range: 2.94 x 10-12 t0 1.92 x
10-10 PA~1. Mean, median: 9.75 x 10-11 Pa-1, 9.75 x 10-11 Pa-l. Correlation: —0.99 rank correlation with
HALPRM.

HALPOR—Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0 x 10-3 to 3 x 10-2
Mean, median: 1.28 x 10-2, 1.00 x 102,

HALPRM—Logarithm of halite permeabifity (m2). Distribution: Uniform. Range: -24 to -21 (..,

permeability range is 1 x 10-24 to 1 x 10-21 m2). Mean, median: -22.5, -22.5. Correlation: —0.99 rank
correlation with HALCOMP.

SALPRES—Initial brine pressure, without the repository being present, at a reference point located in the
center of the combined shafts at the elevation of the midpoint of MB 139 (Pa). Distribution: Uniform. Range:
1.104 x 107 t0 1.389 x 107 Pa. Mean, median: 1.247 x 107 Pa, 1.247 x 107 Pa.

SHBCEXP—Brooks-Corey pore distribution parameter for shaft (dimensionless). Distribution: Piecewise
uniform. Range: 0.11 to 8.10. Mean, median: 2.52, 0.94.

SHPRMASP—Logarithm of permeability (n2) of asphalt component of shaft seal (m2). Distribution:
Triangular. Range: -21 to —18 (i.e., permeability range is 1 x 1021 to 1 x 10-18 m2). Mean, mode: -19.7,
-20.0. :

SHPRMCLY—L ogarithm of permeability (mn2) for clay components of shaft. Distribution: Triangular. Range:
—21 to —-17.3 (i.e., permeability range is 1 x 10-21 to 1 x 10-17.3 m2). Mean, mode: -18.9, -18.3,

SHPRMCON—Same as SHPRMASP but for concrete component of shaft seal for O to 400 yr. Distribution:
Triangular. Range: -17.0 to —14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 m2). Mean, mode:
-15.3,-15.0.

SHPRMDRZ—L ogarithm of permeability (m?2) of DRZ surrounding shaft. Distribution: Triangular. Range:
—-17.0 to -14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10~14 m2). Mean, mode: -15.3,-15.0.

SHPRMHAL—Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft
seal at different times. Distribution: Uniform. Range: 0 to 1. Mean, mode: 0.5, 0.5. A distribution of
permeability (m2) in the crushed salt component of the shaft seal is defined for each of the following time
intervals: [0, 10 yr], [10, 25 yr], [25, 50 yr}, [50, 100 yr], [100, 200 yr], [200, 10000 yr]l. SHPRMHAL is used
to select a permeability value from the cumulative distribution function for permeability for each of the
preceding time intervals with result that a rank correlation of 1 exists between the permeabilities used for the
individual time intervals.

SHRBRSAT—Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4.
Mean, median: 0.2, 0.2.

SHRGSSAT—Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4.
Mean, median: 0.2, 0.2. .
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Table 2.2. (continued)

WASTWICK—Increase in brine saturation of waste due to capillary forces (dimensionless). Distribution:
Uniform. Range: O to 1. Mean, median: 0.5, 0.5.

WFBETCEL—-Scale factor used in definition of stoichiometric coefficient for microbial gas generation
(dimensionless). Distribution: Uniform. Range: 0to 1. Mean, median: 0.5, 0.5.

WGRCOR—Corrosion rate for steel under inundated conditions in the absence of CO, (m/s). Distribution:
Uniform. Range: 0 to 1.58 x 10-14 m/s. Mean, median: 7.94 x 10-15 m/s, 7.94 x 10-15 my/s.

WGRMICH—Microbial degradation rate for cellulose under humid conditions (mol/kges). Distribution:
Uniform. Range: 0to 1.27 x 10-9 mol/kges. Mean, median: 6.34 x 10-10 mol/kges, 6.34 x 10-10 mol/kges.

WGRMICI—Microbial degradation rate for cellulose under inundated conditions (mol/kges). Distribution:
Uniform. Range: 3.17 x 10-10 t0 9.51 x 10-% mol/kges. Mean, median: 4.92 x 10-9 mol/kges, 4.92 x 10-2
mol/kges.

WMICDFLG—Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% 0,
25% 1, 25% 2. WMICDFLG =0, 1, 2 implies no microbial degradation of cellulose, microbial degradation of
only cellulose, microbial degradation of cellulose, plastic and rubber.

WRBRNSAT—Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: O to 0.552.
Mean, median: 0.276, 0.276.

WRGSSAT—Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: O to 0.15.
Mean, median: 0.075, 0.075.

Once the LHSs in Egs. (2.1) - (2.3) were generated, BRAGFLO calculations were performed for a variety of
cases (Table 6.9.1, Helton et al., 1998). The two cases considered in this presentation are undisturbed (i.e., E0)
conditions and a drilling intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine
in the underlying Castile Formation (i.e., E2 conditions or, in the more detailed descriptions given in Helton et al.,
1998, E2 conditions with the intrusion occurring at 1000 yr). Results calculated by BRAGFLO are time-dependent.
The time-dependent behavior of the results indicated in Table 2.1 is shown in Fig. 2.2 for replicate R1. For
simplicity, the technique comparisons contained in this presentation will use the values of the variables at the end
points of the individual curves in Fig. 2.2 (i.e., at 10,000 yr). However, nothing prevents analyses at other times and,
in general, sensitivity analyses of time-dependent variables should also be time-dependent (Chapts. 7, 8, Helton et al.

1998).
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Fig. 2.2. Dependent variables predicted by BRAGFLO model for two-phase flow selected for use in comparison of
statistical procedures for identification of patterns in scatterplots: - (2.2a) pressure in lower wasie panel
under undisturbed conditions (E0:WAS_PRES), (2.2b) cumulative brine inflow from anhydrite marker beds
under undisturbed conditions (E0:BRAALIC), (2.2¢) saturation in lower waste panel after an E2 intrusion at
1000 yr (E2:WAS_SATB), and (2.2d) pressure in lower waste panel after an E2 intrusion at 1000 yr
(E2:WAS_PRES).
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A popular and often effective approach to sensitivity analysis in sampling-based studies is to use regression
analysis to estimate the relationships that exist between uncertain (i.e., sampled) variables and predicted variables
(Helton, 1993). Specifically, the sampling procedure and associated model evaluations lead to the mapping
(X Vi), k=1, 2, ..., nS, in Eq. (1.6) between sampled variables and model predictions that can be investigated with

regression-based techniques.

For perspective and motivation, regression-based results for the variables in Table 2.1 obtained in Helton et al.
(1998) with the STEP program (Iman et al., 1980) are presented in Table 2.3 for both raw and rank-transformed
data. In the regressions in Table 2.3, a variable was required to be significant at an a-value of 0.02 to enter a
regression model and to remain significant at an a-value of 0.05 to be retained in a regression model, although there
were no cases of a variable entering and then being dropped from a regression model. As will be seen, the rank-
transformation is often an effective procedure for improving the resolution of regression-based sensitivity analyses
due to its effect in linearizing nonlinear but monotonic relationships. However, as will also be seen, nonmonotonic
relationships can result in patterns that cannot be effectively analyzed with rank-transformed data. It is the need to

be able to identify such patterns that forms the motivation for this study.

The analyses in Table 2.3 for repository pressure at under undisturbed conditions (E0:WAS_PRES) with raw and
rank-transformed data are reasonably effective, with (1) R? values of 0.82 and 0.81 for raw and rank-transformed
data, (2) the same variables selected in both analyses, and (3) only one minor variation in the order of variable
selection (i.e., the order of selection of the last two variables in the regression models is reversed). Scatterplots for
the first four variables selected in the regression analyses for EQ:WAS_PRES are presented in Fig.2.3. The
scatterplots for the first two variables selected in the regression analysis, WMICDFLG and HALPOR, display well-
defined patterns. The pattern for the third variable, WGRCOR, is weaker but still detectable. The fourth variable,
ANHPRM, changes the R2 values for raw and rank-transformed data by 0.02 and 0.01, respectively, and produces a

scatterplot that displays little discernible pattern.

The analyses for cumulative brine inflow from all anhydrite marker beds to the repository under undisturbed
conditions (E0:BRAALIC) are interesting in that the regression with raw data is not particularly effective (i.e., R =
0.50 at final step of analysis), while the regression with rank-transformed data is reasonably successful in accounting
for the observed uncertainty (i.e., RZ = 0.87). Again, examination of scatterplots shows well-defined patterns for the
first two variables, WMICDFLG and ANHPRM, selected in both regression analyses (Fig. 2.4). Scatterplots for the
next two variables, HALPOR and WGRCOR, selected in the regression analysis with rank-transformed data are also
given in Fig. 2.4. The negative effects of these variables, as indicated by the signs of their standardized regression
coefficients, are barely discernible in their scatterplots, with these small effects being consistent with observed
changes in R2 values of 0.05 and 0.02 with the entry of HALPOR and WGRCOR, respectively, into the regression

model. In this example, the regression analyses with both raw and rank-transformed data have identified the two
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Table 2.3. Stepwise Regression Analyses with Raw and Rank-Transformed Data with Pooled Results
from Replicates R1, R2 and R3 (i.e., for a total of 300 observations) for Variables
EO:WAS_PRES, E0:BRAALIC, E2:WAS_SATB and E2:WAS_PRES at 10,000 yr

Raw Data, E0: WAS_PRES Rank-Transformed Data, EO:WAS_PRES
Step? Variableb SRC*® R VariableP SRRC® R2d
1 WMICDFLG 0.72 0.51 | WMICDFLG 0.71 0.52
2 HALPOR 0.47 0.73 | HALPOR 0.45 0.73
3 WGRCOR 0.25 0.79 | WGRCOR 0.23 0.79
4 ANHPRM 0.13 0.81 | ANHPRM 0.11 0.80
5 SHRGSSAT 0.07 0.81 | SALPRES 0.07 0.80
6 SALPRES 0.06 0.82 | SHRGSSAT 0.06 0.81
Raw Data, EO:BRAALIC Rank-Transformed Data, EO:BRAALIC
Step Variable SRC R2 Variable SRRC R?
1 ANHPRM 0.56 0.32 | WMICDFLG -0.66 0.43
2 WMICDFLG -0.31 042 | ANHPRM 0.59 0.75
3 WGRCOR -0.16 0.45 | HALPOR -0.16 0.80
4 WASTWICK -0.15 0.47 | WGRCOR -0.15 0.82
5 ANHBCEXP -0.12 0.49 | HALPRM 0.14 0.85
6 HALPOR -0.10 0.50 | SALPRES 0.12 0.86
7 WASTWICK —0.10 0.87
Raw Data, E2:WAS_SATB Rank-Transformed Data, E2: WAS_SATB
Step Variable SRC R? Variable SRRC R2
1 BHPRM 0.37 0.12 | BHPRM 0.59 0.36
2 ANHPRM - 0.30 0.21 | WRGSSAT -0.40 0.52
3 HALPOR 0.21 0.25 | ANHPRM 0.23 0.57
4 WGRCOR -0.19 0.29 | HALPOR 0.13 0.59
5 WRGSSAT -0.15 0.31 | SHPRMHAL -0.12 0.60
6 WMICDFLG -0.14 0.33 | WGRCOR -0.10 0.61
Raw Data, E2:WAS_PRES Rank-Transformed Data, E2. WAS_PRES
Step Variable SRC R? Variable SRRC R?
1 HALPRM 0.37 0.14 | HALPRM 0.36 0.13
2 ANHPRM 0.24 0.20 | ANHPRM 0.24 0.19
3 HALPOR 0.14 0.22 | HALPOR 0.14 0.20

o »

Steps in stepwise regression analysis.

Variables listed in order of selection in regression analysis with ANHCOMP and HALCOMP excluded from entry into regression model
because of —0.99 rank correlation within the pairs (ANHPRM, ANHCOMP) and (HALPRM, HALCOMP).

Standardized regression coefficients (SRCs) in final regression model.

Cumulative R? value with entry of each variable into regression model.

Standardized rank regression coefficients (SRRCs) in final regression model.

o o

o
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Fig. 2.3. Scatterplots for pressure in lower waste pane! under undisturbed (i.e., E0) conditions at 10,000 yr
(EQ:WAS_PRES) versus first four variables selected in stepwise regression analyses with raw and rank-

transformed data (Table 2.3):

ANHPRM.
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Fig. 2.4. Scatterplots for cumulative brine inflow over 10,000 yr from all anhydrite marker beds to repository under
undisturbed (i.e., EQ) conditions (E0:BRAALIC) versus first four variables selected in stepwise regression
analysis with rank-transformed data (Table 2.3): (2.4a) WMICDFLG, (2.4b) ANHPRM, (2.4c) HALPOR,
and (2.4d) WGRCOR.
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dominant variables, WMICDFLG and ANHPRM. However, the analysis with raw data in isolation would not be very

credible due to its low R? value.

The regression analysis with raw data for brine saturation in the lower waste panel after an E2 intrusion
(E2:WAS_SATB) is quite poor, with the final regression model containing 6 variables but having an R? value of only
0.33. The regression analysis with rank-transformed data does somewhat better and results in a final regression
model with 6 variables and an R? value of 0.61. However, an R? value of 0.61 is not particularly reassuring with
respect to whether or not all the variables giving rise to the observed uncertainty in E2:WAS_SATB have been
identified. Additional insights on the relationships between the sampled variables and E2:WAS_SATB can be
obtained by examining scatterplots (Fig. 2.5). The first two variables identified in the regression analysis with rank-
transformed data, BHPRM and WRGSSAT, show well-defined and interacting patterns. In particular, BHPRM is the
primary determinant of whether or not a high value for E2:WAS_SATB occurs; however, given that a high value for
E2:WAS_SATB occurs, this value is almost completely determined by WRGSSAT. Despite the well-defined patterns
involving BHPRM and WRGSSA T, the regression analysis with raw data results in incremental R? values of only 0.12
and 0.02 for these two variables, and the regression analysis with rank-transformed data results in incremental R2
values of only 0.36 and 0.16. The next two variables selected in the regression analysis with rank-transformed data
are ANHPRM and HALPOR. The scatterplot plots for these variables do not show particularly strong patterns, with
a stronger pattern actually being shown for the fourth-selected variable, HALPOR, than for the third-selected
variable, ANHPRM. For E2:WAS_SATB, the two dominant variables, BHPRM and WRGSSAT, appear in the
regression analyses for both raw and rank-transformed data. However, the R? values associated with these
regressions (i.e., 0.33 and 0.61) provide little assurance that the dominant variables have been identified. It is only
after examination of the associated scatterplots and the development of a physical explanation for the patterns
appearing in these plots that some degree of comfort emerges that the dominant variables have indeed been

identified.

The final regressions in Table 2.3 are for pressure in the lower waste panel after an E2 intrusion
(E2:WAS_PRES). The regression analyses with both raw and rank-transformed data perform very poorly and result
in final regression models with R? values of only 0.22 and 0.20, respectively. Both regression models select
HALPRM, ANHPRM and HALPOR, with the scatterplots for these three variables appearing in Fig. 2.6.
Examination of these scatterplots does not adequately reveal what is giving rise to the observed uncertainty in
E2:WAS_PRES. In particular, the uncertainty in E2: WAS_PRES does not appear to arise from either HALPRM,
ANHPRM and HALPOR individually or from some form of interaction between these variables. At this point in the

analysis reported in Helton et al. (1998), a systematic search was made through the scatterplots between

E2:WAS_PRES and the remaining variables in Table 2.2, with this search revealing that the uncertainty in
E2:WAS_PRES is dominated by BHPRM (Fig. 2.6d). This is disconcerting because the clearly dominant variable
/
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transformed data (Table 2.3): (2.5a) BHPRM, (2.5b) WRGSSAT, (2.5¢) ANHPRM and (2.5d) HALPOR.

22




10.5

T T T T
*
Frame 2.6a
. -
-* *
85 . . .. e
.
.
5 .o
s .
© . . . .
& g M . .o e
.6 .
N .. . * L)
(Lﬁ LR TR N .‘ 0.0‘.‘*’.0:'01.00 so"g (254 S’:’
. - . e . .
o . .
D.l . . . :o.'
L] . * .
92 Ll vt ) _
" *
= P oo
&l . .ot . ¢
» -
w . . . LN .. * *
R PRGN . Lo
LY . . .
.
27F . N S LI N b
u’ e LT b . . . “ .
d * .
R SRR RO O S AT
o L Oo.‘.: LRI PRI . . .
. ,.“-.qo'.,u :.:... AR . -
07 l | ! |
-24.1 -23.5 —22.8 -22.2 -21.5 -20.9
HALPRM, log m?
10.5 T T T T
.
Frame 2.6¢
‘e
.
85 - Y .. 4
.
.
—— - * hd
[
[=]
ot . [ ¢ . .
. .
g 6.6 - so 0 » - AR 7]
- ...ooo..‘.‘ga. e, 3 DR A I A PO
[72) ¢;- Sy Ve ve o .
Wi v .
10 - . L - -
o . . .
- * A
UJI 46 - ., . . . E =
-
'ni * . . -* .
] * .~ .0 »
. . . . .
. . . .
» . ate .
27F . hd * Y ., *t . . . -
L » . .
Y M . o * ¢
20, ® . . . e o .
Faaht e wh d ° .
° 4 * *, - -
~* ’fn?o',‘ 'S ,” e : * g e
*e s 2y s ® . . - .
0.7 1 I I 1
0.0 0.6 1.2 1.9 2.5 3.1

Fig. 2.6.

HALPOR (1072)

S, Pa (108)

E2:WAS_PRE

, Pa (105)

E2:WAS_PRES

10.5 T T T T
Frame 2.6b )
. .
» -
85 r . P . . -
hd -
* ‘0
ol .ot p
6.6 1 M '0. L. s oo * 7
. ¥ ..ﬁ.u 033: AL
. .. 3 .
.o
- * - *
. R
4.6 - AP N —
v ae .
‘? e e s
3 .. . “ * PO
. LA ot i * .
‘t “. *
27 - * e e -
. s v .
. Y ;.:o.":, .t
. e te ,Ri’o:,.’. f' .
.
o ST Y ."n-
0.7 1 1 1 H
-21.2 -20.3 -19.5 -18.6 -17.8 -16.9
ANHPRM, log m?
10.5 T T T T
.
Frame 2.6d
...
BS5 [ o, o . 4
* *
'3 ¢
. .
. . . * .
. .
6.6 - . .
s et * . * oy sor
K . . ~H
R AL
Py M o M
oot .
4.6 - . te N . -
Lt e s .
R . .
* s -
. P '. .
LN ¢ ¢
MY L .,
27 LYY ; PN -
wt & ° A
- : < ae L0t
- s %6 ¥ » -, -
‘w.‘,.g %"“;'.‘ .
EERRAY Y TR 2
0.7 | 1 | 1
-14.1 -13.5 -12.8 -12.2 -11.5 -10.9
2
BHPRM, log m

TRI-6342-5741-0

Scatterplots for pressure in lower waste panel at 10,000 yr with an E2 intrusion into the lower waste panel
at 1000 yr (E2:WAS_PRES) versus the three variables (HALPRM, ANHPRM, HALPOR) selected in
stepwise regression analysis with raw and rank-transformed data (Table 2.3) and one additional variable

(BHPRM) identified by examination of scatterplots:
and (2.6d) BHPRM.
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with respect to the uncertainty in E2:WAS_PRES was not even identified in the regression with raw or rank-
transformed data. In contrast, the analyses for E2:WAS_SATB included the dominant variables in the regression
models even though the R? values were low. As an aside, the interesting pattern involving E2:WAS_PRES and
BHPRM in Fig. 2.6d results from two-phase flow in the borehole connecting the waste panel with overlying
formations, with gas typically flowing up the borehole and brine typically flowing down the borehole (Helton et al. |

1998).

As should be apparent from the regressions in Table 2.3 and the associated scatterplots in Figs. 2.3-2.6, the
examination of scatterplots is an important part of sampling-based sensitivity analysis and can reveal patterns that are
missed by regression-based procedures. In the development that follows, the variables in Table 2.1 will be used to
illustrate a number of procedures for the identification of patterns in scatterplots. These variables were selected to
illustrate pattern identification procedures because they constitute a spectrum of analysis possibilities. In particular,
regression analysis with both raw and rank-transformed data performs well for E0:WAS_PRES; regression analysis
with rank-transformed, but not raw, data performs well for E0:BRAALIC; regression analysis with neither raw nor
rank-transformed data performs particularly well for E2:WAS_SATB but both regression models still include the two

dominant variables; and regression analysis with raw and rank-transformed data fails to identify the dominant

variable with respect to the uncertainty in E2: WAS_PRES.




3. Linear Relation: y =+ Bx

The coefficients By and By in a first-order polynomial can be estimated with the well-known ordinary least

squares procedure. Specifically, |§0 and Bl are given by (Sect. 2.1, Draper and Smith, 1981)
B=x"%"'x"y, 6

where

- [p Iox Y
B:l:f{l,X: Do Ly=l:
Bl 1 Xns YnS ‘

and the superscript T denotes matrix transpose. The estimated linear regression model then becomes

$=Bo +Byx, (3.2)

with the coefficients ﬁo and Bl deriving from the sampled and calculated values contained in the pairs (x, yp), k =

1, 2, ..., nS, as indicated in Eq. (3.1).

The apparent strength of the linear relationship in Eq. (3.2) provides one way to assess the relationship between
x and y. The linear correlation coefficient p,,, which is also called the Pearson correlation coefficient, provides the

most commonly used measure to assess the strength of the linear relationship between x and y and is defined by
Pxy =Oxy /(oxcy), (3.3)

where o, denotes the covariance between x and y, and o, and oy denote the standard deviation of x and y,

respectively. In turn, p,, is estimated by

S S V2r o 1/2
Pry = Z(xk -0k —Y) z(xk —f)z} Z(J’k —f)z}
k=1 k=1

k=1
ns nS 172 ns 1/2
= Y e -nSEF| [ Y xi-nS7 | | Y yE-nsF? |, (34)
k=1 k=1 k=1

where
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nS

nS
F=) x/nS, §=) y/nS.
k=1 k=1

The quantity P xy is often called the sample correlation coefficient.

The reason why p,, and hence ) xy» provides a measure of the strength of the linear relationship between x and
y is not immediately apparent from Egs. (3.3) and (3.4). Rather, this reason is perhaps best understood in the context
of the regression model in Eq. (3.2) with both x and y standardized to variables with a mean of 0 and a standard

deviation of 1 by

Xy =(x =X/ 6y, T = =)/ 6y, (3.5)
where
nS 1/2 nS 1/2
~ — ~ Al —_—
Gy =| D =D 1(S=D| Gy =| D k- (nS-1)
k=1 k=1

With the preceding standardization, Eq. (3.1) yields the regression model
(y~§)/6y=0+ﬁxy(x~f)/6x=§xy(x—f)/6x. (3.6)

Thus, p xy 18 the standardized regression coefficient relating x to y. As such, P xy Characterizes the effect that
changing x by a fixed fraction of its standard deviation will have on y, with this effect being measured relative to the

standard deviation of y.

In addition, the correlation coefficient Pxy» and hence p x> provides a measure of the fraction of the variance of
v that can be accounted for by x. Again, this is best seen in the context of the regression model in Eq. (3.2), for

which the following identity can be established (Sect. 1.3, Draper and Smith, 1981):

nS nS nS
E(Yk -3 =2(§k—§)2+2(§’k -y)? ’ (3.7
k=1 k=1 k=1

The summation Zk O — i)z represents the part of the variance of y that can be accounted for by ¥ = Bo +Byx,

with the result that
ns nS
R* =3 Gy-9*1 Y e -9? (3.8)
k=1 k=1
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represents the fraction of the variance of y that can be accounted by use of x in a linear approximation to y. The
preceding quantity is called the R2 value or the coefficient of determination for x and y. An R? value close to 1
indicates that x can account for most of the uncertainty in y; in contrast, an R2 value close to 0 indicates that a linear

relationship involving x accounts for little of the uncertainty in y.

Like the standardized regression coefficient, the R? value can be expressed in terms of p xy- The development
of the relationship between R? and f)xy requires an exact representation for the coefficients B; and B in the

definition of y, in Eq. (3.8). Specifically, the vector equality in Eq. (3.1) leads to

nS nS nS
Dk || Xk [+ we
é — k=1 k=1 k=1
1 nS nS
325
k=1 k=1
nS nS nS
Zxkyk - nS Zxk /nS Eyk /nS
_ k=l k=1 k=1
h nS 7S
nSY xf-nS| Y xi/nS
k=1 k=1
nS nS »
=Y =D -9 D -9’ (3.9)
k=1 k=1
and
nS nS nS nS
2
Dok || D || e || 2w
B - k=1 k=1 k=1 k=1
0 nS nS 2
DEE)
k=1 k=1
nS nS nS
DR DRI WEN
—w_ k=1 k=1 k=1 -
nS nS 2
SXE)
k=1 k=1
=y-Bi¥, (3.10)

where the second equality involving B follows from the substitution
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nS nS .
Zxk)’k =2xk(yk-i+i) (3.11)
k=1 k=1

and some simple algebraic manipulations.

Given the preceding representations for 3, and Bl ,

nS ’ nS
D G- = ) [Bo+Bx)-31"  lfrom Eq. (3.2)]
k=1 k=1

nS
=2[(i—BIE+ lek)—ﬂz [from Eq. (3.10)]
k=1

nS

BEY (x -7

k=1

nS

2
nS
Z(Xk - —¥) Z(xk -0)2. (3.12)
k=1

k=1

[from Eq. (3.9)]

Hence, from Egs. (3.8) and (3.12),

nS 2 nS nS
R2 =Y =D =P | /| D, 00-02 || Y, 00 -9 | =83 (3.13)
k=1 k=1 k=1

Thus, the square of the sample correlation coefficient is equal to the fraction of the variance of y that can be

accounted for by 3 as defined in Eq. (3.2), and hence by x under a linear transformation.

The preceding has given two interpretations of the correlation coefficient p,, between x and y in terms of the
regression model in Eq. (3.2). First, the sample correlation coefficient p xy (i.e., the approximation 10 p,, defined
in Eq. (3.4)) can be viewed as the regression coefficient in Eq. (3.2) when x and y are standardized to mean O and
standard deviation 1. Second, p xy can be viewed as the square root of the R? value for the regression model in Eq.
(3.2) G.e., 5,20, = R? ). The correlation coefficient can also be viewed as a parameter in a joint normal distribution

involving x and y (see Sect. 2.13, Myers, 1990); however, this interpretation is not as intuitively appealing as the two

involving the regression model in Eq. (3.2).




When p, is close to 1 or 1, an almost linear relationship exists between x and y (see definition of R% = f)iy in

Eq. (3.8)). However, large changes in x may still result in small changes in y if the regression coefficient 61 in Eq.
(3.2) is small. Indeed, the magnitude Iﬁll of ﬁl is not a very informative quantity because lﬁll depends on the units
in which x and y are expressed (e.g., changing the units on x from millimeters to kilometers will have a large effect
on ![A}II but no effect on the underlying physical relationships). For this reason, x and y are often standardized to
mean O and standard deviation 1. As previously discussed, this standardization results in the equality [3 1=p xy and

also in Py characterizing changes in y normalized to &y relative to changes in x normalized to &, .

Although f)f,y =1 implies a strong linear dependence between x and y, p xy = 0 cannot be used to infer that no
relationship exists between x and y (i.e., that x and y are independent). In particular, zero correlations can occur in
the presence of a nonmonotonic relationship between x and y. For example, pyy=0fory=1- ¥ with-1<x<1
and also for y = cos x with 0 < x < 2m. A more interesting example is given by the scatterplot for BHPRM in Fig. 2.6.
Thus, a linear relationship can be assumed to exist between x and y if 1p xyl 18 close to 1. Further, linear relationships
of lesser strength (i.e., smaller R? values) exist for smaller values of Ip xy!- For Ip xy!=0, the implication is that no

linear relationship exists between x and y.

A significance test can be used to indicate if p xy appears to be different from 0. For example,
t=p,,(ns-2)"11-p2)"? (3.14)

has a t-distribution with 2.5-2 degrees of freedom when x, y are uncorrelated and have a bivariate normal distribution

(Press et al., 1992, p. 631). Further,
7= f’xy JnS 3.15)

is distributed approximately normally with mean O and standard deviation 1 when x and y are uncorrelated, x and y
have enough convergent moments (i.e., the tails die off sufficiently rapidly), and nS is large (typically > 500) (Press
et al., 1992, p. 631). Then,

prob(iri>1p 1) = erfe(1  1VnS 142), (3.16)

where prob(iri>1p xy!) is the probability that random variation would produce a value r for p xy larger in absolute

value than the observed value f)xy and erfc is the complementary error function (Press et al., 1992, p. 631).

Significance results obtained with ¢ in Eq. (3.14) converge to those obtained with z in Eq. (3.15) as nS increases.
However, as x and y are unlikely to have normal distributions in real analysis problems, results obtained with ¢ and

small values of nS should simply be viewed as one form of guidance as to whether or not a linear relationship

actually exists between x and y.




If several x; have scatterplots that appear to have nonzero values for p x;y» then the relative importance of these
x; can be ordered by the absolute values of p x;y- This is equivalent to ordering the x; on the basis of the strength of
the linear relationship associated with the pairs (x;, yi), k=1, 2, ..., nS. This is also equivalent to ordering the x on
the basis of p-values obtained from the distributions associated with Eq. (3.14) or (3.15), where the p-value
designates the probability that a value for p xy Will be obtained that exceeds the observed value for p xy in absolute
value (i.e., prob(Irl>Ip x!)in Eq. (3.16)). Actually, the ordering is done on the complements of the p-values

because smaller p-values are associated with larger values for Ip Xyl

Standardized regression coefficients provide a popular way of ranking variable importance (e.g., Chan, 1996;
Hamby, 1995; Ma et al., 1993; Ma and Ackerman, 1993; Whiting et al., 1993). However, when the x; are
independent, the standardized regression coefficient for x; is equal to p xjy and so the two rankings are identical.

Specifically, the regression model relating y to the x; has the form

$=Bo +Zﬁixi> (3.17)

where B has the same functional form as in Eq. (3.1) with

- .éo Loxy o X i
B=|: X=|: : : Ly=|:

Bt 1 x5 - XnS,nl Yns

(Sect. 2.6, Draper and Smith, 1981). If the x;;’s have been selected so that the rows of X are orthogonal (i.e., so that
X7X is a diagonal matrix with diagonal elements dy, d, ..., d, which is equivalent to the individual x; being

independent and thus having sample correlations of 0), then

p=x"x"'x"y

dy 0 - 0 71 1 1 1

_|0 4 - 0 X1 X2l vt Fas1 |y (3.18)
0 0 - dy Xinf  Xonl 7 XnSni L YnsS

and so g

nS nS nS

~ 2

Bi‘_"zxik}’k/dk =2xikyk/zxik- _ (3.19)
k:i k:l k=1
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Thus, when x; and y are standardized to mean 0 and standard deviation 1 (see Eq. (3.5)),

nS nS 172 ¢ 1/2
Bi = z(xik —fi )(yk -y E(Xik —J?i)z Z(yk —y)z =6x;y (3.20)
k=1 k=1 k=1

and the standardized regression coefficient B, and the (sample) correlation coefficient p x;y are equal.

Partial correlation coefficients are another popular way of ranking variable importance (e.g., Hamby, 1995;
Whiting et al., 1993; Breshears et al., 1992). However, the partial correlation coefficient is just a special form of the

sample correlation coefficient. In particular, if least squares techniques are used to determine the coefficients in

nl nl

iy =G+ D &% and F=Bo+ Y Bix, 3.21)
i=1 =1
i#] i#]

then the partial correlation coefficient ﬁxjy between x; and y is the sample correlation p £ determined for the pairs
(x ke~ Xjko Yk~ Yk ), k=1,2,...,nS. Thus, p xjy is the sample correlation between X and y after a correction has

been made for the linear effects of the other x;.

The following relationship exists between ﬁxjy and the standardized regression coefficient [3 j (.., the
coefficient associated with the regression model in Eq. (3.17) when x; and y are standardized to mean 0 and standard

deviation 1):
A~ A 2 234172
pxjy_Bj[(l"Rj)/(l"Ry)] ) (3.22)

where RJ2 is the R? value that results from regressing x;onyand the x;, i = 1,2, ..., nl with i # j, and R}Z, is the R2
value that results from regressing y on the x;, i = 1, 2, ..., nl (Iman et al., 1985, Eq. (1)). In the event that the x; are

orthogonal,

nl

nl ni
2 A ~2
R} = 2 R? = § BZ = E Pl (3.23)
i=l i=l i=1

with the first equality following from Eq. (III-74) of Helton et al. (1991) and the second and third equalities
following from Egs. (3.13) and (3.20). Thus,
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112 172

~A

nl
~ _ A n2 A A2 A2
pxjy“ J (1—B' ] _px]'y (l—pxjy)/ l_sziy
i i=l1

Because of the inequality

b(1-bHV? > g(1-a®H)'? (3.25)

A

for a2 + b < 1 and a < b (Fig. 3.1), an ordering of variable importance based on If)xjyl ,IB;lorlp xjyl will produce

the same results when the x; are orthogonal; further, the values for ﬁ ; and p xjy will be the same and generally

different from p xjy-

Due to the conceptual simplicity of the sample correlation coefficient p xy and its close relationship to
standardized regression coefficients and partial correlation coefficients in the presence of orthogonal values for the
x;’s, this study will use p xy to assess the strength of the linear relationship between x and y. In the presence of small
deviations from orthogonality (i.e., the existence of small correlations between the x;), the three measures will still
give similar results. However, in the presence of large deviations from orthogonality, the three measures can give

quite different, and possibly misleading, indications of the effects of individual variables.

As noted earlier, p,, = 0 should not be interpreted to mean that no relationship exists between x and y. For
Pxy p p Y

example,

y=BoxPl (3.26)

results in a low, but nonzero, value for Pxy EVen though there is no noise in the relationship between x and y. In this
case, a logarithmic transformation will linearize the relationship between x and y. However, such transformations
may not exist and, given that they do exist, identifying them is not always easy. For example, logarithmic
transformations are not applicable when some of the y values are zero, which is a fairly common analysis situation.

One possible transformation of fairly broad applicability is the rank transformation, which is discussed in Sect. 4.

A possible complication in the use of p xy to identify the existence of a relationship between x and y can be the
existence of interactions with other variables. For example, the relationship between y, x;, and x, might be of the

form

y=Bo +Bix; +Baxg +Biaxixz,

which can also be expressed as




y=Bo +Bi[1-B12 /Br)xalx; +Baxs

=Bo +Brx; +B201— B2 /B2)x11x2

As long as the variation in x; is large relative to the variation in 1— (B,/B)x, or the variation in x, is large relative
to the variation in 1- (B,/B{)x,, the fact that x; or x, does indeed have a significant effect on y should be identified
by the corresponding value for p xy+ Thus, it is not considered necessary to specifically consider interaction effects
to identify important variables, although it is certainly possible to calculate p xy With x = x;x; if desired. Further, use

of contingency tables to be discussed later (Sect. 7) allows the identification of nonlinear effects without the

assumption of a specific model form.
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Fig. 3.1. Graph of d(b, a) = b(1 - b%)V2 — a(1 - 22)172 > O subject to constraints 0<a<b<1l,a?+b2< 1.
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4. Monotonic Relation: r(y) =y + y1r(y)

When the relationship between x and y is nonlinear but monotonic, the relationship can be linearized by use of
the rank transformation. The idea of the rank transformation is simple. Specifically, the pairs (x;, y,) are

transformed into a new sequence of pairs
[r(xp), r(y)l k=1,2,...,n8, “.1)

where (i) the smallest value of x; is assigned a rank of 1 (i.e., 5(x;) = 1), the next largest value of x;, is assigned a rank
of 2 (i.e., r(x) = 2), and so up to the largest value of x;, which is assigned a rank of S (i.e., r(x;) = nS), (ii) averaged

ranks are assigned to equal values of x; (e.g., if x; = x;, x; # x; for [ # J, k, and p — 1 observations have values less

than Xjs then r(xj) = r(xp) = (p + p + 1)/2), and (iii) the assignment of the ranks for y (i.e., r(y;)) is accomplished in the

same manner as the assignment of ranks for x.

Rank-transformed data can be analyzed in exactly the same manner as discussed in Sect. 3 for untransformed
data. In particular, the strength of the linear relationship between the rank-transformed variables in Eq. (4.1) can be
measured with Spearman’s rank correlation coefficient for x and y, ny,
coefficient in Eq. (3.4) calculated on ranks. The test for zero rank correlation uses a table of quantiles for I !

(e.g., Table A10, Conover, 1980). For nS = 30,
Z:ﬁxy1/n5‘1 _ : “4.2)

approximately follows the normal distribution for n,, = 0 (p. 456, Conover, 1980), which is very similar to the

approximation to the distribution indicated for p, in Eq. (3.15). Thus, similarly to Eq. (3.16) for p,,,
prob(r>if 1) = erfe(If 1 VnS —1/+2), (4.3)

where’ prob(irl > In|) is the probability that random variation would produce a value r for nyy larger in absolute
value than the observed value 1 xy and erfc is the complementary cumulative error function (Press et al. 1992, p.

631).

v

Regression coefficients and partial correlation coefficients can also be calculated with rank-transformed data as
discussed in Sect. 3 (e.g., Sanchez and Blower, 1997; Gwo et al., 1996; Helton et al., 1996; Hamby, 1995; Blower
and Dowlatabadi, 1994; Whiting et al., 1993; MacDonald and Campbell, 1986). As an aside, the form of the

regression model after y and the x;’s have been standardized to mean O and standard deviation 1 is
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nl
OG-8y =D B 18,00 %)/, (4.4)

i=l

where ﬁi is the regression coefficient obtained with the original (i.e., nonstandardiied) values for y and the x;’s.
When rank-transformed data are being used and there are no ties in the y or x; values, then & 5= 6y and so the
standardized regression coefficient (i.e., |§,~6 5! 8},) is the same as the original, nonstandardized coefficient (i.e.,
ﬁ ; ). Thus, standardization is automatically accomplished by the use of rank-transformed data as long as there are no

ties in the y and x values.

Closely related to Spearman’s coefficient is Kendall’s © (Conover, 1980, pp. 255 - 260). Because both
coefficients give nearly identical significance results, this alternative for identifying monotonic relationships is
considered only briefly. Kendall’s T measures the degree of concordance in a set of observations of the form in Eq.
(1.7). The pairs (x,, y,) and (x;, y;) are said to be concordant if both members of one pair are less than the
corresponding members of the other pair (ie., x, < xg, ¥, <y, of X, > x, y, > ¥,). Further, the pairs are said to be
discordant if the two members in one pair differ in opposite directions from the corresponding members in the other

pair (i.e., X, < X, ¥, > ¥, OF X, > X, ¥, < ¥;). Kendall’s 7 is estimated by
%xy =(N,=Ng)/[nS(nS-1)/2], 4.5)

where N, is the number of concordant pairs of observations, N, is the number of discordant pairs of observations,
and nS(nS—1)/2 is the total number of pairs {(x,, y,), (xs ¥5)} of observations. The statistic T Xy has a distribution
that is adequately approximated by the normal distribution for sample sizes as small as nS = §. In contrast, larger
samples (e.g., nS > 30) are required for 1) xy to approach a normal distribution, although Monte Carlo sensitivity
studies typically use sample sizes larger than 7S = 30. As estimates for Spearman’s coefficient | xy and Kendall’s
T xy produce similar rankings of monotonicity and 1} xy is more intuitively appealing because of its close relationship
to Pearson’s coefficient ﬁxy, this presentation will use 7 xy to identify nonlinear but monotonic relationships in

scatterplots.
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5. Location of y Dependent on x

Tests for two distinct types of patterns in scatterplots were considered in Sects. 3 and 4, with the Pearson
correlation coefficient introduced as a means of identifying linear patterns (Sect. 3) and the Spearman correlation
coefficient introduced as a means of identifying nonlinear but monotonic patterns (Sect. 4). This section introduces
tests for a broader class of patterns. Specifically, patterns are sought where some measure of central tendency for y
changes with changing values for x. Linear and monotonic patterns have this characteristic. However, decidedly
nonlinear and nonmonotonic patterns can also have this characteristic (e.g., see the scatterplot for BHPRM in Fig.

2.6).

The approach taken is to divide the values for x (i.e., x;, k = 1, 2, ..., nS) into nX classes and then to test to
determine if y has a common measure of central tendency across these classes. Thus, x must be defined on at least a
nominal scale to permit the definition of the necessary classes. Classic measures of central tendency are the mean or
expected value, E(y), and the median, yp 5. The mean is a more widely used measure of central tendency but the

median is less sensitive to outliers (e.g., see the Princeton robustness study reported in Andrews et al. (1972)).

Most of the x’s under consideration are actually defined on an interval scale (see Table 2.2), and the required
classes are obtained by subdividing the range of x into a sequence of mutually exclusive and exhaustive subintervals
containing equal numbers of sampled values (Fig. 5.1). A few x’s are discrete with unequal probabilities for the
individual x values (e.g., see WMICDFLG in Fig. 2.3); for these variables, individual classes are defined for each of
the distinct values. However, the optimum definition of the classes is not at all apparent, and in practice, some

experimentation may be required to determine an appropriate division of the x values into individual classes.

For a given variable x and its nX associated classes, the following statistics will be used to identify apparent
deviations from a common central tendency: (i) the ANOVA F statistic for equal means, which requires an interval
scale for y (Sect. 5.1), (ii) the Kruskal-Wallis test for common locations, which requires an ordinal scale for y (Sect.

5.2), and (iii) the chi-square test for equal medians, which also requires an ordinal scale for y (Sect. 5.3).

5.1 Common Means: ANOVA F Statistic

The first possibility considered is that different classes of x values have different expected values for y. For
notational convenience, let g, g = 1, 2, ..., nX, designate the individual classes into which the values of x have been
divided; let J(;] designate the set such that k € J(;I only if x; belongs to class g; and let nX, equal the number of
elements contained in qu (i.e., the number of x;’s associated with class g). The ANOVA F test is commonly used to

test for equivalence of conditional means (Scheffé, 1959):
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nX
N X532 -nS 7 |/ (X ~1)

F(nX —1,n8 — nX) = 47! , .1)
nS nX
Zy,% - Zanj)"‘? / (nS —nX)
k=1 gq=1

where nX — 1 and nS — nX are the number of degrees of freedom for the numerator and denominator, respectively,

Yg = Zke,)(q v I nX g and y is defined in conjunction with Eq. (3.4).

If the y values conditional on each class of x values are normally distributed with equal expected values, then the
statistic F (nX — 1, nS — nX) in Eq. (5.1) follows an F distribution with (nX — 1, nS — nX) degrees of freedom. This is
the most powerful test for equality of means given that the indicated normality assumptions hold (Scheffé 1959).
The probability prob(F > [A"lnl,nz) of exceeding an F statistic of value F calculated with (M1, Ny) degrees of

freedom and the indicated normality assumptions can be estimated by

prob(F > Fny,My) = 1,(My /2,0, /2), v=", /(M +1,F), (5.2)

where I, (a, b) designates the incomplete beta function (p. 222, Press et al., 1992).
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Fig. 5.1. Example of the partitioning of the range of x = HALPOR into nX =5 classes for y = E0:WAS_PRES.
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Although the F-statistic will be used to test for equal expected values across the nX classes into which x has been
divided, the y values for each class may not actually follow a normal distribution. If desired, yarious goodness of fit
tests (e.g., chi-square, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling) can be used to test for
normality of the y values (pp. 94 - 95, Kleijnen, 1987; D’ Agostino and Stephens, 1986). However, the number of
observations per class (e.g., 30 or 60 for many of the variables considered in this study) may be too small to provide
a powerful test. If a goodness-of-fit test leads to a rejection of the normality hypothesis, then it may be appropriate to
apply a normalizing transformation such as the Box-Cox transformation, which includes the logarithmic
transformation as a special case (pp. 175 - 185, Kleijnen, 1987). Fortunately, the ANOVA F test is robust with
respect to deviations from normality (p. 237, Conover, 1980). For perspective, Monte Carlo estimates of

prob(F > F1n 1>MN2) will be presented in Sect. 10.

5.2 Common Locations: Kruskal-Wallis Test

The next measure of common central tendency considered is the Kruskal-Wallis test, which is based on rank-

transformed data (p. 229, Conover, 1980). The associated statistic is defined by

nX
7= E(Rg/nxq)—nS(nSH)zm /82, (5.3)
g=1
where
nS
R, = zr(yk), s2 = Zr(yk)z—nS(nS+1)2/4 J (nS—1)
kean k=1

and r(y;) is defined in conjunction with Eq. (4.1) (p. 230, Conover, 1980).

If the y values conditional on each class of x values have the same distribution, then the statistic T in Eq. (5.3)
approximately follows a chi-square distribution with #X — 1 degrees of freedom (pp. 230 - 231, Conover, 1980).
Given this approximation, the probability prob(T > TinX - 1) of obtaining a value T that exceeds T in the presence

of identical y distributions for the individual classes is given by
prob(T > TInX -1)= Ql(nX -1)/2,T /2], , (5.4)

where Q (a, b) designates the complement of the incomplete gamma function (p. 215, Press et al., 1992). A small
value for prob(T > TInX — 1) indicates that the y’s conditional on individual classes have different distributions and

thus, most likely, different means and medians.
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5.3 Common Medians: Chi-Square for Contingency Tables

The final possibility considered is that different classes of x values have different median values for y. The chi-
square test for contingency tables can be used to test for this situation (pp. 143 - 178, Conover, 1980). First, the

median yj s is estimated for all 1S observations. Specifically,

Y@ n$) if @ nS is an integer
Yo = { (5.5)

[y([Q nShH + y([Q nSH1 ]/ 2 otherwise

where Q = 0.5 (Q = 0.25 and 0.75 will be considered in Sect. 6.2) and y), k = 1, 2, ..., nS, denotes the ordering of
the y values such that yg) < yg1) (p. 14, David, 1970). The individual classes of x values considered in Sects. 5.1
and 5.2 are then divided into subsets of y values that fall above and below yg 5 (Fig. 5.2). For class g, let nX; 4 €qual
the number of y values that exceed y 5, and let nX,, equal the number of y values that are less than or equal to yg 5.

The result of this partitioning is a 2 x nX contingency table with nX,, observations in each cell.
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Fig. 5.2. Example of the partitioning of the range of x = HALPOR into nX = 5 classes and the range of y =
E0:WAS_PRES into values above and below the median y s.
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The following statistic can be defined:

nX 2
T= 2 Z (nX,y —nE, )% I nE,,, (5.6)
g=1 r=1
where
{ 2 nX
PEyy =| D nXpy | Y nX,, |/nS
r=1 g=1

and nE,, corresponds to the expected number of observations in cell (r, g). If the individual classes of x values,
g=1,2, ..., nX, have equal medians, then T approximately follows a chi-square distribution with (nX — 1)(2 - 1) =
nX — 1 degrees of freedom (p. 156, Conover, 1980). Thus, the probability of obtaining a value of 7 that exceeds T
in the presence of equal medians is given by prob(T > TInX -1) in Eq. (5.4). To maintain the validity of the chi-
square approximation in the analysis of contingency tables, Conover suggests using a partition in which nE;, 21 (p.

156, Conover, 1980).

The Kruskal-Wallis rank statistic (Sect. 5.2) also converges to the chi-square statistic with nX — 1 degrees of
freedom. In a case study in Conover (1980, p. 232), the power of the rank test (i.e., Kruskal-Wallis) exceeded the
power of the median test. We interpret this result as follows: the median test only measures whether observations
exceed the common median; it does not measure the extent to which individual observations exceed this median (i.e.,

nominal versus ordinal scale). Thus, the rank test is incorporating more information than the median test.
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6. Dispersion of y Dependent on x

The preceding section considered techniques for identifying patterns where some measure of central tendency
for y changes with changing values for x. In this section, techniques for identifying patterns that involve changes in
the dispersion or spread of y with changing values for x are considered. Two measures of dispersion will be
considered: the variance 0‘% of y, and the interquartile range yg 75 — ¥g.25 of ¥, Where yg45 and yg ,5 represent the
0.75 and 0.25 quantiles of y. The variance is the best known measure of dispersion, and the interquantile range is
widely used as a summary of dispersion in box plots (e.g., Helton et al., 1996; Sargent, 1996). The interquartile
range is less sensitive to outliers than the variance, as is the case in the analogous situation for medians and means.
Two statistics are considered: the ANOVA F statistic with jackknifing in tests for common variances, and the chi-

square statistic in conjunction with contingency tables in tests for common interquartile ranges.

6.1 Common Variances: ANOVA F Statistic with Jackknifing

The ANOVA test will use the same classes, g =1, 2, ..., nX, of x values introduced in Sect. 5 (Fig. 5.1). Many
procedures exist for testing for common variances: five procedures are summarized in Kleijnen (1987, pp. 225 -
227), and 56 procedures are examined in Conover et al. (1981). Additional discussion is also given in Conover
(1980, pp. 239 - 250), Hamby (1994, pp. 149 - 150), Piepho (1997) and Wludyka and Nelson (1997). Note that

common variances can occur even though the associated mean values are different.

For this analysis, a procedure based on jackknifing is used to indicate if different classes of x values have
different variances for y. Jackknifing is a general technique for reducing possible bias in estimators and constructing
robust confidence intervals (Efron, 1982; Miller, 1974). The first author has obtained good results with jackknifing

in a number of different applications (Kleijnen, 1998). The procedure operates as follows.

. 2
The variance o7,

Yq of y conditional on class g is estimated by

&gq = Z(yk—fq)z/(an—I) (6.1)
ke..Xq .

forg=1, 2, ..., nX, where J(;I, ¥4 and nX, are defined in conjunction with Eq. (5.1). Further, an additional nX,

estimators
~2 - 2 .
Oyg~1 = Z()’k ~Yg-1)" /(nXy =2) (6.2)
ke ‘.Xq
k#l
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of Ggq are calculated with individual y’s (i.e., y;) omitted from consideration. The values for 62

A2
yg and Gy, can

be used to define the so-called pseudo values
ty =nX, 6%, —(nX, -1)&2 (6.3)
gl q°yq q yg,—k :

For each class of x values, the resultant values for ty constitute a sample from a population whose expected value is
Oyg in the case of common variances (at least if the x’s were generated by random sampling). The ANOVA F test
can now be used to test for the equality of the means of the variables 1. Specifically, the F statistic described in Eq.
(5.1) is calculated with the values for 7, and the corresponding exceedance probability for the resultant F statistic is
determined as indicated in Eq. (5.2). In this application, the jackknife procedure is being performed to obtain a

particular statistical test and robust confidence interval estimates rather than to reduce bias.

Because variance estimators have long tails to the right, the use of a logarithmic transformation in conjunction
with the jackknife procedure may enhance the capability of the procedure to identify different variances for y.

Specifically, 7, can be defined by

ty =nX, In(62,)~(nX, ~HIn@E3, ), (6.4)
and then the procedures defined in Eqgs. (5.1) and (5.2) used with this new definition. In this case, the test is for the

equality of In(c3,) .

A related approach is proposed by Archer et al. (1997), who also use the variability of y to assess the importance
of factors in large-scale simulation models. Further, they use an ANOVA-like procedure to decompose the total
variability of y into main effects, two factor effects, and higher-order interactions among factors. Finally, they apply

bootstrapping, which is closely related to jackknifing.

6.2 Common Interquartiles: Chi-Square for Contingency Tables

A test for common interquartile ranges based on the chi-square statistic for contingency tables is now
considered. This test is based on the previously used partitioning of x into g = 1, 2, ..., nX classes, with the
hypothesis being that the associated nX interquartile ranges (i.e., ¥y 75 — Yo.25) are the same (Fig. 6.1). The quantile
values yg 55 and yg 75 are defined by Eq. (5.5) with Q = 0.25 and 0.75. The individual classes of x values are now
divided into subsets of y values that fall within and outside the interquartile range. For class g, let nX,, equal the
number of y values that fall within the interquartile range, and nX34 equal the number of y values that fall outside the

interquartile range. As for the common median test, the result of this partitioning is a 2 x nX contingency table with
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nX,q observations in each cell. The statistic in Eq. (5.6) can now be calculated and used in conjunction with the
exceedance probability in Eq. (5.4). The interquartile test was suggested by the quantile test mentioned in Conover

(1980, p. 174) and, to the best of our knowledge, has not been previously examined in the literature.
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Fig. 6.1. Example of the partitioning of the range of x = HALPOR into nX = 5 classes and the range of y =
E0:WAS_PRES into values inside and outside the interquartile range [yj 25, ¥o.75]-
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7. Distribution of y Dependent on x: Chi-Square for Contingency Tables

The two preceding sections considered procedures for determining if the central tendency of y was dependent on
x (Sect. 5) and if the dispersion of y was dependent on x (Sect. 6). In this section, the chi-square test for contingency
tables is introduced as a means of determining if the distribution of y is dependent on the distribution of x (i.e., to

determine if y is statistically independent of x).

The test will use the same classes, g = 1, 2, ..., #X, of x values used in Sects. 5 and 6. Further, y is also divided
into classes (Fig. 7.1). Thus, y must be defined on at least a nominal scale to permit the definition of the necessary
classes. For notational convenience, let p, p = 1, 2, ..., nY, designate the individual classes into which the values of y
have been divided; let y,, designate the set such that k € y,, only if y, belongs to class p; and let nY), equal the
number of elements contained in yp. Typically, y is defined on at least an ordinal scale, and the classes are defined
by ordering the y and then requiring the individual classes to have similar numbers of elements (i.e., the nY), are

approximately equal forp =1, 2, ..., nY).

The partitioning of x and y into nX and nY classes in turn partitions (x, y) into nX nY classes (Fig. 7.1), where
(x, yp) belongs to class (g, p) only if x; belongs to class g of the x values (i.e., k € <=Xq) and y; belongs to class p of
the y values (i.e., k € J),). For notational convenience, let Opq denote the set such that k Opq only if k € qu (e.,
X is in class g of x values ) and also &k € y,, (.e., yy is in class p of y values), and let nO,, equal the number of

elements contained in Opq. Further, if x and y are independent, then
nqu = (an /nS)(an / nS)nS = an an /nS (7.1)

is an estimate of the expected number of observations (x;, y;) that should fall in class (g, p).

The following statistic can be defined:

& _ 2 .
T—Ez(nOpq —nEp)? InE,,. (1.2)

which is the same as the statistic in Eq. (5.6) except for the upper limit on the inner summation. Asymptotically, T
follows a chi-square distribution with (nX-1) (n¥Y—1) degrees of freedom when x and y are independent. Thus, the
probability of obtaining a value of T that exceeds T when x and y are independent is given by

prob(T > TI(nX = 1)(nY 1)) in Eq. (5.4).
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Many other measures can also be used to quantify the degree of dependence between two variables x and y:
Cramer’s contingency coefficient, Pearson’s mean-square contingency coefficient, the phi coefficient, and so on
(Conover, 1980, pp. 178-189). However, these techniques do not offer any advantages over the chi-square

contingency table approach already discussed.
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Fig. 7.1. Example of the partitioning of the range of x = HALPOR into nX = 5 classes and the range of y =
E0:WAS_PRES into nY = 5 classes.
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8. ldentification of Important Variables

The purpose of the statistical procedures under consideration is to identify sampled variables that have
significant effects on individual predicted variables. Conceptually, this is equivalent to identifying scatterplots that
exhibit some form of deviation from randomness. Once such scatterplots are identified, the analysts’ understanding

of the model must be called upon to explain the patterns that appear in these plots.

To provide guidance in examining scatterplots, it is useful to have a numerical way to distinguish between
variables that appear to have a substantial effect on a predicted outcome and variables that appear to have little or no
effect. For a given statistic, the probability that a larger value would occur due to chance variation provides such a
measure (i.e., the probabilities in Eqs. (3.16), (4.3), (5.2), (5.4)). These probabilities are often called critical values
or p-values and designated by & or p. A small critical value indicates that under the assumptions of the test, an
outcome equal to or greater than the observed value of the statistic is unlikely to occur due to chance. Thus, the
implication is that the pattern in the associated scatterplot arose from some underlying relationship between x and y
rather than from chance alone. For a given statistic, the indicated importance of a variable goes up as the value of
the corresponding critical value goes down. Thus, an ordering of variables on the basis of the size of their associated
critical values provides a way to rank variable importance (i.e., the smaller the critical value, the more important the

variable appears to be).

In sensitivity analyses of the type under consideration in this presentation, the distributions for the sampled
variables typically characterize subjective (i.e., epistemic) uncertainty (Helton, 1997). Often, the intent of the
sensitivity analysis is to identify those variables on which additional research efforts should be expended to reduce
the uncertainty in the final outcomes of a large analysis and hence in the decisions based on these outcomes. In this
case, the desire may not be to obtain an absolute ranking of variable importance, but rather to prioritize groups of
variables for additional research. For example, variables might be divided into the following three groups: Group 1
- important variables that require additional investigation, Group 2 - variables of intermediate importance that may
merit additional investigation if time and resources permit, and Group 3 - unimportant variables that do not require
additional investigation. One possibility is to define these groups on the basis of critical values (e.g., Group 1
corresponds to variables with & < 0.01; Group 2 corresponds to variables with 0.01 < & < 0.05; and Group 3
corresponds to variables with 0.05 > & ). However, in practice due to the cost of investigating individual variables,
the decision on whether or not to expend resources on the investigation of a particular variable will probably be

made on the basis of a number of considerations rather than solely on the basis of a preselected critical value.
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9. Top-Down Correlation

A number of techniques have been described for the identification of relationships between sampled and
predicted variables (Sects. 3-7). These techniques will be applied to four predicted variables (Sect. 2). An important
question is the extent to which the different techniques agree in their identification of important variables. A useful
tool for assessing such agreement is the top-down correlation introduced by Iman and Conover (1987), which
emphasizes agreement/disagreement for the most important variables and places reduced weight on

agreement/disagreement for variables of little importance.

The top-down correlation is based on Savage scores:
S(h)=21/j, ©.1)

where S(h) is the Savage score of a variable of rank 4 and n/ is the number of ranked variables (Eq. (1.1)). Thus, the
Savage score S(1) for the most important variable is S(1) = 1/1 + 1/2 + ... + 1/nl; the Savage score S(2) for the next

most important variable is $(2) = 1/2 + 1/3 + ... + 1/nl; and so on.

Suppose two ranking procedures are under consideration. Further, let ;, i = 1, 2, ..., nl, denote the rank for
variable x; obtained with the first procedure, and let hy;, i = 1, 2, ..., nl, denote the rank for variable x; obtained with
the second procedure. The top-down correlation ﬁlz for these two tests is defined to be the Pearson correlation

coefficient (Eq. (3.4)) associated with the pairs [S(A;), S(hy)], i= 1,2, ..., nl. Thatis,
nl
Rz =| Y S0n)Sthy)=nl | [[nl -5, 9.2)
i=1

with S(1) defined in Eq. (9.1) and approximately equal to 2.450 + In[nl + 0.5)/6.5] for nl 2 7 (Eq. (3), Iman and
Conover, 1987). Large positive values for Ry, indicate agreement between the two sets of ranks for the most
important factors. Exact quantiles for this statistic are given in Iman and Conover (1987, p. 355; also see Iman

1987). Further,

2= Ry /nl—1 ~ (9.3)

is distributed approximately normally with mean O and standard deviation 1 when the two rankings are uncorrelated

and rl is sufficiently large. Under these conditions,
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prob(R > f?lz ) =05 eifc(ielz nl - 2/~/§) . 9.4)

where prob(R > &12) is the probability that random variation would produce a value R for RIZ larger than the

observed value IA€12 and erfc is the complementary error function (Press et al., 1992, p. 631).




10. Comparison of Procedures for Identification of Important Variables

The following entities and/or associated statistical tests have been introduced for possible use in the
identification of patterns in scatterplots, where the given capital letters will be used to identify the associated
procedures in the following discussion: correlation coefficients (CCs, Sect. 3), standardized regression coefficients
(SRCs, Sect. 3), partial correlation coefficients (PCCs, Sect. 3), rank correlation coefficients (RCCé, Sect. 4),
standardized rank regression coefficients (SRRCs, Sect. 4), partial rank correlation coefficients (PRCCs, Sect. 4),
common means (CMNs, Sect. 5.1), common locations (CLs, Sect. 5.2), common medians (CMDs, Sect. 5.3),
common variances (CVs, Sect. 6.1), common interquartile ranges (CIQ, Sect. 6.2), and statistical independence (SI,
Sect. 7). Further, dependent variables with different behaviors have been introduced as examples: E0:WAS_PRES,
EO0:BRAALIC, E2: WAS_SATB, and EZ WAS_PRES (Sect. 2). The results of applying the indicated procedures to

these dependent variables are now discussed.

10.1 Repository Pressure under Undisturbed Conditions: y = E0:WAS_PRES

The variable y = EO0:WAS_PRES was included as an example because a linear relationship appears to exist
between E0:WAS _PRES and several of the sampled variables (Sect. 2). Thus, procedures that can identify linear
relationships should work well with E0:WAS_PRES, as indeed turned out to be the case (Table 10.1). In particular,
tests based on CCs, RCCs, CMNs, CLs, CMDs and SI both identified the same top four variables (i.e., WMICDFLG
HALPOR, WGRCOR, ANHPRM) and also assigned these variables the same importance rankings based on p-values.
The scatterplots for these variables show a corresponding decrease in the strength of the relationships with
EO:WAS_PRES (Fig. 2.3). After these four variables, there was little agreement between the individual procedures
on the remaining variables, with the p-values for the variables with ranks 5 and above typically close to or above 0.1.
The only exception to this was for the test for SI, where ANHBCVGP was assigned rank 5 with a p-value of 0.0194.
Based on a visual inspection, there appears to be little difference in the distributions of £0:WAS_PRES for the two
values of ANHBCVGP, although the larger value for ANHBCVGP (i.e., the value that implies the van Genuchten-
Parker model) may result in fewer small values for E0: WAS_PRES (Fig. 10.1) The perforrﬁance of the tests based
on measures of dispersion (i.e., CV, CIQ) was disappointing, with CV failing to identify both HALPOR and
WGRCOR based on a p-value cutoff of 0.1 and CIQ failing to identify WGRCOR based on the same cutoff.

As discussed in Sect. 3, analyses of variable importance based on CCs, SRCs and PCCs or on RCCs, SRRCs
and PRCCs will produce similar results when the independent variables (i.e., the x;’s) are uncorrelated. More
specifically, CCs and SRCs are equal; RCCs and SRRCs are equal; orderings of variable importance based on CCs,
SRCs and PCCs are the same; and orderings of variable importance based on RCCs, SRRCs and PRCCs are the

same. The 24 variables used in the calculation of EQ:WAS_PRES were assumed to be independent, with the Iman




Table 10.1 Comparison of Variable Rankings with Different Analysis Procedures‘;1 fory = EO:WAS_PRES,
the Variables in Table 2.2,° and a Maximum of Five Classes of Values for Each Variable (i.e.,

nX =5)°¢
Variabled cC RCC CMN: 1x5 CL: 1x5

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
WMICDFLG - 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
HALPOR 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000
WGRCOR 3.0 0.0000 3.0 0.0000 3.0 0.0000 3.0 0.0000
ANHPRM 4.0 0.0241 4.0 0.0268 4.0 0.0195 4.0 0.0187
SALPRES 5.0 0.0855 5.0 0.0664 13.0 0.6283 13.0 0.5672
WGRMICI 17.0 0.7753 20.0 0.8940 23.0 0.9705 23.0 0.9649
SHPRMCON - 18.0 0.7878 18.0 0.8618 10.0 0.4099 11.0 0.4878
ANHBCVGP 20.0 0.8084 15.0 0.7686 18.0 0.8062 16.0 0.7686

Variable CMD: 2x5 CV: 1x5 CIQ: 2x5 SI: 5x5

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
HALPOR 2.0 0.0000 12.0 0.3919 2.0 0.0000 2.0 0.0000
WGRCOR 3.0 0.0025 4.0 0.1244 16.5 0.6626 3.0 0.0003
ANHPRM 4.0 0.0663 2.0 0.0042 3.0 0.0007 4.0 0.0049
SALPRES 9.0 0.4932 11.0 0.3723 6.0 0.0868 21.0 0.7554
WGRMICI 24.0 0.9702 24.0 0.8900 50 0.0595 13.0 0.3239
SHPRMCON 6.0 0.2674 5.0 0.1287 4.0 0.0244 7.0 0.1487

ANHBCVGPF 14.0 0.6442 13.0 0.4752 24.0 1.0000 5.0 0.0194

Table includes only variables that had a p-value less than 0.1 for at least one of the procedures under consideration although the variable
rankings for a specific procedure are based on the p-values obtained for that procedure for all 24 variables included in the analysis (See
Footnote b).

b Table 2.2 contains 27 variables but BHPRM was not used in the calculation of EO results (i.e., EO:WAS_PRES and E0:BRAALIC) and the
variables in the pairs (ANHPRM, ANHCOMP), (HALPRM, HALCOMP) have a —0.99 rank correlation. As a result, BHPRM, ANHCOMP and
HALCOMP were not included in the analysis, which resulted in 24 variables (i.e., x’s) for analysis with each procedure.

€ Variables ANHBCVGP, WMICDFLG in Table 2.2 are discrete with 2, 3 levels, respectively; for these variables, nX = 2, 3. Also, nY =5 for
SL

Variables are listed in the table based on their ordering with the p-values obtained for CCs; thus, the listed rankings for CCs will
monotonically increase, which will not in general be the case for the other procedures.

and Conover (1982) restricted pairing technique being used to assure that the correlations between variables were
indeed close to zero (see Footnote b to Table 10.1). The outcome, as predicted by theory, was that CCs and SRCs
were approximately equal, RCCs and SRRCs were approximately equal, rankings based on CCs, SRCs and PCCs
were approximately the same, and rankings based on RCCs, SRRCs and PRCCs were approximately the same (Table
10.2). Approximate correspondence to theory is the best that can be hoped for as the Iman/Conover restricted
pairing technique makes the correlations between the sampled variables approximately zero (Table 10.3) rather than

exactly zero as is required for strict validity of the theoretical relationships.
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Table 10.2 Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y=EO:WAS_PRES

Variable? CC SRC PCC
Name p-Val Rank Value Rank Value Rank Value
WMICDFLG 0.0000 1.0 0.7124 1.0 0.7234 1.0 0.8642
HALPOR 0.0000 2.0 0.4483 2.0 0.4651 2.0 0.7469
WGRCOR 0.0000 3.0 0.2762 3.0 0.2460 3.0 0.5113
ANHPRM 0.0241 4.0 0.1302 4.0 0.1277 4.0 0.2953
SALPRES 0.0855 5.0 0.0993 6.0 0.0639 6.0 0.1526
Variableb RCC SRRC PRCC
Name p-Val Rank Value Rank Value Rank Value
WMICDFLG 0.0000 1.0 0.7229 1.0 0.7207 1.0 0.8564
HALPOR 0.0000 2.0 0.4521 2.0 0.4511 2.0 0.7256
WGRCOR 0.0000 3.0 0.2608 3.0 0.2303 3.0 0.4739
ANHPRM 0.0268 4.0 0.1280 4.0 0.1093 4.0 0.2476
SALPRES 0.0664 5.0 0.1062 5.0 0.0723 5.0 0.1667

3 Comparison based on variables that had a p-value less than 0.1 for CCs. Ranks based on values for CCs, SRCs, PCCs in column “VALUE.”

b Comparison based on variables that had a p-value less than 0.1 for RCCs. Ranks based on values for RCCs, SRRCs, PRCCs in column
“VALUE.”
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Fig. 10.1 Scatterplot for EQ:WAS_PRES versus ANHBCVGP.
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Table 10.3 Correlations with Raw and Rank Transformed Data between WMICDFLG, HALPOR,
WGRCOR, ANHPRM and SALPRES

Raw Data

HALPOR —-0.035

WGRCOR 0.027 0.022

ANHPRM 0.001 —-0.004 0.013

SALPRES 0.056 -0.007 0.001 -0.012

WMICDFLG HALPOR WGRCOR ANHPRM

Rank-Transformed Data

HALPOR —0.008

WGRCOR 0.031 0.014

ANHPRM 0.018 0.005 0.021

SALPRES 0.053 -0.010 0.001 0.004

WMICDFLG HALPOR WGRCOR ANHPRM

The large number of procedures under consideration (i.e., CCs, RCCs, CMNs, CLs, CMDs, CVs, CIQs, SI,
SRCs, PCCs, SRRCs, PRCCs) can make it difficult to get an overall feeling for the extent to which the individual
procedures are agreeing or disagreeing in the identification of important variables. As discussed in Sect. 9, top-down
correlation provides a way to compare variable rankings that emphasizes agreement and/or disagreement on the most
important variables and places reduced importance on the rankings assigned to less important variables. In
particular, top-down correlation gives a compact numeric summary of the comparisons in Tables 10.1 and 10.2
(Table 10.4), with all procedures except for CVs and CIQs showing strong agreement (i.e., top-down correlations

close to or equal to one).

The calculation of CMNs, CLs, CMDs, CVs, CIQs and SI in Table 10.1 was based on the division of the range
of the variables under consideration into nX = 5 intervals of equal probability. Also, the calculation of SI involved
the division of the range of EO: WAS_PRES into nY = 5 intervals of equal probability. In concept, the outcome of the
analysis could be quite sensitive to the partitioning selected for use (i.e., the values for nX and nY). To check this,
the analysis was repeated with nX = 10 for CMs, CLs, CMDs, CVs, CIQs and SI, and nY = 10 for SI (Table 10.5).
As comparison of the results obtained with nX = 5 and nX = 10 shows, some changes in variable rankings did take
place. For CMNs, CLs and CMDs with nX = 5, ANHPRM is the fourth ranked variable with p-values of 0.0195,
0.0187 and 0.0663, respectively (Table 10.1); for the same procedures with nX = 10, ANHPRM is ranked 4, 4 and 7
with p-values of 0.1371, 0.1340 and 0.3398 (Table 10.5). For CVs and CIQs, there are some changes in variable
ranking (e.g., CV and CIQ assign SALPRES ranks of 11 and 6 with p-values of 0.3723 and 0.0868 for nX = 5 (Table




Table 10.4 Top-Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y = EO:WAS_PRES, Variables included in Table 10.1,2 and a Maximum of Five Classes of x
values {i.e., nX = 5)

Top-Down Correlation Matrix

RCC 0.982

CMN 0972 0981

CL 0972 0981 1.000

CMD 0972 0981 1.000  1.000

cv 0731 0740 0769 0769  0.769

CIQ 0.860 0.831 0872 0872 0872 0.705

SI 0.946 0967 0972 0972 0972 0.720 0.839

SRC 0986 099 0967 0.967 0967 0.719 0.824 0.963

PCC 0986 099 0967 0967 0967 0719 0824 0963 1.000

SRRC 099 0986 0963 0963 0963 0715 0840 0951 0995 0995
PRCC 0996 0986 0963 0963 0963 0715 0840 0951 0995 0.995 1.000

CcC RCC CMN CL CMD CV CIQ SI SRC PCC SRRC

Top-Down Correlation Matrix p Values

RCC  0.005

CMN 0005 0.005

CL 0.005 0005 0.004

CMD 0005 0005 0004 0.004

cv 0026 0025 0021 0021 0.021

CIQ 0011 0014 0011 0011 0011 0031

SI 0006 0005 0005 0005 0005 0028 0013

SRC 0005 0004 0005 0005 0005 0029 0015 0005

PCC 0005 0004 0005 0005 0005 0029 0015 0005 0.004
SRRC 0.004 0005 0005 0005 0005 0029 0013 0006 0004 0.004
PRCC 0.004 0005 0005 0005 0005 0029 0013 0006 0004 0004 0.004

CC RCC CMN CL CMD CV CIQ SI SRC PCC SRRC

4 Variable rankings used in calculation of top-down correlation are based on only the 8 variables included in Table 10.1. Specifically, each
procedure was used to rank these 8 variables from 1 to 8 (i.e., p-values for CCs, RCCs, CMNs, CLs, CMDs, CVs, CIQs, SI; absolute values of
coefficients for SRCs, PCCs, SRRCs, PRCCs); then, top-down correlations were calculated on these rankings.

10.1) and rank SALPRES third with p-values of 0.0500 and 0.0077 for nX = 10 (Table 10.5)); also, CVs still fail to
identify an effect for HALPOR (ranked 12 with a p-value of 0.3919 for nX = 5 and ranked 20 with a p-value of
0.5800 for nX = 10), and CIQs still fail to identify an effect for WGRCOR (ranked 16.5 with a p-value of 0.6626 for
nX = 5 and ranked 23 with a p-value of 0.9429 for nX = 10). For SI, HALPRM had a rank of 18 with a p-value of
0.6235 for nX =5 and a rank of 3 with a p-value of 0.0036 for nX = 10 (Table 10.5). Thus, the partitioning in use

can have an effect on the variables identified as affecting the y value under consideration. For perspective, the top-
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Table 10.5 Comparison of Variable Rankings for y = EO:WAS_PRES Obtained with a Maximum of Five
Classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and Analytic
Determination of p-values and (ii) a Maximum of Five Classes of x values (i.e., nX = 5) and
Monte Carlo Determination of p-values

Variable® CMN: 1 x 5" CMN: 1 x 10° CMNMC: 1 x 5¢ Variable CL: 1x35 CL: 1x10 CLMC: 1x5
Name Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val
WMICDFLG 1.0 0.0000 1.0 0.0000 20 0.0000 WMICDFLG 1.0 0.0000 1.0 0.0000 2.0 0.0000
HALPOR 2.0 0.0000 2.0 0.0000 2.0 0.0000 HALPOR 2.0 0.0000 20 0.0000 2.0 0.0000
WGRCOR 30 0.0000 30 0.0000 20 0.0000 WGRCOR 30 0.0000 30 0.0002 20 0.0000
ANHPRM 4.0 0.0195 4.0 0.1371 4.0 0.0214 ANHPRM 4.0 0.0187 4.0 0.1340 4.0 0.0212
SHPRMASP 5.0 0.1439 11.0 0.5087 50 0.1495 SHPRMASP 5.0 0.1237 9.0 0.4376 5.0 0.1277
WRBRNSAT 6.0 0.1506 6.0 0.1947 6.0 0.1526 WRBRNSAT 6.0 0.2042 7.0 0.2838 6.0 0.2053
SHRGSSAT 1.0 0.2488 150 0.7062 7.0 0.2497 ANRBRSAT 70 0.2710 16.0 0.7391 7.0 0.2710
ANRBRSAT 8.0 0.3034 18.0 0.7693 8.0 0.3027 SHRGSSAT 8.0 0.3153 17.0 0.7495 8.0 0.3167
HALPRM 2.0 0.4097 8.0 0.4092 10.0 0.4060 HALPRM 9.0 0.3923 6.0 0.2725 9.0 0.3901
SHPRMCON 10.0 0.4099 120 0.5115 9.0 0.4053 SHRBRSAT 10.0 0.4625 12.0 0.5456 10.0 0.4575
SHRBRSAT 11.0 0.4325 10.0 0.4560 110 0.4239 SHPRMCON 110 0.4878 11.0 0.4655 1.0 0.4852
WFBETCEL 12.0 0.5694 7.0 0.4034 12.0 0.5645 WFBETCEL 120 0.5194 8.0 0.3728 12.0 0.5153
SALPRES 13.0 0.6283 200 0.8300 13.0 0.6378 SALPRES 130 0.5672 20.0 0.8266 13.0 0.5817
ANHBCEXP 14.0 0.7116 16.0 0.7465 14.0 0.7035 SHPRMHAL 140 0.6945 13.0 0.5517 140 0.6996
WASTWICK 15.0 0.7490 22.0 0.8444 15.0 0.7446 SHBCEXP 150 0.7390 210 0.8301 15.0 0.7399
ANRGSSAT 16.0 0.7521 13.0 0.6511 16.0 0.7483 ANHBCVGP 16.0 0.7686 19.0 0.7686 16.0 0.7654
SHPRMHAL 17.0 0.7661 14.0 0.6734 17.0 0.7699 ANHBCEXP 17.0 0.7703 18.0 0.7594 170 0.7658
ANHBCVGP 18.0 0.8062 18.0 0.8062 18.0 0.7997 ANRGSSAT 18.0 0.8272 15.0 0.7298 180 0.8209
SHBCEXP 19.0 0.8100 21.0 0.8342 190 0.8099 WASTWICK 19.0 0.8318 22.0 0.8443 19.0 0.8292
WRGSSAT 200 0.8358 5.0 0.1542 200 0.8377 WRGSSAT 20.0 0.8826 5.0 0.2088 200 0.8839
SHPRMCLY 21.0 0.8601 9.0 04218 210 0.8625 SHPRMDRZ 210 0.8897 14.0 0.7065 210 0.8937
SHPRMDRZ 220 0.8726 170 0.7562 220 0.8755 SHPRMCLY 220 0.9032 100 0.4426 220 0.9062
WGRMICI 23.0 0.9705 23.0 0.9606 23.0 0.9717 WGRMICI 23.0 0.9649 23.0 0.9691 230 0.9663
WGRMICH 24.0 0.9975 240 0.9919 240 0.9973 WGRMICH 240 0.9865 240 0.9894 24.0 0.9839
DC° 1.000 0.854 0.970 TDC® 1.000 0.861 0.971
Variable CMD: 2x5 CMD: 2x 10 CMDMC: 2x5 Variable CV: 1x5 CV: 1x10 CVMC: 1x5
Name Rank p-Val Rank p-Val Rank p-val Name Rank p-Val Rank p-Val Rank p-Val

WMICDFLG 1.0 0.0000 1.0 0.0000 15 0.0000 WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 0.0000
HALPOR 20 0.0000 20 0.0000 15 0.0000 ANHPRM 20 0.0042 2.0 0.0172 2.0 0.0031
WGRCOR 3.0 0.0025 3.0 0.0124 3.0 0.0018 HALPRM 3.0 0.1184 4.0 0.0844 4.0 0.1095
ANHPRM 4.0 0.0663 7.0 0.3398 4.0 0.0690 WGRCOR 4.0 0.1244 6.0 0.1173 3.0 0.1094
SHPRMASP 5.0 0.2427 14.0 0.6302 5.0 0.2401 SHPRMCON 5.0 0.1287 5.0 0.0929 5.0 Q.1201
SHPRMCON 6.0 0.2674 9.0 0.3725 6.0 0.2718 SHRGSSAT 6.0 0.1466 15.0 0.4691 70 0.1411
ANRBRSAT 7.0 0.3386 185 0.7532 7.0 0.3329 ANHBCEXP 7.0 0.1539 7.0 0.1928 6.0 0.1393
HALPRM 8.0 0.3883 8.0 0.3614 8.0 0.3967 SHPRMASP 8.0 0.1612 8.0 0.2953 8.0 0.1517
SALPRES 9.0 0.4932 18.5 0.7532 9.0 0.5058 SHPRMCLY 9.0 0.3102 9.0 0.3614 9.0 0.2957
WRBRNSAT 10.0 0.5037 13.0 0.6163 10.0 0.5180 SHBCEXP 10.0 0.3221 i1.0 0.4091 10.0 0.3049
WRGSSAT 11.0 0.5249 5.0 0.1596 11.0 0.5223 SALPRES 11.0 0.3723 30 0.0500 11.0 0.3564
SHRGSSAT 12.0 0.6151 230 0.9281 130 0.6050 HALPOR 12.0 0.3919 200 0.5800 120 0.3817
ANHBCEXP 13.0 0.6387 11.0 0.5075 140 0.6224 ANHBCVGP 13.0 0.4752 160 0.4752 13.0 0.4800
ANHBCVGP 14.0 0.6442 16.0 0.6442 120 0.5685 WGRMICH 14.0 0.5612 13.0 0.4415 14.0 0.5502
SHRBRSAT 15.0 0.6868 15.0 0.6441 15.0 0.6950 SHPRMDRZ 150 0.6067 21.0 0.8635 150 0.5942
SHPRMDRZ 165 0.7358 100 04311 170 0.7283 WASTWICK 160 0.6185 100 0.3697 160 0.6053
WFBETCEL 16.5 0.7358 17.0 0.7265 16.0 0.7169 WRGSSAT 17.0 0.6398 14.0 0.4670 170 0.6237
SHPRMCLY 18.0 0.7847 6.0 0.3293 18.0 0.7659 WRBRNSAT 18.0 0.6632 170 0.5542 180 0.6588
SHPRMHAL 19.0 0.8325 4.0 0.1177 190 0.8357 ANRGSSAT 19.0 0.6761 12.0 0.4391 19.0 0.6666
SHBCEXP 210 0.9197 220 0.9114 20 0.9093 WFBETCEL 200 07531 . 230 0.9435 200 0.7443
ANRGSSAT 21.0 0.9197 120 0.5887 200 0.9082 SHRBRSAT 21.0 0.8197 18.0 0.5606 210 0.8109
WASTWICK 21.0 0.9197 200 0.8729 210 0.9085 SHPRMHAL 220 0.8340 240 0.9844 220 0.8224
WGRMICH 230 0.9554 210 0.8930 230 0.9439 ANRBRSAT 230 0.8378 19.0 0.5700 23.0 0.8330
WGRMICI 24.0 0.9702 240 0.9835 240 0.9664 WGRMICI 240 0.8900 220 0.9219 240 0.3354
™DC 1.000 0.768 0.986 DC 1.000 0.892 0.993
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Table 10.5 (Cont.)
Variable CIQ: 2x5 CIQ: 2x 10 CIQMC: 2x 5 Variable SI: 5x5 SI: 10x 10 SIMC: 5x 5
Name Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Vat Rank p-Val

WMICDFLG 1.0 0.0000 1.0 0.0000 1.5 0.0000 WMICDFLG 1.0 0.0000 10 0.0000 1.5 0.0000
HALPOR 20 0.0000 20 0.0000 1.5 0.0000 HALPOR 20 0.0000 2.0 0.0000 LS 0.0000
ANHPRM 30 0.0007 4.0 0.0112 30 0.0005 WGRCOR 30 0.0003 4.0 0.0073 30 0.0003
SHPRMCON 4.0 0.0244 5.0 0.1005 4.0 0.0279 ANHPRM 4.0 0.0049 5.0 0.0128 4.0 0.0038
WGRMICI 50 0.0595 7.0 0.1719 5.0 0.0565 ANHBCVGP 5.0 0.0194 80 0.1271 50 0.0178
SALPRES 6.0 0.0868 30 0.0077 6.0 0.0893 WRGSSAT 6.0 0.1229 120 0.2786 6.0 0.1196
SHPRMHAL 7.0 0.1801 100 0.2993 70 0.1729 SHPRMCON 7.0 0.1487 6.0 0.0326 10 0.1529
SHPRMDRZ 8.0 0.1801 140 0.4944 8.0 0.1789 WASTWICK 8.0 0.1850 215 0.8743 8.0 0.1829
WGRMICH 9.0 0.2548 9.0 0.2133 9.0 0.2547 SHBCEXP 9.0 0.2436 170 0.6767 2.0 0.2441
SHPRMASP 10.0 0.3232 8.0 0.1849 10.0 0.3172 SHPRMHAL 100 0.2518 10.0 0.2028 10.0 0.2540
SHRGSSAT 110 0.3232 130 0.4559 11.0 0.3317 SHPRMASP 11.0 0.2601 11.0 0.2623 1.0 0.2673
SHBCEXP 120 0.5249 17.0 0.6441 12.0 0.5281 SHPRMDRZ 120 0.3142 7.0 0.1129 12,0 0.3205
WASTWICK 13.0 0.5467 120 04559 13.0 0.5356 WGRMICI 13.0 0.3239 16.0 0.6363 13.0 0.3252
WFBETCEL 140 0.5918 20.5 0.8729 140 0.5948 ANHBCEXP 14.0 0.3438 3.0 0.1768 14.0 0.3472
SHPRMCLY 15.0 0.6387 6.0 0.1426 150 0.6264 WFBETCEL 150 0.3856 215 0.8743 15.0 0.3905
WGRCOR 16.5 0.6626 230 0.9429 160 0.6746 SHRBRSAT 160 04299 150 0.5527 16.0 0.4308
WRBRNSAT 16.5 0.6626 20.5 0.8729 17.0 0.6814 ANRBRSAT 17.0 0.4765 200 0.7701 17.0 0.4725
HALPRM 185 0.6868 110 0.3725 190 0.7063 HALPRM 180 0.6235 30 0.0036 18.0 0.6307
ANHBCEXP 18.5 0.6868 16.0 0.6163 18.0 0.7021 SHRGSSAT 190 0.6482 19.0 0.7525 19.0 0.6587
ANRGSSAT 200 0.7113 18.0 0.6718 200 0.7120 WRBRNSAT 200 0.6849 180 0.7343 200 0.6981
WRGSSAT 210 0.8557 15.0 0.5887 21,0 0.8508 SALPRES 21.0 0.7554 13.0 03310 21.0 0.7662
ANRBRSAT 220 09197 220 0.8930 23.0 0.9122 SHPRMCLY 220 0.9265 230 0.9348 220 0.9305
SHRBRSAT 230 0.9554 190 0.7265 240 0.9426 WGRMICH 230 0.9437 24.0 0.9709 230 0.9429
ANHBCVGP 240 1.0000 240 1.0000 220 0.9010 ANRGSSAT 240 0.9763 14.0 0.5316 240 0.9791
TDC 1.000 0.917 0.987 DC 1.000 0.812 0.988

4 Twenty-four (24) variables included in analysis; see Footnote b to Table 10.1.

b variable rankings obtained with a maximum of five classes of x values (i.c., #X = 5) and analytic determination of p-values.

¢ Variable rankings obtained with a maximum of ten classes of x values (i.e., nX = 10) and analytic determination of p-values.

4 Variable rankings obtained with a maximum of five classes of x values (i.e., nX = 5) and Monte Carlo determination of p-values.

€ Top-down correlation with variable rankings obtained with a maximum of five classes of x values (i.e., nX = 5) and analytic determination of
p-values,

down correlations for results obtained with the two griddings are also given in Table 10.5, with these correlations

ranging from 0.854 for (CMN:1 x 5, CMN:1 x 10) to 0.917 for (CIQ:2 x 5, CIQ:2 x 10).

The p-values used to identify important variables in Tables 10.1, 10.2 and 10.5 are calculated with statistical
assumptions that are not fully satisfied. For example, in the calculation of p-values for CCs, the sample from the x’s
consists of three pooled LHSs rather than a random sample (see Egs. (2.1) - (2.3)), and neither the individual x’s nor
y = EO:WAS_PRES has a pormal distribution. A Monte Carlo simulation can be used to assess if the use of formal
statistical procedures to determine p-values is producing misleading results. Specifically, 10,000 samples of the

form

Gy k=1,2, ..., 300, (10.1)

can be generated by pairing the 300 values for x (i.e., the 300 values for the particular x under consideration
contained in the samples in Egs. (2.1) - (2.3)) with the 300 predicted values for y (i.e., the 300 values for y that
resulted from the use of the sample elements in Eqgs. (2.1) - (2.3)). The specific pairing algorithm used was to

randomly and without replacement assign an x value to each y value, which is similar to bootstrapping (Efron and




Tibshirani, 1993) except that the sampling is being performed without replacement. This random assignment was
repeated 10,000 times to produce 10,000 samples of the form in Eq. (10.1). For a given procedure (i.e., CCs, RCCs,
CMN:s, CLs, CMDs, CVs, CIQs or SI), each of the 10,000 samples can be used tobcalculate the value of the statistic
used to determine the corresponding p-value. The resulting empirical distribution of the statistic can then be used to
estimate the p-value for the statistic actually observed in the analysis. Comparison of the p-value obtained for a
given set of statistical assumptions with the p-value obtained from the empirical distribution of the corresponding
statistic provides an indication of the robustness of the variable rankings with respect to possible deviations from the

assumptions underlying the formal statistical procedures described in Sects. 3-7 for the determination of p-values.

For EO:WAS_PRES, the rankings of variable importance with p-values obtained from formal statistical
procedures (i.e., CC and RCC in Table 10.6 and CMN, CL, CMD, CV, CIQ and SI in Table 10.5) and the ranking of
variable importance with p-values obtained from empirical distributions (i.e., CCMC and RCCMC in Table 10.6 and
CMNMC, CLMC, CMDMC, CVMC, CIQMC and SIMC in Table 10.5) are very similar. The largest difference is
in the assignment of tied ranks to the most important variables when the empirical distributions of p-values are used
(e.g., use of statistical procedures with CCs results in WMICDFLG, HALPOR and WGRCOR being ranked 1, 2 and
3, and use of the empirical distribution of p-values results in these variables being ranked 2, 2 and 2). The tied ranks
with the empirical distributions arise because a sample of size 10,000 was used to generate these distributions, with
the result that 0.0001 is the smallest nonzero p-value that can be estimated. In contrast, much smaller nonzero
probabilities can be estimated with the formal statistical procedures from Sects. 3-7. Overall, the similarity between
the exact (i.e., statistically determined) and empiﬁcal p-values in Tables 10.5 and 10.6 is quite good, with the two
determinations of p-values producing almost identical rankings of variable importance except for the very small (i.e.,
< 10™4) p-values. The associated top-down correlations range from 0.970 for (CMN:1 x 5, CMNMC: 1 x 5) (Table
10.5) t0 0.993 for (CV:1 x 5, CVMC: 1 x 5) (Table 10.5). For perspective, a top-down correlation of 0.971 results
when 24 variables are under consideration, one procedure has ties (i.e., ranks of 2, 2, 2) on the variables assigned
ranks of 1, 2, 3 by the other procedure, and identical ranks are assigned to all other variables (¢.g., see (CL:2 x 5,

CLMC:2 x 5) in Table 10.5 and (CC, CCMC), (RCC, RCCMC) in Table 10.6).

Approximate 100 (1 — o)% confidence intervals for the empirically determined p-values are given by
P £ X1_op [p(1 — p)n]V/2, where p is l;he estimated p-value, n = 10,000 is the sample size in use, and x;_, is the
1-0/2 quantile of the normal distribution (e.g., 1.96 for a 95% confidence interval (pp. 99-100, Method C, Conover,
1980)). For example, the approximate 95% confidence interval for p = 0.0815 (see SALPRES for CCMC in Table
10.6) is 0.0815 = 0.0054, with this interval including the statistically determined value of 0.0855. For most
procedures, the 95% confidence intervals on the empirically determined p-values include the statistically determined
p-values. The results for CVs tend to show less agreement between the formally and empirically estimated p-values

than is the case for the other procedures.
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Table 10.6 Comparison of Variable Rankings for y= E0:WAS_PRES Obtained with Correlation
Coefficients (CCs, RCCs) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values

Variable? cct cCcMCe Variable RCC RCCMC

Name Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val
WMICDFLG 1.0 0.0000 2.0 0.0000 WMICDFLG 1.0 0.0000 2.0 0.0000
HALPOR 2.0 0.0000 2.0 0.0000 HALPOR 2.0 0.0000 2.0 0.0000
WGRCOR 3.0 0.0000 20 0.0000 " WGRCOR 3.0 0.0000 2.0 0.0000
ANHPRM 4.0 0.0241 40 0.0236 ANHPRM 4.0 0.0268 40 0.0250
SALPRES 5.0 0.0855 5.0 0.0815 SALPRES 5.0 0.0664 5.0 0.0634
SHRGSSAT 6.0 0.1553 6.0 0.1551 SHRGSSAT 6.0 02322 6.0 0.2335
WASTWICK 7.0 0.2163 7.0 0.2200 WFBETCEL 7.0 0.2408 7.0 0.2469
SHRBRSAT 8.0 0.2226 8.0 0.2222 WASTWICK 8.0 0.2726 8.0 0.2758
ANHBCEXP 9.0 0.2369 9.0 0.2379 SHRBRSAT 9.0 0.3068 9.0 0.3056
WFBETCEL 10.0 0.2770 10.0 0.2832 SHPRMASP 100 0.4201 10.0 0.4291
SHPRMCLY 11.0 0.5213 110 0.5264 ANHBCEXP 110 0.4383 11.0 0.4352
HALPRM 12.0 0.5767 120 0.5761 WRBRNSAT 12.0 0.5519 12.0 0.5581
SHPRMASP 130 0.6041 13.0 0.6192 ) HALPRM 13.0 0.6412 13.0 0.6419
WRBRNSAT 14.0 0.6444 140 0.6465 SHPRMCLY 14.0 0.6812 14.0 0.6848
SHBCEXP 150 0.6831 150 0.6875 ANHBCYGP 150 0.7686 15.0 0.7654
ANRBRSAT 16.0 07237 16.0 0.7236 SHBCEXP 16.0 0.8486 16.0 0.8501
WGRMICI 17.0 0.7753 17.0 0.7772 SHPRMDRZ 17.0 0.8599 17.0 0.8596
SHFRMCON 180 0.7878 i8.0 0.7878 SHPRMCON 18.0 0.8618 18.0 0.8644
SHPRMDRZ 19.0 0.7925 19.0 0.7990 SHPRMHAL 19.0 0.8710 19.0 0.8785
ANHBCVGP 20.0 0.8084 200 0.8016 WGRMICI 200 0.8940 20.0 0.8934
WRGSSAT 21.0 0.8251 210 0.8279 WGRMICH 21.0 0.9576 21.0 0.9559
ANRGSSAT 22.0 0.8834 22.0 0.8879 WRGSSAT 220 0.9348 22,0 0.9863
WGRMICH 23.0 0.9291 23.0 0.9247 ANRBRSAT 23.0 0.9964 23.0 0.9973
SHPRMHAL 24.0 0.9474 24.0 0.9459 ANRGSSAT 24.0 0.9991 24.0 0.9990
DC 0.971 DC 0971

a Twenty-four (24) variables included in analysis; see Footnote b to Table 10.1.
b Variable rankings obtained with analytic determination of p-values.
C Variable rankings obtained with Monte Carlo determination of p-values.

d Top-down correlation between variable rankings obtained with analytic and Monte Carlo determination of p-values.

A possible variant of the common means (CMNs) test is to use logarithmically transformed y-values rather than
the original untransformed y-values (Sect. 5.1). Possible rationales for such a transformation are to reduce the
effects of extreme values on the estimated mean and to transform y into a variable that more closely follows a normal
distribution. For y = E0:WAS_PRES, use of the logarithmic transformation has little effect on the outcome of the
analysis, with both raw and log-transformed y’s resulting in the same assignment of ranks to the top four variables

(i.e., WMICDFLG, HALPOR, WGRCOR, ANHPRM) (Tables 10.5, 10.7).

A possible variant of the common variances (CVs) test is to use #,; as defined in Eq. (6.4) rather than as defined
in Eq. (6.3). The rationale for the use of logarithms in Eq. (6.4) is to reduce the effects of extreme values and thus
produce more stable variance estimators. For y = E0:WAS_PRES, use of #,; as defined in Eq. (6.4) rather than Eq.
(63) had little effect on the outcome of the analysis, with both definitions of 7, resulting in the selection of

WMICDFLG, ANHPRM, HALPRM and WGRCOR as the top four variables (Tables 10.5, 10.7). Further, both

definitions are failing to identify the important effects associated with HALPOR (Fig. 2.3).




Table 10.7 Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with Use of Logarithms?2 for y = EO:WAS_PRES, the Variables in Table 2.2,b and a
Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)¢

Variable CMN: Log,1 x5 CMNMC: Log,1 x5
Name Rank p-Val Rank p-Val
WMICDFLG 1.0 0.0000 20 0.0000
HALPOR 2.0 0.0000 2.0 0.0000
WGRCOR 3.0 0.0000 2.0 0.0000
ANHPRM 4.0 0.0085 4.0 0.0112
Variable CV: Log,1 x5 CVMC: Log,1 x5
Name Rank p-Val Rank p-Val
WMICDFLG 1.0 0.0000 1.0 0.0000
ANHPRM 2.0 0.0151 2.0 0.0100
WGRCOR 30 0.1051 3.0 0.0672
HALPRM 4.0 0.1116 4.0 0.0786

3 Log y, instead of y; in Eq. (5.1) for common means (CMNs) and t,; as defined in Eq. (6.4) rather than as defined in Eq. (6.3) for common
variances (CVs); for each test; table contains variables with p-values less than 0.1.

b See Footnote b, Table 10.1.

€ See Footnote ¢, Table 10.1.

10.2 Brine Inflow under Undisturbed Conditions: y = EO:BRAALIC

The variable y = E0:BRAALIC was included as an example because a nonlinear but monotonic relationship
appears to exist between EQ:BRAALIC and several of the sampled variables (Sect. 2). Thus, procedures that can
identify monotonic relationships should work well with E0:BRAALIC as indicated by the regressions with raw data
(R? = 0.50) and rank-transformed data (R = 0.87) in Table 2.3. All analysis procedures except CVs identified
ANHPRM and WMICDFLG as the two most important variables, with the variables assigned ranks 1 and 2 changing
from test to test (Table 10.8). The scatterplots for both ANHPRM and WMICDFLG show strong relationships with
EO0:BRAALIC (Fig. 2.4). The CVs test assigned rank 2 to SHPRMCON with a p-value of 0.0426, with this variable
also being assigned a p-value of 0.0057 and a rank of 3 from the CMNs test. No other tests indicated an effect for
“this variable, which is consistent with the corresponding scatterplot (Fig. 10.2). Rank 3 was assighed to HALPRM
for tests based on RCCs (p-value = 0.0014), CLs (p-value = 0.0019), CMDs (p-value = 0.0050) and SI (p-value =
0.0517), with the corresponding scatterplot showing little discernible pattern (Fig. 10.2). Rank 4 was assigned to
WGRCOR by CCs (p-value = 0.0048), RCCs (p-value = 0.0057), CMNs (p-value = 0.0636) and CLs (p-value =
0.0427), with the corresponding scatterplot indicating a slight tendency for £0: BRAALIC to decrease as WGRCOR
increases (Fig. 2.4). There seems to be little discernible pattern to the ranks assigned to the remaining variables in
Table 10.8.
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Table 10.8 Comparison of Variable Rankings with Different Analysis Procedures? for y= EQ:BRAALIC,
the Variables in Table 2.2,° and a Maximum of Five Classes of x Values (i.e., nX = 5)¢

Variable CC RCC CMN: 1x5 CL: 1 x5
Named Rank p-Val Rank p-Val Rank p-Val Rank p-Val
ANHPRM 1.0 0.0000 2.0 0.0000 1.0 0.0000 2.0 0.0000
WMICDFLG 2.0 0.0000 1.0 0.0000 2.0 0.0000 1.0 0.0000
WASTWICK 3.0 0.0045 6.0 0.0405 6.0 0.1062 16.0 0.4411
WGRCOR 4.0 0.0048 4.0 0.0057 4.0 0.0636 4.0 0.0427
ANHBCEXP 5.0 0.0095 15.0 0.6490 13.0 0.4467 19.0 0.7146
WEBETCEL 6.0 0.0555 8.0 0.2131 5.0 0.0732 10.0 0.2299
WRBRNSAT 7.0 0.0615 11.0 0.4046 11.0 0.3483 12.0 0.2889
HALPOR 8.0 0.0934 5.0 0.0087 19.0 0.5960 7.0 0.1431
HALPRM 11.0 0.2593 3.0 0.0014 7.0 0.1105 3.0 0.0019
SHPRMDRZ 12.0 0.2910 220 0.8392 21.0 0.6935 5.0 0.1060
SHPRMCON 14.0 0.3369 12.0 0.4170 3.0 0.0057 11.0 0.2394
SHRGSSAT 18.0 0.4767 14.0 0.5371 14.0 0.5044 9.0 0.2139
WGRMICI 21.0 0.5809 17.0 0.6663 20.0 0.6466 21.0 0.8966
SHRBRSAT 23.0 0.7329 10.0 0.2767 22.0 0.6946 6.0 0.1174
Variable CMD: 2x5 CV: 1x5 CIQ: 2x5 SI: 5x5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
ANHPRM 2.0 0.0000 1.0 0.0078 1.0 0.0000 2.0 0.0000
WMICDFLG 1.0 0.0000 13.0 ~0.4046 2.0 0.0000 1.0 0.0000
WASTWICK 155 0.5467 8.0 0.2961 10.0 0.3883 15.0 0.5246
WGRCOR 5.0 0.0231 5.0 0.2125 13.5 0.6868 11.0 0.3644
ANHBCEXP 21.0 0.8088 7.0 0.2321 22.5 0.9554 21.0 0.7776
WFBETCEL 15.5 0.5467 6.0 0.2194 8.0 0.3084 13.0 0.4186
WRBRNSAT 13.0 0.3883 12.0 0.3851 7.0 0.2942 14.0 0.4186
HALPOR 4.0 0.0155 20.0 0.5416 6.0 0.2805 4.0 0.0698
HALPRM 3.0 0.0050 11.0 0.3596 24.0 0.9702 3.0 0.0517
SHPRMDRZ 6.0 0.0306 24.0 0.7101 225 0.9554 7.0 0.2202
SHPRMCON 10.0 0.2674 2.0 0.0426 17.0 0.8325 8.0 0.2436
SHRGSSAT 8.0 0.0504 17.0 0.5177 3.0 0.0628 6.0 0.2056
WGRMICI 18.0 0.6868 220 0.6096 4.0 0.0780 9.0 0.2863
SHRBRSAT 7.0 0.0362 18.0 0.5347 5.0 0.1395 5.0 0.1917

-a,b,¢.d  gee Foomotes a, b, ¢, d to Table 10.1

Based on knowledge of the model in use, the or(iering of variable importance associated with RCCs seems most
reasonable, with the signs of the RCCs for the variables ranked 1 through 6 (Table 10.9) corresponding to the effects
that these variables should have on E0Q:BRAALIC (i.e., whether EO:BRAALIC should increase or decrease as the
corresponding variable increases; see Helfon et al.,, 1998, for a discussion of the underlying physics). The
procedures that most closely match the variable rankings obtained with RCCs are based on CLs (TDC = 0.897),
CMDs (TDC = 0.913) and SI (TDC = 0.838) (Table 10.10) and are procedures that can be expected to perform
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reasonably well in the presence of nonlinear but monotonic relations. The top-down correlation for RCCs and CCs

is 0.729 (Table 10.10).

Procedures based on measures of dispersion have the poorest agreement with variable

fankings based RCCs (i.e., CVs with TDC = (0.301, CIQs with TDC = 0.531) (Table 10.10). Rankings of variable

importance based on CCs, SRCs and PCCs are similar, with the rankings based on SRCs and PCCs being identical
(Table 10.9). In like manner, rankings based on RCCs, SRRCs and PRCCs are similar, with the rankings based on

SRRCs and PRCCs being identical (Table 10.9). The associated top down correlations are correspondingly high
(i-e., 0.980 for (CC, SRC), (CC, PCC) and 0.912 for (RCC, SRRC), (RCC, PRCC)) (Table 10.10).
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Table 10.9 Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y = EO:BRAALIC

Variable? CC SRC PCC
Name p-Val Rank Value Rank Value Rank Value
ANHPRM 0.0000 1.0 0.5655 1.0 0.5568 1.0 0.6317
WMICDFLG 0.0000 2.0 -.3210 2.0 -.2931 2.0 —-.3878
WASTWICK 0.0045 3.0 -.1639 4.0 -.1451 4.0 -.2075
WGRCOR 0.0048 4.0 -.1628 3.0 -.1669 3.0 -.2370
ANHBCEXP 0.0095 5.0 —-.1497 5.0 -.1155 5.0 —-.1663
WFBETCEL 0.0555 6.0 —~.1105 8.0 -.0757 8.0 -.1098
WRBRNSAT 0.0615 7.0 —.1080 9.0 -.0733 9.0 —.1065
HALPOR 0.0934 8.0 —-.0969 6.0 —-.0993 6.0 —-.1435
Variable? RCC SRRC PRCC
Name p-Val Rank Value Rank Value Rank Value
WMICDFLG 0.0000 1.0 -.6521 1.0 —.6533 1.0 -.8787
ANHPRM 0.0000 2.0 0.5804 2.0 0.5937 2.0 0.8619
HALPRM ~0.0014 3.0 0.1850 5.0 0.1443 5.0 0.3817
WGRCOR 0.0057 4.0 —-.1598 4.0 -.1509 4.0 -.3963
HALPOR 0.0087 5.0 -.1518 3.0 —-.1539 3.0 —.4031
WASTWICK 0.0405. 6.0 —.1185 7.0 —.0948 7.0 -.2617
ab See Footnotes a, b to Table 10.2.

As for EO:WAS_PRES, an investigation was carried out to determine if the analysis results obtained for
EO:BRAALIC are sensitive to the partitioning selected for use (i.e., the values for nX and nY). In particular, the
analysis was repeated with nX = 10 for CMs, CLs, CMDs, CVs, CIQs and SI, and nY = 10 for SI (Table 10.11). As
indicated by examination of scatterplots, the two most important variables with respect to EO:BRAALIC are
ANHPRM and WMICDFLG (Fig. 2.4). With the exception of CVs, all tests (i.e., CMNs, CLs, CMDs, CIQs, SI)
identified ANHPRM and WMICDFLG as the two most important variables with grids based on both nX = 5 and nX =
10 (Table 10.11). After these two variables, there is some jumping around in the rankings assigned to the individual
variables, although there is sufficient similarity in the results obtained with nX = 5 and nX = 10 to produce top down
correlations that are close to or above 0.9 (Table 10.11). Scatterplots indicate that, after ANHPRM and
WMICDFLG, none of the remaining variables have a very strong effect on £0:BRAALIC (Figs. 2.4, 10.2), with the

result that the tests are failing to find discernible patterns after these two variables.
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Table 10.10 Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y= EO:BRAALIC, Variables included in Table 10.8,2 and a Maximum of Five Classes of x
values (i.e., nX = 5)

Top-Down Correlation Matrix

RCC 0.729

CMN 0841 0721

CL 0589 0.897 0.626

CMD 0573 0913 0.606 0.971

Ccv 0.623 0301 0.820 0.199 0.157

CIQ 0581 0531 0584 0526 0556 0.285

SI 0455 0.838 0531 0908 0952 0.072  0.651

SRC 0980 0.728 0.839 0618 0612 0.630 0588 0476

PCC 0.980 0.728 0.839 0618 0612 0630 0588 0476 1.000

SRRC 0711 0912 0.679 0.808 0.877 0242 0.618 0817 0751 0.751
PRCC 0711 0912 0.679 0.808 0877 0242 0.618 0817 0751 0.751 1.000

CC RCC CMN CL CMD CV CIQ SI SRC  PCC SRRC

Top-Down Correlation Matrix p Values

RCC 0.004

CMN  0.001 0.005

CL 0.017  0.001 0.012

CMD  0.019 0.000 0.014 0.000

cv 0.012 0.139 0.002 0237 0.286

CIQ 0.018 0.028 0.018 0.029 0.023 0.152

S1 0.050 0.001 0.028 0001 0.000 0398 0.009

SRC 0.000 0.004 0.001 0013 0.014 0.012 0017 0.043

PCC 0.000 0004 0001 0013 0014 0.012 0017 0.043 0.000

SRRC 0.005 0.001 0.007 0.002 0001 0192 0013 0002 0003 0.003
PRCC 0.005 0.001 0007 0002 0001 0192 0013 0002 0003 0003 0.000

CC RCC CMN CL CMD CV CIQ N SRC pCC SRRC

8 Same as Footnote a to Table 10.4 except for use of 14 variables from Table 10.8

The p-values used to identify important variables in Tables 10.8, 10.9 and 10.11 are calculated with statistical
assumptions that are not fully satisfied. As described in conjunction with Eq. (10.1), a Monte Carlo procedure can
be used to assess if the use of formal statistical procedures to determine p-values is producing misleading results.
The p-values based on formal statistical procedures and on Monte Carlo procedures are very similar, with the
associated variable rankings having top-down correlations between 0.987 and 0.995 (i.e., CC and RCC in Table
10.12 and CMN, CL, CMD, CV, CIQ and SI in Table 10.11). The primary difference is that the most important
variables (i.e., ANHPRM and WMICDFLG) tend to be assigned tied-ranks (i.e., 1.5) in the Monte Carlo simulations
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Table 10.11

Variable®
Name

ANHPRM
WMICDFLG
SHPRMCON
WGRCOR
WFBETCEL
WASTWICK
HALPRM
SHBCEXP
SHPRMASP
ANHBCVGP
WRBRNSAT
WGRMICH
ANHBCEXP
SHRGSSAT
SHPRMCLY
WRGSSAT
ANRBRSAT
SALPRES
HALPOR
WGRMICI
SHPRMDRZ
SHRBRSAT
ANRGSSAT
SHPRMHAL

TDC®

Variable
Name

WMICDFLG
ANHPRM
HALPRM
HALPOR
WGRCOR
SHPRMDRZ
SHRBRSAT
SHRGSSAT
ANRBRSAT
SHPRMCON
SHBCEXP
WGRMICH
WRBRNSAT
SALPRES
WFBETCEL
WASTWICK
ANHBCVGP
WGRMICI
SHPRMASP
SHPRMCLY
ANHBCEXP
ANRGSSAT
SHPRMHAL
WRGSSAT

DC

Comparison of Variable Rankings for y = EO:BRAALIC Obtained with a Maximum of Five
Classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and
Analytic Determination of p-values and (ii) a Maximum of Five Classes of x values (i.e., nX =
5) and Monte Carlo Determination of p-values

CMN: 1x5°
Rank p-Val
1.0 0.0000
20 0.0000
3.0 0.0057
40 0.0636
5.0 0.0732
6.0 0.1062
7.0 0.1105
8.0 0.1140
9.0 0.2745
10.0 0.2943
11.0 0.3483
12.0 04077
13.0 0.4467
140 0.5044
15.0 0.5192
160 0.5378
17.0 0.5595
18.0 0.5804
19.0 0.5960
200 0.6466
21.0 0.6935
220 0.6946
230 0.7033
24.0 0.7056

1.000

CMD: 2x5
Rank p-Val
1.0 0.0000
20 0.0000
3.0 0.0050
40 0.0155
50 0.0231
6.0 0.0306
7.0 0.0362
8.0 0.0504
9.0 0.1193
10.0 0.2674
11.0 0.2805
12.0 0.3084
13.0 0.3883
140 0.4060
15.5 0.5467
155 0.5467
17.0 0.6442
18.0 0.6868
19.0 0.7358
20.0 0.7603
210 0.8088
220 0.8781
235 0.9702
235 0.9702

1.000

CMN: 1 x 10°
Rank p-Val
1.0 (.0000
20 0.0000
4.0 0.0655
5.0 0.0723
10.0 0.2163
6.0 0.1085
12.0 04030
3.0 0.0120
7.0 0.1970
110 0.2943
220 0.8366
18.0 0.6346
8.0 0.1984
130 0.4492
20.0 0.7703
14.0 0.4570
150 04797
19.0 0.7158
240 0.9361
17.0 0.6080
9.0 0.2108
16.0 0.4925
230 0.9300
. 210 0.7932

0.891

CMD: 2x 10
Rank p-Val
1.0 0.0000
2.0 0.0000
3.0 0.0089
8.0 0.15%6
7.0 0.1271
4.0 0.0215
5.0 0.0282
9.0 0.1849
11.0 0.4559
140 0.5476
6.0 0.0856
150 0.6163
120 04814
220 0.8623
19.0 0.8043
230 0.8930
16.0 0.6442
240 0.9429
170 0.7130
13.0 0.5075
20.5 0.8514
18.0 0.7792
20.5 0.8514
100 04311

0.91%

CMNMC: 1x5¢
Rank p-Val
1.5 0.0000
1.5 0.0000
30 0.0036
4.0 0.0506
5.0 0.0572
6.0 0.0856
7.0 0.0961
8.0 0.0995
9.0 0.2729
100 0.3063
110 0.3482
120 0.4135
130 0.4678
14.0 0.5274
15.0 0.5396
16.0 0.5649
17.0 0.5871
i8.0 0.6108
19.0 0.6414
20.0 0.6749
220 0.7337
21.0 0.7303
24.0 0.7447
230 0.7421
0.987
CMDMC: 2x5
Rank p-Val
1.5 0.0000
1.5 0.0000
3.0 0.0040
4.0 0.0169
5.0 0.0221
6.0 0.0275
7.0 0.0347
8.0 0.0486
9.0 0.1163
11.0 0.2796
100 0.2686
12.0 0.3028
13.0 0.3796
14.0 04157
16.0 0.5411
150 0.5313
17.0 0.5670
18.0 0.6800
19.0 0.7235
200 0.7669
21.0 0.8156
220 0.8679
24.0 0.9672
230 0.9658
0.987
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Variable
Name

WMICDFLG
ANHPRM
HALPRM
WGRCOR
SHPRMDRZ
SHRBRSAT
HALPOR
SHBCEXP
SHRGSSAT
WFBETCEL
SHPRMCON
WRBRNSAT
WGRMICH
ANRBRSAT
SHPRMASP
WASTWICK
SALPRES
ANHBCVGP
ANHBCEXP
ANRGSSAT
WGRMICI
WRGSSAT
SHPRMHAL
SHPRMCLY

De

Variable
Name

ANHPRM
SHPRMCON
SHBCEXP
ANRBRSAT
WGRCOR
WFBETCEL
ANHBCEXP
WASTWICK
ANHBCVGP
WRGSSAT
HALPRM
WRBRNSAT
WMICDFLG
SALPRES
WGRMICH
SHPRMCLY
SHRGSSAT
SHRBRSAT
SHPRMASP
HALPOR
SHPRMHAL
WGRMICI
ANRGSSAT
SHPRMDRZ

me

CL: 1x5
Rank p-Val
1.0 0.0000
2.0 0.0000
3.0 0.0019
40 0.0427
5.0 0.1060
6.0 0.1174
7.0 0.1431
8.0 0.1524
9.0 0.2139
10.0 0.2299
11.0 0.2394
12.0 0.2889
13.0 0.3021
140 0.3431
150 0.4066
16.0 0.4411
17.0 0.4535
18.0 0.4930
19.0 0.7146
20.0 0.8110
21.0 0.8966
220 0.9035
230 0.9367
240 0.9385
1.000
CV: 1x35
Rank p-Val
1.0 0.0078
20 0.0426
3.0 0.1463
4.0 0.1994
5.0 0.2125
6.0 0.2194
70 0.2321
8.0 0.2961
9.0 0.3250
10.0 0.3520
110 0.3596
120 0.3851
130 0.4046
14.0 0.4395
150 0.5077
16.0 0.5144
17.0 0.5177
18.0 0.5347
190 0.5412
200 0.5416
210 0.5895
220 0.6096
230 0.6631
240 0.710%
1.000

CL:1x10
Rank p-Val
1.0 0.0000
20 0.0000
3.0 0.0052
8.0 0.2368
4.0 0.0206
6.0 0.1781
13.0 0.5392
5.0 0.0441
7.0 0.1810
9.0 0.3390
10.0 0.3674
170 0.6731
18.0 0.6854
16.0 0.6694
140 0.5478
12.0 0.5178
230 0.9222
11.0 0.4930
200 0.7230
220 0.9036
240 0.9948
150 0.5638
21.0 0.8705
19.0 0.7203
0.941
CV: 1 x10
Rank p-Val
1.0 0.0010
7.0 0.2704
2.0 0.0329
5.0 0.1188
3.0 0.0995
13.0 0.4615
4.0 0.1165
6.0 0.2503
8.0 0.3250
10.0 0.3701
15.0 0.5053
21.0 0.5950
11.0 0.4046
9.0 0.3528
170 . 05556
220 0.6169
20.0 0.5888
140 0.4892
120 0.4393
24.0 0.6974
180 0.5857
16.0 0.5070
230 0.6481
19.0 0.5875
0.870

CLMC: 1 x5
Rank p-Val
15 0.0000
1.5 0.0000
3.0 0.0013
4.0 0.0438
50 0.1095
6.0 0.1166
7.0 0.1427
8.0 0.1532
2.0 0.2119
10.0 0.2328
1n.o 0.2425
120 0.2865
13.0 0.3015
14.0 0.3455
15.0 0.4045
160 0.4363
170 0.4536
18.0 0.4914
190 0.7218
200 0.8081
210 0.9001
220 0.9085
240 09392
230 0.9387 -
0.987
CVMC: 1x5
Rank p-Val
1.0 0.0000
2.0 0.0058
3.0 0.0774
4.0 0.1278
5.0 0.1424
6.0 0.1455
7.0 0.1697
8.0 0.2450
13.0 0.4487
9.0 0.3054
10.0 0.3129
110 0.3446
14.0 0.4577
120 0.4360
15.0 0.5798
17.0 0.5952
160 0.5915
18.0 0.6333
190 0.6552
200 0.6583
210 0.7538
220 0.8035
230 0.9119
240 0.9791
0.995




Table 10.11 (Cont.)

Variable CIQ: 2x5 CIQ: 2x 10 CIQMC: 2x5 Variable S 5x5 SI: 10 10 SIMC: 5x5

Name Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val
ANHPRM 1.0 0.0000 1.0 0.0000 LS5 0.0000 WMICDFLG 1.0 0.0000 1.0 0.0000 1.5 0.0000
WMICDFLG 2.0 0.0000 2.0 0.0000 15 0.0000 ANHPRM 20 0.0000 20 0.0000 1.5 0.0000
SHRGSSAT 3.0 0.0628 4.0 0.0856 3.0 0.0628 HALPRM 3.0 0.0517 7.0 0.2313 3.0 0.0514
WGRMICI 4.0 0.0780 6.0 01719 4.0 0.0757 HALPOR 4.0 0.0698 6.0 0.2028 4.0 0.0706
SHRBRSAT 5.0 0.1395 13.0 05341 5.0 0.1382 SHRBRSAT 5.0 0.1917 8.0 0.2786 3.0 0.1898
HALPOR 6.0 0.2805 3.0 0.0235 6.0 0.2710 SHRGSSAT 6.0 0.2056 14.0 0.5738 6.0 0.2058
WRBRNSAT 7.0 02942 8.0 02803 7.0 0.2917 SHPRMDRZ 7.0 0.2202 9.0 0.2955 7.0 02221
WFBETCEL 8.0 03084 155 0.6441 90 0.3089 SHPRMCON 8.0 0.2436 3.0 0.0814 8.0 0.2566
ANHBCVGP 9.0 03556 9.0 0.3556 8.0 0.2967 WGRMICI 9.0 0.2863 13.0 0.4075 9.0 0.2825
WASTWICK 10.0 0.3883 120 0.5341 10.0 0.3859 WGRMICH 10.0 0.3239 20.0 0.8743 10.0 0.3257
SHPRMASP 1.0 0.4433 11.0 0.4559 110 04366 WGRCOR 11.0 0.3644 23.0 0.8975 110 0.3641
SHPRMCLY 12.0 05690 5.0 0.1373 12.0 0.5724 SHBCEXP 120 0.4075 12,0 0.3878 12.0 04029
WGRCOR 135 0.6868 195 0.8930 130 0.6669 WFBETCEL 130 0.4186 19.0 0.8034 13.0 04175
WRGSSAT 135 0.6868 15.5 0.6441 14.0 0.6693 WRBRNSAT 14.0 0.4186 215 0.8863 14.0 04221
SHBCEXP 150 07113 7.0 0.1849 150 0.7266 WASTWICK 150 0.5246 150 0.6767 15.0 0.5217
ANRBRSAT 16.0 0.7847 18.0 0.8043 16.0 0.7634 ANHBCVGP 16.0 0.5467 4.0 0.1596 16.0 0.5633
SHPRMCON 17.0 0.8325 17.0 0.6579 170 0.8557 SHPRMASP 170 0.6111 11.0 0.2955 17.0 0.6044
WGRMICH 18.0 0.8781 19.5 0.8930 18.0 0.8769 ANRBRSAT 18.0 0.7324 16.0 0.7155 18.0 0.7286
ANRGSSAT 19.0 0.8995 210 0.9429 190 0.8949 WRGSSAT 19.0 0.7440 100 0.2955 19.0 0.7470
SALPRES 205 09197 235 09892 210 0.9202 SHPRMCLY 200 0.7666 50 0.1895 20.0 0.7780
SHPRMHAL 205 09197 220 09669 200 0.9061 ANHBCEXP 21.0 03776 215 0.8863 21.0 0.7856
SHPRMDRZ 225 0.9554 140 0.6025 23.0 0.9476 SHPRMHAL 220 0.7776 170 0.7701 22.0 0.7929
ANHBCEXP 225 09554 235 09892 220 0.9472 SALPRES 23.0 0.9326 18.0 0.7870 23.0 0.9354
HALPRM 240 09702 100 04071 240 0.9751 ANRGSSAT 240 0.9537 240 0.9846 240 0.9561
DC 1.000 0.869 0.987 ™DC 1.000 0.748 0.988

a,b,¢,d, ¢ gee Footnotes a, b, ¢, d, e to Table 10.5.

because the sample size of 10,000 in use does not allow the estimation of p-values less than 0.0001; in contrast, the
formal statistical procedures allow the calculation of p-values less than 0.0001 and thus result in distinct ranks being

assigned to ANHPRM and WMICDFLG.

A possible variant of the common means (CMNs) test is to use logarithmically transformed y-values rather than
the original untransformed y-values (Sect. 5.1). Use of both raw and logarithmically transformed variables results in
ANHPRM and WMICDFLG being selected as the two most important variables with respect to E0:BRAALIC (Tables
10.11, 10.13). Use of logarithmically transformed variables with the CMNs test also results in the identification of
HALPRM as the third most important variable, with HALPRM also assigned a rank of 3 with RCCs, but effectively
missed by the CMNss test with raw data (i.e., a p-value of 0.1105 and a rank of 7) (Tables 10.11, 10.13). The CMNs
test with both raw and logarithmically transformed data assigns rank 4 to WGRCOR (Tables 10.11, 10.13). Thus, the
use of logarithmically transformed data with the CMNs test results in the identification of one possibly important

variable (i.e., WGRCOR) missed with the use of raw data.

A possible variant of the common variances (CVs) test is to use ¢, as defined in Eq. (6.4) rather than as defined

in BEq. (6.3). The logarithmic transformation associated with Eq. (6.4) results in a substantial improvement in that
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Table 10.12 Comparison of Variable Rankings for y= EQ:BRAALIC Obtained with Correlation
Coefficients {CCs, RCCs) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values

Variable* cct CCMC* Variable RCC RCCMC

Name Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val
ANHPRM 1.0 0.0000 1.5 0.0000 WMICDFLG 1.0 0.0000 15 0.0000
WMICDFLG 2.0 0.0000 1.5 0.0000 ANHPRM 2.0 0.0000 L.5 0.0000
WASTWICK 30 0.0045 3.0 0.0022 HALPRM 3.0 0.0014 30 0.0009
WGRCOR 4.0 0.0048 4.0 0.0029 WGRCOR 4.0 0.0057 4.0 0.0044 |
ANHBCEXP 5.0 0.0095 5.0 0.0115 HALPOR 5.0 0.0087 5.0 0.0084 ‘
WFBETCEL 6.0 0.0555 6.0 0.0528 WASTWICK 6.0 0.0405 6.0 0.0401 |
WRBRNSAT 7.0 0.0615 7.0 0.0585 SALPRES 7.0 0.1107 7.0 0.1105 |
HALPOR 8.0 0.0934 8.0 0.0947 WFBETCEL 8.0 0.2131 8.0 0.2107 |
WRGSSAT 9.0 0.1231 9.0 0.1284 SHPRMASP 9.0 0.2168 9.0 0.2194
WGRMICH 10.0 0.1749 10.0 0.1840 SHRBRSAT 10.0 0.2767 100 0.2726
HALPRM 11.0 0.2593 11.0 0.2664 WRBRNSAT 11.0 0.4046 11.0 0.4002
SHPRMDRZ 120 0.2910 12.0 0.2983 SHPRMCON 12.0 0.4170 12.0 0.4224
ANHBCVGP 13.0 0.2927 13.0 0.3063 ANHBCVGP 13.0 0.4930 13.0 0.4914
SHPRMCON 14.0 0.3369 14.0 0.3375 SHRGSSAT 14.0 0.5371 140 0.5434
SALPRES 15.0 0.3772 15.0 0.3940 ANHBCEXP 15.0 0.6490 15.0 0.6547
SHBCEXP 16.0 0.4396 17.0 0.4520 SHBCEXP 16.0 0.6617 16.0 0.6576
ANRGSSAT 17.0 0.4561 16.0 0.4504 WGRMICT 17.0 0.6663 17.0 0.6604
SHRGSSAT 18.0 0.4767 19.0 0.4948 ANRGSSAT 18.0 0.6666 18.0 0.6639
ANRBRSAT 19.0 0.4875 18.0 0.4829 WRGSSAT 19.0 0.7237 19.0 0.7247
SHFRMASP 20.0 0.5725 20.0 0.5916 SHPRMCLY 20.0 0.8111 20.0 0.8101
WGRMICI 21.0 0.5809 21.0 0.5987 ANRBRSAT 210 - 0.8136 21.0 0.8137
SHPRMCLY 22.0 0.6051 220 0.6157 SHPRMDRZ 220 0.8392 22.0 0.8466
SHRBRSAT 230 0.7329 23.0 0.7371 WGRMICH © 230 0.8513 23.0 0.8479
SHPRMHAL 24.0 0.7958 240 0.8000 SHPRMHAL 24.0 0.8619 24.0 0.8632
rpc? 0.987 TDC 0.988

8,D,¢.d  §ee Footnotes a, b, ¢, d in Table 10.6.

Table 10.13 Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with Use of Logarithms? for y = EQ:BRAALIC, the variables in Table 2.2,° and a
Maximum of Five Classes of Values for Each Variable (i.e., nX.= 5)¢

Variable CMN: Log,1x5 CMNMC: Log,1x3
Name Rank p-Val Rank p-Val
WMICDFLG 1.0 0.0000 1.5 0.0000
ANHPRM 20 0.0000 1.5 0.0000
HALPRM 3.0 0.0022 3.0 0.0022
WGRCOR 4.0 0.0284 4.0 0.0286
SHPRMDRZ 5.0 0.0967 5.0 0.1029
Variable CV: Log,1x5 CVMC: Log,1x5
Name Rank p-Val Rank p-Val
ANHPRM 1.0 0.0000 1.0 0.0000

WMICDFLG 2.0 0.0002 2.0 0.0064
SHPRMCON 3.0 0.0019 3.0 0.0403

SHBCEXP 4.0 0.0130 4.0 0.1104
WASTWICK 5.0 0.0144 5.0 0.1140
ANRBRSAT 6.0 0.0189 6.0 0.1341

ANHBCEXP 7.0 0.0290 7.0 0.1699
WRBRNSAT 8.0 0.0304 8.0 0.1711
WFBETCEL 9.0 0.0754 9.0 0.2968
WGRMICH 10.0 0.0930 10.0 0.3384

a,b,c See Footnotes a, b, ¢ to Table 10.7.




WMICDFLG is now identified as an important variable (Table 10.13); in contrast, WMICDFLG was missed with raw
data as used in Eq. (6.3) (Table 10.11). The associated scatterplot indicates that WMICDFLG is a variable that
should be identified by any reasonable test (Fig. 2.4).

10.3 Repository Saturation under Disturbed Conditions: y = E2:WAS_SATB

The variable y = E2: WAS_SATB was selected as an example because the regression analyses with raw and rank-
transformed data were rather poor (i.c., R? = 0.33 and 0.61, respectively), although the two most important variables
as indicated by scatterplots (i.e., BHPRM and WRGSSAT) do appear in both regression analyses (Table 2.3, Fig.
2.5). Given the strong patterns displayed in the scatterplots for BHPRM and WRGSSAT and the discernible but less
strong patterns associated with ANHPRM and HALPOR (Fig. 2.5), procedures that can identify patterns that result
from the interaction of two or more variables should work well for E2:WAS_SATB. In particular, analyses of
variable importance based on RCCs, CLs, CMDs and SI identified BHPRM and WRGSSAT as the two most
important variables (Table 10.14). " Analyses based on CCs, CMNs and CVs identified BHPRM as the most
' important variable, but did not identify WRGSSAT as the second most important variable; in contrast, CIQs identified
WRGSSAT as the most important variable and identified BHPRM as the third rather than second most important
variable (Table 10.14). Further, CIQs identified WGRCOR as the second most important variable (Table 10.14),
which seems to be inconsistent with the weakness of the pattern appearing in the associated scatterplot (Fig. 10.3)
and also the rankings assigned to WGRCOR by other procedures (Table 10.14). The test based on CVs did not
identify WRGSSAT (i.e., a p-value of 0.1750 and a rank of 9) (Table 10.14).

Given the insights gained from the results of all of the analysis techniques, CCs and RCCs appear to have
identified the three dominant variables affecting E2:WAS_SATB (i.e., BHPRM, WRGSSAT, ANHPRM) (Table
10.14). However, given the low R2 values associated with the corresponding regression models with raw and rank-
transformed data (Table 2.3), it would be difficuit to place much faith in these identifications without results from

tests that are 1éss dependent on linear regression models (i.e., CLs, CMDs, CIQs, SI).

As previously observed for EO:WAS_PRES and EQ:BRAALIC (Tables 10.2, 10.9), variable rankings for
E2:WAS_SATB with CCs, SRCs and PCCs are similar, with SRCs and PCCs producing identical variable rankings
(Table 10.15). A similar pattern also occurs for RCCs, SRRCs and PRCCs (Table 10.15).

Top-down correlation provides a formal comparison of the variable rankings obtained with the different
procedures (Table 10.16). A considerable amount of variability exists in the rankings obtained with the different
techniques. Rankings based on SI, CVs and CIQs appear to have the least agreement with the rankings obtained with

other procedures.
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Table 10.14 Comparison of Variable Rankings with Different Analysis Procedures?2 for ‘
y= E2:WAS_SATB, the Variables in Table 2.2, and a Maximum of Five Classes of x |
Values (i.e., nX = 5)° i

Variabled cC RCC CMN: 1x5 CL: 1x5

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
ANHPRM 2.0 0.0000 3.0 0.0001 2.0 0.0000 3.0 0.0001 ‘
HALPOR 3.0 0.0006 5.0 0.0269 4.0 0.0124 12.0 0.3437
WGRCOR 4.0 0.0017 6.0 0.1446 6.0 0.0296 11.0 0.3179
WRGSSAT 5.0 0.0081 2.0 0.0000 5.0 0.0143 2.0 0.0000
WMICDFLG 6.0 0.0214 7.0 0.1745 7.0 0.0317 10.0 0.2824
WGRMICH 7.0 0.0838 8.0 0.1842 3.0 0.0021 4.0 0.0059
SHPRMHAL 8.0 0.0996 4.0 0.0225 10.0 0.1586 8.0 0.1528

WRBRNSAT 11.0 0.2350 13.0 0.4950 8.0 0.0801 6.0 0.0270
ANRBRSAT 15.0 0.6402 20.0 0.6645 19.0 0.7070 13.0 0.3977
SHPRMCLY - 210 0.9020 16.0 0.6137 11.0 0.1743 7.0 0.0972
SHPRMCON 23.0 0.9478 19.0 0.6549 9.0 0.1149 5.0 0.0202

Variable CMD: 2x5 CV: 1x5 CIQ: 2x5 SI: 5x5

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.0 0.0000 3.0 0.0054 2.0 0.0000
ANHPRM 3.0 0.0003 2.0 0.0000 4.0 0.0628 3.0 0.0002
HALPOR 235 0.8557 3.0 0.0011 6.0 0.1324 7.0 0.1328
WGRCOR 13.0 0.5037 5.0 0.0067 2.0 0.0019 6.0 0.1010
WRGSSAT 2.0 0.0000 9.0 0.1750 1.0 0.0000 1.0 0.0000
WMICDFLG 8.0 0.2187 6.0 0.0114 15.0 0.5134 8.0 0.1542
WGRMICH 4.0 0.0130 4.0 0.0050 7.0 0.2311 5.0 0.0564

SHPRMHAL 6.0 0.0218 7.0 0.1122 11.0 0.4628 10.0 0.2278
WRBRNSAT 12.0 0.3883 8.0 0.1749 25.0 0.9825 9.0 0.2128
ANRBRSAT 17.0 0.6868 25.0 0.9798 8.0 0.2674 4.0 0.0495
SHPRMCLY 7.0 0.1627 21.0 0.7874 16.0 0.5467 16.0 0.5739
SHPRMCON 5.0 0.0206 22.0 0.8224 10.0 0.3546 12.0 0.4075

a,¢d See Footnotes a, b, c to Table 10.1

b Same as Footnote b to Table 10.1 except that BHPRM is used in the calculation of E2 results (i.e., F2:WAS_SATB and
E2:WAS_PRES) and so was included as an independent variable, which resulted in 25 variables (i.e., x's) for analysis with each
procedure.

As for E0:WAS_PRES and E0:BRAALIC, an investigation was carried out for E2:WAS_SATB on the effects of
using nX = 10 rather than nX = 5 for CMNs, CLs, CMDs, CVs, CIQs and SI and nY = 10 rather than nY = 5 for SI
(Table 10.17). The results for the highest ranked variables for the two partitionings were similar, with CMNs, CLs,

CMDs, CIQs and SI each identifying the same top 3 variables, although the identified variables were not necessarily

the same from test to test. For CVs, both partitionings yielded the same top two variables but produced different
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Fig. 10.3.  Scatterplot for E2: WAS_SATB versus WGRCOR.

Table 10.15 Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y = E2:WAS_SATB

Varjable? CcC SRC PCC
Name p-Val Rank Value Rank Value Rank Value
BHPRM 0.0000 1.0 0.6029 1.0 0.5923 1.0 0.6812
ANHPRM 0.0000 2.0 0.2929 2.0 0.2950 2.0 0.4198
HALPOR 0.0006 3.0 0.1980 4.0 0.1888 4.0 0.2832
WGRCOR 0.0017 4.0 —-.1810 3.0 -.1891 3.0 —.2840
WRGSSAT 0.0081 5.0 -.1530 5.0 —.1447 5.0 —-.2211
WMICDFLG 0.0214 6.0 -.1329 6.0 -.1357 6.0 —.2044
WGRMICH 0.0838 7.0 0.0998 7.0 0.0928 7.0 0.1437
SHPRMHAL 0.0996 8.0 —-.0951 9.0 -.0831 9.0 —.1290
VariableP RCC SRRC PRCC
Name p-Val Rank Value Rank Value Rank Value
BHPRM 0.0000 1.0 0.5989 1.0 0.5904 1.0 0.7011
WRGSSAT 0.0000 2.0 -.4113 20 —-.3997 2.0 -.5534
ANHPRM 0.0001 3.0 0.2299 3.0 0.2260 3.0 0.3518
SHPRMHAL 0.0225 4.0 -1319 - 5.0 —.1148 5.0 -.1870
HALPOR 0.0269 5.0 0.1280 4.0 0.1315 4.0 0.2136

a, b see Footnotes a, b in Table 10.2.
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Table 10.16 Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y= E2:WAS_SATB, Variables included in Table 10.14,2 and a Maximum of Five Classes of
x values (i.e., nX = 5)

Top-Down Correlation Matrix

RCC 0.851

CMN 0919 0.790

CL 0.643 0815 0.781

CMD 0640 0840 0763  0.982

cv 0947 0742 0950 0.609 0.602

CIQ 0490 0.631 0422 0494 0503 0.267

SI 0551 0727 0561 0702 0706 0363  0.840

SRC 0988 0.844 0902 0646 0.647 0926 0530 0.557

PCC 0988 0844 0902 0.646 0.647 0926 0530 0557 1.000

SRRC 0876 0989 0812 0.806 0830 0762 0655 0.732 0.859 0.859
PRCC 0876 0989 0812 0806 0830 0762 0.655 0732 0.859 0.859 1.000

CC RCC CMN CL CMD CV CIQ SI SRC PCC SRRC
Top-Down Correlation Matrix p Values

RCC 0.002

CMN 0.001 0.004

CL 0.017 0.003 0.005

CMD 0017 0003 0.006 0.001

Cv 0.001 0.007 0001 0.022 0.023

CIQ 0.052 0.018 0.081 0.051 0.048 0.188

SI 0.034 0008 0031 0.010 0010 0.115 0.003

SRC 0.001 0003 0001 0.016 0016 0001 0.039 0032

PCC 0.001 0003 0.001 0016 0016 0001 0039 0032  0.000

SRRC 0.002 0.001 0.004 0004 0.003 0006 0015 0008 0.002 0.002
PRCC (0.002 0001 0.004 0004 G003 0006 0015 0008 0.002 0002 0.000

CC RCC CMN CL CMD CV CIQ Si SRC PCC SRRC

2 Same as Footnote a to Table 10.4 except for use of 12 variables from Table 10.14.

variables with rank 3. After the top three variables, there was often considerable variability in the ranks assigned to
the remaining, and typically unimportant, variables. The least agreement between the variable rankings obtained

with the two partitionings occurred for SI (i.e., a p-value of 0.746).

As previously described, the p-values used to identify important variables in Tables 10.14, 10.15 and 10.17 were
recalculated with a Monte Carlo procedure (Tables 10.17, 10.18). The p-values based on formal statistical
procedures and on Monte Carlo procedures are very similar, with the associated variable rankings having top-down
correlations between 0.972 and 0.999 (i.e., CC and RCC in Table 10.18 and CMN, CL, CMD, CV, CIQ and SI in
Table 10.17). As in previous comparisons, the primary difference is that the most important variables tend to be
assigned tied-ranks in the Monte Carlo simulation (e.g., 1.5 for BHPRM and ANHPRM for CCs in Table 10.18)

because p-values less than 0.0001 cannot be estimated with the sample size of 10,000 in use.
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Table 10.17 Comparison of Variable Rankings for y = E2:WAS_SATB Obtained with a Maximum of Five
Classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and
Analytic Determination of p-values and (ii) a Maximum of Five Classes of x values (i.e., nX =
5) and Monte Carlo Determination of p-values

Variable® CMN: 1x5° CMN: 1x10°  CMNMC: x5 Variable CL: 1x5 CL: 1x10 CLMC: x5

Name Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.0 0.0000 15 0.0000 BHPRM 1.0 0.0000 1.0 0.0000 1.5 0.0000
ANHPRM 20 0.0000 2.0 0.0000 15 0.0000 WRGSSAT 20 0.0000 20 0.0000 1.5 0.0000
WGRMICH 3.0 0.0021 3.0 0.0053 3.0 0.0022 ANHPRM 30 0.0001 3.0 0.0008 3.0 0.0001
HALPOR 4.0 0.0124 6.0 0.0546 4.0 0.0116 WGRMICH 4.0 0.0059 5.0 0.0289 4.0 0.0056
WRGSSAT 5.0 0.0143 8.0 0.1113 50 0.0146 SHPRMCON 5.0 0.0202 6.0 0.0963 5.0 0.0165
WGRCOR 6.0 0.0296 50 0.0343 6.0 0.0294 WRBRNSAT 6.0 0.0270 40 0.0132 6.0 0.0240
WMICDFLG 70 0.0317 4.0 0.0317 7.0 0.0320 SHPRMCLY 7.0 0.0972 11.0 0.3016 7.0 0.0932
WRBRNSAT 8.0 0.0801 9.0 0.1416 8.0 0.0791 SHPRMHAL 8.0 0.1528 8.0 0.1902 8.0 0.1521
SHPRMCON 9.0 0.1149 10.0 0.1673 9.0 0.1115 WASTWICK 9.0 0.2625 14.0 0.3439 9.0 0.2632
SHPRMHAL 10.0 0.1586 7.0 0.0927 10.0 0.1593 WMICDFLG 100 0.2824 9.0 0.2824 100 0.2823
SHPRMCLY 11.0 0.1743 13.0 02772 11.0 0.1767 WGRCOR 11.0 0.3179 12.0 0.3087 1.0 03154
HALPRM 12.0 0.2934 12.0 0.2659 12.0 0.2880 HALPOR 120 0.3437 16.0 0.3014 120 0.3524
WFBETCEL 13.0 0.3777 11.0 0.1777 13.0 0.3834 ANRBRSAT 13.0 0.3977 200 0.6774 13.0 0.3941
SALPRES 14.0 0.4811 18.0 0.5665 14.0 0.4812 SHPRMDRZ 14.0 0.4990 13.0 0.3203 14.0 0.4985
WGRMICI 15.0 05114 220 0.7911 15.0 0.5073 SHRBRSAT 15.0 0.5183 16.0 0.5305 150 0.5152
SHRBRSAT 16.0 0.5436 15.0 0.4829 16.0 0.5453 WFBETCEL 16.0 0.5450 22.0 0.7402 17.0 0.5542
SHPRMDRZ 17.0 0.6611 17.0 0.5339 17.0 0.6665 WGRMICI 17.0 0.5515 18.0 0.5774 16.0 0.5445
ANHBCEXP 18.0 0.6867 14.0 0.3160 18.0 0.6886 HALPRM 18.0 0.5728 15.0 0.5070 180 0.5734
ANRBRSAT 19.0 0.7070 240 0.9389 19.0 0.7035 ANRGSSAT 190 0.7586 17.0 0.5626 19.0 0.7587
SHRGSSAT 20.0 0.7525 19.0 0.6801 20.0 0.7626 SALPRES © 200 0.7684 230 0.7880 200 0.7732
WASTWICK 21.0 0.8552 16.0 0.4959 210 0.8486 ANHBCEXP 210 0.8201 19.0 0.6201 21.0 0.8244
SHPRMASP 220 0.8739 25.0 0.9969 220 0.8728 SHBCEXP 220 0.9120 21.0 0.7133 23.0 0.9128
SHBCEXP 23.0 0.8842 21.0 0.7797 230 0.8797 SHPRMASP 230 0.9129 25.0 0.9653 240 0.9136
ANHBCVGP 24.0 0.8920 23.0 0.8920 25.0 0.8930 ANHBCVGP 24.0 0.9133 24.0 0.9133 220 0.9125
ANRGSSAT 25.0 0.8929 200 0.7163 240 0.8913 SHRGSSAT 250 0.9424 7.0 0.1763 25.0 0.9418
TDC® 1.000 0.962 0.988 TDC 1.000 0.930 0.988

Variable CMD: 2x5 CMD: 2x 10 CMDMC: 2x 5§ Variable CV: 1x5 CV: I x10 CVMC: 1 x5

Name Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 2.0 0.0000 1.5 0.0000 BHPRM 1.0 0.0000 10 0.0000 1.5 0.0000
WRGSSAT 20 0.0000 1.0 0.0000 15 0.0000 ANHPRM 20 0.0000 2.0 0.0000 1.5 0.0000
ANHPRM 3.0 0.0003 3.0 0.0035 3.0 0.0001 HALPOR 3.0 0.0011 5.0 0.0059 3.0 0.0022
WGRMICH 4.0 0.0130 6.0 0.0856 4.0 0.0135 WGRMICH 4.0 0.0050 3.0 0.0043 4.0 0.0082
SHPRMCON 5.0 0.0206 7.0 0.1538 5.0 0.0207 WGRCOR 5.0 0.0067 4.0 0.0058 5.0 0.0100
SHPRMHAL 6.0 0.0218 50 0.0669 6.0 0.0227 WMICDFLG 6.0 0.0114 6.0 0.0114 6.0 0.0140
SHPRMCLY 7.0 0.1627 15.0 0.5075 70 0.1639 SHPRMHAL 7.0 0.1122 7.0 0.0765 70 0.1208
WMICDFLG 8.0 0.2187 9.0 0.2187 8.0 0.2133 WRBRNSAT 8.0 0.1749 17.0 0.6414 8.0 0.1806
SHPRMASP 9.0 0.2674 11.0 0.3191 9.0 0.2585 WRGSSAT 9.0 0.1750 19.0 0.7157 9.0 0.1828
ANHBCYGP 10.0 0.3556 12.0 0.3556 10.0 0.2958 SALPRES 100 0.2505 10.0 0.2846 10.0 0.2552
HALPRM 11.0 0.3796 13.0 0.3614 12.0 0.3982 HALPRM 11.0 0.3132 16.0 0.5702 11.0 0.3153
WRBRNSAT 12.0 0.3883 10.0 0.2803 11.0 0.3824 WGRMICI 120 0.3367 220 0.8053 120 0.3400
WGRCOR 13.0 0.5037 8.0 02133 13.0 0.4932 WFBETCEL 13.0 0.4874 9.0 0.1947 13.0 0.5039
WASTWICK 140 0.5467 20.0 0.8043 14.0 0.5342 ANHBCEXP 140 0.5644 8.0 0.1754 140 0.5748
SALPRES 150 0.5804 19.0 0.7792 150 0.5807 ANHBCVGP 15.0 0.6458 18.0 0.6458 16.0 0.6444
ANRGSSAT 16.0 0.6626 17.0 0.7532 16.0 0.6623 SHBCEXP 16.0 0.6500 11.0 0.3697 15.0 0.6427
ANRBRSAT 17.0 0.6868 225 0.8514 17.0 0.6653 SHRGSSAT 17.0 0.7043 23.0 0.8563 17.0 0.7147
SHPRMDRZ 18.0 0.7113 14.0 0.4686 18.0 0.7241 SHRBRSAT 18.0 0.7236 15.0 0.5688 18.0 0.7237
SHRBRSAT 19.0 0.7358 18.0 0.7792 19.0 0.7470 WASTWICK 19.0 0.7404 13.0 0.5142 19.0 0.7340
SHRGSSAT 200 0.7603 4.0 0.0519 21.0 0.7642 SHPRMASP 200 0.7468 24.0 0.9892 200 0.7514
WFBETCEL 215 0.7847 225 0.8514 220 0.8025 SHPRMCLY 210 0.7874 12.0 0.4471 21.0 0.7893
WGRMICI 215 0.7847 24.0 0.9281 20.0 0.7564 SHPRMCON 220 0.8224 14.0 0.5288 220 0.8257
HALPOR - 23.5 0.8557 21.0 0.8285 24.0 0.8566 ANRGSSAT 230 0.8434 21.0 0.7810 230 0.8462
ANHBCEXP 23.5 0.8557 25.0 0.9558 23.0 0.8523 SHPRMDRZ 24.0 0.8702 20.0 0.7694 24.0 0.8727
SHBCEXP 25.0 0.9825 16.0 0.6163 250 0.9827 ANRBRSAT 25.0 0.9798 250 0.9997 25.0 0.9794

™me 1.000 0.835 0.988 ™DC 1.000 0.909 0.988




Table 10.17 (Cont.)

Variable CIQ: 2x5 CIQ: 2x10 CIQMC: 2x5 Variable SI: 5x5 Sk 10x 10 SIMC: 5x5
Name Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val
WRGSSAT 1.0 0.0000 1.0 0.0000 10 0.0000 WRGSSAT 1.0 0.0000 1.0 0.0000 2.0 0.0000
WGRCOR 20 0.0019 2.0 0.0021 2.0 0.0012 BHPRM 20 0.0000 20 0.0000 2.0 0.0000
BHPRM 3.0 0.0054 3.0 0.0063 3.0 0.0055 ANHPRM 3.0 0.0002 3.0 0.0058 2.0 0.0000
ANHPRM 4.0 0.0628 6.0 0.2622 4.0 0.0670 ANRBRSAT 4.0 0.0495 19.0 0.8034 40 0.0451
SHRBRSAT 5.0 0.1257 75 0.2803 5.0 0.1209 WGRMICH 50 0.0564 120 04276 50 0.0568
HALPOR 6.0 0.1324 4.0 0.1481 6.0 0.1317 WGRCOR 6.0 0.1010 9.5 0.3310 6.0 0.0963
WGRMICH 7.0 0.2311 140 0.4814 7.0 0.2359 HALPOR | 7.0 0.1328 9.5 03310 7.0 0.1271
ANRBRSAT 8.0 0.2674 15.0 0.5075 8.0 0.2613 WMICDFLG 8.0 01542 70 0.2502 8.0 0.1508
SHRGSSAT 9.0 0.3232 75 0.2803 9.0 0.3186 WRBRNSAT 2.0 0.2128 20.0 0.8034 9.0 0.2090
SHPRMCON 100 0.3546 10.0 0.3725 100 0.3661 SHPRMHAL 100 0.2278 5.0 0.1129 10.0 0.2289
SHPRMHAL 11.0 0.4628 20.5 0.8043 11.0 04584 HALPRM 11.0 0.2436 16.0 0.7343 11.0 0.2467
SALPRES 120 0.4830 13.0 0.4435 12.0 04870 SHPRMCON 12.0 0.4075 6.0 0.1129 12.0 04150
SHPRMASP 13.0 0.4830 17.0 0.5749 13.0 0.4904 SHRBRSAT 13.0 04414 14.0 0.6566 13.0 0.4426
HALPRM 14.0 0.5037 120 0.4190 14.0 0.5101 WFBETCEL 14.0 0.4530 13.0 0.4687 14.0 0.4611
WMICDFLG 150 0.5134 160 0.5134 150 0.5185 WGRMICI 15.0 0.5369 210 0.8034 15.0 0.5379
SHPRMCLY 16.0 0.5467 18.0 0.6025 16.0 0.5455 SHPRMCLY 16.0 0.5739 240 0.9079 16.0 0.5780
WASTWICK 17.0 0.5467 230 0.8930 17.0 0.5578 SHRGSSAT 17.5 0.7885 11.0 0.3684 170 0.7941
WFBETCEL 18.0 0.5690 5.0 0.1719 19.0 0.5747 ANHBCEXP 175 0.7885 220 0.8616 18.0 0.7979
ANRGSSAT 190 0.6387 20.5 0.8043 200 0.6237 SHPRMASP 19.0 0.8197 8.0 0.2955 19.0 0.8277
SHBCEXP 200 0.6387 9.0 0.2993 21.0 0.6496 SALPRES 20.0 0.8296 15.0 0.7155 200 0.8326
ANHBCVGP 21.0 0.6442 19.0 0.6442 18.0 0.5633 ANRGSSAT 210 0.8296 4.0 0.0103 210 0.8379
ANHBCEXP 22.0 0.7847 22.0 0.8729 22.0 0.8008 WASTWICK 220 0.8392 230 0.8863 220 0.8396
WGRMICI 230 0.8995 240 0.9114 230 0.8932 ANHBCVGP 230 0.9197 18.0 0.7792 23.0 0.9334
SHPRMDRZ 240 0.9197 11.0 0.3838 240 0.9152 SHPRMDRZ 24.0 0.9489 250 0.9612 24.0 0.9458
WRBRNSAT 25.0 0.9825 25.0 0.9761 250 0.9777 SHBCEXP 25.0 0.9537 17.0 0.7701 25.0 0.9574
DC 1.000 0.872 0.999 DC 1.000 0.746 0.972
a Twenty-five (25) variables included in analysis; see Footnote b to Table 10.14.

b.c.d,¢ e Footnotes b, ¢, d, e to Table 10.5.

Again, a possible variant of the common means (CMNs) test is to use logarithmically transformed y-values
rather than the original untransformed y-values (Sect. 5.1). Use of both raw and logarithmically transformed
variables results in similar rankings of variable importance (Tables 10.17, 10.19). Thus, little is gained in the
analysis of E2:WAS_SATB with CMNs by the use of logarithmically transformed variables. Similarly, little change
in the outcome of the analysis for E2:WAS_SATB with CVs took place when 7, as defined in Eq. (6.4) rather than as
in Eq. (6.3) was used (Tables 10.17, 10.19).

10.4 Repository Pressure under Disturbed Conditions: y = E2:WAS_PRES

The variable y = E2:WAS_PRES was included as an example because regression analyses with raw and rank-
transformed data fail to identify the dominant variable BHPRM (Sect. 2). Thus, procedures that can identify
nonlinear, nonmonotonic relationships should work well with E2: WAS_PRES, which indeed turned out to be the case
(Table 10.20). In particular, tests based on CMNs, CL, CMDs, CVs, CIQs and SI all identified BHPRM as the most
important variable affecting E2:WAS_PRES (Table 10.20), which is consistent with the strong pattern appearing in
the corresponding scatterplot (Fig. 2.6). In contrast, tests based on CCs and RCCs failed to identify BHPRM as an
important variable (i.e., p-values of 0.3651 and 0.1704 for CCs and RCCs, respectively) (Table 10.20). Further,
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Table 10.18 Comparison of Variable Rankings for y= E2:WAS_SATB Obtained with Correlation
Coefficients (CCs, RCCs) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values

Variable* cch CCMC* Variable RCC RCCMC

Name Rank p-Val Rank p-Val Name Rank p-Val Rank p-val
BHPRM 1.0 0.0000 1.5 0.0000 BHPRM 1.0 0.0000 2.0 0.0000
ANHPRM 2.0 0.0000 1.5 0.0000 WRGSSAT 2.0 0.0000 2.0 0.0000
HALPOR 3.0 0.0006 3.0 0.0004 ANHPRM 30 0.0001 2.0 0.0000
WGRCOR 4.0 0.0017 4.0 0.0020 SHPRMHAL 4.0 0.0225 4.0 0.0207
WRGSSAT 5.0 0.0081 5.0 0.0088 HALPOR 5.0 0.0269 5.0 0.0287
WMICDFLG 6.0 0.0214 6.0 0.0227 WGRCOR 6.0 0.1446 6.0 0.1480
WGRMICH 7.0 0.0838 7.0 0.0844 WMICDFLG 7.0 0.1745 7.0 0.1750
SHPRMHAL 8.0 0.0996 8.0 0.0998 WGRMICH 8.0 0.1842 8.0 0.1885
SHRBRSAT 9.0 0.1791 9.0 0.1792 ANRGSSAT 9.0 0.2751 9.0 0.2738
WGRMICI 10.0 0.1997 10.0 0.1989 SHRBRSAT 10.0 0.2921 10.0 0.2911
WRBRNSAT 11.0 0.2350 11.0 0.2377 SHRGSSAT 11.0 0.3784 11.0 0.3811
SALPRES 120 0.3892 12.0 0.3903 WEFBETCEL 12.0 0.4852 13.0 0.4958
SHPRMASP 13.0 0.4801 13.0 0.4837 WRBRNSAT 13.0 0.4950 12,0 0.4928
ANHBCEXP 14.0 0.4911 14.0 0.4945 SHPRMDRZ 14.0 0.4993 14.0 0.5025
ANRBRSAT 15.0 0.6402 15.0 0.6409 WGRMICI 15.0 0.5517 15.0 0.5606
SHRGSSAT 16.0 0.6732 16.0 0.6780 SHPRMCLY 16.0 0.6137 16.0 0.6144
HALPRM 17.0 0.7348 17.0 0.7370 SALPRES 17.0 0.6140 17.0 0.6156
ANRGSSAT 18.0 0.7628 180 0.7655 SHPRMASP 18.0 0.6223 18.0 0.6167
WASTWICK 19.0 0.8393 19.0 0.8430 SHPRMCON 19.0 0.6549 19.0 0.6540
ANHBCVGP 20.0 0.8824 20.0 0.8865 ANRBRSAT 20.0 0.6645 200 0.6620
SHPRMCLY 21.0 0.9020 21.0 0.9090 SHBCEXP 21.0 0.7907 21.0 0.7907
WFBETCEL 220 0.9168 220 0.9204 ANHBCEXP 22,0 0.8319 220 0.8380
SHPRMCON 23.0 0.9478 230 0.9463 ANHBCVGP 23.0 0.9131 230 0.9125
SHPRMDRZ 24.0 0.9823 24.0 0.9824 HALPRM 24,0 0.9544 240 0.9569
SHBCEXP 25.0 0.9943 250 0.9943 WASTWICK 250 0.9832 25.0 0.9834
DC? 0.988 DC 0.972
a Twenty-five (25) variables included in analysis; see Footnote b to Table 10.14.

b,¢,d  gee Footnotes b, ¢, d to Table 10.6.

tests based on CMNs, CLs, CMDs, CVs, and SI select the variables ranked 2 and 3 from HALPRM, ANHPRM and
WGRCOR, while the test based on CIQs assigns ranks 2 and 3 to WGRCOR and SHRGSSAT, respectively. As
indicated by the associated scatterplots, HALPRM, ANHPRM and WGRCOR show barely discernible patterns (Figs.
2.6, 10.4).

Variable rankings for E2:WAS_PRES based on CCs, SRCs and PCCs and also on RCCs, SRRCs and PRCCs are
the same (Table 10.21). However, these rankings are misleading because they do not include the dominant variable

BHPRM.

Due to the failure of CCs and RCCs to identify the dominant variable BHPRM, there is less agreement as
indicated by top-down correlations between the variable rankings obtained with the various analysis procedures for
E2:WAS_PRES than is the case for EO:WAS_PRES, E0:BRAALIC and E2:WAS_SATB (i.e., compare the top-down

correlations and associated p-values in Tables 10.4, 10.10, 10.16 and those in Table 10.22). In particular, variable
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Table 10.19 Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with Use of Logarithms? for y = E2:WAS_SATB, the Variables in Table 2.2,° and
a Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)¢

Variable CMN: Log,1 x5 CMNMC: Log,1x5

Name Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.5 0.0000
ANHPRM 2.0 0.0000 L5 0.0000
WGRMICH 3.0 0.0017 3.0 0.0022
HALPOR 4.0 0.0072 4.0 0.0057
WMICDFLG 5.0 0.0263 5.0 0.0254
WGRCOR 6.0 0.0284 6.0 0.0290
WRGSSAT 7.0 0.0833 7.0 0.0801

WRBRNSAT 8.0 0.0914 8.0 0.0871

Variable CV:Log1 x5 CVMC: Log,1 x 10

Name Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.0 0.0000
ANHPRM 2.0 0.0107 2.0 0.0112
HALPOR 3.0 0.0174 4.0 0.0159
WGRCOR 4.0 0.0190 3.0 0.0153
WMICDFLG 5.0 0.0257 5.0 0.0262
WGRMICH 6.0 0.0537 6.0 0.0418
SHPRMHAL 7.0 0.0803 7.0 0.0574

4 See Footnote a, Table 10.7.
b See Footnote b, Table 10.14.
€ See Footnote ¢, Table 10.1.

rankings with CMNs, CLs, CMDs CVs, CIQs and SI are generally similar (Table 10.22). The exception is the
ranking based on CIQs, which shows top-down correlations of 0.429, 0.462 and 0.462 with the rankings obtained
with CMNs, CLs and CMDs (Table 10.22). Otherwise, the top-down correlations for the variable rankings obtained
with CMNs, CLs, CMDs, CVs, CIQs and SI vary between 0.698 and 1.000 (Table 10.22). In contrast, there is little
relationship between the variable rankings obtained with CMNs, CLs, CMDs, CVs, CIQs and SI and with CCs,
SRCs, PCCs, RCCs, SRRCs and PRCCs (Table 10.22).

An investigation of the effects of using #nX = 10 rather than nX = 5 for CMNs, CLs, CMDs, CVs, CIQs and SI
and nY = 10 rather than nY = 5 for SI was also carried out (Table 10.23). Each of the indicated procedures with
nX =5 and nX = 10 identified BHPRM as the most important variable. Generally, ranks 2, 3 and sometimes 4 were
also assigned to similar variables, although the exact order was not always the same for X = 5 and nX = 10. After

rank 4, there was considerable variability in the ordering of the variables with #X = 5 and nX = 10.




Table 10.20 Comparison of Variable Rankings with Different Analysis Procedures? for
y = E2:WAS_PRES, the Variables in Table 2.2,° and a Maximum of Five Classes of Values
for each Variable (i.e., nX =5)°

Variabled cC RCC CMN: 1x5 CL: 1x5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-val
HALPRM 1.0 0.0000 1.0 0.0000 2.0 0.0000 2.0 0.0000
ANHPRM 2.0 0.0000 2.0 0.0000 3.0 0.0002 3.0 0.0000
HALPOR 3.0 0.0090 3.0 0.0184 5.0 0.0415 5.0 0.0940
SHPRMDRZ 6.0 0.1684 9.0 0.2417 13.0 0.4281 12.0 0.3131
ANHBCEXP 7.0 0.1786 8.0 0.2373 4.0 0.0405 4.0 0.0602
BHPRM 10.0 0.3651 6.0 0.1704 1.0 0.0000 1.0 0.0000
SHRGSSAT 14.0 0.5958 12.0 0.3948 25.0 0.9511 23.0 0.7738
ANRBRSAT 19.0 0.7133 14.0 0.4378 7.0 0.1513 7.0 0.1304
WGRCOR 20.0 0.7676 17.0 0.6560 17.0 0.5428 9.0 0.2242
Variable CMD: 2x35 CV: 1x5 CIQ: 2x5 SI: 5x5

Name Rank p-Val Rank p-vVal Rank p-Val Rank Value
HALPRM 20 0.0000 2.0 0.0014 11.0 0.4530 2.0 0.0002
ANHPRM 3.0 0.0007 24.0 0.9251 12.0 0.4628 4.0 0.0049
HALPOR 5.0 0.0760 7.0 0.1410 18.0 0.6151 11.0 0.3142
SHPRMDRZ 17.0 0.6868 4.0 0.0298 13.0 0.5037 17.0 0.6111
ANHBCEXP 4.0 0.0595 16.0 0.5178 19.5 0.6868 14.0 0.4414
BHPRM 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
SHRGSSAT 22.0 0.8325 14.0 0.3905 3.0 0.0289 5.0 0.0698
ANRBRSAT 6.0 0.0823 22.0 0.7194 4.0 0.0739 10.0 0.2518
WGRCOR 14.5 0.5249 3.0 0.0296 2.0 0.0130 3.0 0.0002

a,b. ¢, d  gee Footnotes a, b, ¢, d to Table 10.14.

The p-values used to identify important variables in Tables 10.20, 10.21 and 10.23 were recalculated with the
Monte Carlo procedure described in conjunction with Eq. (10.1) (Tables 10.23, 10.24). The rankings based on
analytic determination of p-values and on Monte Carlo determination of p-values are very similar, with the primary
difference being the tendency of the Monte Carlo simulation to assign tied ranks to the most important variables due

to an inability to estimate p-values less than 0.0001 with the sample of size 10,000 in use.

Again, a possible variant of the common means (CMNs) test is to use logarithmically transformed y-values
rather than the original untransformed y-values (Sect. 5.1). Use of both raw and logarithmically transformed
variables results in similar rankings of variable importance (Tables 10.23, 10.25). Thus, little is gained in the
analysis of E2:WAS_PRES with CMNs by the use of logarithmically transformed variables. In contrast, the analysis
for E2:WAS_PRES with CVs and t, as defined in Eq. (6.4) with a logarithmic transformation rather than as in Eq.
(6.3) without a transformation performed poorly, with the analysis with #,; as defined in Eq. (6.4) failing to identify
the dominant variable BHPRM. Thus, the use of the logarithmic transformation in Eq. (6.4) has the potential to
improve the performance of the CVs test as it did for EQ: BRAALIC (Tables 10.11, 10.13) and also the potential to
degrade performance as is the case for E2: WAS_PRES.
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Fig. 104.  Scatterplot for E2:WAS_PRES versus WGRCOR.

Table 10.21 Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y= E2:WAS _PRES :

Variable? CC SRC PCC
Name p-Val Rank Value Rank Value Rank Value
HALPRM 0.0000 1.0 0.3754 1.0 0.3682 1.0 0.3934
ANHPRM 0.0000 2.0 0.2497 2.0 0.2341 20 0.2632
HALPOR 0.0090 3.0 0.1508 3.0 0.1511 3.0 0.1730
Variable? RCC SRRC PRCC
Name p-Val Rank Value Rank Value Rank Value
HALPRM 0.0000 1.0 0.3591 1.0 0.3612 1.0 0.3868
ANHPRM 0.0000 2.0 0.2447 2.0 0.2388 2.0 0.2673
HALPOR 0.0184 3.0 0.1363 3.0 0.1412 3.0 0.1618

2.b gee Foototes a, b to Table 10.2.
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Table 10.22 Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y= E2:WAS_PRES, Variables included in Table 10.20,2 and a Maximum of Five Classes of
x values (i.e., nX = 5)

Top-Down Correlation Matrix

RCC 0.967

CMN 0.398  0.577

CL 0.378  0.567 0.997

CMD 0378 0567 0.997 1.000

cv 0.097 0.230 0.698 0706 0.706

CIQ —427 =248 0429 0462 0462 0715

S1 0.144 0342 0798 0826 0.826 0.850 0.816

SRC 0990 0975 0423 0408 0408 0.072 -438 0.149
PCC 0990 0975 0423 0408 0408 0.072 -.438 0.149  1.000

SRRC 0967 1.000 0.577 0567 0567 0.230 -248 0342 0975 0975
PRCC 0967 1.000 0577 0567 0567 0.230 -248 0342 0975 0975 1.000
CC RCC CMN CL CMD CV CIQ SI SRC  PCC SRRC

Top-Down Correlation Matrix p Values

RCC 0.003

CMN 0.130  0.051

CL 0.143  0.055 0.002

CMD 0.143  0.055 0.002 0.002

Cv 0392 0257 0.024 0023 0.023

CIQ 0.886 0.759 0.113 0.096 0.096 0.022

SI 0342 0.167 0.012 0.010 0010 0.008 0.011

SRC 0.003 0.003 0.116 0.124 0.124 0420 0.892 0.337

PCC 0.003 0.003 0.116 0.124 0.124  0.420 0.892 0.337  0.002

SRRC 0.003 0.002 0.051 0.055 0055 0.257 0759 0.167 0.003 0.003

PRCC 0.003 0.002 0.051 0055 0055 0.257 0759 0.167 0.003 0.003 0.002

CcC RCC CMN CL CMD CV CIQ SI SRC PCC SRRC

2 Same as Footnote a to Table 10.4 except for use of 9 variables from Table 10.20.
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Table 10.23 Comparison of Variable Rankings for y = E2:WAS_PRES Obtained with a Maximum of Five
classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10} and
Analytic Determination of p-values and (ii) a Maximum of Five Classes of x values (i.e., nX =
5) and Monte Carlo Determination of p-values

Variable® CMN: 1x 5" CMN: 1 x 16° CMNMC: 1x 5¢ Variable CL: 1x5 CL: 1x10 CLMC:1x5
Name Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.0 0.0000 1.5 0.0000 BHPRM 1.0 0.0000 1.0 (.0000 20 0.6060
HALPRM 20 0.0000 2.0 0.0000 15 0.0000 HALPRM 2.0 0.0000 30 0.0000 20 0.0000
ANHPRM 3.0 0.0002 30 0.0000 30 0.0002 ANHPRM 3.0 0.0000 2.0 0.0000 20 0.0000
ANHBCEXP 4.0 0.0405 9.0 0.2063 4.0 0.0419 ANHBCEXP 4.0 0.0602 10.0 0.2585 4.0 0.0625
HALPOR 50 0.0415 70 0.1914 5.0 0.0438 HALPOR 5.0 0.0940 13.0 0.3454 5.0 0.0972
ANHBCVGP 6.0 0.1130 4.0 0.1130 6.0 0.1072 ANHBCVGP 6.0 0.1099 6.0 0.1099 6.0 0.1031
ANRBRSAT 7.0 0.1513 15.0 0.3538 7.0 0.1513 ANRBRSAT 7.0 0.1304 110 0.2851 7.0 0.1312
SHBCEXP 8.0 0.1773 10.0 0.2147 8.0 0.1733 SHBCEXP 8.0 0.1919 120 0.2878 8.0 0.1887
WMICDFLG 9.0 0.2308 13.0 0.2308 9.0 0.2303 WGRCOR 9.0 0.2242 4.0 0.1005 9.0 0.2266
WGRMICH 100 0.3188 22.0 0.6611 11.0 0.3201 WGRMICH 100 0.3022 220 0.6357 10.0 0.3026
WRBRNSAT 11.0 03232 140 0.2593 100 03141 WRBRNSAT 110 0.3127 9.0 0.2214 11.0 0.3062
SHPRMASP 12.0 0.3767 18.0 04253 12.0 0.3782 SHPRMDRZ 120 03131 8.0 0.214% 12.0 0.3182
SHPRMDRZ 13.0 0.4281 110 0.2218 13.0 0.4321 WGRMICI 13.0 0.3786 50 0.1036 130 0.3757
SHPRMCLY 14.0 0.4309 16.0 0.4072 14.0 0.4380 WASTWICK 14.0 0.4201 16.0 04434 14.0 0.4276
SHPRMHAL 15.0 0.4949 250 0.9026 150 0.4940 WMICDFLG 150 0.4247 15.0 0.4247 150 0.4291
WASTWICK 16.0 0.5125 17.0 0.4218 16.0 0.5197 SHPRMASP 16.0 0.4655 18.0 0.4688 16.0 04713
WGRCOR 17.0 0.5428 120 0.2308 170 0.5423 SHPRMHAL 17.0 0.5170 25.0 0.9158 17.0 0.5116
WGRMICI 180 0.5681 50 0.1514 18.0 0.5660 SALPRES 18.0 0.5210 7.0 0.1879 18.0 0.5222
SHPRMCON 19.0 0.6443 230 0.7664 190 0.6446 WRGSSAT 19.0 0.6208 230 0.6534 19.0 0.6186
SALPRES 200 0.6667 8.0 0.2029 200 0.6641 SHPRMCLY 200 0.6326 190 0.5135 200 0.6384
ANRGSSAT 21.0 0.7824 19.0 0.4343 210 0.7804 SHPRMCON 21.0 0.6750 210 0.6139 21.0 0.6768
WRGSSAT 220 0.7937 210 0.5797 220 0.7885 ANRGSSAT 220 0.7276 17.0 0.4525 220 0.7305
SHRBRSAT 230 0.8724 200 04427 230 0.8731 SHRGSSAT - 23.0 0.7738 24.0 0.6920 23.0 0.7692
WFBETCEL 24.0 0.9015 6.0 0.1751 24.0 0.8972 WFBETCEL 240 0.8482 14.0 0.3540 240 0.8468
SHRGSSAT 250 0.9511 24.0 0.7887 25.0 0.9555 SHRBRSAT 250 0.9199 200 0.6008 250 0.9230
TDC® 1.000 0.805 0.988 D¢ 1.000 0.828 0972
Variable CV: 1x5 CV: 1x 10 CVMC: 1x5
Variable CMD: 2x5 CMD: 2x 10 CMDMC: 2% 5 Name Rank p-val Rank p-Val Rank p-Val
Name Rank p-Val Rank p-Val Rank p-Val

BHPRM 1.0 0.0000 1.0 0.0012 1.0 0.0000
BHPRM 1.0 0.0000 1.0 0.0000 15 0.0000 HALPRM 20 0.0014 20 0.0201 2.0 0.0021
HALPRM 2.0 0.0000 2.0 0.0001 15 0.0000 WGRCOR 3.0 0.0296 30 0.0491 3.0 0.0278
ANHPRM 3.0 0.0007 3.0 0.0012 3.0 0.0005 SHPRMDRZ 4.0 0.0298 5.0 0.0799 4.0 0.0280
ANHBCEXP 4.0 0.0595 8.0 0.2288 4.0 0.0583 ANHBCVGP 50 0.1173 6.0 0.1173 5.0 0.1184
HALPOR 5.0 0.0700 5.0 0.1596 50 0.0718 WMICDFLG 6.0 0.1393 8.0 0.1393 8.0 0.1383
ANRBRSAT 6.0 0.0823 145 04311 6.0 0.0827 HALPOR 7.0 0.1410 10.0 0.1817 7.0 0.1347
WMICDFLG 70 0.2187 7.0 0.2187 7.0 0.2133 SHRBRSAT 8.0 0.1453 150 0.3933 6.0 0.1311
SHPRMASP 8.0 0.2942 9.0 0.2451 8.0 0.2932 SHPRMASP 2.0 0.1741 20.0 0.6816 2.0 0.1667
WGRMICH 9.5 0.3711 19.0 0.5075 9.0 0.3636 SHPRMCON 10.0 0.2598 210 0.7328 10.0 0.2427
WASTWICK 9.5 0.3711 13.0 0.4071 110 0.3852 WASTWICK i1.0 0.2823 12.0 0.3183 1.0 0.2689
WRBRNSAT 11.0 0.3883 120 0.3614 100 0.3767 SHPRMCLY 12.0 0.3595 17.0 0.4008 12,0 0.3483
SHBCEXP 12.0 0.4628 210 0.6163 130 0.4534 WFBETCEL 13.0 0.3727 16.0 0.3978 13.0 0.3575
ANHBCVGP 13.0 0.4884 18.0 0.4884 12.0 0.4104 SHRGSSAT 14.0 0.3905 11.0 0.2905 140 0.3729
SHPRMCON 145 0.5249 20.0 0.5749 150 0.5476 WGRMICI 150 0.4555 13.0 0.3219 15.0 04343
WGRCOR 145 0.5249 10.0 0.2622 14.0 0.5225 ANHBCEXP 160 0.5178 180 0.6371 160 0.4974-
SHPRMCLY 16.0 0.5918 23.0 0.7265 160 0.5937 ANRGSSAT 170 0.5840 19.0 0.6807 17.0 0.56%94
SHPRMDRZ 170 0.6868 11.0 03191 17.0 0.6724 WRBRNSAT 18.0 0.6510 9.0 0.1809 18.0 0.6418
WGRMIC! 18.5 0.7113 6.0 0.2133 190 0.7147 WGRMICH 19.0 0.7009 23.0 0.7826 19.0 0.6988
SHPRMHAL 18.5 0.7113 25.0 0.9761 180 0.7129 WRGSSAT 20.0 0.7041 7.0 0.1302 200 0.6997
ANRGSSAT 200 0.7358 16.0 0.4559 20.0 0.7266 SHBCEXP 21.0 0.7134 4.0 0.0694 220 0.7060
SHRBRSAT 21.0 0.7847 14.5 04311 210 0.7646 ANRBRSAT 220 0.7194 140 0.3899 21.0 0.7036
SHRGSSAT 22.0 0.8325 240 0.7532 220 0.8405 SHPRMHAL 23.0 0.8699 24.0 0.8476 23.0 0.8685
SALPRES 230 0.8889 4.0 0.0966 23.0 0.8888 ANHPRM 240 0.9251 220 0.7599 24.0 0.9175
WFBETCEL 24.5 0.9197 17.0 0.4814 24,0 0.9080 SALPRES 250 0.9938 250 0.9958 250 0.9940
WRGSSAT 245 0.9197 220 0.6993 25.0 0.9091

DC 1.000 0.824 .0.995
DC 1.000 0.800 0.987
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Table 10.23 (Cont.)

Variable CIQ: 2x5 CIQ: 2x 10 CIQMC: 2x5 Variable S 5x5 SL: 10x 10 SIMC: 5x5

Name Rank p-Val Rark p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.0 0.0000 1.0 0.0000 BHPRM 1.0 0.0000 1.0 0.0000 1.5 0.0000
WGRCOR 2.0 0.0130 5.0 0.0565 20 0.0132 HALPRM 2.0 0.0002 4.0 0.0082 L5 0.0000
SHRGSSAT 3.0 0.0289 20 0.0163 30 0.0277 WGRCOR 30 0.0002 2.0 0.0028 3.0 0.0002
ANRBRSAT 4.0 0.0739 4.0 0.0308 4.0 0.0704 ANHPRM 40 0.0049 3.0 0.0032 4.0 0.0033
SHRBRSAT 5.0 0.2093 17.0 0.5075 50 0.2055 SHRGSSAT 5.0 0.0698 220 0.8482 5.0 0.0699
WASTWICK 6.0 0.2427 9.0 0.2451 6.0 0.2431 SHBCEXP 6.0 0.1010 150 0.3495 6.0 0.0989
SHPRMASP 70 0.2805 6.0 0.1719 70 0.2721 WGRMICI 7.0 0.1985 11.0 0.1646 70 0.2013
WRBRNSAT 8.0 0.2942 13.0 0.3838 8.0 0.2973 ANHBCVGP 8.0 0.2427 140 0.3398 8.0 0.2380
ANHBCVYGP 9.0 0.3556 12.0 0.3556 9.0 0.3042 WRBRNSAT 9.0 0.2436 170 0.3878 9.0 0.2417
SHPRMCLY 100 0.4244 17.0 0.5075 10.0 0.4106 ANRBRSAT 10.0 0.2518 120 02623 - 100 0.2511
HALPRM 110 0.4530 20.5 0.6993 120 0.4698 HALPOR 11.0 03142 8.0 0.0814 11.0 0.3202
ANHPRM 12.0 0.4628 11.0 0.3398 110 04620 SHRBRSAT 120 03142 16.0 0.3878 12.0 0.3207
SHPRMDRZ 13.0 0.5037 7.0 0.1917 140 0.4968 WFBETCEL 13.0 0.3965 50 0.0296 13.0 0.3971
WFBETCEL 140 0.5037 100 0.2622 130 04929 ANHBCEXP 14.0 04414 18.0 0.4075 14.0 0.4578
WMICDFLG 150 0.5134 190 0.5134 16.0 0.5323 WASTWICK 15.0 0.5125 190 0.4276 15.0 0.5161
SHPRMHAL 16.0 0.5249 17.0 0.5075 15.0 0.5260 WGRMICH 16.0 0.5492 10.0 0.1043 16.0 0.5509
ANRGSSAT 17.0 0.5467 15.0 0.4814 17.0 0.5467 SHPRMDRZ 17.0 0.6111 230 0.8616 17.0 0.6161
HALPOR 18.0 0.6151 220 0.7265 180 0.6065 SHPRMCLY 18.5 0.6482 210 0.7155 18.0 0.6492
WRGSSAT 19.5 0.6868 3.0 0.0235 200 0.6803 ANRGSSAT 185 0.6482 13.0 0.2623 190 0.6573
ANHBCEXP 19.5 0.6868 23.0 0.8285 19.0 0.6626 SHPRMASP 200 0.6482 9.0 0.1043 200 0.6658
WGRMICI 21.0 0.7113 8.0 0.2288 21.0 0.7178 SALPRES 21.0 0.7089 6.0 0.0478 210 0.7323
SHBCEXP 220 0.7358 140 0.4559 220 0.7240 WRGSSAT 220 0.8578 7.0 0.0524 22.0 0.8560
WGRMICH 230 0.7847 24.0 0.8729 230 0.7605 WMICDFLG 230 0.8859 250 0.9362 23.0 0.8893
SALPRES 24.0 0.8889 205 0.6993 240 0.8946 SHPRMHAL 24.0 0.9064 24.0 0.8863 240 0.9102
SHPRMCON 250 0.9702 250 0.9865 250 0.9764 SHPRMCON 250 0.9898 20.0 0.5316 25.0 0.9933
DC 1.000 0.754 0.999 DC 1.000 0.735 0.988

a Twenty-five (25) variables included in analysis; see Footnote b to Table 10.14.

b,c,d,e See Footnotes b, ¢, d, e to Table 10.5.

82




Table 10.24 Comparison of Variable Rankings for y= E2:WAS_PRES Obtained with Correlation
Coefficients (CCs, RCCs) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values

Variable? ccP ceMcs Variable RCC RCCMC

Name Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val
HALPRM 1.0 0.0000 L5 0.0000 HALPRM 1.0 0.0000 15 0.0000
ANHPRM 2.0 0.0000 1.5 0.0000 ANHPRM 2.0 0.0000 1.5 0.0000
HALPOR 3.0 0.0090 3.0 0.0098 HALPOR 3.0 0.0184 3.0 0.0194
ANHBCVGP 40 0.1123 4.0 0.1072 ANHBCVGP 40 0.1099 40 0.1031
SHPRMASP 5.0 0.1606 5.0 0.1610 WGRMICI 50 0.1477 50 0.1444
SHPRMDRZ 6.0 0.1684 6.0 0.1670 BHPRM 6.0 0.1704 6.0 0.1746
ANHBCEXP 7.0 0.1786 7.0 0.1795 SHPRMASP 7.0 0.1946 7.0 0.1896
WGRMICI 8.0 0.1905 8.0 0.1827 ANHBCEXP 8.0 0.2373 8.0 0.2404
WRBRNSAT 9.0 0.2002 9.0 0.1996 SHPRMDRZ 9.0 0.2417 9.0 0.2435
BHPRM 100 0.3651 10.0 0.3689 WRBRNSAT 10.0 0.3079 100 0.3127
SHPRMCLY 11.0 0.3874 11.0 0.3883 SHPRMCLY 11.0 0.3920 11.0 0.3932
SHRBRSAT 12.0 0.4830 12.0 0.4890 SHRGSSAT 12.0 0.3948 12.0 0.3962
WASTWICK 13.0 0.5507 13.0 0.5521 WRGSSAT 13.0 0.4322 13.0 0.4315
SHRGSSAT 14.0 0.5958 140 0.5992 ANRBRSAT 14.0 0.4378 14.0 0.4394
SHBCEXP 150 0.6072 15.0 0.6020 ANRGSSAT 15.0 0.4684 15.0 0.4679
WRGSSAT 16.0 0.6104 16.0 0.6098 SHRBRSAT 16.0 0.5247 16.0 0.5302
WMICDFLG 17.0 0.6156 17.0 0.6208 WGRCOR 17.0 0.6560 17.0 0.6493
SHPRMHAL 18.0 0.6659 18.0 0.6618 WMICDFLG 180 0.7248 18.0 0.7236
ANRBRSAT 19.0 07133 19.0 0.7148 SHPRMHAL 19.0 0.7249 19.0 0.7284
WGRCOR 20.0 0.7676 20.0 0.7617 WASTWICK 20.0 0.8082 200 0.8079
WGRMICH 21.0 0.8494 210 0.8563 WGRMICH 210 0.8865 21.0 0.8916
SALPRES 22,0 0.9244 220 0.9288 WFBETCEL 22.0 0.9000 22.0 0.9008
WFBETCEL 23.0 0.9457 23.0 0.9453 SALPRES 23.0 0.9289 23.0 0.9320
SHPRMCON 24.0 0.9794 24.0 0.9798 SHBCEXP 24.0 0.9389 24.0 0.9367
ANRGSSAT 25.0 0.9891 250 0.9897 SHPRMCON 25.0 0.9918 25.0 0.9918
DY 0.988 DC 0.988

a Twenty-five (25) variables included in analysis; see Footnote b to Table 10.14.

b,c,d gee Footnotes b, ¢, d to Table 10.6.
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Table 10.25 Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with use of Logarithms? for y = E2:WAS_PRES, the Variables in Table 2.2,P and
a Maximum of Five Ciasses of Values for Each Variable (i.e., nX = 5)¢

Variable CMN: Log,1x5 CMNMC:Log,1x5
Name Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 15 0.0000
HALPRM 2.0 0.0000 1.5 0.0000
ANHPRM 3.0 0.0000 3.0 0.0001
ANHBCEXP 4.0 0.0432 4.0 0.0450
HALPOR 5.0 0.0991 5.0 0.1071
Variable CV: Log,1 x5 CVMC: Log,1 x5
Name Rank p-Val Rank p-Val
HALPRM 1.0 0.0018 1.0 0.0014
WGRCOR 2.0 0.0174 2.0 0.0136

SHPRMDRZ 3.0 0.0513 30 0.0387

4 See Footnote a, Table 10.7.
b See Footnote b, Table 10.14.

€ See Footnote ¢, Table 10.1.
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11. Type | and Il Errors

The sensitivity analysis techniques under discussion use p-values to indicate if a relationship appears to exist
between an uncertain analysis input and a predicted analysis outcome. Clearly, it is desirable that the techniques
identify the inputs that actually affect analysis outcomes (i.e., to avoid Type I errors, which correspond to the failure
to identify important variables). As shown by the example analysis in Sect. 10, Type II errors can occur when the
test for variable importance is inappropriate for the relationships that exist between analysis inputs and analysis
outcomes (e.g., see the analyses for £2:WAS_PRES in Sect 10.4). Thus, a good analysis strategy is to use several
different tests for variable importance and thus reduce the likelihood of overlooking an important variable (i.e.,

committing a Type II error).

In addition, it is also important that the techniques not identify inputs as having effects that are not actually
present (i.e., to avoid Type I errors, which correspond to the indication of nonexistent effects for unimportant
variables). If a variable has no effect on a particular analysis outcome, then the corresponding p-values generated
from repeated random sampling should have a uniform distribution on the interval (0, 1) (i.e., prob (p < p) = prob
(t > t,)=p and thus p has a uniform distribution on (0, 1), where 0 < p < 1, prob denotes probability, and 1, and t
are values of the statistic with p-values of p and p, respectively). Similarly, if multiple unimportant variables are
involved, their p-values from a single sampling should be uniformly distributed on (0, 1). Thus, for a specified p-
value (i.e., p) and »n unimportant variables, the likelihood prob (Type 11 p, n) of committing a Type I error (actually,

one or more Type I errors) is given by

prob (Typellp,n)=1-(1-p)", (11.1)

with prob (Type I | p, n) increasing as each of p and n increases (Fig. 11.1). Thus, Type I errors cannot be avoided,
and their likelihood of occurrence will be defined by Eq. (11.1) provided that the p-values for unimportant variables

do indeed follow a uniform distribution.

The LHSs indicated in Eqgs. (2.1)-(2.3), and on which the examples in Sect. 10 are based, involved 75 variables.
However, 49 of these variables were not used in the calculation of EQ:WAS_PRES and EO: BRAALIC; and 48 of these
variables were not used in the calculation of E2:WAS_SATB and E2:WAS_PRES. Thus, the p-values associated with
these variables for the individual tests should have uniform distributions on the interval (0, 1). The Kolmogorov-
Smirnov test (Chapt. 6, Conover, 1980) can be used to indicate if the distributions of p-values for these variables for
the individual tests do indeed have uniform distributions on (0, 1). In particular, the 0.9 and 0.99 two-sided
Kolmogorov-Smirnov bounds around the cumulative distribution function (CDF) for the true distribution (i.e., a
uniform distribution on (0, 1) in the present context) are given by 1.22/(n+m W2 and 1.63/(n+m )ik
respectively, where n is the sample size (Table A14, Conover, 1980). For n =48, 49, the corresponding 0.9 and 0.99

bounds are 0.17 and 0.23, respectively.




As 4 dependent variables (i.e., EO:WAS_PRES, EO0:BRAALIC, E2:WAS_SATB, E2:WAS_PRES) and 8 tests (i.e.,
CC, RCC, CMN, CL, CMD, CV, CIQ, SI) under consideration, 32 distributions of p-values result (Fig. 11.2). Of
these, 24 are within the 0.9 bounds. Further, 6 of the 9 distributions that are outside the bounds are for the
variable/test pairs (E0:WAS_PRES, CC), (E0:BRAALIC, CC), (E2:WAS_SATB, CC), (E0:WAS_PRES, RCC),
(E0:BRAALIC, RCC), and (E2:WAS_SATB, RCC). As results obtained with CCs and RCCs are not independent, the
indicated deviations of (E0:WAS_PRES, CC) (E0:BRAALIC, CC) and (E2:WAS_SATB, CC) from a uniform
distribution on (0, 1) are not independent of the indicated deviations for (E0:WAS_PRES, RCC), (EO:BRAALIC,
RCC), and (E2:WAS_SATB, RCC). The most notable deviation occurs for the pair (E0:BRAALIC, CV), with no p-
values exceeding 0.7 being observed; there is something associated with values of EO:BRAALIC that is causing an
underrepresentation of large p-values for unimportant variables, with this underrepresentation probably deriving
from the fact that EO:BRAALIC has a few large values and many very small values. Fortunately, the shape of the
individual CDFs in Fig. 11.2 does not suggest any tendency for the tests under consideration to produce unusual
numbers of small p-values; thus, there does not appear to be a tendency to produce excessive numbers of Type I
errors in the examples under consideration. However, the results in Fig. 11.2 do suggest that the p-values for
unimportant variables may not have a uniform distribution on (0, 1). We have not succeeded in finding a completely

satisfying explanation for this behavior.

100 ' : .
c 80 - i
8
% 60 - \_
>
£ 03
< 20° 0\5&
0 ' T .

000 001 002 003 004 0.5
p-Value

Figure 11.1. Contour plots for probability of a Type I error, prob (Type 1| p, n), as a function of p-value, p, and
number of unimportant variables, .
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Figure 11.2. Distribution of p-values and associated Kolmogorov-Smirnov bounds for individual tests and variables
in LHS that do not affect E0: WAS_PRES, E0:BRAALIC, E2:WAS_SATB and E2:WAS_PRES.
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Figure 11.2. Distribution of p-values and associated Kolmogorov-Smirnov bounds for individual tests and variables
in LHS that do not affect E0:WAS_PRES, E0:BRAALIC, E2:WAS_SATB and E2:WAS_PRES
(continued).
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An additional set of simulations was carried out to provide a check on the reasonableness of the distributions of
p-values in Fig. 11.2. In particular, 10 independent LHSs of size 300 were generated with the Iman and Conover
(1982) restricted pairing technique from 50 independent variables with uniform distributions on the interval [0, 1].
These LHSs were then associated with the calculated values for E0:WAS _PRES, EO:BRAALIC, E2:WAS_SATB and
E2:WAS_PRES obtained with the original LHS of size 300 discussed in Sect. 2, and the corresponding distributions
of p-values were calculated for the preceding four output variables, each of the eight tests under consideration, and
each of the 10 independent LHSs. The p-values were calculated with the previously described analytic procedures.

The outcome is 10 CDFs for each of the 32 test/output variable pairs.

If the assumptions of the tests are met and the calculations are implemented correctly, then the CDFs for each
test/dependent variable pair should approximate a uniform distribution on [0, 1]. This generally appears to be the
case. For example, the original CDFs for E0:WAS_PRES and tests based on CCs and RCCs move across the 0.99
Kolmogorov-Smirnov boundary (Figs. 11.2a, b). In contrast, the current exercise with 10 independently generated

LHSs produées CDFs of p-values that generally stay within the 0.9 Kolomogorov-Smirnov bounds (Fig. 11.3).

Twenty-nine of the remaining 30 test/output variable pairs produced distributions of p-value CDFs that were
similar to the two CDF distributions in Fig. 11.3. The exception to this consistency occurred for E0:BRAALIC and
the CVs test (Fig. 11.4). For this test/output variable pair, the p-values remain below approximately 0.7, which was
also the case in Fig. 11.2f. The variable EQ:BRAALIC has a large number of values that are effectively zero
(Figs. 2.2b, 2.4). As a result, the estimated variances Ty in Eq. (6.3) of Ref. 1 used to define the F statistic for the
CVs test do not have a normal distribution for the individual independent variables, and so the associated p-values

do not have a uniform distribution on [0, 1] even though the independent variables have no effect on EO:BRAALIC.
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Figure 11.3. Distributions of p-values for 10 independently generated LHSs: (11.3a) CCs for E0:WAS_PRES and

(11.3b) RCCs for EO:WAS_PRES.
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Figure 11.4. Distribution of p-values for 10 independently generated LHSs for CVs test and E0:BRAALIC.
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12. Robustness with Respect to Repeated Independent Samples

The examples in Sect. 10 use a sample of size 300 obtained by pooling the three samples of size 100 each
indicated in Egs. (2.1)-(2.3). The availability of these three independent samples provides a way to examine the
robustness of the techniques illustrated in Sect. 10. In particular, the analyses with each of the 8 techniques under
consideration can be repeated with the individual samples of size 100. The extent to which the individual samples
agree in the identification of important variables then provides an indication of how robust the techniques are with

respect to repeated independent samples and also reductions in sample size (Table 12.1).-

When comparing the variable selections in Table 12.1, it is important to keep in mind that the likelihood of a
Type 1 error increases rapidly as p-values increase (Fig. 11.1), with 25 variables and a p-value of 0.01 producing a
probability of 0.22 of a Type I error as indicated in Eq. (11.1). Further, the p-values for unimportant variables may
not always be random on (0, 1) due to various patterns that are imposed on the data by the effects of other variables
(Fig. 11.2). Thus, the probabilities in Fig. 11.1 are, at best, only an indication of the likelihood of a Type I error. As
a result, the comparison of sets of important variables obtained with different replicates is probably valid only for
variables with fairly low p-values. As p-values increase (e.g., >0.01), such comparisons become less and less

meaningful.

The overall pattern that emerges from the results in Table 12.1 is that the most important variables identified
with the pooled sample of size 300 are also identified as being important with the three individual samples of size
100. In particular, the two most important variables as defined by the size of their p-values are typically the same
across all four samples for the individual tests (i.e., CCs, RCCs, CMs, CLs, CMDs, CVs, CIQ, SI), although it should
be recognized that the results obtained with the pooled sample are not independent of the results obtained with the
individual samples. Hence, the use of a sample size of 300 or 100 made little difference with respect to the variables
identified as being most important, although the larger sample size did tend to indicate likely effects for more

variables than was the case for the smaller sample size.

The most notable deviations from this consistency occur for the CVs test for E0: BRAALIC and E2:WAS_PRES
and the CIQ test for EO:BRAALIC. The variable EO:BRAALIC is significantly affected by both WMICDFLG and
ANHPRM (Fig. 2.4). However, as WMICDFLG is being missed by the CVs test, it is perhaps not surprising that the
individual samples are not producing consistent results. A logarithmic transformation improved the results obtained
with the CVs test for WMICDFLG with the pooled sample (Table 10.13) and also produced somewhat better results
for the individual samples (Table 12.2). The variable E2:WAS_PRES is almost completely dominated by BHPRM
(Fig. 2.6), with this effect being missed by the CVs test for replicate R3; further, although BHPRM is identified by
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Table 12.1 Comparison of Variable Rankings Obtained with Different Analysis Procedures2 for Three
Independent Samples of Size 100 (Columns AP:R1, AP:R2, AP:R3, where AP ~ CC, RCC,
CMN, CL, CMD, CV, CIQ, Sl as appropriate), Pooled Sample of Size 300 (Column AP:All),
and a Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)P

Variable CC: All CC: R1 CC: R2 CC: R3 Variable CC: All CC: R1 CC: R2 CC: R3
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Correlation Coefficients (CCs) for EO: WAS_PRES Correlation Coefficients (CCs) for EO:BRAALIC
WMICDFLG 1.0 00000 1.0 0.0000 1.0 00000 10 0.0000 ANHPRM 1.0 00000 1.0 00000 1.0 00000 1.0 0.0000
HALPOR 20 00000 20 00000 20 0.0000 2.0 0.0001 WMICDFLG 20 00000 20 00016 20 0.0060 2.0 0.0000
WGRCOR 3.0 0.0000 3.0 00180 3.0 0.0051 3.0 0.0018 WASTWICK 3.0 0.0045 4.0 0.0584 90 0.2948 4.0 0.0333
ANHPRM 40 0.0241 90 03947 40 02371 40 0.0598 WGRCOR 40 00048 50 00957 30 00318 90 03018
SALPRES 50 0.0855 4.0 0.0822 180 0.8602 7.0 02824 ANHBCEXP 50 0.0095 3.0 00420 60 0.1474 120 04274
Correlation Coefficients (CCs) for E2: WAS_SATB Correlation Coefficients (CCs) for E2:WAS_PRES
BHPRM 1.0 0.0000 1.0 00000 1.0 0.0000 1.0 0.0000 HALPRM 1.0 0.0000 1.0 00013 1.0 0.0000 1.0 0.0001
ANHPRM 20 00000 20 0.0003 20 00281 20 00033 ANHPRM 20 00000 20 0.0020 2.0 0.0303 20 0.0267
HALPOR 3.0 00006 30 00884 40 00706 3.0 00159 HALPOR 3.0 0.009 4.0 0.1417 3.0 0.0680 50 02188
WGRCOR 4.0 00017 6.0 0.1241 3.0.0.0547 50 0.0473 ANHBCVGP 40 0.1123 8.0 03286 50 0.1492 200 0.7457
WRGSSAT 5.0 0.0081 80 0.1367 11.0 05224 40 0.0175 SHPRMASP 5.0 0.1606 10.0 03784 16.0 05907 6.0 03115
Variable RCC: All RCC: R1 RCC: R2 RCC: R3 Variable RCC: All RCC: R1 RCC: R2 RCC: R3
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Rank Correlation Coefficients (RCCs) for EO:WAS_PRES Rank Correlation Coefficients (RCCs) for E0: BRAALIC
WMICDFLG 1.0 00000 1.0 00000 10 0.0000 10 0.0000 WMICDFLG 10 00000 1.0 0.0000 1.0 0.0000 10 0.0000
HALPOR 2.0 0.0000 20 0.0000 20 0.0000 20 0.0001 ANHPRM 20 0.0000 20 00000 2.0 00000 20 00000
WGRCOR 30 00000 3.0 0028 30 00041 30 0.0051 HALPRM 30 00014 50 0187 50 00998 3.0 00140
ANHPRM 40 00268 9.0 04366 4.0 0.1070 50 0.1268 WGRCOR 40 0.0057 4.0 0.1772 6.0 0.1383 4.0 0.0570
SALPRES 50 00664 40 01111 160 07611 40 00957 HALPOR 50 00087 30 0098 30 00396 70 03723
Rank Correlation Coefficients (RCCs) for £E2: WAS_SATB Rank Correlation Coefficients (RCCs) for E2:WAS_PRES
BHPRM 1.0 0.0000 1.0 00000 1.0 00000 1.0 0.0000 HALPRM 1.0 00000 20 00110 1.0 00000 1.0 0.0001
WRGSSAT 20 0.0000 20 00000 20 00048 20 0.0000 ANHPRM 20 00000 1.0 00036 2.0 0.0820 20 0.008
ANHPRM 3.0 00001 3.0 0.0013 3.0 0.1182 3.0 00335 HALPOR 3.0 0.018¢ 40 01194 60 02015 350 02157
SHPRMHAL 4.0 00225 40 01842 50 01243 90 02595 ANHBCVGP 40 0.1099 11.0 02611 4.0 0.1347 18.0 0.8795
HALPOR 50 0.0269 85 04570 4.0 0.1236 40 01398 WGRMICI 50 0.1477 50 0.1275 80 0.3344 23.0 09673
Variable CMN: All,1x5 CMN:RI1,1x5 CMN: R2,1x5 CMN: R3,1x5 Variable  CMN: AlLIx5 CMN: R1,1x5 CMN: R2,1x5 CMN: R3,1x5
Name Rank p-val Rank p-Val Rank p-val Rank p-val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Means (CMNs) for EQ: WAS_PRES Common Means (CMNs) for E0:BRAALIC .
WMICDFLG 1.0 0.0000 1.0 00000 1.0 00000 1.0 00000 ANHPRM 1.0 0.0000 1.0 00014 1.0 00000 1.0 0.0000
HALPOR 2.0 0.0000 20 0.0002 20 0.0000 20 0.0010 WMICDFLG 2.0 0.0000 2.0 0.0040 20 00069 2.0 0.0001
WGRCOR 3.0 0.0000 3.0 0.0051 3.0 0.0093 3.0 0.0107 SHPRMCON 3.0 0.0057 120 0.3818 80 0.3098 7.0 0.1531
ANHPRM 40 00195 100 04751 6.0 02920 7.0 0.2881 WGRCOR 40 0.0636 50 0.1989 110 03914 200 0.5713
SHPRMASP 5.0 0.1439 21.0 0.8597 5.0 0.1824 12.0 0.5410 WFBETCEL 5.0 00732 100 0.3274 180 0.6060 120 0.2874
Common Means (CMNs) for E2: WAS_SATB Common Means (CMNs) for E2: WAS_PRES
BHPRM 1.0 00000 1.0 00000 10 00000 1.0 0.0000 BHPRM 10 00000 1.0 00000 10 0.0000 1.0 0.0000
ANHPRM 20 000006 20 00031 20- 00020 30 00544 HALPRM 2.0 00000 30 00288 20 00016 20 00027
WGRMICH 3.0 00021 40 0.0416 3.0 00471 20 0.0070 ANHPRM 3.0 0.0002 2.0 0028 6.0 0.1137 50 0.1184
HALPOR 40 00124 100 0290 80 02345 100 03619 ANHBCEXP 40 00405 6.0 0180 50 0.1137 40 00230

WRGSSAT 40 00143 50 00429 200 0.5575 6.0 0.1363 HALPOR 50 00415 160 05971 4.0 0.0956 150 0.6365




Table 12.1  (Cont.)

Variable CL:AlL1x5  CL:RLIx5 CL:R2,1x5 CL:R3,1x5 Variable CL:AlL 1x5 CL:RLIx5 CL:R2,1x5 CL:R3,1x3
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Locations (CLs) for EO: WAS_PRES Common Locations (CLs) for EO:BRAALIC
WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 00000 1.0 0.0000 WMICDFLG 1.0 00000 1.0 0.0000 1.0 00000 1.0 0.0000
HALPOR 20 0.0000 20 00003 20 00000 2.0 0.0023 ANHPRM 20 00000 20 00000 2.0 00000 20 0.0000
WGRCOR 3.0 0.0000 30 00112 3.0 00093 3.0 00179 HALPRM 3.0 00019 40 02667 6.0 02321 3.0 0.0125
ANHPRM 40 0.0187 6.0 03792 60 02595 80 0.3770 WGRCOR 40 00427 6.0 03340 100 03212 13.0 04371
SHPRMASP 5.0 0.1237 190 0769 50 0.1901 11.0 04537 SHPRMDRZ 50 0.1060 50 02785 150 05898 9.0 0.2393
Common Locations (CLs) for E2: WAS_SATB Common Locations (CLs) for E2: WAS_PRES
BHPRM 1.0 0.0000 10 0.0000 1.0 00000 1.0 0.0000 BHPRM 1.0 00000 1.0 00000 10 00000 1.0 0.0000
WRGSSAT 2.0- 0.0000 2.0 00000 3.0 00450 2.0 0.0001 HALPRM 20 00000 4.0 01176 2.0 0.0025 2.0 0.0028
ANHPRM 30 00001 3.0 00102 20 00184 7.0 0.2010 ANHPRM 30 0.0000 20 00154 3.0 0.0523 4.0 0.0419
WGRMICH 40 00059 90 01714 50 00979 3.0 0.0206 ANHBCEXP 40 00602 .7.0 02213 6.0 0.1191 5.0 0.0438
SHPRMCON 5.0 00202 130 04691 100 02278 100 0.3785 HALPOR 5.0 0.0940 180 0.5620 9.0 0.2452 11.0 0.5243
Variable CMD: All, 2x5 CMD: R1,2x5 CMD: R2,2x5 CMD: R3,2x5 Variable CMD: All,2x5 CMD: R1,2x5 CMD: R2,2x5 CMD: R3,2x5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Medians (CMDs) for EO:WAS_PRES Common Medians (CMDs) for EO:BRAALIC
WMICDFLG 1.0 0.0000 1.0 00000 10 00000 1.0 0.0000 ‘WMICDFLG 1.0 0.0000 1.0 0.0000 10 0.0000 1.0 0.0000
HALPOR 20 00000 20 00001 20 00000 20 00123 ANHPRM 20 00000 2.0 0.0009 2.0 0.0001 2.0 0.0003
WGRCOR 30 00025 50 01712 3.0 00663 4.0 01712 HALPRM 3.0 00050 17.5 0.7358 13.0 04060 3.0 0.0021
ANHPRM 40 0.0663 165 07358 160 06626 50 0.1991 HALPOR 40 00155 85 0308¢ 50 0.0563 11.0 0.4060
SHPRMASP 50 02427 165 0.7358 7.0 02674 6.0 02674 WGRCOR 5.0 00231 3.0 01257 3.0 0.0244 160 03918
Common Medians (CMDs) for E2:WAS_SATB Common Medians (CMDs) for E2: WAS_PRES
BHPRM 1.0 00000 20 00000 1.0 00000 20 0.0001 BHPRM 1.0 00000 1.0 00000 1.0 0.0000 1.0 0.0000
WRGSSAT 20 00000 1.0 0.0000 20 00015 10 00000 HALPRM 20 00000 50 0.0663 20 00113 25 0.0289
ANHPRM 3.0 00003 30 00073 13.0 02674 80 020674 ANHPRM 3.0 00007 3.0 0.0477 4.0 0.0780 50 0.1074
WGRMICH 40 00130 9.0 0.1712 65 0.0477 40 00916 ANHBCEXP 40 00595 20 00289 3.0 00663 25 0.028
SHPRMCON 5.0 0.0206 160 07358 30 0.0244 65 0.1991 HALPOR 50 00700 150 05918 55 0.1468 21.5 08781
Variable CV:AILIx5 CV:RLIxS CV:R2,Ix5 CV:R3,Ix5 Variable CV:AlLIx5S CV:RLIx5 CV:R2,Ix5 CV:R3,Ix5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Variances (CVs) for EO:WAS_PRES Common Variances (CVs) for E0:BRAALIC
WMICDFLG 1.0 .0.0000 1.0 0.0016 1.0 00058 1.0 0.0004 ANHPRM 1.0 0.0078 10 02779 10 0.0576 1.0 0.0005
ANHPRM 20 00042 170 08561 20 00171 2.0 0.0671 SHPRMCON 20 0.0426 13.0 04026 6.0 0.0938 220 0.6452
HALPRM 3.0 0118 140 0.6965 100 04818 9.0 0.2016 SHBCEXP 3.0  0.1463 170 04412 21.0 05811 23.0 0.6840
WGRCOR 4.0 01244 16.0 0.8147 7.0 0.3521 3.0 0.0943 ANRBRSAT 4.0 0.1994 6.0 03463 19.0 0.5557 9.0 0.1909
SHPRMCON 5.0 0.1287 22.0 0.9555 3.0 0.0381 10.0 0.2053 WGRCOR 5.0 02125 11.0 03969 90 04550 150 04175
Common Variances (CVs) for E2:WAS_SATB Common Variances (CVs) for E2:WAS_PRES
BHPRM 1.0 0.0000 .0 00000 1.0 00001 1.0 0.0000 BHPRM 1.0 0.0000 1.0 0.0082 1.0 0.0633 110 0.2843
ANHPRM 2.0 00000 20 0.0030 20 00018 20 00134 HALPRM 20 00014 40 0.1392 4.0 01719 9.0 0.2669
HALPOR 3.0 00011 50 00243 6.0 01228 120 03601 WGRCOR 3.0 0.0296 2.0 00329 80 03272 350 00741
WGRMICH 40 00050 3.0 00156 7.0 01353 3.0 0.1013 SHPRMDRZ 4.0 0.0298 3.0 00713 50 02094 13.0 03795
WGRCOR 50 0.0067 4.0 0.0210 3.0 0.0080 100 0.3387 ANHBCVGP 5.0 0.1173 20,0 07401 9.0 04415 1.0 0.0178




Table 12.1 (Cont.)

Variable CIQ: AlLL 245 CIQ:R1,2x5  CIQ: R22x5  CIQ: R3,2%5 Variable CIQ: All2x5  CIQ:R1,2x5  CIQ: R2,2x5  CIQ: R3,2x5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank  p-Val Rank p-Val Rank p-Val Rank p-Val
Common Interquartile (CIQ) for EO: WAS_PRES Common Interquartile (CIQ) for £0:BRAALIC
WMICDFLG 1.0 0.0000 1.0 0.0057 10 00012 1.0 0.0001 ANHPRM 1.0 00000 17.0 0.7358 6.5 0.1468 1.0 0.0001
HALPOR 20 00000 20 0.1257 2.0 0.0206 20 0.0061 WMICDFLG 20 00000 20 0.0392 1.0 00321 20 0.0057
ANHPRM 3.0 00007 B85 04628 3.0 00342 50 0.0780 SHRGSSAT 3.0 0.0628 135 0.5918 50 01074 55 0.2674
SHPRMCON 40 0.0244 17.0 0.6626 16.0 04628 10.0 0.3546 WGRMICI 40 00780 50 0.2311 3.0 00663 7.0 03084
WGRMICI 50 00595 135 05918 6.5 (0.1468 17.0 0.8088 SHRBRSAT 50 01395 7.0 0.3084 200 0.8088 24.0 0.8781
Common Interquartile (CIQ) for E2: WAS_SATB Common Interquartile (CIQ) for E2:WAS_PRES
WRGSSAT 1.0 00000 1.0 00001 1.0 00001 1.0 0.0000 BHPRM 1.0 00000 1.0 00002 1.0 00021 20 00061
WGRCOR 20 0.0019 90 02311 4.0 00563 6.0 0.1468 WGRCOR 20 00130 20 01074 7.0 02674 7.0 0.1468
BHPRM 30 00054 20 00206 135 03546 2.0 0.0289 SHRGSSAT 3.0 00289 11.0 04628 2.0 0.1074 11.0 03546
ANHPRM 40 0.0628 13.0 04628 6.0 0.1074 50 0.1074 ANRBRSAT 4.0 00739 225 0.8781 145 0.5918 10.0 0.3084
SHRBRSAT 50 0.1257 11.0 02674 50 00663 20.0 0.6626 SHRBRSAT 50 02093 185 0.7358 8.0 04060 1.0 0.0051
Variable SI: Al 5x5 SI: R1,5x5 SI: R2,5%x5 SI: R3,5x5 Variable SI: All, 5x5 SI:R1,5x5 SI: R2,5x5 SI: R3,5x5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Statistical Independence (SY) for EO:WAS_PRES Statistical Independence (SI) for EO:BRAALIC
WMICDFLG 1.0 00000 1.0 0.0000 1.0 0.0000 1.0 0.0000 WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
HALPOR 2.0 0.0000 2.0 0.0034 2.0 00000 2.0 0.0000 ANHPRM 20 00000 2.0 0.0003 20 0.0001 20 0.0000
WGRCOR 3.0 00003 13.5 04884 40 0.0316 95 02687 HALPRM 3.0 0.0517 7.5 0.3540 21.5 07776 5.0 0.1137
ANHPRM 40 00049 45 01785 85 02202 3.0 0.1010 HALPOR 40 00698 17.5 07089 8.0 02202 17.0 07440
ANHBCVGP 50 00194 3.0 0.1712 13.0 03546 18.0 0.7358 SHRBRSAT 50 0.1917 23.0 0.8392 10.0 0.2687 3.0 0.0540
Statistical Independence (SI) for E2: WAS_SATB - Statistical Independence (SI) for E2:WAS_PRES
WRGSSAT 1.0 00000 1.0 0.0000 1.0 0.0000 1.0 00000 BHPRM 1.0 00000 1.0 00000 1.0 0.0000 1.0 0.0000
BHPRM 2.0 0.0000 2.0 0.0000 2.0 00000 20 0.0001 HALPRM 2.0 00002 100 02954 3.0 0.1137 7.0 0.2202
ANHPRM 3.0 0.0002 3.0 00316 7.5 00415 7.0 02954 WGRCOR 3.0 00002 20 0.0100 180 07089 2.0 0.0362
ANRBRSAT 4.0 0.0495 140 04530 50 0.0275 235 09134 ANHPRM 40 0.0049 140 03856 9.0 03856 50 0.1785
WGRMICH 50 00564 110 03856 9.0 00895 85 03540 SHRGSSAT 50 00698 175 0.5615 16.0 06359 110 03856

a Twenty-four (24) variables included in analysis for EO:WAS_PRES and E0:BRAALIC (see Footnote b to Table 10.1); twenty-five (25)
variables included in analysis for E2: WAS_SATB and E2: WAS_PRES (see Footnote b to Table 10.14); for each test and dependent variable,
top five variables based on their ordering with p-values obtained from pooled sample of size 300 are included in table.

See Footnote ¢, Table 10.1.
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Table 12.2 Comparison of Variable Rankings Obtained with Common Variances (CVs) Test with Use of
Logarithms® for Three Independent Samples of Size 100 (Column CV:R1, CV:R2, CV:R3)
and Pooled Sampie of Size 300 (Column CV:All) for y = E0:BRAALIC®

Variable CV: All1x5 CV:RI1,Ix5 CV: R2,ix5 CV:R3,1x5
Name Rank p-Val  Rank p-Val Rank p-Val Rank p-Val
ANHPRM 1.0 0.0000 1.0 0.0000 1.0 0.0000 20 0.0000
WMICDFLG 20 00002 100 0.0251 7.0 0.0035 1.0 0.0000
SHPRMCON 3.0 00019 110 0.0257 5.0 0.0022 220 0.7184
SHBCEXP 40 00130 150 0.0528 190 0.2129 210 0.6442
WASTWICK 50 00144 130 0.0387 4.0 0.0002 170 03413

4 See Footnote a, Table 10.7 for description of test.
See Footnote a, Table 12.1.

the CVs test as the most important variables affecting E2:WAS_PRES for replicate R2, the p-value is high (i.e.,
0.0633). The CIQ test misses the effect of ANHPRM on EOQ:BRAALIC for replicates R1 and R2, with this behavior

probably resulting from the large number of zero and near-zero values associated with EO:BRAALIC (Fig. 2.4).

An important point that emerges from the results for the individual replicates is that consistency across
independent analyses does not necessarily imply that these analysis are properly identifying the dominant variables
with respect to the dependent variable under consideration. For example, all four analyses with both CCs and RCCs
identify HALPRM and ANHPRM as being the two most important variables with respect to E2:WAS_PRES (Table
12.1) and completely fail to identify the dominant role played by BHPRM (Fig. 2.6). For E2:WAS_PRES, the three
replicates are producing similar patterns, which in turn are producing similar outcomes when analyzed with CCs and

RCCs.
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13. Discussion

Sensitivity analysis is an essential component of model development, assessment and application. Monte Carlo
procedures are widely used in sensitivity studies to develop a mapping between uncertain model inputs and
associated model results that can then be explored with regression-based techniques. Unfortunately, regression-
based techniques sometimes fail to identify important patterns in the mapping (i.e., scatterplot) between model input
and model results. The reason for this is simple; the relationships between model inputs and model results can be too

complex to be identified by the linear relationships that most regression analyses are predicated on.

The likelihood of a successful sensitivity analysis can be increased by using a number of different procedures to
identify relationships between model inputs and model results. With this strategy, a relationship that is missed by
one procedure may be identified by another procedure. Fortunately, the post-processing of model results that is
involved in the identification of patterns in scatterplots is relatively inexpensive from a computational perspective,

and so the use of a number of different procedures does not present a significant burden.

In this presentation, a sequence of procedures for identifying patterns in scatterplots is described and illustrated.
These procedures are based on attempts to recognize increasingly complex patterns in the scatterplots under
consideration and involve the identification of (i) linear relationships with correlation coefficients, (ii) monotonic
relationships with rank correlation coefficients, (iii) trends in measures of central tendency as defined by means,
medians and the Kruskal-Wallis statistic, (iv) trends in measures of variability as defined by variances and
interquantile ranges, and (v) deviations from randomness as defined by the chi-square statistic. As illustrated in a
sequence of example analyses with a large model for two-phase fluid flow, the individual procedures can differ in the
variables that they do, and do not, identify as having effects on particular analysis outcomes. The example results
indicate that the use of a sequence of procedures is a good analysis strategy and provides some assurance that an

important effect is not overlooked due to the use of an inappropriate analysis procedure.

The procedures under consideration identify patterns in scatterplots that in some sense appear to be nonrandom.
However, they provide no explanation for why these patterns exist. Once such patterns are identified, it is the
responsibility of the appropriate modelers and analysts to develop explanations for them. If such explanations
cannot be developed, then the possibility exists that an error is present in the analysis. For this reason, well-designed
sensitivity analyses provide both a way to develop insights with respect to the problem under consideration and also

a way to check the conceptual and computational implementation of the problem.
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