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Abstract

Procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses are

described and illustrated. These procedures are based on attempts to recognize increasingly

complex patterns in the scatterplots under consideration and involve the identification of (i) linear

relationships with correlation coefficients, (ii) monotonic relationships with rank correlation

coefficients, (iii) trends in measures of central tendency as defined by means, medians and the

Kruskal-Wallis statistic, (iv) trends in measures of variability as defined by variances and

interquartile ranges, and (v) deviations from randomness as defined by the chi-square statistic. As

illustrated in a sequence of example analyses with a large model for two-phase fluid flow, the

individual procedures can differ in the variables that they do, and do not, identify as having effects

on particular analysis outcomes. The example results indicate that the use of a sequence of

procedures is a good analysis strategy and provides some assurance that an important effect is not

overlooked due to the use of an inappropriate analysis procedure.
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1. Introduction

Sensitivity analysis is now widely recognized as an essential component of studies based on mathematical

modeling (e.g., NRC, 1983, 1993, 1994; IAEA, 1989; U.S. EPA, 1993; NCRP, 1996). Here, sensitivity analysis

refers to the determination of the effects of uncertain model inputs on model predictions. A number of methods have

been proposed for sensitivity analysis, including differential analysis, response surface methodologies, Monte Carlo

techniques, and the Fourier amplitude sensitivity test (Iman and Helton, 1988; Helton, 1993; Hamby, 1994).

Monte Carlo techniques probably constitute the most widely used approach to sensitivity analysis due to their

flexibility, ease of implementation, and conceptual simplicity. When viewed abstractly, a Monte Carlo sensitivity

study involves a vector

x= [X1,X.2, . . ..xnf] (1.1)

of uncertain model inputs, where each xi is an uncertain input and nI is the number of such inputs, and a vector

Y=flx) = rYl, Y’2> . . ..ynd (1.2)

of model predictions, where f is a function used to represent the model under consideration, each yj is an outcome of

evaluating the model with the input X, and nO is the number of such outcomes. Distributions

Di, i=l,2, . . ..nI. (1.3)

are used to characterize the uncertainty in each input xi, where Dj is the distribution assigned to xi. Correlations and

other relationships between the xi are also possible.

A sampling procedure such as simple random sampling or Latin hypercube sampling (McKay et al. 1979) is

used to generate a sample

Xk= [Xlk,x2Jp . . . . ~n~,k],k= 1, 2, . . . . n~! (1.4)

from the population of x’s with the distributions in Eq. (1.3), where nS is the size of the sample. Evaluation of the

model under consideration with the sample elements )(k in Eq. (1.4) then creates a sequence of results of the form

yk=f(x~) = [Ylk>yzk>...>y~o,~],k= 1>2, . . .. ns, (1.5)

where yjk is the outcome of evaluating the model with Xk. The pairs

(Xk, yk), k=l,2,..., n~, (1.6)



constitute a mapping from model input, xk, to model output, yk, that can be explored with various sensitivity analysis

techniques to determine how the individual analysis inputs contained in x (i.e., the xi’s) affect the individual analysis

outcomes contained in Y (i.e., the yj’ s). Analysis possibilities include regression analysis, correlation analysis, and

examination of scatterplots (Iman et al., 1981a, 1981 b; Saltelli and Marivoet, 1990; Saltelli and Homma, 1992;

Saltelli et al., 1993; Helton, 1993; Hamby, 1994, 1995; Kleijnen, 1998).

Although techniques based on regression analysis and correlation analysis are often successful in identi~ing the

relationships between model input and output embedded in the mapping in Eq. (1.6), in many cases these techniques

fail to identify well-defined, but nonlinear, relationships (Iman and Helton, 1988; Saltelli and Homma, 1992; Saltelli

et al., 1993; Helton et al., 1998). If the underlying relationship is nonlinear but monotonic, then a rank

transformation will linearize the relationship and result in successful sensitivity analyses with regression-based

techniques (Iman and Conover, 1979). However, the underlying relationship can be too complex to be linearized in

any simple manner. In these cases, sensitivity analysis techniques are needed that can identifi patterns in the

mapping in Eq. (1.6) without recourse to comparisons with specialized prespecified relationships (e.g., linear or

monotonic). The ultimate test of whether or not there is a relationship between an input variable xi and an output

variable yj lies in determining whether or not the points

(~jk, Yjk), k = 1,2, . . . . n~> (1.7)

constitute a random pattern conditional on the marginal distributions for xi and yt This presentation will investigate

the implications from a sensitivity analysis perspective of a sequence of tests (i.e., hypotheses) for the relationship

between xi and yj embedded in the mapping in Eq. (1.6). These hypotheses will run from very specific (i.e., a linear

relationship) to quite general (i.e., a nonrandom pattern).

The presentation is organized as follows. Example simulation results that will be used to motivate and illustrate

the sensitivity analysis procedures are presented in Sect. 2, Then, the procedures to be considered are summarized in

Sects. 3-7. Specifically, the following five relationships are proposed as the basis for a sequence of sensitivity tests:

(i) Linear relationship: E(ylx) = Do + ~, x, where the subscripts have been dropped from yj and Xi for notational

simplicity (Sect. 3); (ii) Monotonic relation: ,tl[r(y)lr(x)] = y. + ‘yI r(x), where r(x) and r(y) denote the ranks of x and

y, respectively (Sect. 4); (iii) Location (central tendency) of y depends on x (Sect. 5); (iv) Variability (spread) of y

depends on x (Sect. 6); and (v) y and x are statistically independent: p(ylx) = p(y), where p denotes the density

function for y (Sect. ~). Next, the ranking of variable importance and the use of the Iman and Conover (1987) top-

down correlation procedure to compare variable rankings are discussed in Sects. 8 and 9. Then, example analysis

results with the indicated procedures are presented in Sect. 10; Type I and Type II errors are discussed in Sect. 11;

and the robustness of analysis outcomes for independent samples is discussed in Sect. 12. Finally, a concluding

discussion is given in Sect. 13.
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2.

for

Test Problems

The test problems considered in this presentation use results obtained in the 1996 performance assessment (PA)

the Waste Isolation Pilot Plant (WIPP) (Helton et al., 1998), which was carried out to support the U.S.

Department of Energy’s (DOE’s) application to the U.S. Environmental Protection Agency (EPA) for the

certification of the WIPP for the disposal of transuranic waste (U.S. DOE, 1996). In particular, the test problems

involve results (Table 2.1 ) calculated by the BRAGFLO model (Sect. 4.2, Helton et al., 1998), which was used to

represent two phase (i.e., gas and brine) flow in the vicinity of the repository. The BRAGFLO model uses finite

difference procedures (Fig. 2.1) to numerically solve a system of nonlinear partial differential equations (Eqs. 4.2.1-

4.2.6, Helton et al., 1998) and requires a significant amount of computational resources (e.g., 4 to 5 hours of CPU

time on a 275 MHz Digital Equipment Corp. (DEC) Alpha with VMS for a single model evaluation).

The 1996 WIPP PA used computational procedures based on Latin hypercube sampling to propagate the effects

of subjective (i.e., epistemic) uncertainty through the analysis (Helton et al. 1998). As a result of guidance given by

the EPA (U.S. EPA, 1996), the 1996 WIPP PA used a Latin hypercube sample (LHS) of size 300 (Sect. 6.3, Helton

et al., 1998) from 75 uncertain variables, of which only 27 were used as inputs to the BRAGFLO model in the

calculation of the dependent variables in Table 2.1 (Table 2.2). To provide a test of the robustness of the uncertainty

propagation procedures used in the 1996 WIPP PA, the indicated LHS of size 300 was actually generated as 3

independent samples of size 100 each (Sect. 6.4, Helton et al., 1998). Each of these samples was generated with

Table 2.1. Definition of Dependent Variables Predicted by BRAGFLO Model for Two-Phase Flow
Selected for Use in Comparison of Statistical Procedures for Identification of Patterns in
Scatterplots

11

EO: WAS_PRE.S-Pressure (Pa) in lower repository waste panel (region 23, Fig. 2.1) at 10,000 yr under
undisturbed (i.e., EO) conditions. Number of sampled variables: 26 (Table 2.2).

EO:BRAALIC<umulative brine inflow (m3) to vicinity of repository over 10,000 yr from anhydrite marker
beds (regions 20, 21, 28, Fig. 2.1 ) under undisturbed (i.e., EO) conditions. Same sampled variables as
EO: WAS_PRES.

E2: WAS_SATB—Brine saturation (dimensionless) in lower repository waste panel (region 23, Fig. 2.1 ) at
10,000 yr after a drilling intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized
brine in the underlying Castile Formation (i.e., an E2 intrusion). Same sampled variables as EO:WAS_PRES
plus BHPRM (Table 2.2).

E2:WAS_PRES-Pressure (Pa) in lower repository waste panel (region 23, Fig. 2.1) at 10,000 yr after a
drilling intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine in the
underlying Castile Formation (i.e., an E2 intrusion). Same sampled variables as E2: WAS_SA7’B.
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Fig. 2.1. Computational grid used in BRAGFLO to represent two-phase flow in 1996 WIPP CCA PA subsequent to
a drilling intrusion. Same formulation is used in the absence of a drilling intrusion except that regions 1A,
IB and IC have the same properties as the regions to either side.
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use of the Iman and Conover restricted pairing technique (Iman and Conover, 1982; Iman and Shortencarier, 1984)

to enforce specified correlations between three pairs of variables (the correlated pairs (AAJHC(?MP, ANHPRM) and

(HALCOMP, HALPRM) arc used in the calculation of the results in Table 2.1 and are described in Table 2.2) and

also to ensure that uncorrelated variables had correlations close to zero. The outcome of this sampling was 3 LHSS

of size 100 each:

Rl: X]k = [xlkl> xlk2, ..-, Xlk75], k= 1,2, . . . . 100 (2.1)

R2: xLk = [Xzjd, xzk2, . . . . x’2kTs], k= 1, 2, . . . . 100 (2.2)

R3: X3k = [Xq~~, xqk2, . . . . X3k75], k= 1,2, . . . . 100, (2.3)

where x = [xl, x2, . . . . X75] corresponds to the 75 uncertain variables indicated in Table 2.2 and RI, R2 and R3

designate the three replicated (i.e., independently generated) LHSS.

Table 2.2. Uncertain Variables Used as Input to BRAGFLO in the Calculation of the Dependent
Variables in Table 2.1 (see Table 5.2.1, Helton et al., 1998, and App. PAR, U.S. DOE,
1996, for additional information and a discussion of all 75 variables included in the LHS)

ANHBCEXP—Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribution:

Student’s with 5 degrees of freedom. Range: 0.491 to 0.842. Mean, Median: 0.644.

ANHBCVGP—Pointer variable for selection of relative permeability model for use in anhydrite. Distribution:

Discrete with 60% O, 40% 1. Value of O implies Brooks-Corey model; value of 1 implies van Genuchten-
Parker model.

ANHCOMP—Bulk compressibility of anhydrite (Pa-1). Distribution: Student’s with 3 degrees of freedom.

Range: 1.09 x l&l~ to 2.75 x 10-10 Pa-1. Mean, Median: 8.26 x 10-11 Pa-1. Correlation: -0.99 rank

correlation (Ima~ and Conover, 1982) with ANHPRM. Variable 21 in LHS.

ANHPRM—Logarithm of anhydrite permeability (mZ). Distribution: Student’s with 5 degrees of freedom.

Range: –21.0 to –17.1 (i.e., permeability range is 1 x 1(W1 to 1 x 1O-IT.I m2). Mean, Median: –18.9.

Correlation : –0.99 rank correlation with ANHCOMP.

ANRBRSAT—Residual brine saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees

of freedom. Range: 7.85 x10-3 to 1.74 x 10-1. Mean, Median: 8.36 x l@.

ANRGSSAT—Residual gas saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of

freedom. Range: 1.39 x 1o-z to 1.79 x 10-1. Mean, median: 7.71 x 10-2.

BHPRM—Logarithm of borehole permeability (mZ). Distribution: Uniform. Range: –14 to –11 (i.e.,

permeability range is 1 x 10-14 to 1 x l&l 1 ml). Mean, median: –12.5.
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Table 2.2. (continued)

HALCOMP—Bulk compressibility of halite (Pa-1 ). Distribution: Uniform. Range: 2.94 x 10-12 to 1.92 x
IO-10 pA-1. Mean, median: 9.75 x 10-11 Pa-1, 9.75 x 1O-11 Pa-1. Correlation: –0.99 rank correlation with

HALPRM.

HAL.POR-Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0 x 10-~ to 3 x 10-2,

Mean, median: 1.28 x 10-2, 1.00 x 10-2.

HALPRM—Logarithm of halite permeabi~ity (mQ). Distribution: Uniform. Range: –24 to –21 (i.e.,

permeability range is 1 x 10-24 to 1 x 10-21 mz). Mean, median: –22.5, –22.5. Correlation: –0.99 rank
correlation with HALCOMP.

SALPRES—Initial brine pressure, without the repository being present, at a reference point located in the
center of the combined shafts at the elevation of the midpoint of MB 139 (Pa). Distribution: Uniform. Range:

1.104 x 107 to 1.389 x 107 Pa. Mean, median: 1.247 x 107 Pa, 1.247 x 107 Pa.

SHBCEXP—Brooks-Corey pore distribution parameter for shaft (dimensionless). Distribution Piecewise
uniform. Range: 0.11 to 8.10. Mean, median: 2.52, 0.94.

SHPRMASP—Logarithm of permeability (m2) of asphalt component of shaft seal (mZ). Distribution:

Triangular. Range: –21 to –18 (i.e., permeability range is 1 x l~zl to 1 x 10-18 mQ). Mean, mode: –19.7,

–20.0.

SHF’RA4CLY-Logarithm of permeability (mQ) for clay components of shaft. Distribution: Triangular. Range:

–21 to –17.3 (i.e., permeability range is 1 x 10-21 to 1 x 10-173 mQ). Mean, mode: –18.9, –1 8.3.

SHPRMCON—Same as SHPRMASP but for concrete component of shaft seal for O to 400 yr. Distribution:

Triangular. Range: –17.0 to –14.0 (i.e., permeability range is 1 x l&lT to 1 x 10-14 mQ). Mean, mode

–15.3, –15.0.

SHPRMDRZ—Logarithm of permeability (mQ) of DRZ surrounding shaft. Distribution: Triangular. Range:

–17.0 to –14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 m2). Mean, mode: –15.3, –15.0.

SHPRMHAL—Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft
seal at different times. Distribution: Uniform. Range: O to 1. Mean, mode: 0.5, 0.5. A distribution of

permeability (mz) in the crushed salt component of the shaft seal is defined for each of the following time
intervals: [0, 10 yr], [10, 25 yr], [25, 50 yr], [50, 100 yr], [100, 200 yr], [200, 10000 yr]. SHPRA4HAL is used
to select a permeability value from the cumulative distribution function for permeability for each of the
preceding time intervals with result that a rank correlation of 1 exists between the permeabilities used for the
individual time intervals.

SHRBRSAT—Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: O to 0.4.
Mean, median: 0.2,0.2.

SHRGSSAT—Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: O to 0.4.
Mean, median: 0.2,0.2. .
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Table 2.2. (continued)

WASTWICK-Increase in brine saturation of waste due to capillary forces (dimensionless). Distribution:

Uniform. Range: O to 1. Mean, median: 0.5,0.5.

WFBETCEL-Scale factor used in definition of stoichiometric coefficient for microbial gas generation
(dimensionless). Distribution: Uniform. Range: O to 1. Mean, median: 0.5,0.5.

WGRC!OR<orrosion rate for steel under inundated conditions in the absence of C02 (m/s). Distribution:

Uniform. Range: O to 1.58 x 10-14 m/s. Mean, median: 7.94 x 10-15 rds, 7.94 x IO-15 m/s.

WGRA41CH-Microbial degradation rate for cellulose, under humid conditions (mol/kg-s). Distribution:

Uniform. Range: O to 1.27 x 10-9 mollkg.s. Mean, median: 6.34 x 10-1o mol/kgos, 6.34 x lblo mol/kgw.

WGRMICI—Microbial degradation rate for cellulose under inundated conditions (mol/kgw). Distribution:

Uniform. Range: 3.17 x 10-1o to 9.51 x 10-9 mol/kgOs. Mean, median: 4.92 x l&g mol/kg*s, 4.92 x 10-9

mol/kgOs.

WMICDFLG--Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% O,
25% 1, 25% 2. WMICDFLG = O, 1, 2 implies no microbial degradation of cellulose, microbial degradation of

only cellulose, microbial degradation of cellulose, plastic and rubber.

WRBRNSAT—Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: O to 0.552.
Mean, median: 0.276,0.276.

WRGSSAT—Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: O to 0.15.
Mean, median: 0.075,0.075.

Once the LHSS in Eqs. (2.1) - (2.3) were generated, BRAGFLO calculations were performed for a variety of

cases (Table 6.9.1, Helton et al., 1998). The two cases considered in this presentation are undisturbed (i.e., EO)

conditions and a drilling intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine

in the underlying Castile Formation (i.e., E2 conditions or, in the more detailed descriptions given in Helton et al.,

1998, E2 conditions with the intrusion occurring at 1000 yr). Results calculated by BRAGFLO are time-dependent.

The time-dependent behavior of the results indicated in Table 2.1 is shown in Fig. 2.2 for replicate R 1. For

simplicity, the technique comparisons contained in this presentation will use the values of the variables at the end

points of the individual curves in Fig. 2.2 (i.e., at 10,000 yr). However, nothing prevents analyses at other times and,

in general, sensitivity analyses of time-dependent variables should also be time-dependent (Chapts. 7, 8, Helton et al.

1998).
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Fig. 2.2. Dependent variables predicted by BRAGFLO model for two-phase flow selected for use in comparison of
statistical procedures for identification of patterns in scatterplots: (2.2a) pressure in lower waste panel
under undisturbed conditions (EO:WAS_PRES), (2.2b) cumulative brine inflow from anhydrite marker beds
under undisturbed conditions (EO:BRAALIC’), (2.2c) saturation in lower waste panel after an E2 intrusion at
1000 yr (E2: WAS_SATB), and (2.2d) pressure in lower waste panel after an E2 intrusion at 1000 yr
(E2: WAS.PRES).
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A popular and often effective approach to sensitivity analysis in sampling-based studies is to use regression

analysis to estimate the relationships that exist between uncertain (i.e., sampled) variables and predicted variables

(Helton, 1993). Specifically, the sampling procedure and associated model evaluations lead to the mapping

(Xk, Yk), k= 1>2>... nS, in Eq. (1.6) between sampled variables and model predictions that can be investigated with

regression-based techniques.

For perspective and motivation, regression-based results for the variables in Table 2.1 obtained in Helton et al.

(1998) with the STEP program (Iman et al., 1980) are presented in Table 2.3 for both raw and rank-transformed

data. In the regressions in Table 2.3, a variable was required to be significant at an u-value of 0.02 to enter a

regression model and to remain significant at an cx-value of 0.05 to be retained in a regression model, although there

were no cases of a variable entering and then being dropped from a regression model. As will be seen, the rank-

transformation is often an effective procedure for improving the resolution of regression-based sensitivity analyses

due to its effect in linearizing nonlinear but monotonic relationships. However, as will also be seen, nonmonotonic

relationships can result in patterns that cannot be effectively analyzed with rank-transformed data. It is the need to

be able to identify such patterns that forms the motivation for this study.

The analyses in Table 2.3 for repository pressure at under undisturbed conditions (EO:WAS_PRES) with raw and

rank-transformed data are reasonably effective, with (1) R2 values of 0.82 and 0.81 for raw and rank-transformed

data, (2) the same variables selected in both analyses, and (3) only one minor variation in the order of variable

selection (i.e., the order of selection of the last two variables in the regression models is reversed). Scatterplots for

the first four variables selected in the regression analyses for EO:WAS_PRES are presented in Fig. 2.3. The

scatterplots for the first two variables selected in the regression analysis, WMZCDFLG and HALPOR, display well-

defined patterns. The pattern for the third variable, WGRCOR, is weaker but still detectable. The fourth variable,

ANHPRM, changes the R2 values for raw and rank-transformed data by 0.02 and 0.01, respectively, and produces a

scatterplot that displays little discernible pattern.

The analyses for cumulative brine inflow from all anhydrite marker beds to the repository under undisturbed

conditions (EO:13RAAIJC) are interesting in that the regression with raw data is not particularly effective (i.e., R2 =

0.50 at final step of analysis), while the regression with rank-transformed data is reasonably successful in accounting

for the observed uncertainty (i.e., R2 = 0.87). Again, examination of scatterplots shows well-defined patterns for the

first two variables, WMICDFLG and ANHPRM, selected in both regression analyses (Fig. 2.4). ScatterPlots for the

next two variables, HALPOR and WGRCOR, selected in the regression analysis with rank-transformed data are also

given in Fig. 2.4. The negative effects of these variables, as indicated by the signs of their standai-dized regression

coefficients, are barely discernible in their scatterplots, with these small effects being consistent with observed

changes in R2 values of 0,05 and 0.02 with the entry of HALPOR and WGRCOR, respectively, into the regression

model. In this example, the regression analyses with both raw and rank-transformed data have identified the two
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Table 2.3. Stepwise Regression Analyses with Raw and Rank-Transformed Data with Pooled Results
from Replicates RI, R2 and R3 (i.e., for a total of 300 observations) for Variables
EO:WAS_PRES, EO:BRAALIC, E2: WA’S_SATB and E2: WAS_PRES at 10,000 yr

S!2t
1
2
3
4
5
6

.&L
1

2

3
4
5

6

7

Raw Data, EO:WAS_PRES Rank-Transformed Data, EO:WAS_PRES

Variableb SRCC R2d Variableb SRRCe R2d

WA41CDFLG I 0.72 I 0.51 WMZCDFLG I 0.71 0.52
HALPOR 0.47 0.73 HALPOR 0.45 0.73
WGRCOR 0.25 0.79 WGRCOR 0.23 0.79
ANHPRM 0.13 0.81 ANHPRM 0.11 0.80
SHRGSSAT 0.07 0.81 SALPRES 0.07 0.80
SALPRES I 0.06 I 0.82 I SHRGSSAT I 0.06 0.81

Raw Data

Variable

ANHPRM

WMICDFLG

WGRCOR

WASTWICK

ANHBCEXP

HALPOR

;O:BRAALI~

SRC

0.56

-0.31

–0.16

–0.15
–0.12

–0.10

R2

0.32

0.42

0.45
0.47

0.49

0.50

Rank-Transfor

Variable

WMICDFLG

ANHPRM

HALPOR

WGRCOR

HALPRM

SALPRES

WASTWICK

?d Data, El

SRRC

–0.66
0.59

–0.16
–0.15

0.14

0.12

-0.10

RAALIC
R2

0.43

0.75

0.80
0.82
0.85

0.86

0.87

I Raw Data, E2: WAS..SATB I Rank-Transformed Data, E2: WAS_SATB

Ste~ Variable SRC R2 Variable SRRC R2

1 BHPRM 0.37 0.12 BHPRM 0.59 0.36
2 ANHPRM ~ 0.30 0.21 WRGSSAT -0.40 0.52

3 HALPOR 0.21 0.25 ANHPRM 0.23 0,57
4 WGRCOR –0.19 0.29 HALPOR 0.13 0.59

5 WRGSSAT -0.15 0.31 SHPRMHAL -0.12 0.60

6 WMICDFLG -0.14 0.33 WGRCOR -0.10 0.61

a
b

c
d
e

Raw Data, E2: WAS.PRES Rank-Transformed Data, E2: WAS_PRES

Step Variable SRC R2 Variable SRRC R2

1 HALPRM 0.37 0.14 HALPRM 0.36 0.13
2 ANHPRM 0.24 0.20 ANHPRM 0.24 0.19
3 HALPOR 0.14 0.22 HALPOR 0.14 0.20

Steps in stepvfiseregressionanalysis.
Variables listed in order of selection in regressionanalysiswith ANHCOMP and HALCOMP excluded from entry into regression model

because of-0.99 rank correlation within the pairs (ANHPRM, ANHCOMP) and (HALPRM, HALCOMP).

Standardized regression coefficients (SRCS)in final regression model.
Cumulative R* value with entry of each variable into regression model.
Standardized rank regression coefficients (SRRCS)in finalregressionmodel.
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dominant variables, WMICDFLG and ANHPRM.

credible due to its low R2 value.

The regression analysis with raw data for

However, the analysis with raw data in isolation would not be very

brine saturation in the lower waste panel after an E2 intrusion

(E2: WAS_SATB) is quite poor, with the final regression model containing 6 variables but having an R2 value of only

0.33. The regression analysis with rank-transformed data does somewhat better and results in a final regression

model with 6 variables and an R2 value of 0.61. However, an R2 value of 0.61 is not particularly reassuring with

respect to whether or not all the variables giving rise to the observed uncertainty in E2: WAS_SATB have been

identified. Additional insights on the relationships between the sampled variables and E2: WAS_SATB can be

obtained by examining scatterplots (Fig. 2.5). The first two variables identified in the regression analysis with rank-

transformed data, BHPRM and WRGSSAT, show well-defined and interacting patterns. In particular, BHPRM is the

primtiy determinant of whether or not a high value for E2: WAS_SATB occurs; however, given that a high value for

E2: WAS_SATB occurs, this value is almost completely determined by WRGSSAT. Despite the well-defined patterns

involving BHPRM and WRGSSA T, the regression analysis with raw data results in incremental R2 values of only 0.12

and 0.02 for these two variables, and the regression analysis with rank-transformed data results in incremental R2

values of only 0.36 and 0.16. The next two variables selected in the regression analysis with rank-transformed data

are ANHPRM and HALPOR. The scatterplot plots for these variables do not show particularly strong patterns, with

a stronger pattern actually being shown for the fourth-selected variable, HALPOR, than for the third-selected

variable, ANHPRM. For E2: WAS_SATB, the two dominant variables, BHPRM and WRGSSAT, appear in the

regression analyses for both raw and rank-transformed data. However, the R2 values associated with these

regressions (i.e., 0.33 and 0.6 1) provide little assurance that the dominant variables have been identified. It is only

after examination of the associated scatterplots and the development of a physical explanation for the patterns

appearing in these plots that some degree of comfort emerges that the dominant variables have indeed been

identified.

The final regressions in Table 2.3 are for pressure in the lower waste panel after an E2 intrusion

(E2: WAS_PRES). The regression analyses with both raw and rank-transformed data perform very poorly and result

in final regression models with R2 values of only 0.22 and 0.20, respectively. Both regression models seiect

HALPRM, ANHPRM and HALPOR, with the scatterplots for these three variables appearing in Fig. 2.6.

Examination of these scatterplots does not adequately reveal what is giving rise to the observed uncertainty in

E2: WAS_PRES. In particular, the uncertainty in E2: WAS_PRES does not appear to arise from either HALPRM,

ANHPRM and HALPOR individually or from some form of interaction between these variables. At this point in the

analysis reported in Helton et al. (1998), a systematic search was made through the scatterplots between

E2: WAS_PRES and the remaining variables in Table 2.2, with this search revealing that the uncertainty in

E2: WAS_PRES is dominated by BHPRM (Fig. 2.6d). This is disconcerting because the clearly dominant variable
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Fig. 2.6. Scatterplots for pressure in lower waste panel at 10,000 yr with an E2 intrusion into the lower waste panel
at 1000 yr (E2: WAS_PRES) versus the three variables (HALPRM, ANHPRM, HALPOR) selected in
stepwise regression analysis with raw and rank-transformed data (Table 2.3) and one additional variable
(BHPRM) identified by examination of scatterplots: (2.6a) HALPRM, (2.6b) ANHPRM, (2.6c) HALPOR,

and (2.6d) BHPRM.
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with respect to the uncertainty in E2: WAS_PRES was not even identified in the regression with raw or rank-

transformed data. In contrast, the analyses for E2: WAS_SATB included the dominant variables in the regression

models even though the R2 values were low. As an aside, the interesting pattern involving E2: WAS_PRES and

BHPRM in Fig. 2.6d results from two-phase flow in the borehole connecting the waste panel with overlying

formations, with gas typically flowing up the borehole and brine typically flowing down the borehole (Helton et al.

1998).

As should be apparent from the regressions in Table 2.3 and the associated scatterplots in Figs. 2.3-2.6, the

examination of scatterplots is an important part of sampling-based sensitivity analysis and. can reveal patterns that are

missed by regression-based procedures. In the development that follows, the variables in Table 2.1 will be used to

illustrate a number of procedures for the identification of patterns in scatterplots. These variables were selected to

illustrate pattern identification procedures because they constitute a spectrum of analysis possibilities. In particular,

regression analysis with both raw and rank-transformed data performs well for EO: WAS_PRES; regression analysis

with rank-transformed, but not raw, data performs well for EO:BRAALIC, regression analysis with neither raw nor

rank-transformed data performs particularly well for E2: WAS_SATB but both regression models still include the two

dominant variables; and regression analysis with raw and rank-transformed data fails to identify the dominant

variable with respect to the uncertainty in E2: WAS_PRES.
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3. Linear Relation: y = fJo + &

The coefficients PO and ~1 in a first-order polynomial can be estimated with the well-known ordinary least

squares procedure. Specifically, ~. and ~1 are given by (Sect. 2.1, Draper and Smith, 1981)

$=(xTx)-lxTy,

where

and the superscript T denotes matrix transpose. The estimated linear regression model then becomes

(3.1)

,.
j = po+~lx, (3.2)

. ,.
with the coefficients ~. and ~1 deriving from the sampled and calculated values contained in the pairs (xk, yk), k =

1,2, ..., nS, as indicated in Eq. (3.1).

The apparent strength of the linear relationship in Eq. (3.2) provides one way to assess the relationship between

x and y. The linear correlation coefficient pxY,which is also called the Pearson correlation coefficient, provides the

most commonly used measure to assess the strength of the linear relationship between x and y and is defined by

where Ow denotes the covariance between x and y, and 6X and ay denote the standard deviation of x and y,

respectively. In turn, pw is estimated by

bxy =$xk-’)(yk-m(xk-’n%yky
‘[2xkyk-ns’’l/[2xk-ns’2r

where

(3.4)



The quantity PW is often called the sample correlation coefficient.

The reason why pw, and hence ~xy, provides a measure of the strength of the linear relationship between x and

y is not immediately apparent from Eqs. (3.3) and (3.4). Rather, this reason is perhaps best understood in the context

of the regression model in Eq. (3.2) with both x and y standardized to variables with a mean of O and a standard

deviation of 1 by

where

(3.5)

[

nS

6X = z (~k ‘2)2/(nS-l)

k=l

1/2 nS

1

1/2

,&y =
1

;(Yk-~)2/(nS-1) .

k=l

With the preceding standardization, Eq. (3.1) yields the regression model

Thus, @XYis the standardized regression coefficient relating x to y. As such, 6V characterizes the effect that

changing x by a fixed fraction of its standard deviation will have on y, with this effect being measured relative to the

standard deviation of y.

In addition, the correlation coefficient pv, and hence ~ ~, provides a measure of the fraction of the variance of

y that can be accounted for by x. Again, this is best seen in the context of the regression model in Eq. (3.2), for

which the following identity can be established (Sect. 1.3, Draper and Smith, 1981):

(3.7)

The summation
x (~~ – 7)2 represents the part of the variance of Y that can be accounted for bY $ = PO + ~IX ~

k

with the result that

k=l k=l

(3.8)
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represents the fraction of the variance of y that can be accounted by use of x in a linear approximation to y. The

preceding quantity is called the R2 value or the coefficient of determination for x and y. An R2 value close to 1

indicates that x can account for most of the uncertainty in y; in contrast, an R2 value close to O indicates that a linear

relationship involving x accounts for little of the uncertainty in y.

Like the standardized regression coefficient, the R2 value can be expressed in terms of OXY. The development

of the relationship between R2 and fixY requires an exact representation for the coefficients ~1 and PO in the

definition of $k in Eq. (3.8). Specifically, the vector equality in Eq. (3.1) leads to

_zxkyk-ns[zxk’nsl[zyk’nsl—

and

k=l (.k=l )

(3.9)

A

where the second equality involving PO follows from the substitution
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L =x’k(yk-J+J)
k=l k=l

(3.11)

and some simple algebraic manipulations,

Given the preceding representations for PO and ~1,

nS nS

~(jk ‘7)2= ~[f$ + &~k)-~]2 [from Eq. (3-2)]

k=l k=l

‘~[(j+~+&@-j_’]2[from Eq. (3.10)]

k=l

k=l

-[

2
nS

1/
nS

—
z

(X~ - =)(yk - j)
z

(Xk ‘;)2 .

k=l k=l

[from Eq. (3.9)]

Hence, from Eqs. (3.8) and (3.12),

R2 =

[ z(yk-y)(yk-y’112(xk-;)21[z(yk-y)21=’~

(3.12)

(3.13)

Thus, the square of the sample correlation coefficient is equal to the fraction of the variance of y that can be

accounted for by ~ as defined in Eq. (3.2), and hence by x under a linear transformation.

The preceding has given two interpretations of the correlation coefilcient pw between x and y in terms of the

regression model in Eq. (3.2). First, the sample correlation coefficient ~xY (i.e., the approximation to pw defined

in Eq. (3.4)) can be viewed as the regression coefficient in Eq. (3.2) when x and y are standardized to mean O and

standard deviation 1. Second, fiq can be viewed as the square root of the R2 value for the regression model in Eq.

(3.2) (i.e., ~~ = R* ). The correlation coefficient can also be viewed as a parameter in a joint normal distribution

involving x and y (see Sect. 2.13, Myers, 1990); however, this interpretation is not as intuitively appealing as the two

involving the regression model in Eq. (3.2).
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.,.

When ~xy is close to 1 or –1, an almost linear relationship exists between x and y (see definition of R2 = ~~y in

Eq. (3.8)). However, large changes in x may still result in small changes in y if the regression coefficient PI in Eq.

(3.2) is small. Indeed, the magnitude I~1I of ~1 is not a very informative quantity because IPI I depends on the units

in which x and y are expressed (e.g., changing the units on x from millimeters to kilometers will have a large effect
,.

on I~1I but no effect on the underlying physical relationships). For this reason, x and y are often standardized to
,.

mean O and standard deviation 1. As previously discussed, this standardization results in the equality j31 = 6XY and
.

also in ~1 characterizing changes in y normalized to by relative to changes in x normalized to 6X .

Although ~~ = 1 implies a strong linear dependence between x and y, ~W = Ocannot be used to infer that no

relationship exists between x and y (i.e., that x and y are independent). In particular, zero correlations can occur in

the presence of a nonmonotonic relationship between x and y. For example, pw = O for y = 1 – X2 with –1 s x s 1

and also for y = cos x with O 5 x < 2n. A more interesting example is given by the scatterplot for BHPRM in Fig. 2.6.

Thus, a linear relationship can be assumed to exist between x and y if I~V I is close to 1. Further, linear relationships

of lesser strength (i.e., smaller R2 values) exist for smaller values of I~w 1. For I~W I= O, the implication is that no

linear relationship exists between x and y.

A significance test can be used to indicate if 6~ appears to be different from O. For example,

t=&(ns-2) 1/2 , (~_ &#2 (3.14)

has a t-distribution with nS–2 degrees of freedom when x, y are uncorrelated and have a bivariate normal distribution

(Press et al., 1992, p. 631). Further,

+xyd’a (3.15)

is distributed approximately normally with mean O and standard deviation 1 when x and y are uncorrelated, x and y

have enough convergent moments (i.e., the tails die off sufficiently rapidly), and nS is large (typically> 500) (Press

et al., 1992, p. 631). Then,

where prob(l r!>1~ ~yI) is the probability that random variation would produce a value r for ~V larger in absolute

value than the observed value FXY and e@ is the complementary error function (Press et al., 1992, p. 631).

Significance results obtained with t in Eq. (3.14) converge to those obtained with z in Eq. (3.15) as nS increases.

However, as x and y are unlikely to have normal distributions in real anaIysis problems, results obtained with t and

small values of nS should simply be viewed as one form of guidance as to whether or not a linear relationship

actually exists between x and y.
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If several xi have scatterplots that appear to have nonzero values for ~ ~iy, then the relative importance of these

xi can be ordered by the absolute values of ~ ~iy. This is equivalent to ordering the xi on the basis of the strength of

the linear relationship associated with the pairs (x~k,y~), k = 1, 2, . . . . nS. This is also equivalent to ordering the x on

the basis of p-values obtained from the distributions associated with Eq. (3.14) or (3.15), where the p-value

designates the probability that a value for 6V will be obtained that exceeds the observed value for FXY in absolute

value (i.e., prob(l d A 6V I) in Eq. (3.16)). Actually, the ordering is done on the complements of the p-values

because smaller p-values are associated with larger values for I~XiY1.

Standardized regression coefficients provide a popular way of ranking variable importance (e.g., Chan, 1996;

Hamby, 1995; Ma et al., 1993; Ma and Ackerman, 1993; Whiting et al., 1993). However, when the xi are

independent, the standardized regression coefficient for xi is equal to ~ ~iy and so the two rankings are identical.

Specifically, the regression model relating y to the xi has the form

nI
,.

j=jo+~pixi,

i=l

where ~ has the same functional form as in Eq. (3.1) with

(3.17)

(Sect. 2.6, Draper and Smith, 1981). If tl

[1~=“
Y.S

xjk’s have been selected so that the rows of X are orthogonal (i.e., so that

X~ is a diagonal matrix with diagonal elements do, dl, . . . . dnf, which is equivalent to the individual xi being

independent and thus having sample correlations of O), then

j=()(~)()-~x~y

[ :

do O . . 0
0 d, .. 0

——
. .

10 0 . . . dn[

and so

.1

[: ~

1 1’
X11 X21

‘W ‘2n[

. . . 1

~ 1[ 1

Y1
‘“” ~ns,l Y2

. . .
‘nSnI ynS
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(3.18)

nS nS nS

~i ‘~xikYk/dk ‘~xikykj~x;.

k=l k=l k=l

(3.19)



.

Thus, when xi and y are standardized to mean O and standard deviation 1 (see Eq. (3.5)),

‘s-7)(Y+(X-21’’[2-J)2T’=bi ‘~(xik

k=l

(3.20)

,.
and the standardized regression coefficient pi and the (sample) correlation coefficient ~xiy are equal.

Partial correlation coefficients are another popular way of ranking variable importance (e.g., Hamby, 1995;

Whiting et al., 1993; Breshears et al., 1992). However, the partial correlation coefficient is just a special form of the

sample correlation coefficient. In particular, if least squares techniques are used to determine the coefficients in

i=l i=l

i#j i#j

then the partial correlation coefficient ~xjy between xj and y is the sample correlation ~ijj determined for the pairs

( Xjk – ~jk , Yk –jk), k= 1,2, . . ..nS. Thus, Fxjy is the sample correlation between xj and y after a correction has

been made for the linear effects of the other xi.

The following relationship exists between ~xj), and the standardized regression coefficient ~ j (i.e., the

coefficient associated with the regression model in Eq. (3.17) when xi and y are standardized to mean O and standard

deviation 1):

PXj~ = Pj[(l– R~)/(l–~~)11’2, (3.22)

where R; is the R’ value that results from regressing ~j on y and the xi, i = 1, 2, . . . . n] with i #j, and R; is the R2

value that results from regressing y on the xi, i = 1, 2, . . . . n] (Iman et al., 1985, Eq. (1)). In the event that the xi are

orthogonal,

(3.23)

with the first equality following from Eq. (III-74) of Helton et al. (1991) and the second and third equalities

following from Eqs. (3. 13) and (3.20). Thus,

31



~xjy=’j[(’-~’)’[’-$lr=rxy[([y)
Because of the inequality

b(l–b2)1’2 > a(l–a2)l’2

1/2
nI

l–

x 11P:iyj=l (3.24)

(3.25)

fora2+b2< land a< b(Fig.3.1), anordering ofvariable importance basedon l~xjyl, l~jl or l~xjyl willproduce

the same results when the~i~e orthogonal; further, the values for ~j and ~xjY will be the same and generally

different from jxjy.

Due to the conceptual simplicity of the sample correlation coefficient 6XY and its ciose relationship to

standardized regression coefficients and partial correlation coefficients in the presence of orthogonal values for the

~i’s, this study will use ~W to assess the strength of the linear relationship between x and y. In the presence of small

deviations from orthogonality (i.e., the existence of small correlations between the xi), the three measures will still

give similar results. However, in the presence of large deviations from orthogonality, the three measures can give

quite different, and possibly misleading, indications of the effects of individual variables.

As noted earlier,

example,

~w = O should not be interpreted to mean that no relationship exists between x and y. For

(3.26)

results in a low, but nonzero, value for pxy even though there is no noise in the relationship between x and y. In this

case, a logarithmic transformation will linearize the relationship between x and y. However, such transformations

may not exist and, given that they do exist, identifying them is not always easy. For example, logarithmic

transformations are not applicable when some of the y values are zero, which is a fairly common analysis situation.

One possible transformation of fairly broad applicability is the rank transformation, which is discussed in Sect. 4.

A possible complication in the use of ~T to identify the existence of a relationship between x and y can be the

existence of interactions with other variables. For example, the relationship between y, xl, and X2 might be of the

form

Y = Po +%X1 +P2~2 +13nxl%j (3.27)

which can also be expressed as
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Y=l%l +PIH-(1312 /h)x21xl +P2X2

=po +p,x~ +p2[l-(p12 /p2)x~]x2 .

As long as the variation in xl is large relative to the variation in 1– (~ ,2/~ 1)x2 or the variation in .X2is large relative

to the variation in 1– (j312/~ 1)xl, the fact that xl or X2 does indeed have a significant effect on y should be identified

by the corresponding value for @w. Thus, it is not considered necessary to specifically consider interaction effects

to identify important variables, although it is certainly possible to calculate 6XY With x = xixj if desired. Further, use

of contingency tables to be discussed later (Sect. 7) allows the identification of nonlinear effects without the

assumption of a specific model form.
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Fig. 3.1. Graph of d(b, a) = b(l – b2)1/2 – a(l – a2)1/2 >0 subject to constraints 0< a < b <1, a2 + b2 <1.
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4.

the

Monotonic Relation: r(y) = y. + ylr(y)

When the relationship between x and y is nonlinear but monotonic, the relationship can be linearized by use of

rank transformation. The idea of

transformed into a new sequence of pairs

[r(xk ), r(yk )], k = 1,2,..., nS,

the rank transformation is simple. Specifically, the pairs (xk, yk) are

(4.1)

where (i) the smallest value of .xkis assigned a rank of 1 (i.e., r(xk) = 1), the next largest value of Xkis assigned a rank

of 2 (i.e., r(xk) = 2), and so up to the largest vah.te of xk, which is assigned a rank of ns (i.e., r(xk) = nS), (ii) averaged

ranks are assigned to equal values of xk (e.g., if xj = xk, xl # xj for 1 + j, k, and p – 1 observations have values leSS

than x} then r(xj) = r(xk) = (p + p + 1)/2), and (iii) the assignment of the ranks for y (i.e., r~k)) is accomplished in the

same manner as the assignment of ranks for x.

Rank-transformed data can be analyzed in exactly the same manner as discussed in Sect. 3 for untransformed

data. In particular, the strength of the linear relationship between the rank-transformed variables in Eq. (4. 1) can be

measured with Spearman’s rank correlation coefficient for x and Y, ?lV, which is simply Pearson’s correlation

coefficient in Eq. (3.4) calculated on ranks. The test for zero rank cm-relation uses a table of quantiles for Ifiw I

(e.g., Table A lO, Conover, 1980). FornS230,

z = @m=i (4.2)

approximately follows the normal distribution for tlw = O (p. 456, Conover, 1980), which is very similar to the

approximation to the distribution indicated for ~V in Eq. (3.15). Thus, similarly to Eq. (3.16) for FV,

prOb(lrl>lijWl) = etic(l~xyl=lfi), (4.3)

where prob(lrl > IT@) k the probability that random variation would produce a value r for qw larger in absolute

value than the observed value fiXY and e@ is the complementary cumulative error function (Press et al. 1992, p.

631).

Regression coefficients and partial correlation coefficients can also be calculated with rank-transformed data as

discussed in Sect. 3 (e.g., Sanchez and Blower, 1997; Gwo et al., 1996; Helton et al., 1996; Hamby, 1995; Blower

and Dowlatabadi, 1994; Whiting et al., 1993; MacDonald and Campbell, 1986). As an aside, the form of the

regression model after y and the xi’s have been standardized to mean O and standard deviation 1 is
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(4.4)

.
where pi is the regression coefficient obtained with the original (i.e., nonstandardized) values for y and the xi’s.

When rank-transformed data are being used and there are no ties in the y or xi values, then bxi =&y and so the

standardized regression coefficient (i.e., ~ibxi /&~) is the same as the original, nonstandardized coefficient (i.e.,

~i ). Thus, standardization is automatically accomplished by the use of rank-transformed data as long as there are no

ties in they and x values.

Closely related to Spearman’s coefficient is Kendall’s ~ (Conover, 1980, pp. 255 - 260). Because both

coefficients give nearly identical significance results, this alternative for identifying monotonic relationships is

considered only briefly. Kendall’s ~ measures the degree of concordance in a set of observations of the form in Eq.

(1.7). The pairs (x,, Y,) and (x., y,) are said to be concordant if both members of one pair are less than the

corresponding members of the other pair (i.e., Xr < x~, yr < y~ or Xr > x~, y, > y~). Further, the pairs are said to be

discordant if the two members in one pair differ in opposite directions from the corresponding members in the other

pair (i.e., x,< x$, y, z y, or x, > x$, Y, < y.,). Kendall’s ~ is estimated by

A

Tw =(NC -fv~)/[ns(ns-l) /2], (4.5)

where Nc is the number of concordant pairs of observations, Nd is the number of discordant pairs of observations,

and ns(ns– 1)/2 is the total number of pairs {(xr, yr), (x.!, y~)} of observations. The statistic ?XY has a distribution

that is adequately approximated by the normal distribution for sample sizes as small as rM = 8. In contrast, larger

samples (e.g., nS 2 30) are required for ~V to approach a normal distribution, although Monte Carlo sensitivity

studies typically use sample sizes larger than nS = 30. As estimates for Spearman’s coefficient ~XY and Kendall’s

?Xy produce similar rankings of monotonicity and fiq is more intuitively appealing because of its close relationship

to Pearson’s coefficient ~w, this presentation will use fix. to identify nonlinear but monotonic relationships in

scatterplots.
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5. Location of y Dependent on x

Tests for two distinct types of patterns in scatterplots were considered in Sects. 3 and 4, with the Pearson

correlation coefficient introduced as a means of identifying linear patterns (Sect. 3) and the Spearman correlation

coefficient introduced as a means of identifying nonlinear but monotonic patterns (Sect. 4). This section introduces

tests for a broader class of patterns. Specifically, patterns are sought where some measure of central tendency for y

changes with changing values for x. Linear and monotonic patterns have this characteristic. However, decidedly

nonlinear and nonmonotonic patterns can also have this characteristic (e.g., see the scatterplot for BHPRM in Fig.

2.6).

The approach taken is to divide the values for x (i.e., xk, k = 1, 2, . . . . n$ into nX classes and then to test to

determine if y has a common measure of central tendency across these classes. Thus, x must be defined on at least a

nominal scale to permit the definition of the necessary classes. Classic measures of central tendency are the mean or

expected value, E(y), and the median, yo,5. The mean is a more widely used measure of central tendency but the

median is less sensitive to outliers (e.g., see the Princeton robustness study reported in Andrews et al. (1972)).

Most of the x’s under consideration are actually defined on an interval scale (see Table 2.2), and the required

classes are obtained by subdividing the range of x into a sequence of mutually exclusive and exhaustive subintervak

containing equal numbers of sampled values (Fig. 5.1). A few x’s are discrete with unequal probabilities for the

individual x values (e.g., see WMZCDFLG in Fig. 2.3); for these variables, individual classes are defined for each of

the distinct values. However, the optimum definition of the classes is not at all apparent, and in practice, some

experimentation may be required to determine an appropriate division of the x values into individual classes.

For a given variable x and its nX associated classes, the following statistics will be used to identify apparent

deviations from a common central tendency: (i) the ANOVA F statistic for equal means, which requires an interval

scale for y (Sect. 5.1), (ii) the Kruskal-Wallis test for common locations, which requires an ordinal scale for y (Sect.

5.2), and (iii) the chi-square test for equal medians, which also requires an ordinal scale for y (Sect. 5.3).

5.1 Common Means: ANOVA F Statistic

The first possibility considered is that different classes of x values have different expected values for y. For

notational convenience, let q, q = 1, 2, . . . . nX, designate the individual classes into which the values of x have been

divided; let ~ designate the set such that k ● & only if xk belongs to class q; and let nXq equal the number of

elements contained in ~ (i.e., the number of xk’s associated with class q). The ANOVA F test is commonly used to

test for equivalence of conditional means (Scheff6, 1959):
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F(nx – l,ns – nx) = [~nxqy’-ns+nx-’),
1

E-snxq’+n’-nx)
(5.1)

where nX – 1 and nS – nX are the number of degrees of freedom for the numerator and denominator, respectively,

Yq=x~E~ ‘k I“Xqt and ~ iS defined in conjunction with Eq. (3.4).
“ ‘

If they values conditional on each class of Jcvalues are normally distributed with equal expected values, then the

statistic F (nX – 1, nS – nx) in Eq. (5.1) follows an F distribution with (nX – 1, nS – nx) degrees of freedom. This is

the most powerful test for equality of means given that the indicated normality assumptions hold (Scheff6 1959).

The probability prob(F > h ql, q2 ) of exceeding an F statistic of value ~ calculated with (q ~, q2) degrees of

freedom and the indicated normality assumptions can be estimated by

prob(F > filT1l, T12) = lV(T1212,TIl 12), v== T12 /(T12 +qlh, (5.2)

where IV(a, b) designates the incomplete beta function (p. 222, Press et al., 1992).
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TRI.G’U2.67A9.3

Fig. 5.1. Example of the partitioning of the range of x = HALPOR into nX = 5 classes for y = EO:WAS_PRES.
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Although the F-statistic will be used to test for equal expected values across the nX classes into which x has been

divided, the y values for each class may not actually follow a normal distribution. If desired, various goodness of fit

tests (e.g., chi-square, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling) can be used to test for

normality of the y values (pp. 94-95, Kleijnen, 1987; D’ Agostino and Stephens, 1986). However, the number of

observations per class (e.g., 30 or 60 for many of the variables considered in this study) may be too small to provide

a powerful test. If a goodness-of-fit test leads to a rejection of the normality hypothesis, then it may be appropriate to

apply a normalizing transformation such as the BOX-COX transformation, which includes the logarithmic

transformation as a special case (pp. 175- 185, Kleijnen, 1987). Fortunately, the ANOVA F test is robust with

respect to deviations from normality (p. 237, Conover, 1980). For perspective, Monte Carlo estimates of

prob(F > h q,, q ~ ) will be presented in Sect. 10.

5.2 Common Locations: Kruskal-Wallis Test

The next measure of common central tendency considered is the Kruskal-Wallis test, which is based on rank-

transforrned data (p. 229, Conover, 1980). The associated statistic is defined by

[

nX

f=
z 1(R: lnXq)-nS(nS+l)214 /S2, (5.3)

~=1

where

[

nS

1I?q = ~r(yk), S2 = ~r(y~)2 -nS(nS+l)2 /4 /(nS–l)

k= (.X4 k=l

and r(-y~)is defined in conjunction with Eq. (4.1) (p. 230, Conover, 1980).

If they values conditional on each class of x values have the same distribution, then the statistic ~ in Eq. (5.3)

approximately follows a chi-square distribution with nX – 1 degrees of freedom (pp. 230-231, Conover, 1980).

Given this approximation, the probability prob(T > 2?nX – 1) of obtaining a value T that exceeds $ in the presence

of identical y distributions for the individual classes is given by

prob(T > ?1 nX - 1) = Q[(nX – 1) / 2, ~ / 2], (5.4)

where Q (a, b) designates the complement of the incomplete gamma function (p. 215, Press et al., 1992). A small

value for pmb(Z’ > 2?nX - 1) indicates that the y’s conditional on individual classes have different distributions and

thus, most likely, different means and medians.



5.3 Common Medians: Chi-Square for Contingency Tables

The final possibility considered is that different classes of x values have different median values for y. The chi-

square test for contingency tables can be used to test for this situation (pp. 143 - 178, Conover, 1980). First, the

median yo,5 is estimated for all nS observations. Specifically,

{

Y(Q .S) if Q nS is an integer

‘Q = [Y([QmS])+Y([QnS]+l)]12 otherwise
(5.5)

where Q = 0.5 (Q = 0.25 and 0.75 will be considered in Sect. 6.2) and y(k), k = 1, 2, . . . . nS, denotes the ordering of

the y values such that y(,k)< y(k+l) (p. 14, David, 1970). The individual classes of x values considered in Sects. 5.1

and 5.2 are then divided into subsets of y values that fall above and below yo,s (Fig. 5.2). For class q, let nX1q equal

the number of y values that exceed yo,5, and let nX2q equal the number of y values that are less than or equal to yo,5.

The result of this partitioning is a 2 x nX contingency table with nX,q observations in each cell.

Fig. 5.2.
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The following statistic can be defined:

(5.6)

nEq=[inxrq\[5nxr91/ns
( I-=1 )(,=1 )

and nErq corresponds to the expected number of observations in cell (r, q). If the individual classes of x values,

q=l,2, ..., nX, have equal medians, then ~ approximately follows a chi-square distribution with (nX – 1)(2 – 1) =

nX – 1 degrees of freedom (p. 156, Conover, 1980). Thus, the probability of obtaining a value of T that exceeds ~

in the presence of equal medians is given by prob(T > ~1nX – 1) in Eq. (5.4). To maintain the validity of the chi-

square approximation in the analysis of contingency tables, Conover suggests using a partition in which nErq 21 (p.

156, Conover, 1980).

The Kruskal-Wallis rank statistic (Sect. 5.2) also converges to the chi-square statistic with nX – 1 degrees of

freedom. In a case study in Conover (1980, p. 232), the power of the rank test (i.e., Kruskal-Wallis) exceeded the

power of the median test. We interpret this result as follows: the median test only measures whether observations

exceed the common median; it does not measure the extent to which individual observations exceed this median (i.e.,

nominal versus ordinal scale). Thus, the rank test is incorporating more information than the median test.
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6. Dispersion of y Dependent on x

The preceding section considered techniques for identifying patterns where some measure of central tendency

for y changes with changing values for x. In this section, techniques for identifying patterns that involve changes in

the dispersion or spread of y with changing values for x are considered. Two measures of dispersion will be

considered: the variance a; of y, and the interquartile range yo75 – yo.25 of y, where yo,75 and yo,25 represent the

0.75 and 0.25 quantiles of y. The variance is the best known measure of dispersion, and the interquantile range is

widely used as a summary of dispersion in box plots (e.g., Helton et al., 1996; Sargent, 1996). The interquartile

range is less sensitive to outliers than the variance, as is the case in the analogous situation for medians and means.

Two statistics are considered: the ANOVA F statistic with jackknifing in tests for common variances, and the chi-

square statistic in conjunction with contingency tables in tests for common interquartile ranges.

6.1 Common Variances: ANOVA FStatistic with Jackknifing

The ANOVA test will use the same classes, q = 1, 2, . . . . nX, of x values introduced in Sect. 5 (Fig. 5.1). Many

procedures exist for testing for common variances: five procedures are summarized in Kleijnen (1987, pp. 225-

227), and 56 procedures are examined in Conover et al. (1981). Additional discussion is also given in Conover

(1980, pp. 239- 250), Hamby (1994, pp. 149- 150), Piepho (1997) and Wludyka and Nelson (1997). Note that

common variances can occur even though the associated mean values are different.

For this analysis, a procedure based on jackknifing is used to indicate if different classes of x values have

different variances for y. Jackknifing is a general technique for reducing possible bias in estimators and constructing

robust confidence intervals (Efron, 1982; Miller, 1974). The first author has obtained good results with jackknifing

in a number of different applications (Kleijnen, 1998). The procedure operates as follows.

The variance CT~q of y conditional on class q is estimated by

“2

‘YY = z
(Yk -Yq)2@q -1) (6.1)

forq= 1,2, . . . . nX, where ~, ~q and nXq are defined in conjunction with Eq. (5.1). Further, an additional nXq

estimators

(6.2)

ke .Xq

k#l
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of O;q are calculated with individual y’s (i.e., yl) omitted from consideration. The values for b$q and &&,_l can

be used to define the so-called pseudo values

For each class of x values, the resultant values for tql constitute a sample from a population whose expected value is

ayg in the case of common variances (at least if the x’s were generated by random sampling). The ANOVA F test

can now be used to test for the equality of the means of the variables tql. Specifically, the F statistic described in Eq.

(5. 1) is calculated with the values for tq[, and the corresponding exceedance probability for the resultant F statistic is

determined as indicated in Eq. (5.2). In this application, the jackknife procedure is being performed to obtain a

particular statistical test and robust confidence interval estimates rather than to reduce bias.

Because variance estimators have long tails to the right, the use of a logarithmic transformation in conjunction

with the jackknife procedure may enhance the capability of the procedure to identify different variances for y.

Specifically, tqlcan be defined by

(6.4)tqz = nXq ln(~ ~q) – (nXg – 1) ln(d~q,-l ),

and then the procedures defined in Eqs. (5.1) and (5.2) used with this new definition. In this case, the test is for the

equality of ln(o$q ) .

A related approach is proposed by As-cher et al. (1997), who also use the variability of y to assess the importance

of factors in large-scale simulation models. Further, they use an ANOVA-like procedure to decompose the total

variability of y into main effects, two factor effects, and higher-order interactions among factors. Finally, they apply

bootstrapping, which is closely related to jackknifing.

6.2 Common Interquartiles: Chi-Square for Contingency Tables

A test for common interquartile ranges based on the chi-square statistic for contingency tables is now

considered. This test is based on the previously used partitioning of x into q = 1, 2, . . . . nX classes, with the

hypothesis being that the associated nX interquartile ranges (i.e., y075 – y025) are the same (Fig. 6.1). The quantile

values y. 25 and yo,75 are defined by Eq. (5.5) with Q = 0.25 and 0.75. The individual classes of x values me now

divided into subsets of y values that fall within and outside the interquartile range. For class q, let nXlq equal the

number of y values that fall within the interquartile range, and nX2q equal the number of y values that fall outside the

interquartile range. As for the common median test, the result of this partitioning is a 2 x nX contingency table with
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rzXrq observations in each cell. The statistic in Eq. (5.6) can now be calculated and used in conjunction with the

exceedance probability y in Eq. (5.4). The interquartile test was suggested by the quantile test mentioned in Conover

(1980, p. 174) and, to the best of our knowledge, has not been previously examined in the literature.

Fig. 6.1.
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7. Distribution of y Dependent on x: Chi-Square for Contingency Tables

The two preceding sections considered procedures for determining if the central tendency of y was dependent on

x (Sect. 5) and if the dispersion of y was dependent on x (Sect. 6). In this section, the chi-square test for contingency

tables is introduced as a means of determining if the distribution of y is dependent on the distribution of x (i.e., to

determine if y is statistically independent of x).

The test will use the same classes, q = 1,2, . . . . nX, of x values used in Sects. 5 and 6. Further, y is also divided

into cIasses (Fig. 7.1). Thus, y must be defined on at least a nominal scale to permit the definition of the necessary

classes. For notational convenience, let p, p = 1, 2, . . . . nY, designate the individual classes into which the values of y

have been divided; let YP designate the set such that k c YP only if yk belongs to class p; and let n~, equal the

number of elements contained in Yp. Typically, y is defined on at least an ordinal scale, and the classes are defined

by ordering the y and then requiring the individual classes to have similar numbers of elements (i.e., the nYP are

approximately equal for p = 1, 2, . . . . ny).

The partitioning of x and y into nX and nY classes in turn partitions (x, y) into nX nY classes (Fig. 7.1), where

(x~, yk) belongs to class (q, p) only if xk belongs to class q of the x values (i.e., k = ~) and yk belongs to class p of

the y values (i.e., k = YP). For notational convenience, let Opq denote the set such that k e Opq only if k = J$ (i.e.,

xk is in class q of x values ) and also k = YP (i.e., yk is in class p of y values), and let nopq equal the number of

elements contained in Opq. Further, if x and y are independent, then

nEPq = (nYP I nS)(nXq I nS)nS = nYP nXq / M (7.1)

is an estimate of the expected number of observations (x~, yk) that should fall in class (q, p).

The following statistic can be defined:

A’ ?zY

f= xx (7.2)(nOPq – nEPq )2 J nEPq,
q=l p=l

which is the same as the statistic in Eq. (5.6) except for the upper limit on the inner summation. Asymptotically, ~

follows a chi-square distribution with (nX– 1 ) (nY–l ) degrees of freedom when x and y are independent. Thus, the

probability of obtaining a value of T that exceeds ? when x and y are independent is given by

prob(T > ~l(nX– l)(nY– 1)) in Eq. (5.4).
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Many other measures can also be used to quantify the degree of dependence between two variables and y:

Cramer’s contingency coefficient, Pearson’s mean-square contingency coefficient, the phi coefficient, and so on

(Conover, 1980, pp. 178-189). However, these techniques do not offer any advantages over the chi-square

contingency table approach already discussed.
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8. Identification of Important Variables

The purpose of the statistical procedures under consideration is to identify sampled variables that have

significant effects on individual predicted variables. Conceptually, this is equivalent to identifying scatterplots that

exhibit some form of deviation from randomness. Once such scatterplots are identified, the analysts’ understanding

of the model must be called upon to explain the patterns that appear in these plots.

To provide guidance in examining scatterplots, it is useful to have a numerical way to distinguish between

variables that appear to have a substantial effect on a predicted outcome and variables that appear to have little or no

effect. For a given statistic, the probability that a larger value would occur due to chance variation provides such a

measure (i.e., the probabilities in Eqs. (3.16), (4.3), (5.2), (5.4)). These probabilities are often called critical values

or p-values and designated by & or p. A small critical value indicates that under the assumptions of the test, an

outcome equal to or greater than the observed value of the statistic is unlikely to occur due to chance. Thus, the

implication is that the pattern in the associated scatterplot arose from some underlying relationship between x and y

rather than from chance alone. For a given statistic, the indicated importance of a variable goes up as the value of

the corresponding critical value goes down. Thus, an ordering of variables on the basis of the size of their associated

critical values provides a way to rank variable importance (i.e., the smaller the critical value, the more important the

variable appears to be).

In sensitivity analyses of the type under consideration in this presentation, the distributions for the sampled

variables typically characterize subjective (i.e., epistemic) uncertainty (Helton, 1997). Often, the intent of the

sensitivity analysis is to identify those variables on which additional research efforts should be expended to reduce

the uncertainty in the final outcomes of a large analysis and hence in the decisions based on these outcomes. In this

case, the desire may not be to obtain an absolute ranking of variable importance, but rather to prioritize groups of

variables for additional research. For example, variables might be divided into the following three groups: Group 1

- important variables that require additional investigation, Group 2- variables of intermediate importance that may

merit additional investigation if time and resources permit, and Group 3- unimportant variables that do not require

additional investigation. One possibility is to define these groups on the basis of critical values (e.g., Group 1

corresponds to variables with & < 0.01; Group 2 corresponds to variables with 0.01 < & < 0.05; and Group 3

corresponds to variables with 0.052 &). However, in practice due to the cost of investigating individual variables,

the decision on whether or not to expend resources on the investigation of a particular variable will probably be

made on the basis of a number of considerations rather than solely on the basis of a preselected critical value.



Intentionally Left Blank

50



9. Top-Down Correlation

A number of techniques have been described for the identification of relationships between sampled and

predicted variables (Sects. 3-7). These techniques will be applied to four predicted variables (Sect. 2). An important

question is the extent to which the different techniques agree in their identification of important variables. A useful

tool for assessing such agreement is the top-down correlation introduced by Iman and Conover (1987), which

emphasizes agreementidisagreement for the most important variables and places reduced weight on

agreementidisagreement for variables of little importance.

The top-down correlation is based on Savage scores:

nl

s(h)= ~l/j, (9.1)

j=h

where S(h) is the Savage score of a variable of rank h and nl is the number of ranked variables (Eq. (1.1)). Thus, the

Savage score S(1) for the most important variable is S(l) = 1/1 + 1/2+ . . . + 1h~ the Savage score S(2) for the next

most important variable is S’(2) = 1/2 + 1/3 + . . . + l/nL and so on.

Suppose two ranking procedures are under consideration. Further, let /zli, i = 1, 2, . . . . n], denote the rank for

variable ~i obtained with the first procedure, and let h2i, i = 1, 2, . . . . nl, denote the rank for variable xi obtained with

the second procedure. The top-down correlation ~12 for these two tests is defined to be the Pearson correlation

coefficient (Eq. (3.4)) associated with the pairs [S(h 1J, Xh2j)l, ~= 1,Z .... n]. mat k

[

nI

1/i,2=~S(lz~~)S(/Z2j)–rd [nI – S(l)] ,

i=l

(9.2)

with S(1) defined in Eq. (9.1) and approximately equal to 2.450 + hz[rd + 0.5)/6.5] for nl 27 (Eq. (3), Iman and

Conover, 1987).

important factors.

1987). Further,

A—

Large positive values for R12 indicate agreement between the two sets of ranks for the most

Exact quantiles for this statistic are given in Iman and Conove~ (1987, p. 355; also see Iman

.z=R12JnI-l (9.3)

is distributed approximately normally with mean O and standard deviation 1 when the two rankings are uncorrelated

and n] is sufficiently large. Under these conditions,



(9.4)

where prob(l? > ~12 ) is the probability that random variation would produce a value R for ~12 larger than the

observed value ~12 and e~c is the complementary error function (Press et al., 1992, p. 631).
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10. Comparison of Procedures for Identification of Important Variables

The following entities and/or associated statistical tests have been introduced for possible use in the

identification of patterns in scatterplots, where the given capital letters will be used to identify the associated

procedures in the following discussion: correlation coefficients (CCS, Sect. 3), standardized regression coefficients

(SRCS, Sect. 3), partial correlation coefficients (PCCS, Sect. 3), rank correlation coefficients (RCCS, Sect. 4),

standardized rank regression coefficients (SRRCS, Sect. 4), partial rank correlation coefficients (PRCCS, Sect. 4),

common means (CMNS, Sect. 5.1), common locations (CLS, Sect. 5.2), common medians (CMDS, Sect. 5.3),

common variances (CVS, Sect. 6.1), common interquartile ranges (CIQ, Sect. 6.2), and statistical independence (S1,

Sect. 7). Further, dependent variables with different behaviors have been introduced as examples: EO:WAS_PRES,

EO:BRAALIC, E2: WAS_SATB, and E2: WAS_PRES (Sect. 2). The results of applying the indicated procedures to

these dependent variables are now discussed.

10.1 Repository Pressure under Undisturbed Conditions: y = EO:WASJ’RES

The variable y = EO:WAS_PRES was included as an example because a linear relationship appears to exist

between EO:WAS_PRES and several of the sampled variables (Sect. 2). Thus, procedures that can identify linear

relationships should work well with EO:WAS_PRES, as indeed turned out to be the case (Table 10.1). In particular,

tests based on CCS, RCCS, CMNS, CLS, CMDS and S1 both identified the same top f~ur variables (i.e., WMZCDFLG

HALPOR, WGRCOR, ANHPRM) and also assigned these variables the same importance rankings based on p-values.

The scatterplots for these variables show a corresponding decrease in the strength of the relationships with

EO:WAS_PRES (Fig. 2.3). After these four variables, there was little agreement between the individual procedures

on the remaining variables, with the p-values for the variables with ranks 5 and above typically close to or above 0.1.

The only exception to this was for the test for S1, where ANHBCVGP was assigned rank 5 with a p-value of 0.0194.

Based on a visual inspection, there appears to be little difference in the distributions of EO: WAS_PRES for the two

values of ANHBCVGP, although the larger value for ANHBCVGP (i.e., the value that implies the van Genuchten-

Parker model) may result in fewer small values for EO;WAS_PRES (Fig. 10.1) The performance of the tests based

on measures of dispersion (i.e., CV, CIQ) was disappointing, with CV failing to identify both HALPOR and

WGRCOR based on a p-value cutoff of 0.1 and CIQ failing to identify WGRCOR based on the same cutoff.

As discussed in Sect. 3, analyses of variable importance based on CCS, SRCS and PCCS or on RCCS, SRRCS

and PRCCS will produce similar results when the independent variables (i.e., the xi’s) are uncorrelated. More

specifically, CCS and SRCS are equal; RCCS and SRRCS are equal; orderings of variable importance based on CCS,

SRCS and PCCS are the same; and orderings of variable importance based on RCCS, SRRCS and PRCCS are the

same. The 24 variables used in the calculation of EO:WAS_PRES were assumed to be independent, with the Iman
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Table 10.1 Comparison of Variable Rankings with Different Analysis Proceduresa for y = EO:WAS_PRES,

the Variables in Table 2.2,b and a Maximum of Five Classes of Values for Each Variable (i.e.,
rtx =5)C

Variabled

Name

WikfICDFLG
HALPOR

WGRCOR
ANHPRM
SALPRES
WGRMICI

SHPRMCON
ANHBCVGP

Variable

Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SALPRES
WGRMICI
SHPRMCON
ANHBCVGP

cc
Rank p-val

1.0 - 0.0000
2.0 0.0000
3.0 0.0000
4.0 0.0241
5.0 0.0855

17.0 0.7753
18.0 0.7878
20.0 0.8084

CMD: 2 X 5
Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0025
4.0 0.0663
9.0 0.4932

24.0 0.9702
6.0 0.2674

14.0 0.6442

RCC

Rank p-val

1.0 0.0000
2.0 0.0000
3.0 0.0000
4.0 0.0268
5.0 0.0664

20.0 0,8940
18.0 0.8618
15.0 0.7686

Cv: 1X5
Rank p-Val

1.0 0.0000
12.0 0.3919
4.0 0.1244
2.0 0.0042

11.0 0.3723
24.0 0.8900

5.0 0.1287
13.0 0.4752

CMN: 1 X 5
Rank p-Val

1.0 0.0000
2.0 0.0000

3.0 0.0000
4.0 0.0195

13.0 0.6283
23.0 0.9705
10.0 0.4099
18.0 0.8062

CIQ: 2 X 5
Rank p-Val

1.0 0.0000
2.0 0.0000

16.5 0.6626
3.0 0.0007
6.0 0.0868
5.0 0.0595
4.0 0.0244

24.0 1.0000

CL: 1x5
Rank p-val

1.0 0.0000
2.0 0.0000
3.0 0.0000
4.0 0.0187

13.0 0.5672
23.0 0.9649
11.0 0.4878
16.0 0.7686

SI: 5X5
Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0003
4.0 0.0049

21.0 0.7554
13.0 0.3239

7.0 0.1487
5.0 0.0194

a Table includes only variables that had a p-value less than 0.1 for at least one of tbe procedures under consideration although the variable
rankings for a specific procedure are based on the p-values obtained for that procedure for all 24 variables included in the analysis (See
Footnote b).

b Table 22 contains 27 variables but BHPRM was not used in the calculation of EO results (i.e., Ill WAS’_PRES and EO:BRAALJC) and the

variables in the pairs (ANHPRM, ANHCOMP), (HALPRM, HALCOMP) have a -0.99 rank correlation. As a result, BHPRM, ANHCOMP and
HALCOMP were not included in the analysis, which resulted in 24 variables (i.e., x’s) for analysis with each procedure.

c Variables ANHBCVGP, WA41CDFLG in Table 2,2 are discrete with 2, 3 levels, respectively; for these variabIes, nX = 2, 3. Also, nY = 5 for
S1.

d Variables are listed in the table based on their ordering with the p-values obtained for CCS; thus, the listed rankings for CCS will

monotonically increase, which will not in general be the case for the other procedures.

and Conover (1982) restricted pairing technique being used to assure that the correlations between variables were

indeed close to zero (see Footnote b to Table 10.1). The outcome, as predicted by theory, was that CCS and SRCS

were approximately equal, RCCS and SRRCS were approximately equal, rankings based on CCS, SRCS and PCCS

were approximately the same, and rankings based on RCCS, SRRCS and PRCCS were approximately the same (Table

10.2). Approximate correspondence to theory is the best that can be hoped for as the Iman/Conover restricted

pairing technique makes the correlations between the sampled variables approximately zero (Table 10.3) rather than

exactly zero as is required for strict validity of the theoretical relationships.
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Table 10.2

Variablea
Name

WA41CDFLG

HALPOR
WGRCOR
ANHPRM
SALPRES

Variableb
Name

WMICDFLG

HALPOR
WGRCOR
ANHPRM
SALPRES

Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for

y= EO: WAS.PRES

cc SRC Pcc

p-Val Rank Value Rank Value Rank Value

0.0000 1.0 0.7124 1.0 0.7234 1.0 0.8642
0.0000 2.0 0.4483 2.0 0.4651 2.0 0.7469
0.0000 3.0 0.2762 3.0 0.2460 3.0 0.5113
0.0241 4.0 0.1302 4.0 0.1277 4.0 0.2953
0.0855 5.0 0.0993 6.0 0.0639 6.0 0.1526

RCC SRRC PRCC

p-Val Rank Value Rank Value Rank Vahre

0.0000 1.0 0.7229 1.0 0.7207 1.0 0.8564
0.0000 2.0 0.4521 2.0 0.4511 2.0 0.7256
0.0000 3.0 0.2608 3.0 0.2303 3.0 0.4739
0.0268 4.0 0.1280 4.0 0.1093 4.0 0.2476
0.0664 5.0 0.1062 5.0 0.0723 5.0 0.1667

a Comparison based on variables that had a p-value less than 0.1 for CCS. Ranks based on values for CCS, SRCS, PCCS in column “VALUE.”

b Comparison based on variables that had a p-value less than 0.1 for RCCS. Ranks based on values for RCCS, SRRCS, PRCCS in column
“VALUE.”
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Fig. 10.1 Scatterplot for EO:WAS_PRES versus ANHBCVGP
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Table 10.3 Correlations with Raw and Rank Transformed Data between 144WCDFLG, HALPOR,
WGRCOR, ANHPRM and SAL.PRES

HALPOR

WGRCOR

ANHPRM

SALPRES

HALPOR

WGRCOR

ANHPRM
SALPRES

-0.035
0.027
0.001

0.056

WMICDFLG

–0.008
0.031

0.018
0.053

WMICDFLG

Raw Data

0.022

-0.004 0.013

–0.007 0.001 –0.012

HALPOR WGRCOR ANHPRM

Rank-Transformed Data

0.014
0.005 0.021

–0.010 0.001 0.004

HALPOR WGRCOR ANHPRM

The large number of procedures under consideration (i.e., CCS, RCCS, CMNS, CLS, CMDS, CVS, CIQS, S1,

SRCS, PCCS, SRRCS, PRCCS) can make it difficult to get an overall feeling for the extent to which the individual

procedures are agreeing or disagreeing in the identification of important variables. As discussed in Sect. 9, top-down

correlation provides a way to compare variable rankings that emphasizes agreement and/or disagreement on the most

important variables and places reduced importance on the rankings assigned to less important variables. In

particular, top-down correlation gives a compact numeric summary of the comparisons in Tables 10.1 and 10.2

(Table 10.4), with all procedures except for CVS and CIQS showing strong agreement (i.e., top-down correlations

close to or equal to one).

The calculation of CMNS, CLS, CMDS, CVS, CIQS and S1 in Table 10.1 was based on the division of the range

of the variables under consideration into nX = 5 intervals of equal probability. Also, the calculation of S1 involved

the division of the range of EO:WAS_PRES into nY = 5 intervals of equal probability. In concept, the outcome of the

analysis could be quite sensitive to the partitioning selected for use (i.e., the values for nX and nv. To check this,

the analysis was repeated with nX = 10 for CMS, CLS, CMDS, CVS, CIQS and S1, and nY = 10 for S1 (Table 10.5).

As comparison of the results obtained with nX = 5 and nX = 10 shows, some changes in variable rankings did take

place. For CMNS, CLS and CMDS with nX = 5, ANHPRM is the fourth ranked variable with p-values of 0.0195,

0.0187 and 0.0663, respectively (Table 10.1); for the same procedures with nX = 10, ANHPRM is ranked 4,4 and 7

with p-values of 0.1371, 0.1340 and 0.3398 (Table 10.5). For CVS and CIQS, there are some changes in variable

ranking (e.g., CV and CIQ assign SALPRES ranks of 11 and 6 with p-values of 0.3723 and 0.0868 for nX = 5 (Table
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Table 10.4

RCC
cm
CL
CMD
Cv
CIQ
S1
SRC
Pcc
SRRC
PRCC

RCC
CMN
CL
CMD
Cv
CIQ
S1
SRC
Pcc
SRRC
PRCC

Top-Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y= EO:WAS_PRES, Variables included in Table 10.1 ,a and a Maximum of Five Classes of x
values (i.e., nX = 5)

Top-Down Correlation Matrix

0.982
0.972
0.972
0.972
0.731
0.860
0.946
0.986
0.986
0.996
0.996

cc

0.005
0.005
0.005
0.005
0.026
0.011
0.006
0.005
0.005
0.004
0.004

cc

0.981
0.981
0.981
0.740
0.831
0.967
0.996
0.996
0.986
0.986

RCC

0.005
0.005
0.005
0.025
0.014
0.005
0.004
0.004
0.005
0.005

RCC

1.000
1.000
0.769
0.872
0.972
0.967
0.967
0.963
0.963

CMN

0.004
0.004
0.021
0.011
0.005
0.005
0.005
0.005
0.005

CMN

1.000
0.769 0.769
0.872 0.872
0.972 0.972
0.967 0.967
0.967 0.967
0.963 0.963
0.963 0.963

CL CMD

0.705
0.720
0.719
0.719
0,715
0.715

Cv

0.839
0.824 0.963
0.824 0.963 1.000
0.840 0.951 0.995
0.840 0.951 0.995

CIQ S1 SRC

Top-Down Correlation Matrix p Values

0.004
0.021 0.021
0.011 0.011
0.005 0.005
0.005 0.005
0.005 0.005
0.005 0.005
0.005 0.005

CL CMD

0.031
0.028 0.013
0.029 0.015 0.005
0.029 0.015 0.005 0.004
0.029 0.013 0.006 0.004
0.029 0.013 0.006 0.004

Cv CIQ S1 SRC

0.995
0.995 1.000

Pcc SRRC

0.004
0.004 0.004

Pcc SRRC

a Variable rankings used in calculation of top-down correlation are based on only the 8 variables included in Table 10.1. Specifically, each
procedure was rr~ed to rank these 8 variable; from 1 to 8 (i.e., p-values for CCS, RCCS, CMNS, Cfs, CMDS, CVS, CIQS, St absohrte values of
coefficients for SRCS, PCCS, SRRCS, PRCCS); then, top-down correlations were calculated on these rankings.

10.1) and rank SALPRES third with p-values of 0.0500 and 0.0077 for nX = 10 (Table 10.5)); also, CVS still fail to

identify an effect for HALPOR (ranked 12 with a p-value of 0.3919 for nX = 5 and ranked 20 with a p-value of

0.5800 for nX = 10), and CIQS still fail to identify an effect for WGRCOR (ranked 16.5 with a p-value of 0.6626 for

nX = 5 and ranked 23 with a p-value of 0.9429 for rzX = 10). For S1, HALPRM had a rank of 18 with a p-value of

0.6235 for nX = 5 and a rank of 3 with a p-value of 0.0036 for nX = 10 (Table 10.5). Thus, the partitioning in use

can have an effect on the variables identified as affecting the y value under consideration. For perspective, the top-

57



Table 10.5 Comparison of Variable Rankings for y= EO:WAS_PRES Obtained with a Maximum of Five
Classes of x Values (i.e., rzX = 5) and Analytic Determination of pfalues with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., rLX = 10) and Analytic

Determination of p-values and (ii) a Maximum of Five Classes of x values (i.e., rzX = 5) and

Vanablea
Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SHPRMASP
WRBRNSAT
SHRGSSAT
ANRBRSAT
HALPRM
SHPRMCON
SHRBRSAT
WFBETCEL
SALPRES
ANHBCEXP
WASTWICK
ANRGSSAT
SHPRMHAL
ANHBCVGP
SHBCEXP
WRGSSAT
SHPRMCLY
SHPRMDRZ
WGRMICI
WGRMICH

TD~

Variable
Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SHPRMASP
SHPRMCON
ANRBRSAT
HALPRM
SALPRES
WRBRNSAT
WRGSSAT
SHRGSSAT
ANHBCEXP
ANHBCVGP
SHRBRSAT
SHPRMDRZ
WFBETCEL
SHPRMCLY
SHPRMHAL
SHBCEXP
ANRGSSAT
WASTWICK
WGRMICH
WGRMIC1

TDC

Monte Carlo Determination of p-values

CMN 1X5b CMN: 1X 10C CMNMC 1X 5~ Variable
Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

f?-val

0.000il
O.cm!l
O.m
0.0195
0.1439
0.1506
0.2488
0.3034
0.4097
0.4099
0.4325
0.5694
0.6283
0,7116
0.7490
0.7521
0.7661
0.8062
0.81CX3
0.8358
0.8601
0.8726
0.9705
0.9975

1too

Rank

1.0
2.0
3.0
4.0

11.0
6.0

15,0
18.0
8.0

12,0
10.0
7.0

20,0
16.0
22.0
13.0
14.0
19.0
21.0
5.0
9.0

17,0
23.o
24.0

jl-Val

o.m30
0.0MX3
O.wm
0.1371
0.5087
0,1947
0.7062
0.7693
0.4092
0.5115
0.4560
0.4034
0.830U
0.7465
0.8444
0.6511
0.6734
0.8062
0.8342
0.1542
0.4218
0.7562
0.9606
0.9919

0.854

Rank

2.0
2.0
2.0
4.0
5.0
6.0
7.0
8.0

10.0
9.0

11.0
12.0
13.0
14,0
15,0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.o
24.o

p-val

o.ocnO
0.0M83
0.0W30
0.0214
0.1495
0.1526
0.2497
0.3027
0.4060
0.4053
0.4239
0.5645
0.6378
0.7035
0.7446
0.7483
0.7699
0.7997
0.8099
0,8377
0.8625
0.8755
0,9717
0.9973

Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SHPRMASP
WRBRNSAT
ANRBRSAT
SHRGSSAT
HALPRM
SHRBRSAT
SHPRMCON
WFBETCEL
SALPRES
SHPRMHAL
SHBCEXP
ANHBCVGP
ANHBCEXP
ANRGSSAT
WASTWICK
WRGSSAT
SHPRMDRZ
SHPRMCLY
WGRMICI
WGRMICH

0.970 TD~

CMD: 2 X 5
Rank 1]-VaI

1.0 os3i300
2.0 O.olxo
3.0 0.0025
4,0 0.0663
5.0 0.2427
6.0 0.2674
7,0 0.3386
8.0 0.3883
9,0 0,4932

10.0 0.5037
11,0 0.5249
12.0 0.6151
13.0 0,6387
14.0 0.6442
15.0 0.6868
16,5 0.7358
16,5 0,7358
18.0 0.7847
19.0 0.8325
21.0 0.9197
21.0 0.9197
21.0 0.9197
23.0 0.9554
24.0 0.9702

1.000

CMD 2 X 10
Rank [)-val

1.0 O.ocml
2.0 o.cOXl
3.0 0.0124
7.0 0.3398

14.0 0.6302
9.0 0.3725

18.5 0.7532
8.o 0.3614

18.5 0.7532
13.0 0.6163
5.0 0.1596

23.0 0.9281
11.0 0.5075
16.0 0.6442
15.0 0.6441
10.0 0.4311
17,0 0.7265
6.0 0.3293
4.0 0.1177

22.0 0,9114
12.0 0.5887
20.0 0.8729
21.0 0.8930
24.0 0.9835

0.768

CMDMC: 2 X 5
Rank />-Val

Variable
Name

1.5 o.colX3
1.5 0030+3
3.0 0.0018
4,0 0.0690
5.0 0.2401
6.0 0.2718
7.0 0.3329
8,0 0.3967
9,0 0.5058

10,0 0,5180
11,0 0.5223
13.0 0.6050
14.0 0.6224
12.0 0.5685
15.0 0.6950
17.0 0.7283
16,0 0.7169
18.0 0.7659
19,0 0.8357
22.0 0.9093
20.0 0.9082
21.0 0.9085
23.0 0.9439
24.0 0.9664

0,986

WM[CDFLG
ANHPBM
HALPRM
WGRCOR
SHPRMCON
SHRGSSAT
ANHBCEXP
SHPRMASP
SHPRMCLY
SHBCEXP
SALPRES
HALPOR
ANHBCVGP
WGRMICH
SHPRMDRZ
WAS7WICK
WRGSSAT
WRBRNSAT
ANRGSSAT
WFBETCEL
SHRBRSAT
SHPRMHAL
ANRBRSAT
WGKMICI

TDC

CL 1X5 CL IX1O CLMC 1X 5
Rank 1]-val RaI& ~J-val Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9,0

10,0
11,0
12.0
13.0
14,0
15,0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

O.cwlo
O.OQOO
O.cmo
0,0187
0.1237
0.2042
0.2710
0.3153
0.3923
0,4625
0.4878
0.5194
0.5672
0,6945
0,7390
0,7686
0,7703
0,8272
0.8318
0.8826
0.8897
0.9032
0.9649
0.9865

1.0
2.0
3.0
4.0
9.0
7.0

16,0
17.0
6,0

12.0
11.0
8.0

20.0
13.0
21.0
19.0
18.0
15.0
22.0
5.0

14.0
10.0
23.0
24.0

O.ccw
0.0053
0.CJ302
0.1340
0.4376
0.2838
0.7391
0.7495
0,2725
0.5456
0.4655
0.3728
0.8266
0.5517
0.8301
0.7686
0.7594
0.7298
0.8443
0.2088
0.7065
0.4426
0.9691
0.9894

2.0
2.0
2.0
4.0
5.0
6.0
7,0
8.0
9,0

10.0
11.0
12.0
13.0
14,0
15,0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

1.Cm3 0.861

p-val

o.om3
0.00CQ
O.oom
0.0212
0.1277
0.2053
0.2710
0,3167
0.3901
0,4575
0.4852
0.5153
0.5817
0.6996
0.7399
0.7654
0.7658
0.8209
0.8292
0,8839
0.8937
0.9062
0.9663
0.9839

0.971

CV: 1X5
Rank /}-Val

Cvlxlo
Rank p-Val

1.0 0.0000
2.0 0.0042
3.0 0.1184
4.0 0.1244
5.0 0,1287
6.o 0.1466
7.0 0.1539
8.0 0.1612
9.0 0.3102

10.0 0.3221
11.0 0.3723
iz.o 0.3919
13.0 0.4752
14.0 0.5612
15.0 0.6067
16.0 0.6185
17.0 0.6398
18.0 0.6632
19.0 0.6761
20.0 0.7531
21.0 0.8197
22.0 0.8340
23.0 0.8378
24.o 0.891XI

1000

1,0 0.0003
2.0 0.0172
4.0 0.0844
6.0 0.1173
5.0 0.0929

15.0 0.4691
7.0 0.1928
8.o 0.2953
9.0 0.3614

11.0 0.4091
3.0 0.0500

20.0 0.5800
16.0 0.4752
13.0 0.4415
21.0 0.8635
10.0 0.3697
14.0 0.4670
17.0 0.5542
12,0 0.4391
23.0 0.9435
18.0 0.5606
24.0 0.9844
19.0 0,5700
22.0 0.9219

0.892

CVMC 1X 5
Rank p-Val

1,0 0.0000
2,0 0.0031
4.0 0.1095
3.0 0.1094
5.0 0.1201
7.0 0.1411
6.0 0.1393
8.0 0.1517
9.0 0.2957

10.0 0.30$9
11.0 0,3564
12,0 0.3817
13.0 0,4800
14.0 0,5502
15.0 0,5942
16.0 0.6053
17.0 0.6237
18.0 0.6588
19.0 0.6666
20.0 0.7443
21.0 0,8109
22.0 0.8224
23.0 0.8330
24,0 0.8854

0.993



Table 10.5 (Cont.)

Variable
Name

WMICDFLG
HALPOR
ANHPKM
SHPRMCON
WGRMICI
SALPRES
SHPRMHAL
SHPRMDRZ
WGRMICH
SHPKMASP
SHRGSSAT
SHBCEXP
WASTWICK
WFBETCEL
SHPRMCLY
WGRCOR
WRBRNSAT
HALPKM
ANHBCEXP
ANRGSSAT
WRGSSAT
ANRBRSAT
SHRBILSAT
ANHBCVGP

TDC

CICY 2x5
Rank-

1.0
2.0
3.0
4.0
5.0
6.0
7,0
8.o
9.0

10.0
11.0
12,0
13,0
14,0
15.0
16.5
16.5
18.5
18.5
20.0
21.0
22.0
23.0
24.0

p-val

o.oCoO
o.o@30
0.0037
0.0244
0.0595
0.0868
0.1801
0,1801
0.2548
0.3232
0.3232
0.5249
0.S467
0.5918
0.6387
0.6626
0.6626
0.6868
0.6868
0.7113
0.8557
0.9197
0.9554
1.ColX3

1.Oco

CIQ 2x 10 CIQMC: 2 X 5 Variable 51:5X5 51 10x 10 SIMC: 5 X 5
Rank

1.0
2.0
4.0
5.0
7.0
3.0

10.0
14.0
9.0
8.0

13.0
17.0
12.0
20.5
6,0

23.0
20.5
11.0
16.0
18.0
15.0
22.0
19.0
24.0

p-vat

O.ceeo
O.om
0.0112
0.1035
0.1719
0.0077
0.2993
0.4944
0.2133
0.1849
0.4559
0.6441
0.4559
0.8729
0.14’26
0,9429
0.8729
0.3725
0.6163
0.6718
0.5887
0,8930
0.7265
1.oow

0.917

Rank

1.5
1,5
3,0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
19.0
18.0
20.0
21.0
23.0
24.0
22.0

p-val

O.0000
0.oo30
0.CO05
0.0279
0.0565
0.0893
0.1729
0,1789
0.2547
0.3172
0.3317
0.5281
0.5356
0.5948
0.6264
0.6746
0.6814
0.7063
0.7021
0.7120
0.8508
0.9122
0.9426
0.9010

WMICDFLG
HALPOR
WGRCOR
ANHPRM
ANHBCVGP
WRGSSAT
SHPRMCON
WASTWICK
SHBCEXP
SHPRMHAL
SHPKMASP
SHPRMLSRZ
WGRMICI
ANHBCEKP
WFBETCEL
SHRBRSAT
ANRBRSAT
HALPKM
SHRGSSAT
WRBRNSAT
SALPRES
SHPKMCLY
WGRMCH
ANRGSSAT

0.987 TDC

Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12,0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21,0
22.0
23.0
24.0

/)-val

O.m
O.0000
0.0Q03
0.0049
0.0194
0.1229
0.1487
0.1850
0,2436
0.2518
0.2601
0.3142
0.3239
0.3438
0.3856
0.4299
0.4765
0,6235
0.6482
0.6849
0.7554
0.9265
0.9437
0.9763

Rank

1.0
2.0
4.0
5.0
8.0

12.0
6.0

21.5
17.0
10.0
11.0
7.0

16.0
9.0

21.5
15.0
20.0
3.0

19.0
18.0
13.0
23.0
24.0
14.0

p-val

O.OQCO
O.woo
0.0073
0.0128
0.1271
0.2786
0.0326
0.8743
0.6767
0.2028
0.2623
0.1129
0.6363
0.1768
0.8743
0.5527
0.7701
0.0036
0.7525
0.7343
0.3310
0.9348
0.9709
0.5316

R~k

1.5
1.5
3.0
4.0
5.0
6.o
7.0
8.o
9.0

10.0
11.0
12,0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.o
24.0

p-w

omoo
O.csm
o.oc03
0.0038
0.0178
0.1196
0.1529
0.1829
0.2441
0.2540
0.2673
0.3205
0.3252
0.3472
0.3905
0.4308
0.4725
0.6307
0.6587
0.6981
0.7662
0.9305
0.9429
0.9791

1.003 0.812 0.988

a Twenty-four (24) variables included in analysis; see Footnote b to Table 10.1.

b Variable rankings obtained with a maximum of five classes of x vrdues (i.e., rrx = 5) and anatytic determination of p-values.

c Variable rankings obtained with a maximum of ten classes of x values (i.e., nX = 10) and analytic determination of p-values.

d Variable makings obtained with a maximum of five classes of x values (i.e., nX = 5) and Monte Carlo determination of p-vatues.

e Top-down correlation with variable rankings obtained with a maximum of five classes of x values (i.e., nX = 5) and analytic determination of
p-vatues.

down correlations for results obtained with the two griddings are also given in Table 10.5, with these correlations

ranging from 0.854 for (CMN: 1 x 5, CMN: 1 x 10) to 0.917 for (CIQ:2 x 5, CIQ:2 x 10).

The p-values used to identify important variables in Tables 10,1, 10,2 and 10.5 are calculated with statistical

assumptions that are not fully satisfied. For example, in the calculation of p-values for CCS, the sample from the x’s

consists of three pooled LHSS rather than a random sample (see Eqs. (2.1) - (2.3)), and neither the individual x’s nor

y = EO:WAS_PRES has a normal distribution. A Monte Carlo simulation can be used to assess if the use of formal

statistical procedures to determine p-values is producing misleading results. Specifically, 10,000 samples of the

form

(xk, yk), k=1,2, . ...300, (10.1)

can be generated by pairing the 300 values for x (i.e., the 300 values for the particular x under consideration

contained in the samples in Eqs. (2.1) - (2.3)) with the 300 predicted values for y (i.e., the 300 values for y that

resulted from the use of the sample elements in Eqs. (2.1) - (2.3)). The specific pairing algorithm used was to

randomly and without replacement assign an x value to each y value, which is similar to bootstrapping (Efron and
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Tibshirani, 1993) except that the sampling is being performed without replacement. This random assignment was

repeated 10,000 times to produce 10,000 samples of the form in Eq, (10.1). For a given procedure (i.e., CCS, RCCS,

CMNS, CLS, CMDS, CVS, CIQS or S1), each of the 10,000 samples can be used to calculate the value of the statistic

used to determine the corresponding p-value. The resulting empirical distribution of the statistic can then be used to

estimate the p-value for the statistic actually observed in the analysis. Comparison of the p-value obtained for a

given set of statistical assumptions with the p-value obtained from the empirical distribution of the corresponding

statistic provides an indication of the robustness of the variable rankings with respect to possible deviations from the

assumptions underlying the formal statistical procedures described in Sects. 3-7 for the determination of p-values.

For EO: WAS_PRES, the rankings of variable importance with p-values obtained from formal statistical

procedures (i.e., CC and RCC in Table 10.6 and CMN, CL, CMD, CV, CIQ and S1 in Table 10.5) and the ranking of

variable importance with p-values obtained from empirical distributions (i.e., CCMC and RCCMC in Table 10.6 and

CMNMC, CLMC, CMDMC, CVMC, CIQMC and SIMC in Table 10.5) are very similar. The largest difference is

in the assignment of tied ranks to the most important variables when the empirical distributions of p-values are used

(e.g., use of statistical procedures with CCS results in WMICDFLG, HALPOR and WGRCOR being ranked 1,2 and

3, and use of the empirical distribution of p-values results in these variables being ranked 2, 2 and 2). The tied ranks

with the empirical distributions arise because a sample of size 10,000 was used to generate these distributions, with

the result that 0.0001 is the smallest nonzero p-value that can be estimated. In contrast, much smaller nonzero

probabilities can be estimated with the formal statistical procedures from Sects. 3-7. Overall, the similarity between

the exact (i.e., statistically determined) and empirical p-values in Tables 10.5 and 10.6 is quite good, with the two

determinations of p-values producing almost identical rankings of variable importance except for the very small (i.e.,

< 10q) p-values. The associated top-down correlations range from 0.970 for (CMN: 1 x 5, CMNMC: 1 x 5) (Table

10.5) to 0.993 for (CV: 1 x 5, CVMC: 1 x 5) (Table 10.5). For perspective, a top-down correlation of 0.971 results

when 24 variables are under consideration, one procedure has ties (i.e., ranks of 2, 2, 2) on the variables assigned

ranks of 1, 2, 3 by the other procedure, and identical ranks are assigned to all other variables (e.g., see (CL:2 x 5,

CLMC:2 x 5) in Table 10.5 and (CC, CCMC), (RCC, RCCMC) in Table 10.6).

Approximate 100 (1 – CX)?ZOconfidence intervals for the empirically determined p-values are given by

P * ~1-~z [P(1 – PY~l 1’2>where P is the estimated p-value, n = Io,ooo is the sample size in use, and xl-alz is the

l–cd2 quantile of the normal distribution (e.g., 1.96 for a 9570 confidence interval (pp. 99-100, Method C, Conover,

1980)). For example, the approximate 95% confidence interval for p = 0.0815 (see SALPRES for CCMC in Table

10.6) is 0.0815 * 0.0054, with this interval including the statistically determined value of 0.0855. For most

procedures, the 95% confidence intervals on the empirically determined p-values include the statistically determined

p-values. The results for CVS tend to show less agreement between the formally and empirically estimated p-values

than is the case for the other procedures.
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Table 10.6

Variablea
Name

WMICDFLG
HALPOR
WGRCOR

ANHPRM
SALPRES
SHRGSSAT
WAS7VWCK
SHRBRSAT
ANHBCEXP
WFBETCEL
SHPRMCLY
HALPRM
SHPRMASP
WRBRNSAT
SHBCEXP
ANRBRSAT
WGRMICI
SHPRMCOIV
SHPRMDRZ
ANHBCVGP
WRGSSAT
ANRGSSAT
WGRMICH
SHPRMHAL

TDC

Comparison of Variable Rankings for y= EO:WAS_PRES Obtained with Correlation
Coefficients (CCS, RCCS) and Analytic Determination of pvalues with Rankincts Obtained
with Monte Carlo Determination of p-values

~cb CCMCC Variable RCC
KanK

1.0
2.0
3,0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

p-val

0,00Q0
O.m
O.omo
0.0241

0.0855

0,1553

0.2163

0.2226

0.2369

0.2770

0.5213

0.5767

0.6041

0.6444

0.6831

0.7237

0.7753

0.7878

0.7925

0.8084

0,8251

0.8834

0,9291

0.9474

0.971

KanK

2,0
2.0
2.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15,0
16.0
17.0
18.0
19.0
20.0
21,0
22.0
23,0
24,0

p-v al

O.OCQO
O.eooo
O.oeoo
0.0236
0.0815
0.1551
0.2200
0.2222
0.2379
0.2832
0.5264
0.5761
0.6192
0.6465
0.6875
0.7236
0.7772
0.7878
0.7990
0.8016
0.8279
0.8879
0.9247
0.9459

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SALPRES
SHRGSSAT
WFBETCEL
WASTWICK
SHRBRS.4T
SHPRMASP
ANHBCEXP
WRBRNSAT

HALPRM
SHPRMCLY
ANHBCVGP
SHBCEXP
SHPRMDRZ
SHPRMCON
SHPRMHAL
WGRMICI
WGRMICH
WRGSSAT
ANRBRSAT
ANRGSSAT

TDC

KaIIK

1,0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

p-val

O.OOOO

0.0000

0.0000

0.0268

0.0664

0.2322

0.2408

0.2726

0.3068

0.4201

0.4383

0.5519

0.6412

0.6812

0.7686

0.8486

0.8599

0.8618

0.8710

0.8940

0.9576

0.9848

0.9964

0.9991

0.971

RCCMC
Rank ‘‘ ‘

2.0
2.0
2.0
4.0
5,0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14,0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

p-val

o.oOco

O.0000

0.0000

0.0250
0.0634
0.2335
0.2469
0.2758
0.3056
0.4291
0.4352
0.5581
0.6419
0,6848
0.7654
0.8501
0.8596
0.8644
0.8785
0.8934
0.9559
0.9863
0.9973
0.9990

a Twenty-four (24) variables included in anrdysis; see Footnote b to Table 10.1.

b Vtiable fingS Obttined with anatytic determination of p-values.

c Variable rankings obtained with Monte Carlo determination of p-values.

d Top-down correlation between variable rankings obtained with analytic and Monte Carlo determination of p-values.

A possible variant of the common means (CMNS) testis to use logarithmically transformed y-values rather than

the original untransformed y-values (Sect. 5.1). Possible rationales for such a transformation are to reduce the

effects of extreme values on the estimated mean and to transform y into a variable that more closely follows a normal

distribution. For y = EO:WAS_PRES, use of the logarithmic transformation has little effect on the outcome of the

analysis, with both raw and log-transformed y’s resulting in the same assignment of ranks to the top four variables

(i.e., WIWICDFLG, HALPOR, WGRCOR, ANHPRM) (Tables 10.5, 10.7).

A possible variant of the common variances (CVS) testis to use tqzas defined in Eq. (6.4) rather than as defined

in Eq. (6.3). The rationale for the use of logarithms in Eq. (6.4) is to reduce the effects of extreme values and thus

produce more stable variance estimators. For y = EO:WAS_PRES, use of tqlas defined in Eq. (6.4) rather than Eq.

(6.3) had little effect on the outcome of the analysis, with both definitions of tql resulting in the selection of

WMICDFLG, ANHPRM, HALPRM and WGRCOR as the top four variables (Tables 10.5, 10.7). Further, both

definitions are failing to identify the important effects associated with HALPOR (Fig. 2.3).
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Table 10.7 Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with Use of Logarithmsa for y = EO:WAS_ PRES, the Variables in Table 2.2,b and a
Maximum of Five Classes of Values for Each Variable (i.e., rzX= 5)C

Variable CMN: Log, 1 x 5 CMNMC: Log,l X 5
Name Rank p-Val Rank p-Val

WMICDFLG 1.0 0.0000 2.0 0.0000
HALPOR 2.0 0.0000 2.0 0.0000
WGRCOR 3.0 0,0000 2.0 0.0000

ANHPRM 4.0 0.0085 4.0 0.0112

Variable CV: Log,l X 5 CVMC: Log, 1 X 5
Name Rank p-Val Rank p-Val

WMICDFLG 1.0 0.0000 1.0 0.0000
ANHPRM 2.0 0.0151 2.0 0.0100
WGRCOR 3.0 0.1051 3.0 0.0672
HALPRM 4.0 0.1116 4.0 0.0786

a @ Y~ instead of Yk in Eq. (5.1) for common means (CMNS) ~d Q ~ defined in %. (6.4) rather th~ as defined in f%. (6.3) for common
variances (CVS); for each test; table contains variables with p-vahres less than 0.1.

b Scc Footnote b, TabIe 10.1,

c See Footnote c, Table 10.1.

10.2 Brine Inflow under Undisturbed Conditions: y = EO:BRAALZC

The variable y = EO:BRAALIC was included as an example because a nonlinear but monotonic relationship

appears to exist between EO:BRAALZC and several of the sampled variables (Sect. 2). Thus, procedures that can

identify monotonic relationships should work well with EO:BRAALZC as indicated by the regressions with raw data

(R2 = 0.50) and rank-transformed data (R2 = 0.87) in Table 2.3. All analysis procedures except CVS identified

ANHPRM and WMICDFLG as the two most important variables, with the variables assigned ranks 1 and 2 changing

from test to test (Table 10.8). The scatterplots for both ANHPRM and WMICDFLG show strong relationships with

EO:BRAALIC (Fig. 2.4). The CVS test assigned rank 2 to SHPRMCON with a p-value of 0.0426, with this variable

also being assigned a p-value ‘of 0.0057 and a rank of 3 from the CMNS test. No other tests indicated an effect for

this variable, which is consistent with the corresponding scatterplot (Fig. 10.2). Rank 3 was assigned to HALPRM

for tests based on RCCS (p-value = 0.0014), CLS (p-value = 0.0019), CMDS (p-value = 0.0050) and S1 (p-value =

0.05 17), with the corresponding scatterplot showing little discernible pattern (Fig. 10.2). Rank 4 was assigned to

WGRCOR by CCS (p-value = 0.0048), RCCS @-value = 0,0057), CMNS (p-value = 0.0636) and CLS @-value =

0.0427), with the corresponding scatterplot indicating a slight tendency for EO:BRAALIC to decrease as WGRCOR

increases (Fig. 2.4). There seems to be little discernible pattern to the ranks assigned to the remaining variables in

Table 10.8.
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Table 10.8 Comparison of Variable Rankings with Different Analysis Proceduresa for y= EO:BRAAL/C,
the Variables in Table 2.2,b and a Maximum of Five Classes of x Values (i.e., nX= 5)C

Variable

Named

ANHPRM
WA41CDFLG
WASTWICK

WGRCOR
ANHBCEXP
WFBETCEL
WRBRNSAT

HALPOR
HALPRM

SHPRMDRZ

SHPRMCON
SHRGSSAT
WGRMICI
SHRBRSAT

Variable

Name

ANHPRM
WMICDFLG
WASTWICK
WGRCOR
ANHBCEXP
WFBETCEL
WRBRNSAT
HALPOR
HALPRM
SHPRMDRZ
SHPRMCON
SHRGSSAT
WGRA41CI
SHRBRSAT

cc

Rank p-val

1.0 0.0000
2.0 0.0000
3.0 0,0045
4.0 0.0048
5.0 0.0095
6.0 0.0555
7.0 0.0615
8.0 0.0934

11.0 0.2593
12.0 0.2910
14.0 0.3369
18.0 0.4767
21.0 0.5809
23.0 0.7329

CMD: 2 X 5
Rank p-Val

2.0 0.0000
1.0 0.0000

15.5 0.5467
5.0 0.0231

21.0 0.8088
15.5 0.5467
13.0 0.3883
4.0 0.0155
3.0 0.0050
6.0 0.0306

10.0 0.2674
8.0 0.0504

18.0 0.6868
7.0 0.0362

RCC

Rank p-Val

2.0 0.0000
1.0 0.0000
6.0 0.0405
4.0 0.0057

15.0 0.6490
8.0 0.2131

11.0 0.4046
5.0 0.0087
3.0 0.0014

22.0 0.8392
12.0 0.4170
14.0 0.5371
17.0 0.6663
10.0 0.2767

Cv: 1X5
Rank p-val

1.0 0.0078
13.0 0.4046

8.0 0.2961
5.0 0.2125
7.0 0.2321
6.0 0.2194

12.0 0.3851
20.0 0.5416
11.0 0.3596
24.0 0.7101

2.0 0.0426
17.0 0.5177
22.0 0.6096
18.0 0.5347

CMN:
Rank

1.0
2.0

6,0
4.0

13.0
5.0

11.0
19.0
7.0

21.0
3.0

14.0
20.0
22.0

CIQ:
Rank

1.0
2.0

10.0
13.5
22.5

8.0
7.0
6.0

24.0
22.5
17.0

3.0
4.0
5.0

1X5
p-Val

0.0000
0.0000
0,1062
0.0636
0.4467
0.0732
0.3483
0.5960
0.1105
0.6935
0.0057
0.5044
0.6466
0.6946

2x5
p-Val

0.0000
0.0000
0.3883
0.6868
0.9554
0.3084
0.2942
0.2805
0.9702
0.9554
0.8325
0.0628
0.0780
0.1395

CL: 1x5
Rank p-Val

2.0 0.0000
1.0 0.0000

16.0 0.4411
4.0 0.0427

19.0 0.7146
10.0 0.2299
12.0 0.2889

7.0 0.1431
3.0 0.0019
5.0 0.1060

11.0 0.2394
9.0 0.2139

21.0 0.8966
6.0 0.1174

SI: 5X5
Rank p-Val

2.0 0.0000
1.0 0.0000

15.0 0.5246
11.0 0.3644
21.0 0.7776
13.0 0.4186
14.0 0.4186
4.0 0.0698
3.0 0.0517
7.0 0.2202
8.0 0.2436
6.0 0.2056
9.0 0.2863
5.0 0.1917

a, b, c. d See Footnotes a, b, c, d to Table 10.1

Based on knowledge of the model in use, the ordering of variable importance associated with RCCS seems most

reasonable, with the signs of the RCCS for the variables ranked 1 through 6 (Table 10.9) corresponding to the effects

that these variables should have on EO:BRAALIC (i.e., whether EO:BRAALIC should increase or decrease as the

corresponding variable increases; see EIelton et al., 1998, for a discussion of the underlying physics). The

procedures that most closely match the variable rankings obtained with RCCS are based on CLS (TDC = 0.897),

CMDS (TDC = 0.913) and S1 (TDC = 0.838) (Table 10. IO) and are procedures that can be expected to perform

63



7.2 I 1 I I 7.2 I I I 1

Frame 10,2a
. .

Frame 10.2b

5.7 - 5.7 -

*O
~

.
4.2 -

‘E
4.2 -

0-
1

. < ●

2.7 - . a
E 2.7 - .
m

.+ 0 . .
w

. .
.

1.2 - “. % ..+
. ...+ 1,2 -

.
+ .

,. .
.

..+ . . . . ●

..% . ●.* ;. ●.* ●

. ..*”*.
+.* . .

,

● &T&”J##’ ..” ●
. ,

“ . . .“ ● “a+ -. ““ ““””+:.+. . . ●

**.+. ,0++” ..* 6 ““ “ “..*<. .

“: ● ‘.ti” :A”%!!
●-+ ● .:.:”.&Jy “:4 . . ,.._.: ~ ~.. .

&?&&Astzs2”.%%*%W b . -• 19. z%~$d”:

-0.3 I I -0.3
-20.6 -19.9 -19.2 -18.5 -17.8 -17.0 -24.1 -23.5 -22.8 -22.2 -21.5 -20.9

SHPRMCON, log m2 HALPRM, log mz
TRI-6342-5747-1

Fig. 10.2 ScatterPlots for EO:BRAALIC versus SHPRMCON and HALPRM.

reasonably well in the presence of nonlinear but monotonic relations. The top-down correlation for RCCS and CCS

is 0.729 (Table 10.10). Procedures based on measures of dispersion have the poorest agreement with variable

rankings based RCCS (i.e., CVS with TDC = 0.301, CIQS with TDC = 0.531) (Table 10.10). Rankings of variable

importance based on CCS, SRCS and PCCS are similar, with the rankings based on SRCS and PCCS being identical

(Table 10.9). In like manner, rankings based on RCCS, SRRCS and PRCCS are similar, with the rankings based on

SRRCS and PRCCS being identical (Table 109). The associated top down correlations are correspondingly high

(i.e., 0.980 for (CC, SRC), (CC, PCC) and 0.912 for (RCC, SRRC), (RCC, PRCC)) (Table 10.10).
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Table 10.9 Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y= EO:Bt?AALIC

Variablea
Name

ANHPRM
WMICDFLG

WASTWICK

WGRCOR

ANHBCEXP

WFBETCEL

WRBRNSAT

HALPOR

Variableb
Name

WMICDFLG

ANHPRM
HALPRM
WGRCOR

HALPOR

WASTWICK

p-Val

0.0000
0.0000

0.0045

0.0048

0.0095

0.0555

0.0615

0.0934

p-Val

0.0000

0.0000
0.0014
0.0057
0.0087

0.0405

cc
Rank Value

1.0 0.5655
2.0 –.3210
3.0 -.1639
4.0 -.1628
5.0 –.1497
6.0 –.1105
7.0 –. 1080
8.0 –.0969

SRC
Rank Value

1.0 0.5568
2.0 –.2931
4.0 –.1451
3.0 –.1669
5.0 –.1155
8.0 -.0757
9.0 -.0733
6.0 –.0993

Pcc
Rank Value

1.0 0.6317
2.0 –.3878
4.0 –.2075
3.0 -.2370
5.0 -.1663
8.0 -.1098
9.0 –.1065
6.0 –, 1435

RCC
Rank Value

1.0 -.6521
2.0 0.5804
3.0 0.1850
4.0 -.1598
5.0 –.1518
6.0 –.1185

SRRC
Rank Value

1.0 -.6533
2.0 0.5937
5.0 0.1443
4.0 –.1509
3.0 –.1539
7.0 –.0948

PRCC
Rank Value

1.0 -.8787
2.0 0.8619
5.0 0.3817
4.0 -.3963
3.0 –.4031
7.0 –.2617

a, b See Footnotes a, b to Table 10.2

As for EO: WAS_PRES, an investigation was carried out to determine if the analysis results obtained for

EO:BRAALJC are sensitive to the partitioning selected for use (i.e., the values for nX and nlo. In particular, the

analysis was repeated with nX = 10 for CMS, CLS, CMDS, CVS, CIQS and S1, and nY = 10 for S1 (Table 10.11). As

indicated by examination of scatterplots, the two most important variables with respect to EO:BRAALZC are

AAY?PRM and WMICDFLG (Fig. 2.4). With the exception of CVS, all tests (i.e., CMNS, CLS, CMDS, CIQS, S1)

identified ANHPRM and WMICDFLG as the two most important variables with grids based on both nX = 5 and nX =

10 (Table 10.11). After these two variables, there is some jumping around in the rankings assigned to the individual

variables, although there is sufficient similarity in the results obtained with nX = 5 and nX = 10 to produce top down

correlations that are close to or above 0.9 (Table 10.11). ScatterPlots indicate that, after ANHPRM and

WMICDFLG, none of the remaining variables have a very strong effect on EO:BRAALIC (Figs. 2.4, 10.2), with the

result that the tests are failing to find discernible patterns after these two variables.
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Table 10.10 Top DowrI Correlation Matrix for Variable Rankings with Different Analysis Pr(
y= EO:BRAALJC, Variables included in Table 10.8,a and a Maximum of Five [

values (i.e., nX = 5)

Top-Down Correlation Matrix

RCC 0.729
CMN 0.841
CL 0.589
CMD 0.573
Cv 0.623
CIQ 0.581
S1 0.455
SRC 0.980
Pcc 0.980
SRRC 0.711
PRCC 0.711

cc

RCC 0.004
CMN 0.001
CL 0.017
CMD 0.019
Cv 0.012
CIQ 0.018
S1 0.050
SRC 0.000
Pcc 0.000
SRRC 0.005
PRCC 0.005

cc

0.721
0.897
0.913
0.301
0.531
0.838
0.728
0.728
0.912
0.912

RCC

0.005
0.001
0.000
0.139
0.028
0.001
0.004
0.004
0.001
0.001

RCC

0,626
0.606
0.820
0.584
0.531
0.839
0.839
0.679
0.679

CMN

0.012
0.014
0.002
0.018
0.028
0.001
0.001
0.007
0.007

CMN

0.971
0.199
0.526
0.908
0.618
0.618
0.808
0.808

CL

0.157
0.556 0.285
0.952 0.072 0.651
0.612 0.630 0.588 0.476
0.612 0.630 0.588 0.476
0.877 0.242 0.618 0.817
0.877 0.242 0.618 0.817

CMD CV CIQ S1

Top-Down Correlation Matrix p Values

0.000
0.237
0.029
0.001
0.013
0.013
0.002
0.002

CL

0.286
0.023
0.000
0.014
0.014
0.001
0.001

CMD

0.152
0.398 0.009
0.012 0.017
0.012 0.017
0.192 0.013
0.192 0.013

Cv CIQ

0.043
0.043
0.002
0.002

S1

1.000
0.751
0.751

SRC

0.000
0.003
0.003

SRC

0.7!
0.7:

Pc(

0.0(
0.0(

Pc(

a Same as Footnote a to Table 10.4 except for use of 14 variables from Table 10.8

The p-values used to identify important variables in Tables 10.8, 10.9 and 10.11 are calculated I

assumptions that are not fully satisfied. As described in conjunction with Eq. (10.1), a Monte Carlo 1

be used to assess if the use of formal statistical procedures to determine p-values is producing misle

The p-values based on formal statistical procedures and on Monte Carlo procedures are very sim

associated variable rankings having top-down correlations between 0.987 and 0.995 (i.e., CC and I

10.12 and CMN, CL, CMD, CV, CIQ and S1 in Table 10.11). The primary difference is that the rr

variables (i.e., ANHPRM and WMICDFLG) tend to be assigned tied-ranks (i.e., 1.5) in the Monte Car

66



Table 10.11 Comparison of Variable Rankings for y= EO.WL4AL/C Obtained with a Maximum of Five

VatiableZ
Nnme

ANHPRM
wMICDFLG
SHPRMCON
WGRCOR
WFBETCEL
WASTUVCK
HALPRM
SHBCEXP
SHPRMASP
ANHBCVGP
WRBRNSAT
WGRhflCH
ANHBCEXP
SHRGSSAT
SHPRMCLY
WRGSSAT
ANRBRSAT
SALPRES
HALPOR
WGRMICI
SHPRMDRZ
SHRBRSAT
ANRGSSAT
SHPRMHAL

TDC$

Viuiable
Name

WMICDFLG
ANHPRM
HALPRM
HALPOR
WGRCOR
SHPRMDRZ
SHRBRSAT
SHRGSSAT
ANRBRSAT
SHPRMCON
SHBCEXP
WGRMICH
WRBRNSAT
SALPRES
WFBETCEL
WASTWICK
ANHBCVGP
WGRMICI
SHPRMASP
SHPRMCLY
ANHBCEXP
ANRGSSAT
SHPRMHAL
WRGSSAT

Classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and
Analytic Determination of pvalues and (ii) a Maximum of Five Classes of x values (i.e., nX =

5) and Monte Carlo Determination of p-values

CMN 1X 5h CMN 1X 10C CMNMC 1X 5d Variable CL. 1X5 CL1X1O CLMC 1X 5

Rank

1.0
2.0
3.0
4.0
5.0
6,0
7.0
8.0
9,0

10.0
11,0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

l?-val

ooooo
O.ccoo
0.0057
0.0636
0.0732
0.1062
0.1105
0.1140
0.2745
0,2943
0,3483
0.4077
0.4467
0.5044
0.5192
0.5378
0.5595
0.5804
0.5960
0.6466
0.6935
0.6946
0.7033
0.7056

1.OQo

Rank

1.0
2,0
4,0

5.0
10.0

6.0
12.0

3.0
7.0

11.0
22.0

18.0

8.0
13,0

20.0
14,0

15.0
19.0

24.0
17.0

9.0
16.0
23.0
21.0

0.891

pval

0.0030
0.0000
0.0555
0.0723
0.2163
0.1085
0.4030
0.0120
0.1970
0.2943
0.8366
0.6346
0.1984
0.4492
0.7703
0.4570
0.4797
0.7158
0.9361
0,64380
0.2108
0.4925
0.9300
0.7932

Rank

1.5
1.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
22.0
21.0
24.0
23.0

/)-val Name

0.00J30
o.cm3
0.0036
0.0506
0.0572
0.0856
0.0961
0.0995
0.2729
0.3063
0.3482
0.4135
0.4678
0.5274
0.5396
0.5649
0.5871
0.6108
0.6414
0,6749
0.7337
0.7303
0.7447
0.7421

WMICDFLG
ANHPRM
HALPRM
WGRCOR
SHPRMDRZ
SHRBRSAT
HALPOR
SHBCEXP
SHRGSSAT
WFBETCEL
SHPRMCON
WRBRNSAT
WGRMICH
ANRBRSAT
SHPRMASP
WASTWICK
SALPRES
ANHBCVGP
ANHBCEXP
ANRGSSAT
WGRMICI
WRGSSAT
SHPRMHAL
SHPRMCLY

0.987 TDC

Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9,0

10.0
11,0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

J7-W

0.C1300
o.ow30
00319
0.0427
0.1060
0.1174
0.1431
0.1524
0.2139
02299
0.2394
0.2889
0.3021
0.3431
0.4066
0.4411
0.4535
0.4930
0.7146
0.8110
0.8966
0.9035
0.9367
0.9385

Rank

1.0
2.0
3.0
8.0
4.0
6.0

13.0
5.0
7.0
9.0

10.0
17.0
18.0
16.0
14,0
12.0
23.0
11.0
20.0
22.0
24.0
15.0
21.0
19.0

p-Val

O.0000
0.0000
0.0052
0.2368
0.0206
0.1781
0.5392
00441
0.1810
0,3390
0,3674
0.6731
0.6854
0.6694
0.5478
0.5178
0.9222
0.4930
0.7230
0.9036
0.9948
0.5638
0,8705
0.7203

Rank

1.5
1.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10,0
11.0
12.0
13.0
14.0
15,0
16.0
17.0
18.0
19,0
20.0
21.0
22,0
24,0
23.0

pVal

oOooo
0.QW3
0.0013
0.0438
0.1095
0.1166
0.1427
0.1532
0.2119
0.2328
0.2425
0.2865
0.3015
0.3455
0.4045
0.4363
0.4536
0.4914
0.7218
0.8081
0.9031
0.9085
0.9392
0.9387

1.303 0.941 0.987

CMD 2X5
Rank 1)-val

CMD 2 X 10
Rank /1-val

CMDMC: 2 X 5
Rank pVal

Variable
Name

Cv 1X5
Rmk p-val

Cvlxlo
Rank /)-val

CVMC 1X 5
Rank /J-val

1.0 0.0000
2.0 O.ocw
3.0 0.0050
4.0 0.0155
5.0 0.0231
6.0 0.0306
7.0 0.0362
8.0 0.05C4
9.0 0.1193

10.0 0.2674
11.0 0.2805
12.0 0,3084
13.0 0.3883
14.0 0.4060
15.5 0.5467
15,5 0.5467
17.0 0.6442
18.0 0.6868
19.0 0.7358
20.0 0.7603
21.0 0,8088
22.0 0.8781
23.5 0.9702
23.5 0.9702

1.0 O.omo
2,0 O.Cow
3,0 0.0089
8.o 0.1596
7.0 0.1271
4.0 0.0215
5,0 0.0282
9.0 0.1849

11.0 0.4559
14.0 0.5476
6.0 0.0856

15.0 0.6163
12,0 0.4814
22,0 0.8623
19.0 0.8043
23.o 0.8930
16.0 0.6442
2A.O 0.9429
17.0 0.7130
13.0 0.5075
20.5 0.8514
18.o 0.7792
20.5 0.8514
10,0 0.4311

1.5 O.ocoo
1,5 O.owo
3.0 O.wo
4,0 0.0169
5.0 0.0221
6.0 0.0275
7.0 0.0347
8.0 0.0486
9.0 0.1163

11,0 0.2796
10,0 0.2686
12.0 0.3028
13.0 0.3796
14.0 0.4157
16.0 0.5411
15.0 0.5313
17.0 0.5670
18.0 0.6800
19.0 0.7235
20.0 0.7669
21.0 0.8156
22.0 0.8679
24.0 0.9672
23.0 0.9658

ANHPRM
SHPRMCON
SHBCEXP
ANRBRSAT
WGRCOR
WFBETCEL
ANHBCEXP
WASTW[CK
ANHBCVGP
WRGSSAT
HALPRM
WRBRNSAT
WMICDFLG
SALPRES
WGRMICH
SHPRMCLY
SHRGSSAT
SHRBRSAT
SHPRMASP
HALPOR
SHPRMHAL
WGRMICI
ANRGSSAT
SHPRMDRZ

1.0 00078
2.0 0.0426
3.0 0.1463
4.0 0.1994
5.0 0.2125
6.o 0.2194
7.0 0.2321
8.o 0.2961
9.0 0,3250

10.0 0.352O
11.0 0.3596
12.0 0.3851
13.0 0.4046
14.0 0.4395
15,0 0.5077
16,0 0.5144
17.0 0.5177
18.0 0.5347
19.0 0.5412
20,0 0,5416
21.0 0.5895
22.0 0.6096
23.0 0.6631
24.0 0.7101

1.0 0.0010
7.0 0.2704
2.0 0.0329
5.0 0.1188
3.0 0.0995

13.0 0,4615
4.0 0.1165
6.0 0.2503
8.0 0.3250

10.0 0.3701
15.0 0.5053
21.0 0.5950
11.0 0.4046
9.0 0.3528

17.0 0.5556
22.0 0.6169
20.0 0.5888
14.0 0.4892
iz.o 0.4393
24.0 0.6974
18.0 0.5857
16.0 0.5070
23.0 0.6481
19.0 0.5875

1.0 O.coOo
2.0 0.0358
3.0 0.0774
4.0 0.1278
5.0 0.1424
6.0 0.1455
7.0 0.1697
8.0 0.2450

13.0 0.4487
9,0 0.3054

10.0 0.3129
11.0 0.3446
14.0 0,4577
12.0 0.4360
15.0 0,5798
17.0 0.5952
16.0 0.5915
18.0 0.6333
19.0 0.6552
20.0 0.6583
21.0 0.7538
22.0 0.8035
23.0 0.9119
24.0 0.9791

TDC 1.000 0.919 0.987 mc
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Table 10.11 (Cont.)

Variable

Name

ANHPRM
W.MICDFLG
SHRGSSAT
WGRMICI
SHRBRSAT
HALPOR
WRBRNSAT
WFBETCEL
ANHBCVGP
WASTWICK
SHPRMASP
SHPBMCLY
WGRCOR
WRGSSAT
SHBCEXP
ANRBRSAT
SHPRMCON
WGRMICH
ANRGSSAT
SALPRES
SHPRMHAL
SHPRMDRZ
ANHBCEXP
HALPRM

CIQ
Rank

1.0
2.0
3.0
4.0
5.0
6,0
7.0
!3.0
9.0
10,0
lL.O
12.0
13.5
13,5
15.0
16.0
17.0
18.0
19.0
20,5
20,5
22s
22,5
24.0

2x5
p-val

o.oOco
O.owo
0.0628
0.0780
0,1395
0.2805
0.2942
0.3084
0.3556
0.3883
0.4433
0.5690
0.6868
0.6868
0.7113
0.7847
0.8325
0.8781
0.8995
0.9197
0.9197
0.9554
0.9554
0.9702

CIQ:
Rank

1.0
2.0
4.0
6.0
13.0
3.0
8.0
15.5
9.0
12.0
11.0
5.0
19.5
15.5
7.0
18.0
17.0
19.5
21.0
23,5
22.0
14.0
23.5
10.0

2X1O
]J-vaI

O.cooo
O.0000
0.0856
0.1719
0.5341
0.0235
0.2803
0.6441
0.3556
0.5341
0.4559
0.1373
0.8930
0.6441
0.1849
0.8043
0.6579
0.8930
0.9429
0.9892
0.9669
0.6025
0,9892
0.4071

CIQMC:
Rank

1,5
1.5
3.0
4.0
5.0
6.0
7.0
9.0
8.0
10,0
11.0
12.0
13,0
14.0
15.0
16.0
17.0
18.0
19,0
21.0
20.0
23.0
22,0
24.0

2x5
p-Val

O.0000

O.CWO
0.0628
0.0757
0.1382
0.2710
0.2917
0,3089
0.2967
0,3859
0.4366
0.5724
0.6669
0.6693
0.7266
0.7634
0.8557
0.8769
0.8949
0.9202
0.9061
0.9476
0.9472
0.9751

TDC l.m 0.869 0.987

Variable
Nme

WMICDFLG
ANHPRM
HALPRM
HALPOR
SHRBRSAT
SHRGSSAT
SHPRMDRZ
SHPRMCON
WGRMICI
WGRMICH
WJGRCOR
SHBCEXP
WFBETCEL
WRBRNSAT
WASTWICK
ANHBCVGP
SHPRMASP
ANRBRSAT
WRGSSAT
SHPRMCLY
ANHBCEXP
SHPRMHAL
SALPRES
ANRGSSAT

TDC

S15X5
Rank /]-Val

1,0 oJ3c00
2.0 0.0W3

3.0 0.0517
4,0 0,0698
5.0 0.1917
6.0 0.2056

7,0 0.2202
8,0 0.2436
9.0 0.2863

10.0 0.3239
11.0 0.3644
12.0 0.4075
13.0 0.4186
14.0 0.4186

15,0 0,5246
16.0 0,5467
17.0 0.6111
18.0 0.7324

19.0 0.7440
20.0 0.7666
21.0 0.7776
22.0 0.7776
23.0 0.9326

24.0 0.9537

1.Xx)

SI: lox 10
Rank 1)-W

1.0 O.omo
2.0 0.0000
7.0 0.2313
6.0 0.2028
8.0 0.2786

14.0 0.5738
9.0 0.2955
3.0 0.0814

13.0 0.4075
20.0 0.8743
23.o 0.8975
12,0 0.3878
19,0 0.8034
21.5 0.8863
15.0 0.6767
4.0 0.1596

11.0 0.2955
16.0 0.7155
10.0 0.2955
5.0 0.1895

21.5 0.8863
17.0 0,7701
18.0 0.7870
24,0 0,9846

0.748

SIMC: 5 X 5
Rank /1-val

1.5 O.CKXN
1.5 O.m

3.0 0.0514
4,0 0.07C6
5,0 0.1898
6.0 0.2058

7.0 0.2221
8,0 0.2566

9.0 0.2825
10.0 0.3257
11.0 0.3641
12.0 0.4029
13.0 0.4175
14.0 0.4221
15.0 0.5217
16.0 0.5633
17.0 0.6044
18.0 0.7286

19.0 0.7470
20.0 0.7780

21.0 0.7856
22.0 0.7929
23.0 0.9354
24.0 0.9561

0.988

a, b, c, d, e see F~otn~tes a, b, c, d, e to Table 10.5.

because the sample size of 10,000 in use does not allow the estimation of p-values less than 0.0001; in contrast, the

formal statistical procedures allow the calculation of p-values less than 0.0001 and thus result in distinct ranks being

assigned to ANHPRM and WMZCDFLG.

A possible variant of the common means (CMNS) testis to use logarithmically transformed y-values rather than

the original untransformed y-values (Sect. 5.1 ). Use of both raw and logarithmically transformed variables results in

ANHPRA4 and WMICDFLG being selected as the two most important variables with respect to EO:BRAALIC (Tables

10.11, 10. 13). Use of logarithmically transformed variables with the CMNS test also results in the identification of

HALPRM as the third most important variable, with HALPRAZ also assigned a rank of 3 with RCCS, but effectively

missed by the CMNS test with raw data (i.e., a p-value of 0.1105 and a rank of 7) (Tables 10.11, 10.13). The CMNS

test with both raw and logarithmically transformed data assigns rank 4 to WGRCOR (Tables 10.11, 10.13). Thus, the

use of logarithmically transformed data with the CMNS test results in the identitlcation of one possibly important

variable (i.e., WGRCOR) missed with the use of raw data.

A possible variant of the common variances (CVS) testis to use tqlas defined in Eq. (6.4) rather than as defined

in Eq. (6.3). The logarithmic transformation associated with Eq. (6.4) results in a substantial improvement in that
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Table 10.12

Variable’

Name

AIVHPRM
WMICDFLG
WASTWICK
WGRCOR
ANHBCEXP
WFBETCEL
WRBRNSAT
HALPOR
WRGSSAT
WGRMICH
HALPRM
SHPRMDRZ
ANHBCVGP
SHPRMCON
SALPRES
SHBCEXP
AIVRGSSAT
SHRGSSAT
ANRBRSAT
SHPRMASF’
WGRMICI
SHPRMCLY
SHRBRSAT
SHPRMHAL

TD@

Comparison of Variable Rankings for y= I%J:BI?,4AL/C Obtained with Correlation
Coefficients (CCS, RCCS) and Analytic Determination of pvalues with Rankings Obtained
with Monte Carlo Determination of p-values

cd’
Rank

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

[2.0

13.0

14.0

15.0

16.0

17.O

18,0

19.0

20.0

21.0

22.0

23.0

24,0

p-val

O.0000
0.00Q0
0.0045
0.0048
0.0095
0.0555
0.0615
0.0934
0.1231
0.1749
0.2593
0.2910
0.2927
0.3369
0.3772
0.4396
0.4561
0.4767
0.4875
0.5725
0.5809
0.6051
0.7329
0.7958

0.987

CCMCC Variable

Rank

1.5
1.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
17.0
16.0
19.0
18.0
20.0
21.0
22.0
23,0
24.0

p-Val

O.0000
0.0000

0.0022
0.0029
0.0115
0.052.8
0.0585
0,0947
0.1284
0.1840
0.2664
0.2983
0.3063
0.3375
0.3940
0.4520
0.4504
0,4948
0.4829
0.5916
0.5987
0.6157
0.7371
0.8000

Name

WMICDFLG
ANHPRM
HALPRM
WGRCOR
HALPOR
WASTWICK
SALPRES
WFBE’ITEL
SHPRMASP
SHRBRSAT
WRBRNSAT
SHPRMCON
ANHBCVGP

SHRGSSAT
ANHBCEXP
SHBCEXP
WGRMICI
ANRGSSAT
WRGSSAT
SHPRMCLY
ANRBRSAT

WGRMICH
SHPRMHAL

TDC

RCC
Rank

1.0

2.0

3.0

4.0

5,0

6.0

7.0

8.0

9.0

10.0

11,0

12,0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

21,0

22.0

23.0

24.0

p-Val

o.000i3

O.OQOO

0.0014

0.0057

0.0087

0.0405

0.1107

0.2131

0.2168

0.2767

0.4046

0.4170

0.4930

0.5371

0.6490

0.6617

0.6663

0.6666

0.7237

0.8111

0.8156

0.8392

0.8513

0.8619

0,988

RCCMC

Rank

1.5

1.5

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12,0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

21.0

22.0

23.0

24.0

p-Val

O.oom
O.OCQO
o.oilo9
0.0044
0.0Q84
0.0401
0.1105
0.2107
0.2194
0.2726
0,4002
0.4224
0.4914
0.5434
0.6547
0.6576
0.6604
0.6639
0.7247
0.8101
0.8137
0.8466
0.8479
0.8632

a, b, c, d See Footnotes a, b, c, d in Table 10,6.

Table 10.13 Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with Use of Logarithmsa for y= EO:BI?AJWC, the variables in Table 2.2,b and a
Maximum of Five Classes of Values for Each Variable (i.e., rtX = 5)C

Variable
Name

WMICDFLG
ANHPRM

HALPRM
WGRCOR
SHPRMDRZ

Variable
Name

ANHPRM
WMICDFLG
SHPRMCON
SHBCEXP
WASTWICK
ANRBRSAT
ANHBCEXP
WRBRNSAT
WFBETCEL
WGRMICH

a, b, c See Footnotes a, b, c to Table 10.7.

CMN: Log, 1.5
Rank p-val

1.0 0.0000
2.0 0.0000
3,0 0.0022
4.0 0.0284
5.0 0.0967

CV: Log,l .5
Rank p-Val

1.0 0.0000
2.0 0.0002
3.0 0.0019
4.0 0.0130
5.0 0.0144
6.0 0.0189
7.0 0.0290
8.0 0.0304
9.0 0.0754

10.0 0.0930

CMNMC: Log, 1 x5
Rank p-val

1.5 0.0000
1.5 0.0000
3.0 0.0022
4.0 0.0286
5.0 0.1029

CVMC: Log, 1 x5
Rank p-val

1.0 0.0000
2.0 0.0064
3.0 0.0403
4.0 0.1104
5.0 0.1140
6.0 0.1341
7.0 0.1699
8.0 0.1711
9.0 0.2968

10.0 0.3384
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WMICDFLG is now identified as an important variable (Table 10.13); in contrast, WMICDFLG was missed with raw

data as used in Eq. (6.3) (Table 10.11). The associated scatterplot indicates that WMICDFLG is a variable that

should be identified by any reasonable test (Fig. 2.4).

10.3 Repository Saturation under Disturbed Conditions: y = E2:WAS_SATB

The variable y = E2: WAS_SATB was selected as an example because the regression analyses with raw and rank-

transformed data were rather poor (i.e., R2 = 0.33 and 0.61, respectively), although the two most important variables

as indicated by scatterplots (i.e., BHPRM and WRGSSAT) do appear in both regression analyses (Table 2.3, Fig.

2.5). Given the strong patterns displayed in the scatterplots for BHPRM and WRGSSA T and the discernible but less

strong patterns associated with ANHPRM and HALPOR (Fig. 2.5), procedures that can identify patterns that result

from the interaction of two or more variables should work well for E2: WAS_SATB. In particular, analyses of

variable importance based on RCCS, CLS, CMDS and S1 identified BHPRM and WRGSSA T as the two most

important variables (Table 10. 14). Analyses based on CCS, CMNS and CVS identified BHPRM as the most

important variable, but did not identify WRGSSAT as the second most important variable; in contrast, CIQS identified

WRGSSAT as the most important variable and identified BHPRM as the third rather than second most important

variable (Table 10. 14). Further, CIQS identified WGRCOR as the second most important variable (Table 10.14),

which seems to be inconsistent with the weakness of the pattern appearing in the associated scatterplot (Fig. 10.3)

and also the rankings assigned to WGRCOR by other procedures (Table 10.14). The test based on CVS did not

identify WRGSSAT (i.e., a p-value of 0.1750 and a rank of 9) (Table 10. 14).

Given the insights gained from the results of all of the analysis techniques, CCS and RCCS appear to have

identified the three dominant variables affecting E2: WAS_SA TB (i.e., BHPRM, WRGSSAT, AI?HPRM) (Table

10, 14). However, given the low R2 values associated with the corresponding regression models with raw and rank-

transformed data (Table 2.3), it would be difficult to place much faith in these identifications without results from

tests that are less dependent on linear regression models (i.e., CLS, CMDS, CIQS, S1).

As previously observed for EO:WAS_PRES and EO:BRAALIC (Tables 10.2, 10.9), variable rankings for

E2: WAS_SATB with CCS, SRCS and PCCS are similar, with SRCS and PCCS producing identical variable rankings

(Table 10.15). A similar pattern also occurs for RCCS, SRRCS and PRCCS (Table 10. 15).

Top-down correlation provides a formal comparison of the variable rankings obtained with the different

procedures (Table 10. 16). A considerable amount of variability exists in the rankings obtained with the different

techniques. Rankings based on S1, CVS and CIQS appear to have the least agreement with the rankings obtained with

other procedures.
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Table 10.14 Comparison of Variable Rankings with Different Analysis Proceduresa for
Y= E2: WAS_ SATB, the Variables in Table 2.2,b and a Maximum of Five Classes of x
Values (i.e., nX = 5)C

Variabled

Name

BHPRM
ANHPRM
HALPOR
WGRCOR

WRGSSAT
WMICDFLG

WGRMICH
SHPRMHAL
WRBRNSAT
ANRBRSAT
SHPRMCLY
SHPRMCON

Variable

Name

BHPRM
ANHPRM
HALPOR
WGRCOR
WRGSSAT
WMICDFLG
WGRMICH

SHPRMHAL
WRBRNSAT
ANRBRSAT
SHPRMCLY
SHPRMCON

Rank
cc

p-Val

RCC

Rank p-val
CMN: 1 X 5

Rank p-Val
CL:

Rank
1X5

p-Val

1.0
2.0
3.0
4.0

5.0
6.0
7.0
8.0

11.0
15.0
21.0
23.0

0.0000
0.0000
0.0006
0.0017
0.0081
0.0214
0.0838
0.0996
0.2350
0.6402
0.9020
0.9478

1.0 0.0000
3.0 0.0001
5.0 0.0269
6.0 0.1446
2.0 0.0000
7.0 0.1745
8.0 0.1842
4.0 0.0225

13.0 0.4950
20.0 0.6645
16.0 0.6137
19.0 0.6549

1.0 0.0000
2.0 0.0000
4.0 0.0124
6.0 0.0296
5.0 0.0143
7.0 0.0317
3.0 0.0021

10.0 0.1586
8.0 0.0801

19.0 0.7070
11.0 0.1743

9.0 0.1149

1.0
3.0

12.0
11.0

2.0
10.0
4.0
8.0
6.0

13.0
7.0
5.0

0.0000
0.0001
0.3437
0.3179
0.0000
0.2824
0.0059
0.1528
0.0270
0.3977
0.0972
0.0202

CMD: 2 x 5
Rank p-Val

CV: 1X5
Rank p-Val

CIQ: 2 X 5

Rank p-Val
SI:

Rank
5x5

p-Val

1,0 0.0000
3.0 0.0003

23.5 0.8557
13.0 0.5037

2.0 0.0000
8.0 0.2187
4.0 0.0130
6.0 0.0218

12.0 0.3883
17.0 0.6868
7.0 0.1627
5.0 0.0206

1.0 0.0000
2.0 0.0000
3.0 0.0011
5.0 0.0067
9.0 0.1750
6.0 0.0114
4.0 0.0050
7.0 0.1122
8.0 0.1749

25.0 0.9798
21.0 0.7874
22.0 0.8224

3.0 0.0054
4.0 0.0628
6.0 0.1324
2.0 0.0019
1.0 0.0000

15.0 0.5134
7.0 0.2311

11.0 0.4628
25.0 0.9825

8.0 0.2674
16.0 0.5467
10.0 0.3546

2.0
3.0
7.0
6.0
1.0
8.0
5.0

10.0
9.0
4.0

16.0
12.0

0.0000
0.0002
0.1328
0.1010
0.0000
0.1542
0.0564
0.2278
0.2128
0.0495
0.5739
0.4075

a, c, d See Foo@otes a, b, c to Table 10.1

b Same as Footnote b to Table 10.1 except that BHPRM is used in the calculation of E2 results (i.e., E2: WAS_SATB and
E2; WAS_PRES) and so was included as an independent variable, which resulted in 25 variables (i.e., x’s) for analysis with each
procedure.

As fOr EO:WAS_PRES and EO:BRAALIC, an investigation was carried out for E2: WAS_SATB on the effects of

using nX = 10 rather than nX = 5 for CMNS, CLS, CMDS, CVS, CIQS and S1 and nY = 10 rather than nY = 5 for S1

(Table 10, 17). The results for the highest ranked variables for the two partitionings were similar, with CMNS, CLS,

CMDS, CIQS and S1 each identifying the same top 3 variables, although the identified variables were not necessarily

the same from test to test. For CVS, both partitionings yielded the same top two variables but produced different
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Fig. 10.3. Scatterplot for E2: WAS_SATB versus WGRCOR.

Table 10.15 Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y= E2:WAS.SATB

Variablea
Name p-Val

BHPRM 0.0000
ANHPRM 0.0000
HALPOR 0.0006
WGRCOR 0.0017

WRGSSAT 0.0081

WMICDFLG 0.0214

WGRMICH 0.0838
SHPRMHAL 0.0996

Variableb
Name p-Val

BHPRM 0.0000
WRGSSAT 0.0000

ANHPRM 0.0001
SHPRMHAL 0.0225

HALPOR 0.0269

cc
Rank Value

1.0 0.6029
2.0 0.2929
3.0 0.1980
4.0 –.1810
5.0 –.1530
6.0 –.1329
7.0 0.0998
8.0 –.0951

RCC
Rank Value

1.0 0.5989
2.0 -.4113
3.0 0.2299
4.0 –.1319
5.0 0.1280

SRC
Rank Value

1.0 0.5923
2.0 0.2950
4.0 0.1888
3.0 -.1891
5.0 -.1447
6.0 –.1357
7.0 0.0928
9.0 –.0831

SRRC
Rank Value

1.0 0.5904
2.0 –.3997
3.0 0.2260
5.0 –.1148
4.0 0.1315

Pcc
Rank Value

1.0 0.6812
2.0 0.4198
4.0 0.2832
3.0 –.2840
5.0 –.2211
6.0 –.2044
7.0 0.1437
9.0 –.1290

PRCC
Rank Value

1.0 0.7011
2.0 -.5534
3.0 0.3518
5.0 –. 1870
4.0 0.2136

a, b See Foomotes a, b in Table 10.2.
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Table 10.16 Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y= ,E2.1’VAS_SATB, Variables included in Table 10.14,a and a Maximum of Five Classes of
; values (i.e., nX = 5)

Top-Down Correlation Matrix

RCC 0.851
CMN 0.919
CL 0.643
CMD 0.640
Cv 0.947
CIQ 0.490
S1 0.551
SRC 0.988
Pcc 0.988
SRRC 0.876
PRCC 0.876

cc

RCC 0.002
CMN 0.001
CL 0.017
CMD 0.017
Cv 0.001
CIQ 0.052
S1 0.034
SRC 0.001
Pcc 0.001
SRRC 0.002
PRCC 0.002

cc

0.790
0.815
0.840
0.742
0.631
0.727
0.844
0.844
0.989
0.989

RCC

0.004
0.003
0.003
0.007
0.018
0.008
0.003
0.003
0.001
0.001

RCC

0.781
0.763
0.950
0,422
0.561
0.902
0.902
0.812
0.812

CMN

0.005
0.006
0.001
0.081
0.031
0.001
0.001
0.004
0.004

CMN

0.982
0.609
0.494
0.702
0.646
0.646
0.806
0.806

CL

0.602
0.503 0.267
0.706 0.363 0.840
0.647 0.926 0.530 0.557
0.647 0.926 0.530 0.557
0.830 0.762 0.655 0.732
0.830 0.762 0.655 0.732

CMD CV CIQ S1

Top-Down Correlation Matrix p Values

0.001
0.022
0.051
0.010
0.016
0.016
0.004
0.004

CL

0.023
0.048 0.188
0.010 0.115 0.003
0.016 0.001 0.039
0.016 0.001 0.039
0.003 0,006 0.015
0.003 0.006 0.015

CMD CV CIQ

0.032
0.032
0.008
0.008

S1

1.000
0.859
0.859

SRC

0.000
0.002
0.002

SRC

0.859
0.859 1.000

Pcc SRRC

0.002
0.002 0.000

Pcc SRRC

a Same as Footnote a to Table 10.4 except for use of 12 variables from Table 10.14.

variables with rank 3. After the top three variables, there was often considerable variability in the ranks assigned to

the remaining, and typically unimportant, variables. The least agreement between the variable rankings obtained

with the two partitionings occurred for S1 (i.e., a p-value of 0.746).

As previously described, the p-values used to identify important variables in Tables 10.14, 10.15 and 10.17 were

recalculated with a Monte Carlo procedure (Tables 10.17, 10.18). The p-values based on formal statistical

procedures and on Monte Carlo procedures are very similar, with the associated variable rankings having top-down

correlations between 0.972 and 0.999 (i.e., CC and RCC in Table 10.18 and CMN, CL, CMD, CV, CIQ and S1 in

Table 10. 17). As in previous comparisons, the primary difference is that the most important variables tend to be

assigned tied-ranks in the Monte Carlo simulation (e.g., 1.5 for BHPRM and ANHPRM for CCS in Table 10.18)

because p-values less than 0.0001 cannot be estimated with the sample size of 10,000 in use.



Table 10.17 Comparison of Variable Rankings for y = E2W..S_SATB Obtained with a Maximum of Five

Variablea

Name

BHPRM
ANHPRM
WGRMICH
HALPOR
WRGSSAT
WGRCOR
WMICDFLG
WRBRNSAT
SHPRMCON
SHPRMHAL
SHPRMCLY
HALPRM
WFBETCEL
SALPRES
wGRMICI
SHRBRSAT
SHPRMDRZ
ANHBCEXP
ANRBRSAT
SHRGSSAT
WAS7WICK
SHPRMASP
SHBCEXP
ANHBCVGP
ANRGSSAT

TDC$

Varible
Name

BHPRM
WRGSSAT
ANHPRM
WGRMICH
SHPRMCON
SHPRMHAL
SHPRMCLY
WJ’HCDFLG
SHPRMASP
ANHBCVGP
HALPRM
WRBRNSAT
WGRCOR
WASTWICK
SALPRES
ANRGSSAT
ANRBRSAT
SHPRMDRZ
SHRBRSAT
SHRGSSAT
WFBETCEL
WGR.i41CI
HALPOR
ANHBCEXP
SHBCEXP

TDC

Classes of x Values (i.e., nX : 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and
Analytic Determination of p-values and (ii) a Maximum of Five Classes of x values (i.e., nX =
5) and Monte Carlo Determination of p-values

CMN: 1 X 5b CMN 1 X 10C CMNMC 1 X 5d Variable

Rank p-val Rank p-val Rank p-val Name

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20,0
21,0
22,0
23,0
24.0
25.0

Ocoml
0.00C0
0.0Q21
0.0124
0.0143

0.0296
0.0317

0.0801
0.1149

0.1586
0.1743

0.2934

0.3777
0.4811

0,5114
0.5436
0.6611

0.6867
0.7070
0.7525

0.8552
0.8739
0.8842
0.8920
0.8929

1S300

CMD: 2 x 5
Rank

1.0
2.0

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

11.0
12,0
13.0

14.0
15.0

16.0
17.0
18.0

19.0
20.0

21.5
21.5
23.5
23.5
25.0

[>-val

0.00Q13
O.orm
0.00Q3
0.0130
0.0206
0.0218
0.1627
0.2187
0.2674
0.3556
0.3796
0.3883
0.5037
0.5467
0.5804
0.6626
0.6868
0.7113
0.7358
0.7603
0.7847
0.7847
0.8557
0.8557
0.9825

1.CQo

1,0
2.0

3.0
6.0
8.0
5,0

4.0

9.0
10.0

7.0
13.0

12.0
11,0

18,0
22,0

15.0
17.0

14.0
24.0
19.0

16.0
25.0
21.0
23.0

20.0

0.0000
O.oow
0.0053
0.0546
0.1113
0.0343
0.0317
0.1416
0.1673
0.0927
0.2772
0.2659
0.1777
0.5665
0.7911
0.4829
0.5339
0.3160
0.9389
0.6801
0.4959
0.9969
0.7797
0,8920
0.7163

0.962

CMD. 2 x 10
Rank

2.0
1.0

3.0

6.0
7.0

5.0
15.0

9.0
11,0

12.0

13.0
10.0

8.0
20.0
19.0
17.0
22.5

14.0
18,0
4.0

22.5
24.0
21.0
25.0

16.0

p-Val

O.ocoo
0.0303

0JX335
0.0856
0.1538

0.0669
0.5075
0.2187
0.3191

0.3556

0.3614
0.2803
0.2133
0.8043
0.7792
0.7532
0.8514

0.4686

0.7792
0.0519
0.8514
0.9281

0.8285
0.9558

0.6163

0,835

1.5
1.5

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10,0
11,0
12.0
13.0
14.0
15.0
16,0
17,0
18,0
19,0
20.0
21.0
22.0
23.0
25.0
24.0

O.lxloo
O.cooo
0.(K122

0.0116
0.0146
00294

0.0320
0.0791
0.1115

0.1593
0.1767

0.2880

0.3834
0.4812

0.5073
0.5453
0.6665

0.6886
0.7035
0.7626

0.8486
0.8728

0.8797
0.8930
0.8913

BHPRM
WRGSSAT
ANHPRM
WGRMICH
SHPRMCON
WKBRJVSAT

SHPRMCLY
SHPRMHAL
WASTWICK
WMICDFL.G
WGRCOR
HALPOR
ANRBRSAT
SHPRMDRZ
SHRBRSAT
WFBETCEL
WGRMtCI
HALPRM
ANRGSSAT
SALPRES
ANHBCEXP
SHBCEXP
SHPRMASP
ANHBCVGP
SHRGSSAT

0.988 TDC

CMDMC. 2 x 5
Rmk

1.5
1.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
12.0
11,0
13.0

14.0
15,0

16.0
17,0

18,0

19.0
21.0
22.0

20.0
24.0
23.0

25.0

p-Val

O.0000
0.W30

O.0001

0.0135
0.0207

0.0227
0.1639
0.2133
0.2585
0.2958

0.3982
0.3824
0.4932

0.5342
0.5807
0.6623
0.6653

0.7241
0.7470
0.7642

0.8025
0.7564

0.8566
0.8523

0.9827

0.988

Variable

Name

BHPRM
ANHPRU
HALPOR
WGRMICH
WGRCOR
WMICDFLG
SHPRMHAL
WRBRNSAT
WRGSSAT
SALPRES
HALPRM
WGRMICI
WFBETCEL
ANHBCEXP
ANHBCVGP
SHBCEXP
SHRGSSAT
SHRBRSAT
WASTWICK
SHPRMASP
SHPRMCLY
SHPRMCON
ANRGSSAT
SHPRMDRZ
ANRBRSAT

TDC

CLIX5 CL1X1O CLMC: 1 X 5
Rank ]>-val Rank p-Val Rank p-val

1,0
2.0

3.0
4.0
5.0

6.0
7.0

8.0
9.0

10.0
11,0

12.0
13.0
14.0

15.0
16.0
17.0

18.0
19.0
20.0

21.0
22.0

23.0
24.0
25.0

O.m
o.cocm3
O.0001
0.0059
0.0202
0.0270

0.0972
0.1528

0.2625
0.2824
0.3179

0.3437
0.3977
0.4990

0.5183
0.5450
0.5515

0.5728
0.7586
0.7684

0.8201
0.9120

0.9129
0.9133
0.9424

1.0
2,0

3.0
5.0
6.0
4.0

11.0

8,0
14.0

9.0
12.0

10.0

20.0
13.0

16.0
22.0
18.0

15.0
17.0
23.0
19.0
21.0
25.0
24,0

7.0

o.ocln3
O.0000
0JXM38
0,0289

0.0963
0.0132

0.3016
0.1902

0.3439
0.2824
0.3087

0.3014

0.6774
0.3203

0.5305
0.7402
0.5774

0.5070
0.5626
0.7880
0.6201
0.7133
0.9653
0.9133

0.1763

1.5

1.5

3.0
4.0
5.0

6.0
7.0

8.0
9.0

10.0
11,0

12,0

13.0
14.0

15.0
17.0
16.0
18.0
19.0

20.0
21.0
23.0
24.0
22.0
25.o

0.0000
0.0530
O.ml
0.0056
0.0165
0.0240

0.0932

0.1521
0.2632
0.2823
0.3154

0.3524
0.3941
0.4985

0.5152
0.5542

0.5445
0.5734
0.7587

0.7732
0.8244
0,9128
0.9136
0.9125
0.9418

1too 0.930 0.988

CV:IX5
Rank /)-val

1.0 O.m
2.0 0SW3

3.0 0.0011
4,0 0.0050
5.0 0.0367
6.0 0.0114
7,0 0.1122

8.0 0.1749
9.0 0.1750

10.0 0.2505
11,0 0.3132

12.0 0.3367
13,0 0.4874

14.0 0.5644
15.0 0.6458
16.0 0.6500
17.0 0.7043

18.0 0.7236

19.0 0.7404
20.0 0.7468

21.0 0.7874
22,0 0.8224

23.0 0.8434
24.0 0.8702

25.0 0.9798

Cv: 1 x 10
Rank p-val

1,0 0.0000

2.0 0S300Q

5.0 0.0059

3.0 0.0043
4.0 0.W358

6.0 0.0114
7.0 0.0765

17.0 0.6414
19.0 0.7157
10,0 0.2846
16.0 0.5702
22,0 0.8053

9.0 0.1947
8.0 0.1754

18.0 0.6458
11,0 0.3697
23,0 0.8563

15,0 0.5688
13.0 0.5142
24.0 0.9892

12.0 0.4471
14.0 0.5288
21.0 0.7810
20.0 0.7694

25.0 0.9997

CVMC: i X 5
Rank p-val

1.5 o.cx31Xl
1.5 0.W8XI

3.0 0.0022

4.0 0.@382
5.0 O.olco

6.0 0.0140

7.0 0.1208
8.0 0.1806
9.0 0.1828

10,0 0.2552
11.0 0.3153

12.0 0.3400
13.0 0.5039
14.0 0.5748
16,0 0.6444
15,0 0.6427
17.0 0.7147

18.0 0.7237
19.0 0.7340
20.0 0.7514

21.0 0.7893
22,0 0.8257

23.0 0.8462
24.0 0.8727

25.0 0.9794

1.Ooil 0.909 0.988
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Table 10.17 (Cont.)

V~riablc
Name

WRGSSAT
WGRCOR
BHPRM
ANHPRM
SHRBRSAT
HALPOR
WGRMICH
ANRBRSAT
SHRGSSAT
SHPRMCON
SHPRMHAL
SALPRES
SHPKMASP
HALPRM
WMICDFLG
SHPRMCLY
WASTWICK
WFBETCEL
ANRGSSAT
SHBCEXP
ANHBCVGP
ANHBCEXP
WGRMICI
SHPRMDRZ
WRBRNSAT

TDC

CIQ: 2 X 5
Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11,0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22,0
23.0
24,0
25.0

/)-val

Oaoco
0.0019
0.0354

0.0628
0.1257
0.1324

0.2311
0.2674

0.3232
0.3546

0.4628

0.4830
0.4830
0.5037

0.5134
0.5467

0,5467
0.5690
0.6387
0.6387

0.6442
0.7847
0.8995

0.9197
0.9825

I .ml

CIQ 2 x 10

Rank

1.0
2.0
3.0
6.0
7.5
4.0

14.0
15.0
7,5

10.0
20.5
13.0

17.0
12.0

16.0
18.0
23.0

5.0
20.5

9.0

19.0
22.0
24.0
11.0

25.0

p-val

o.oci30
0.0321
o.m63
0.2622
0.2803
0.1481
0.4814
0.5075
0.2803
0.3725
0.8043
0.4435
0.5749
0.4190
0.5134
0.6025
0.8930
0.1719
0.8043
0.2993
0.6442
0.8729
0.9114
0.3838
0.9761

0.872

CIQMC: 2 X 5 V~riable
Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
19.0
20.0
21.0
18.0
22.0
23.0
24.0
25.0

17-Val

O.cwo
0SY312
0,0355
0.0670
0.1209
0.1317
0.2359
0.2613
0.3186
0.3661
0.4584
0.4870
0.49C4
0.5101
0.5185
0.5455
0.5578
0.5747
0.6237
0.6496
0.5633
0.8CS38
0.8932
0.9152
0.9777

Name

WRGSSAT
BHPRM
ANHPKM
ANRBRSAT
WGRMICH
WGRCOR
HALPOR
WMICDFLd
WRBRNSAT
SHPRMHAL
HALPRM
SHPRMCON
SHRBRSAT
WFBETCEL
WGRMIC[
SHPRMCLY
SHRGSSAT
ANHBCEXP
SHPRMASP
SALPRES
ANRGSSAT
WASTWICK
ANHBCVGP
SHPRMDRZ
SHBCEXP

0.999 TDC

SISX5
Rmk

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.5
17.5
19.0
20.0
21.0
22.0
23.0
24.0
25.0

p-Val

O.eceo
0.0300
oa302
00495
0.0564
0.1010
0.1328
0.1542
0.2128
0.2278
0.2436
0.4075
0.4414
0.4530
0.5369
0.5739
0,7885
0.7885
0.8197
0.8296
0.8296
0.8392
0.9197
0.9489
0.9537

1J300

s] 10x 10 SIMC 5 X 5
R~k

1.0
2.0
3.0

19.0
12.0
9.5
9.5
7.0

20.0
5.0

16.0
6.0

14.0
13.0
21.0
24.0
11.0
22,0
8.0

15.0
4.0

23.0
18.0
25.0
17.0

p-wll

ooooO
O.oeoo
0.0058
0.8034

0.4276
0.3310

0.3310
0.2502

0.8034
0.1129

0,7343
0.1129

0.6566
0.4687

0.8034
0.9079
0.3684
0.8616

0.29S5
0.7155

0.0103
0.8863

0.7792
0.9612

0.7701

0.746

Rank

2.0
2.0
2.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0

/]-vat

o.oOco
0.0330
Omoo
0.0451
0.056S
0.0963
0.1271
0.1508
0.2090
0.2289
0.2467
0.4150
0.4426
0.4611
0,5379
0.5780
0.7941
0.7979
0.8277
0.8326
0.8379
0.8396
0.9334
0.9458
0.9574

0.972

a Twenty-five (25) variables included in analysis; see Footnote b to Table 10.14.

b, C, d, e See F~~motes b, C, d, e to Table 10.5.

Again, a possible variant of the common means (CMNS) test is to use logarithmically transformed y-values

rather than the original untransformed y-values (Sect. 5.1 ). Use of both raw and logarithmically transformed

variables results in similar rankings of variable importance (Tables 10.17, 10.19). Thus, little is gained in the

analysis of E2: WAS_SATB with CMNS by the use of logarithmically transformed variables. Similarly, little change

in the outcome of the analysis for E2: WAS_SATB with CVS took place when tqlas defined in Eq. (6.4) rather than as

in Eq. (6.3) was used (Tables 10.17, 10.19).

10.4 Repository Pressure under Disturbed Conditions: Y = Z32:WAS_ZW13S

The variable y = E2: WAS_PRES was included as an example because regression analyses with raw and rank-

transformed data fail to identify the dominant variable BHPRA4 (Sect, 2). Thus, procedures that can identify

nonlinear, nonmonotonic relationships should work well with E2: WAS_PRES, which indeed turned out to be the case

(Table 10.20). In particular, tests based on CMNS, CL, CMDS, CVS, CIQS and S1 all identified BHPRM as the most

important variable affecting E2: WAS_PRES (Table 10.20), which is consistent with the strong pattern appearing in

the corresponding scatterplot (Fig. 2.6). In contrast, tests based on CCS and RCCS failed to identify BHPRM as an

important variable (i.e., p-values of 0.3651 and 0.1704 for CCS and RCCS, respectively) (Table 10.20). Further,
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Table 10.18 Comparison of Variable Rankings for y= .E2:14LAS_SATB Obtained with Correlation

Variablea
Name

BHPRM
ANHPRM
HALPOR
WGRCOR
WRGSSAT
WMICDFLG
WGRMICH
SHPRMHAL
SHRBRSAT
WGRMICI
WRBRNSAT.
SALPRE.S
SHPRMASP
ANHBCEXP
ANRBRSAT
SHRGSSAT
HALPRM
ANRGSSAT
WASTWICK
ANHBCVGP
SHPILWCLY
WFB.ETCEL
SHPRMCOIV
SHPRMDRZ
SHBCEXP

TDCO

Coefficients (CCS, RCCS) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values

~cb

Rank

1,0

2.0
3.0
4,0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19,0
20,0
21.0
22,0
23.0
24.0
25.0

p-val

O.COGO
O.m
0.C0Q6
0.0017
0sY381
0,0214
0.0838
0,0996
0.1791
0.1997
0.2350
0.3892
0.4801
0.4911
0.6402
0.6732
0.7348
0.7628
0.8393
0.8824
0,9020
0.9168
0,9478
0.9823
0.9943

0.988

Rank

1.5

1.5

3.0

4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13,0

14.0
15,0
16.0
17,0
18.0
19.0
20.0
21,0
22.0
23.0
24.0
25.0

CCMCC Variable

p-Val

O.omo
0.C030
o.eoQ4
0,CQ20
0.C088
0.0227
0.0844
0.0998
0,1792
0.1989
0.2377
0.3903
0,4837
0.4945
0.6409
0.6780
0.7370
0.7655
0.8430
0.8865
0.9090
0.9204
0.9463
0,9824
0.9943

Name

BHPRM
WRGSSAT
ANHPRM
SHPRMHAL
HALPOR
WGRCOR
WMICDFLG
WGRMICH
ANRGSSAT
SHRBRSAT
SHRGSSAT
WFBETCEL
WRBRNSAT
SHPRMDRZ
WGRMICI
SHPRMCLY
SALPRES
SHPRMASP
SHPRMCON
ANRBRSAT
SHBCEXP
ANHBCEXP
ANHBCVGP
HALPRM
WASTWICK

TDC

RCC RCCMC
KanK

1.0

2,0
3.0
4,0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18,0
19.0
20.0
21.0
22,0
23.0
24,0
25,0

p-v ai

O.0000
os3000
O,ooo1
0.0225
0.0269
0.1446
0.1745
0.1842

0.2751
0.2921
0.3784
0.4852
0.4950
0.4993
0,5517
0,6137
0.6140
0,6223
0,6549
0,6645
0.7907
0,8319
0.9131
0.9544
0.9832

0.972

p-v al

0.00Q0
0.QW3
O.0000
0.0207
0.0287
0.1480
0.1750
0.1885
0.2738
0.2911
0.3811
0.4958
0.4928
0.5025
0,5606
0.6144
0.6156
0.6167
0.6540
0.6620
0.7907
0.8380
0.9125
0.9569
0.9834

Rank ‘‘ “

2.0
2.0
2.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11,0
13,0
12,0
14,0
15.0
16.0
17.0
18.0
19,0
20,0
21.0
22.0
23.0
24.0
25.0

a Twenty-five (25) variables included in anatysis; see Foomote b to Table 10.14

b, c, d See Footnotes b, c, d to Table 10.6.

tests based on CMNS, CLS, CMDS, CVS, and S1 select the variables ranked 2 and 3 from HALPRM, ANHPRM and

WGRCOR, while the test based on CIQS assigns ranks 2 and 3 to WGRCOR and SHRGSSAT, respectively. As

indicated by the associated scatterplots, HALPRM, ANHPRM and WGRCOR show barely discernible patterns (Figs.

2.6, 10.4).

Variable rankings for E2: WAS_PRES based on CCS, SRCS and PCCS and also on RCCS, SRRCS and PRCCS are

the same (Table 10.2 1). However, these rankings are misleading because they do not include the dominant variable

BHPRM.

Due to the failure of CCS and RCCS to identify the dominant variable BHPRA4, there is less agreement as

indicated by top-down correlations between the variable rankings obtained with the various analysis procedures for

E2: WAS_PRES than is the case for EO:WAS_PRES, EO:BRAALIC and E2: WAS_SATB (i.e., compare the top-down

correlations and associated p-values in Tables 1[0.4, 10.10, 10.16 and those in Table 10.22). In particular, variable
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Table 10.19 Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with Use of Logarithmsa for y = E2: WAS_SATB, the Variables in Table 2.2,b and
a Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)c

Variable

Name

BHPRM
ANHPRM
WGRMICH
HALPOR
WMICDFLG

WGRCOR
WRGSSAT
WRBRNSAT

Variable

Name

BHPRM

ANHPRM
HALPOR
WGRCOR
WMICDFLG
WGRMICH
SHPRMHAL

CMN: Log,l x 5
Rank p-Val

1.0 0.0000
2.0 0,0000
3.0 0.0017
4.0 0.0072
5.0 0.0263
6.0 0.0284
7.0 0.0833
8.0 0.0914

CV: Log,l X 5
Rank p-val

1.0 0.0000
2.0 0.0107
3.0 0.0174
4.0 0.0190
5.0 0.0257
6.0 0.0537
7.0 0.0803

CMNMC: Log, 1 X 5
Rank p-Val

1.5 0.0000
1.5 0.0000
3.0 0.0022
4.0 0.0057
5.0 0.0254
6.0 0.0290
7.0 0.0801
8.0 0.0871

CVMC: Log,l X 10
Rank p-Val

1.0 0.0000
2.0 0.0112
4.0 0.0159
3.0 0.0153
5.0 0.0262
6.0 0.0418
7.0 0.0574

a See Footoote a, Table 10.7.

b See Footnote b, Table 10.14.

c See Footnote c, Table 10.1.

rankings with CMNS, CLS, CMDS CVS, CIQS and S1 are generally similar (Table 10.22). The exception is the

ranking based on CIQS, which shows top-down correlations of 0.429, 0.462 and 0.462 with the rankings obtained

with CMNS, CLS and CMDS (Table 10.22). Otherwise, the top-down correlations for the variable rankings obtained

with CMNS, CLS, CMDS, CVS, CIQS and S1 vary between 0.698 and 1.000 (Table 10.22). In contrast, there is little

relationship between the variable rankings obtained with CMNS, CLS, CMDS, CVS, CIQS and S1 and with CCS,

SRCS, PCCS, RCCS, SRRCS and PRCCS (Table 10.22).

An investigation of the effects of using nX = 10 rather than nX = 5 for CMNS, CLS, CMDS, CVS, CIQS and S1

and nY = 10 rather than nY = 5 for S1 was also carried out (Table 10.23). Each of the indicated procedures with

nX = 5 and nX = 10 identified BHPRM as the most important variable. Generally, ranks 2, 3 and sometimes 4 were

also assigned to similar variables, although the exact order was not always the same for nX = 5 and nX = 10. After

rank 4, there was considerable variability in the ordering of the variables with nX = 5 and nX = 10.
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Table 10.20 Comparison of Variable Rankings with Different Analysis Procedures for

y= E2:WAS_PRES, the Variables in Table 2.2,b and a Maximum of Five Classes of Values

for each Variable (i.e., nX =5)C

Variabled
Name

HALPRM
ANHPRM
HALPOR
SHPRMDRZ
ANHBCEXP
BHPRM
SHRGSSAT
ANRBRSAT
WGRCOR

Variable
Name

HALPRM
ANHPRM
HALPOR
SHPRMDRZ
ANHBCEXP
BHPRM
SHRGSSAT
ANRBRSAT
WGRCOR

cc
Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0090
6.0 0.1684
7.0 0.1786

10.0 0.3651
14.0 0.5958
19.0 0.7133
20.0 0.7676

CMD: 2 X 5
Rank p-Val

2.0 0.0000
3.0 0.0007
5.0 0.0700

17.0 0.6868
4.0 0.0595
1.0 0.0000

22.0 0.8325
6.0 0.0823

14.5 0.5249

RCC

Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0184
9.0 0.2417
8.0 0.2373
6.0 0.1704

12.0 0.3948
14.0 0.4378
17.0 0.6560

CV; IX5
Rank p-val

2.0 0.0014
24.0 0.9251

7.0 0.1410
4.0 0.0298

16.0 0.5178
1.0 0.0000

14.0 0.3905
22.0 0.7194

3.0 0.0296

CMN: 1 X 5
Rank p-Val

2,0 0.0000
3.0 0.0002
5.0 0.0415

13.0 0.4281
4.0 0.0405
1.0 0.0000

25.0 0.9511
7.0 0.1513

17.0 0.5428

CIQ: 2 X 5
Rank p-val

11.0 0.4530
12.0 0.4628
18.0 0.6151
13.0 0.5037
19.5 0.6868

1.0 0.0000
3.0 0.0289
4.0 0.0739
2.0 0.0130

CL: 1x5

Rank p-val

2.0 0.0000
3.0 0.0000
5.0 0.0940

12.0 0.3131
4.0 0.0602
1.0 0.0000

23.0 0.7738
7.0 0.1304
9.0 0.2242

S15X5
Rank Value

2.0 0.0002
4.0 0.0049

11.0 0.3142
17.0 0.6111
14.0 0.4414

1.0 0.0000
5.0 0.0698

10.0 0.2518
3.0 0.0002

a. b, c, d Sm F~~@otes a, b, c, d to Table 10.14.

The p-values used to identify important variables in Tables 10.20, 10.21 and 10.23 were recalculated with the

Monte Carlo procedure described in conjunction with Eq. (10.1) (Tables 10.23, 10.24). The rankings based on

analytic determination of p-values and on Monte Carlo determination of p-values are very similar, with the primary

difference being the tendency of the Monte Carlo simulation to assign tied ranks to the most important variables due

to an inability to estimate p-values less than 0.0001 with the sample of size 10,000 in use.

Again, a possible variant of the common means (CMNS) test is to use logarithmically transformed y-values

rather than the original untransformed y-values (Sect. 5.1). Use of both raw and logarithmically transformed

variables results in similar rankings of variable importance (Tables 10.23, 10.25). Thus, little is gained in the

analysis of E2: WAS_PRES with CMNS by the use of logarithmically transformed variables. In contrast, the analysis

for E2: WAS_PRES with CVS and tqlas defined in Eq. (6.4) with a logarithmic transformation rather than as in Eq.

(6.3) without a transformation performed poorly, with the analysis with tql as defined in Eq. (6.4) failing to identify

the dominant variable BHPRA4. Thus, the use of the logarithmic transformation in Eq. (6.4) has the potential to

improve the performance of the CVS test as it did for EO:BRAALZC (Tables 10.11, 10.13) and also the potential to

degrade performance as is the case for E2:wAS._PRES.
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Fig, 10.4. Scatterplot for E2: WAS_PRES versus WGRCOR.

Table 10.21 Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y= E2: WAS.PRES

Variablea cc SRC Pcc
Name p-Val Rank Value Rank Value Rank Value

HALPRM 0.0000 1.0 0.3754 1.0 0.3682 1.0 0.3934
ANHPRA4 0.0000 2.0 0.2497 2.0 0.2341 2.0 0.2632
HALPOR 0.0090 3.0 0.1508 3.0 0.1511 3.0 0.1730

Variablea RCC SRRC PRCC
Name p-Val Rank Value Rank Value Rank Value

HALPRM 0.0000 1.0 0.3591 1.0 0.3612 1.0 0.3868
ANHPIWl 0.0000 2.0 0.2447 2.0 0.2388 2.0 0.2673
HALPOR 0.0184 3.0 0.1363 3.0 0.1412 3.0 0.1618
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Table 10.22 TOD Down Correlation Matrix for Variable Rankings with Different Analvsis Procedures for

RCC
CMN
CL
CMD
Cv
CIQ

S1
SRC

Pcc

SRRC

PRCC

RCC
CMN
CL
cm
Cv
CIQ
S1
SRC
Pcc
SRRC
PRCC

y= E2:WAS_PRES, Variables included in Table 16.20,a and a Maximum of Five Classes of

x values (i.e., nX = 5)

Top-Down Correlation Matrix

0.967
0.398
0.378
0.378
0.097
–.427
0.144
0.990
0.990
0.967
0.967

cc

0.003
0.130
0.143
0.143
0.392
0.886
0.342
0.003
0.003
0.003
0.003

0.577
0.567
0.567
0.230
–.248
0.342
0.975
0.975
1.000

1.000

RCC

0.051
0.055
0.055
0.257
0.759
0.167
0.003
0.003
0.002
0,002

0.997
0.997
0.698
0.429
0.798
0.423
0.423
0.577
0.577

CMN

0.002
0.002
0.024
0.113
0.012
0.116
0.116
0.051
0.051

1.000
0.706
0.462

0.826
0.408

0.408

0.567

0.567

CL

0.706
0.462 0.715

0.826 0.850 0.816
0.408 0.072 -.438 0.149
0.408 0.072 -.438 0.149 1.000

0.567 0.230 -.248 0.342 0.975 0.975

0.567 0.230 -.248 0.342 0.975 0.975 1.000

CMD CV CIQ S1 SRC Pcc SRRC

Top-Down Correlation Matrix p Values

0.002
0.023 0.023
0.096 0.096 0.022

0.010 0.010 0.008 0.011
0.124 0.124 0.420 0.892 0.337
0.124 0.124 0.420 0.892 0.337 0.002
0.055 0.055 0.257 0.759 0.167 0.003 0.003
0.055 0.055 0.257 0.759 0.167 0.003 0.003 0.002

cc RCC CMN CL CMD CV CIQ S1 SRC Pcc SRRC

a Sameas Footnotea to Table 10.4exceptfor use of 9 vaxiablesfromTable 10.20.

\
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Table 10.23 Comparison of Variable Rankings for y = E2: WAS_PRES Obtained with a Maximum of Five

VariableA

Name

BFfPRM
HALPRM
ANHPRM
ANHBCEXP
HALPOR
ANHBCVGP
ANRBRSAT
SHBCEXP
WMICDFLG
WGRMICH
WRBRNSAT
SHPRJWASP
SHPRMDRZ
SHPRMCLY
SHPRMHAL
WASTWICK
WGRCOR
WGRMICI
SHPRMCON
SALPRES
ANRGSSAT
WRGSSAT
SHRBRSAT
WFBETCEL
SHRGSSAT

TD@

variable
Name

BHPRM
HALPRM
ANHPRM
ANHBCEXP
HALPOR
ANRBRSAT
WMICDFLC
SHPRMASP
WGRMICH
WASTWICK
WRBRNSAT
SHBCEXP
ANHBCVGP
SHPRMCON
WGRCOR
SHPRMCLY
SHPRMDRZ
WGRMICI
SHPRMHAL
ANRGSSAT
SHRBRSAT
SHRGSSAT
SALPRES
WFBETCEL
WRGSSAT

classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., rzX = 10) and

Analytic Determination of ~values and (ii) a Maximum of Five Classes of x values (i.e., rzX =

5) and Monte Carlo Determination of p-values

CMN: 1x 5h CMN: 1 X IOC CMNMC 1X 5d Variable CL 1X5 CL lXIO
Rank

1.0
2.0

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10,0
11.0
12,0
13,0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25,0

/)-Val

O.m
O.owo
0.CQ02
0.0405
0,0415
0.1130
0.1513
0.1773
0.2308
0.3188
0.3232
0.3767
0.4281
0.4309
0.4949
0.5125
0.5428
0.5681
0.6443
0.6667
0.7824
0.7937
0.8724
0.9015
0.9511

1.CGo

Rank

1.0
2.0
3.0
9.0
7.0
4.0

15.0
10.0
13.0
22.0
14.0
18.0
11.0
16.0
25.0
17.0
12.0
5.0

23.0
8.0

19.0
21.0
20.0
6.0

24.0

1)-W

0.09XI
Oocoo
O.woo
0.2063
0.1914
0.1130
0.3538
0.2147
0.2308
0.6611
0.2593
0.4253
0.2218
0.4072
0.9026
0.4218
0.2308
0.1514
0.7664
0.2029
0.4343
0.5797
0.4427
0.1751
0.7887

0.805

Rank

1.5
1.5

3.0

4,0
5.0

6.0
7,0
8,0

9,0
11.0
10.0

{2.0
13,0
14.0

15.0
16,o

17.0
18.0

19.0
20.0

21,0
22,0
23.o

24.0
25.o

p-val

0.0303
O.cml
0.0002
0s3419
0.0438
0.1072
0.1513
0.1733
0.2303
0.3201
0.3141
0.3782
0.4321
0.4380
0.4940
0.5197
0.5423
0,5660
0.6446
0.6641
0.7804
0.7885
0.8731
0.8972
0.9555

Name

BHPRM
HALPBM
ANHPRM
ANHBCEXP
HALPOR
ANHBCVGP
ANRBRSAT
SHBCEXP
WGRCOR
WGRMICH
WRBRNSAT
SHPRMDRZ
WGRMICI
WASTWICK
WMICDFLG
SHPRMASP
SHPRMHAL
SALPRES
WRGSSAT
SHPRMCLY
SHPRMCON
ANRGSSAT
SHRGSSAT
WFBETCEL
SHRBRSAT

Rank

1.0

2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14,0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0

/J-val

0.0030
O.omo
0.0030
0.0602
0.0940
0.1099
0.1304
0,1919
0.2242
0.3022
0.3127
0.3131
0.3786
0.4201
0.4247
0,4655
0.5170
0.5210
0.6208
0.6326
0.6790
0,7276
0.7738
0.8482
0.9199

Rank

I .0
3.0
2.0

10.0
13.0
6.0

11.0
12.0
4,0

22.0
9.0
8.0
5.0

16,0
15,0
18,0
25.0
7.0

23.0
19.0
21.0
17.0
24.0
14.0
20.0

p-Val

O.0000
O.m
o.ofnN
0.2585
0.3454
0,1099
0.2851
0.2878
0.1035
0.6357
0.2214
0.2149
0.1036
0.4434
0.4247
0.4688
0.9158
0.1879
0.6534
0.5135
0.6139
0.4525
0.6920
0.3540
0.6Q38

0.988 TDC 1.000 0.828

CLMC 1X 5
Rank p-Val

2.0
2.0
2.0
4,0
5.0
6.0
7.0
8.0
9,0

10.0
11.0
12.0
13,0
14.0
15.0
16.0
17.0
18.0
19.0
20,0
21,0
22.0
23.0
24.0
25.0

Osmo
O.ocm
O.0000
0.0625
0.0972
0.1031
0.1312
0.1887
0.2266
0.3026
0.3062
0.3182
0.3757
0.4276
0.4291
0.4713
0.5116
0.5222
0.6186
0.6384
0.6768
0.7305
0.7692
0.8468
0.9230

0.972

CMD: 2x5
Rank />-v-al

1.0 O.ocoo
2.0 O.ccoo
3.0 0.0037
4.0 0.0595
5,0 0.0700
6.0 0.0823
7.0 0.2187
8,0 0.2942
9.5 0.3711
9.5 0.3711

11.0 0.3883
12,0 0.4628
13.0 0.4884
14.5 0.5249
14.5 0.5249
16.0 0.5918
17.0 0.6868
18.5 0.7113
18.5 0.7113
20.0 0.7358
21.0 0.7847
22.0 0.8325
23.0 0.8889
24.5 0.9197
24.5 0.9197

CMD. 2 X 10
Rank p-Val

1,0 O.owl
2,0 O.CQO1
3.0 0.0012
8.0 0.2288
5.0 0.1596

14.5 0.4311
7.0 0.2187
9.0 0.2451

19.0 0.5075
13.0 0,4071
12.0 0.3614
21.0 0.6163
18.0 0.4884
20,0 0.5749
10.0 0.2622
23.0 0.7265
11.0 0.3191
6.0 0.2133

25.0 0.9761
16.0 0.4559
14.5 0.4311
24.0 0,7532
4.0 0.0966

17.0 0.4814
22.0 0.6993

CMDMC 2 X 5
Rank /J-val

1.5 O.m
1,5 0.0030
3,0 0.0035
4.0 0.0583
5.0 0.0718
6.0 0.0827
7.0 0.2133
8.0 0,2932
9.0 0.3636

11.0 0.3852
10.0 0.3767
13.0 0.4534
12,0 0.4104
15.0 0.5476
14.0 0.5225
16.0 0.5937
17.0 0.6724
19.0 0.7147
18.0 0.7129
20.0 0.7266
21.0 0,7646
22.0 0,8405
23.o 0.8888
24,0 0.9080
25,0 0.9091

Variable

Name

BHPRM
HALPRM
WGRCOR
SHPRMDRZ
ANHBCVGP
WMICDFLG
HALPOR
SHRBRSAT
SHPRMASP
SHPRMCON
WASTW[CK
SHPRMCLY
WFBliTCEL
SHRGSSAT
WGRMICl
ANHBCEXP
ANRGSSAT
WRBRNSAT
WGRMICH
WRGSSAT
SHBCEXP
ANRBRSAT
SHPRMHAL
ANHPRM
SALPRES

TDc

Cv 1X5

Rank p-val

1.0 OSKWI
2.0 0.0014
3.0 0.0296
4.0 0.0298
5.0 0.1173
6,0 0.1393
7.0 0.1410
8.0 0.1453
9.0 0.1741

10.0 0.2598
11.0 0.2823
12.0 0.3595
13.0 0.3727
14.0 0.3905
15.0 0.4555
16.0 0.5178
17.0 0.5840
18.0 0.6510
19.0 0.7009
20.0 0.7041
21.0 0.7134
22.0 0.7194
23.0 0.8699
24.0 0.9251
25.0 0.9938

l.cwo

Cvlxlo

Rank p-Val

1.0 0.0Q12
2.0 0.0201
3.0 0.0491
5.0 0.0799
6,0 0.1173
8.0 0.1393

10.0 0.1817
15.0 0.3933
20.0 0.6816
21.0 0.7328
12.0 0.3183
17.0 0.4008
16.0 0.3978
11.0 0.2905
13.0 0.3219
18,0 0.6371
19,0 0.6807
9.0 0.1809

23.0 0.7826
7.0 0.1302
4.0 0.0694

14.0 0.3899
24.0 0.8476
22.0 0.7599
25.0 0.9958

0.824

CVMC 1 X 5
Rank p-Val

1.0 O.oom
2.0 0.0021
3.0 0.0278
4.0 0.0280
5.0 0.1184
8.0 0.1383
7.0 0.1347
6.0 0.1311
9.0 0.1667

10.0 0.2427
11.0 0.2689
12,0 0.3483
13.0 0.3575
14,0 0.3729
15.0 0.4343
16.0 0,4974
17.0 0.5694
18.0 0.6418
19.0 0.6988
20.0 0.6997
22.0 0.7060
21,0 0.7036
23.0 0.8685
24.0 0.9175
25.0 0.9940

.0.995
TDc l.m 0.800 0.987
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Table 10.23 (Cont.)

Variable

Name

BHPRM
WGRCOR
SHRGSSAT
ANRBRSAT
SHRBRSAT
WASTWICK
SHPRMASP
WRBRNSAT
ANHBCVGP
SHPRMCLY
HALPRM
ANHPRM
SHPRMDRZ
WFBETCEL
WMICDFLG
SHPRMHAL
ANRGSSAT
HALPOR
WRGSSAT
ANHBCEXP
WGRMICI
SHBCEXP
WGRMICH
SALPRES
SHPRMCON

TDC

CIQ 2X5
Rank

1.0
2.0

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15,0
16.0
17.0
18.0
19,5
19,5
21.0
22.0
23.0
24.0
25.0

/,-Val

O.OQMI
0.0130
0.0289
0.0739
0.2093
0.2427
0.2805
0.2942
0.3556
0.4244
0.4530
0.4628
0.5037
0.5037
0.5134
0.5249
0.5467
0.6151
0.6868
0.6868
0.7113
0.7358
0.7847
0.8889
0.9702

1.000

CIQ 2 x 10 CIQMC: 2 X 5 Variable SI: 5X5 SI: lox 10 SIMC: 5 X 5
Rank

1.0
5.0
2.0
4.0

17.0
9.0
6.0

13.0
12.0
17.0
20.5
11.0
7.0

10.0
19,0
17.0
15.0
22.0
3.0

23.0
8.0

14.0
24.0
20.5
25.0

p-Val

0.0090
0.0565

0.0163
0.0308

0.5075

0.2451
o.t719
0.3838

0.3556
0.5075

0.6993
0.3398

0.1917

0.2622
0.5134

0.5075
0.4814

0.7265
0.0235
0.8285

0.2288
0,4559
0,8729

0.6993
0.9865

0.754

R&

1,0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
12.0
11,0

14.0
[3.0
16.0

15.0
17.0
18,0
20.0

19,0

21.0
22.0
23,0

24.0
25.0

/7-val

O.ccm
0.0132

0.0277
0.0704

0.2055

02431
0.2721
0,2973

0.3042
0.4106

0.4698

O.462I3
0.4968

0.4929
0.5323

0.5260
0.5467
0,6065

0.6803
0.6626

0.7178
0.7240
0.7605

0.8946
0.9764

BHPRM
HALPBM
WGRCOR
ANHPRM
SHRGSSAT
SHBCEXP
WGRMICI
ANHBCVGP
WRBRNSAT
ANRBRSAT
HALPOR
SHRBRSAT
WFBETCEL
ANHBCEXP
WASTWICK
WGRMICH
SHPRMDRZ
SHPBMCLY
ANRGSSAT
SHPRMASP
SALPRES
WRGSSAT
WMICDFLG
SHPRMHAL
SHPRMCON

0.999 TDC

a Twenty-five (25) variables included in analysis; see Footnote b to Table 10.14.

Rank

1.0
2.0

3.0
4.0

5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15,0
16.0
17.0
18.5
18.5
20.0
21.0
22.0
23.0
24.0
25.0

p-w

o.oOcn3
o.cG02
O.mz
0.0049
0.0698
0.1010
0.1985
0.2427
0.2436
0.2518
0.3142
0.3142
0.3965
0.4414
0.5125
0.5492
0.6111
0.6482
0.6482
0.6482
0.7089
0.8578
0,8859
0.9064
0,9898

1IH30

Rank

1.0
4.0

2.0

3.0

22.0
15,0
11.0

14.0
17.0
} 2.0

8.0

16.0
5.0

18.0
19.0
10.0

23.0
21.0
13.0
9.0
6.0

7,0

25.0
24,0
20.0

1)-V.?]

00300
0.0982
00028
00032
0.8482
0.3495
0.1646
0.3398
0.3878
0.2623
0.0814
0.3878
0.0296
0.4075
0.4276
0.1043
0.8616
0.7155
0.2623
0.1043
0.0478
0.0524
0.9362
0.8863
0.5316

0.735

Rank

1.5
1,5

3.0
4,0

5,0
6.0

7.0
8.0
9.0

10.0

11.0
12.0

13.0
14.0

15.0
16.0

17.0
18,0

19.0

20.0
21,0

22,0
23.0

24.0
25.0

p-w

O.coco
o.cooO
0CO02
0.C033
0.0699
0.0989
0.2013
0.2380
0.2417
0.2511
0.3202
0.3207
0.3971
0.4578
0.5161
0.5509
0.6161
0.6492
0.6573
0.6658
0.7323
0.8560
0.8893
0.9102
0.9933

0.988

b, C, d, e S@ Footnotes b, c, d, e to Table 10.5
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Table 10.24 Comparison of Variable Rankings for Y= ~2:lWAS_~~~S Obtained with Correlation

Variablea
Name

HALPRM
ANHPRM
HALPOR
ANHBCVGP
SHPRMASP
SHPRMDRZ
ANHBCEXP
WGRMICI
WRBRNSAT
BHPRM
SHPRMCLY
SHRBRSAT
WASTWICK
SHRGSSAT
SHBCEXP
WRGSSAT
WMICDFLG
SHPRMHAL
ANRBRSAT
WGRCOR
WGRMICH
SALPRES
WFBETCEL
SHPRMCON
ANRGSSAT

TDC?

Coefficients (CCS, RCCS) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of pvalues

~cb

Rank

1.0
2.0
3.0
4.0
5.0
6,0
7.0
8.0
9.0

10.0
11.0
12.0
13,0
14.0
15.0
16.0
17.0
18.0
19,0
20.0
21.0
22.0
23.0
24.0
25.0

. .
p-Val

0.00Q0
o.oOco
0.0090
0.1123
0.1606
0.1684
0.1786
0.1905
0.2002
0.3651
0.3874
0.4830
0.5507
0.5958
0.6072
0.6104
0.6156
0.6659
0.7133
0.7676
0.8494
0.9244
0.9457
0.9794
0.9891

CCMCC Variable RCC RCCMC
KanK

1.5
1.5
3,0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18,0
19.0
20.0
21.0
22.0
23.0
24.0
25.0

p-val

O.0000
O.csm
0.0098
0,1072
0.1610
0.1670
0.1795
0.1827
0.1996
0.3689
0.3883
0.4890
0.5521
0.5992
0.6020
0.6098
0.6208
0.6618
0.7148
0.7617
0.8563
0.9288
0.9453
0.9798
0.9897

0.988

HALPRM

ANHPRM
HALPOR
ANHBCVGP
WGRMICI
BHPRM

ANHBCEXP
SHPRMDRZ
WRBRNSAT
SHPRMCLY
SHRGSSAT
WRGSSAT
ANRBRSAT
ANRGSSAT
SHRBRSAT
WGRCOR
WMICDFLG
SHPRMHAL
WASTWICK
WGRMICH
WFB.?ITCEL
SALPRES
SHBCEXP
SHPRMCON

TDC

—
a Twenty-five (25) variables included in nnalysis; see Footnote b to Table 10.14.

Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0

p-Val

O.omo
O.0000
0.0184
0.1099
0.1477
0.1704
0.1946
0.2373
0.2417
0.3079
0.3920
0.3948
0.4322
0.4378
0.4684
0.5247
0,6560
0.7248
0.7249
0.8082
0.8865
0.91X0
0.9289
0.9389
0.9918

Rank “-’

1.5
1.5
3,0
4,0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25,0

p-v m

O.0000
0.0000
0.0194
0,1031
0,1444
0.1746
0.1896
0.2404
0.2435
0.3127
0.3932
0.3962
0.4315
0.4394
0.4679
0.5302
0.6493
0.7236
0.7284
0.8079
0.8916
0.9008
0.9320
0.9367
0.9918

0,988

b, c, d See Footnotes b, c, d to Table 10.6.
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Table 10.25 Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with use of Logarithmsa for y = E2: WAS_ PRES, the Variables in Table 2.2,b and
a Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)C

Variable CMN: Log,l X5
Name Rank p-Val

BHPRM 1.0 0.0000
HALPRM 2.0 0.0000
ANHPRM 3.0 0.0000
ANHBCEXP 4.0 0.0432
HALPOR 5.0 0.0991

Variable CV: Log, 1 X5
Name Rank p-Val

HALPRM 1.0 0.0018

WGRCOR 2.0 0.0174

SHPRMDRZ 3.0 0.0513

a See Footnote a, Table 10.7.

b See Footnote b, Table 10.14.

c See Footnote c, Table 10.1.

CMNMC: Log,l X5
Rank p-Val

1.5 0.0000
1.5 0.0000
3.0 0.0001
4.0 0.0450
5.0 0.1071

CVMC: Log, 1 X5
Rank p-Val

1.0 0.0014
2.0 0.0136
3.0 0.0387
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11. Type I and II Errors

The sensitivity analysis techniques under discussion use p-values to indicate if a relationship appears to exist

between an uncertain analysis input and a predicted analysis outcome. Clearly, it is desirable that the techniques

identify the inputs that actually affect analysis outcomes (i.e., to avoid Type II errors, which correspond to the failure

to identify important variables). As shown by the example analysis in Sect. 10, Type II errors can occur when the

test for variable importance is inappropriate for the relationships that exist between analysis inputs and analysis

outcomes (e.g., see the analyses for E2: WAS_PRES in Sect 10.4). Thus, a good analysis strategy is to use several .

different tests for variable importance and thus reduce the likelihood of overlooking an important variable (i.e.,

committing a Type II error).

In addition, it is also important that the techniques not identify inputs as having effects that are not actually

present (i.e., to avoid Type I errors, which correspond to the indication of nonexistent effects for unimportant

variables). If a variable has no effect on a particular analysis outcome, then the corresponding p-values generated

from repeated random sampling should have a uniform distribution on the interval (O, 1) (i.e., pmb ( j <p) = prob

(i? > tP) = p and thus j has a uniform distribution on (O, 1), where Os p <1, prob denotes probability, and tpand ;

are values of the statistic with p-values of p and ~, respectively). Similarly, if multiple unimportant variables are

involved, their p-values from a single sampling should be uniformly distributed on (O, 1). Thus, for a specified p-

value (i.e., p) and n unimportant variables, the likelihood prob (Type I Ip, n) of committing a Type 1 error (actually,

one or more Type I errors) is given by

prob (Type I Ip, n) = 1 – (1 –p)”, (11.1)

with prob (Type I Ip, n) increasing as each of p and n increases (Fig. 11.1). Thus, Type I errors cannot be avoided,

and their likelihood of occurrence will be defined by Eq. (11.1) provided that the p-values for unimportant variables

do indeed follow a uniform distribution.

The LHSS indicated in Eqs. (2.1)-(2.3), and on which the examples in Sect. 10 are based, involved 75 variables.

However, 49 of these variables were not used in the calculation of EO:WAS_PRES and EO:BRAALIC; and 48 of these

variables were not used in the calculation of E2: WAS_SATB and E2: WAS_PRES. Thus, the p-values associated with

these variables for the individual tests should have uniform distributions on the interval (O, l). The Kolmogorov-

Smirnov test (Chapt. 6, Conover, 1980) can be used to indicate if the distributions of p-values for these variables for

the individual tests do indeed have uniform distributions on (O, 1). In particular, the 0.9 and 0.99 two-sided

Kolmogorov-Smirnov bounds around the cumulative distribution function (CDF) for the true distribution (i.e., a

uniform distribution on (O, 1) in the present context) are given by 1.22/(n+ m )Y’ and 1.63/(n+ ~~- )Y2,

respectively, where n is the sample size (Table A14, Conover, 1980). For n = 48, 49, the corresponding 0.9 and 0.99

bounds are 0.17 and 0.23, res~ectivelv.
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As 4 dependent variables (i.e., EO:WAS_PRES, EO:BRAALIC, E2: WAS_SATB, E2: WAS_PRES) and 8 tests (i.e.,

CC, RCC, CMN, CL, CMD, CV, CIQ, S1) under consideration, 32 distributions of p-values result (Fig. 11.2). Of

these, 24 are within the 0.9 bounds. Further, 6 of the 9 distributions that are outside the bounds are for the

variable/test pairs (EO: WAS_PRES, CC), (EO:BRAALZC, CC), (E2: WAS_SATB, CC), (EO:WAS_PRES, RCC),

(EO:BRAALIC, RCC), and (E2: WAS_SATB, RCC). As results obtained with CCS and RCCS are not independent, the

indicated deviations of (EO: WAS_PRES, CC) (EO:BRAALIC, CC) and (E2: WAS_SATB, CC) from a uniform

distribution on (O, 1) are not independent of the indicated deviations for (EO:WAS_PRES, RCC), (EO:BRAALIC,

RCC), and (E2: WAS_SATB, RCC). The most notable deviation occurs for the pair (EO:BRAAUC, CV), with no p-

values exceeding 0.7 being observed; there is something associated with values of EO:BRAALIC that is causing an

underrepresentation of large p-values for unimportant variables, with this underrepresentation probably deriving

from the fact that EO:BRAALZC has a few large values and many very small values. Fortunately, the shape of the

individual CDFS in Fig. 11.2 does not suggest any tendency for the tests under consideration to produce unusual

numbers of small p-values; thus, there does not appear to be a tendency to produce excessive numbers of Type I

errors in the examples under consideration. However, the results in Fig. 11.2 do suggest that the p-values for

unimportant variables may not have a uniform clistribution on (O, 1). We have not succeeded in finding a completely

satisfying explanation for this behavior.

Figure 11.1
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Contour plots for probability of a Type 1 error, prob (Type I 1p, n), as a function of p-value, p, and

number of unimportant variables, n.
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An additional set of simulations was carried out to provide a check on the reasonableness of the distributions of

p-values in Fig. 11.2. In particular, 10 independent LHSS of size 300 were generated with the Iman and Conover

(1982) restricted pairing technique from 50 independent variables with uniform distributions on the interval [0, 1].

These LHSS were then associated with the calculated values for EO:WAS_PRES, EO:BRAALIC, E2: WAS_SATB and

E2: WAS_PRES obtained with the original LHS of size 300 discussed in Sect. 2, and the corresponding distributions

of p-values were calculated for the preceding four output variables, each of the eight tests under consideration, and

each of the 10 independent LHSS. The p-values were calculated with the previously described analytic procedures.

The outcome is 10 CDFS for each of the 32 test./output variable pairs.

If the assumptions of the tests are met and the calculations are implemented correctly, then the CDFS for each

test/dependent variable pair should approximate a uniform distribution on [0, 1]. This generally appears to be the

case. For example, the original CDFS for EO:WAS_PRES and tests based on CCS and RCCS move across the 0.99

Kolmogorov-Smirnov boundary (Figs. 11 .2a, b). In contrast, the current exercise with 10 independently generated

LHSS produces CDFS of p-values that generally stay within the 0.9 Kolomogorov-Smirnov bounds (Fig. 11 .3).

Twenty-nine of the remaining 30 test/output variable pairs produced distributions of p-value CDFS that were

similar to the two CDF distributions in Fig. 11.3. The exception to this consistency occurred for EO:BRAALIC and

the CVS test (Fig. 11.4). For this testloutput variable pair, the p-values remain below approximately 0.7, which was

also the case in Fig. 11 .2f. The variable EO:BRAALIC has a large number of values that are effectively zero

(Figs. 2.2b, 2.4). As a result, the estimated variances tqlin Eq. (6.3) of Ref. 1 used to define the F statistic for the

CVS test do not have a normal distribution for the individual independent variables, and so the associated p-values

do not have a uniform distribution on [0, 1] even though the independent variables have no effect on EO:BRAALIC.
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12. Robustness with Respect to Repeated Independent Samples

The examples in Sect. 10 use a sample of size 300 obtained by pooling the three samples of size 100 each

indicated in Eqs. (2.1)-(2.3). The availability of these three independent samples provides a way to examine the

robustness of the techniques illustrated in Sect. 10. In particular, the analyses with each of the 8 techniques under

consideration can be repeated with the individual samples of size 100. The extent to which the individual samples

agree in the identification of important variables then provides an indication of how robust the techniques are with

respect to repeated independent samples and also reductions in sample size (Table 12.1).

When comparing the variable selections in Table 12.1, it is important to keep in mind that the likelihood of a

Type I error increases rapidly as p-values increase (Fig. 11.1), with 25 variables and a p-value of 0.01 producing a

probability of 0.22 of a Type I error as indicated in Eq. (11. 1). Further, the p-values for unimportant variables may

not always be random on (O, 1) due to various patterns that are imposed on the data by the effects of other variables

(Fig. 11.2). Thus, the probabilities in Fig. 11.1 are, at best, only an indication of the likelihood of a Type I error. As

a result, the comparison of sets of important variables obtained with different replicates is probably valid only for

variables with fairly low p-values. As p-values increase (e.g., >0.01), such comparisons become less and less

meaningful.

The overall pattern that emerges from the results in Table 12.1 is that the most important variables identified

with the pooled sample of size 300 are also identified as being important with the three individual samples of size

100. In particular, the two most important variables as defined by the size of their p-values are typically the same

across all four samples for the individual tests (i.e., CCS, RCCS, CMS, CLS, CMDS, CVS, CIQ, S1), although it should

be recognized that the results obtained with the pooled sample are not independent of the results obtained with the

individual samples. Hence, the use of a sample size of 300 or 100 made little difference with respect to the variables

identified as being most important, although the larger sample size did tend to indicate likely effects for more

variables than was the case for the smaller sample size.

The most notable deviations from this consistency occur for the CVS test for EO:BRAALIC and E2: WAS_PRES

and the CIQ test for EO:BRAALIC. The variable EO:BRAALIC is significantly affected by both WMICDFLG and

ANHPRM (Fig. 2.4). However, as WMICDFLG is being missed by the CVS test, it is perhaps not surprising that the

individual samples are not producing consistent results. A logarithmic transformation improved the results obtained

with the CVS test for WMICDFLG with the pooled sample (Table 10.13) and also produced somewhat better results

for the individual samples (Table 12.2). The variable E2: WAS_PRES is almost completely dominated by BHPRM

(Fig. 2.6), with this effect being missed by the CVS test for replicate R3; further, although BHF’RM is identified by
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Table 12.1

Variable

Comparison of Variable Rankings Obtained with Different Analysis Proceduresa for Three

Independent Samples of Size 100 (Columns AP:RI, AP:R2, AP:R3, where AP - CC, RCC,

CMN, CL, CMD, CV, CIQ, S1as appropriate), Pooled Sample of Size 300 (Column AP:AII),
and a Maximum of Five Classes of Values for Each Variable (i.e., nX= 5)b

CC: All CC: RI CC: R2 CC: R3 Vmiable CC: All CC: RI CC: R2 CC: RZ

Name Rank p-Vd Rank p-Vd Rank pVal Rank p-Val

Correlation Coefficients (CCS)for EO:WAS_PRES

WMZCDFLG 1.0 0.00@1 1.0 0.0000 1.0 0.(XX30 1.0

HALPOR 2.0 0.W300 2.0 0.0000 2.0 O.wcm 2.0

WGRCOR 3.0 0.0030 3.0 0.0180 3.0 0.CM351 3.0

ANHPRM 4.0 0.0241 9.0 0.3947 4.0 0.2371 4.0

SALPRES 5.0 0.0855 4.0 0.0822 18.0 0.8602 7.0

Correlation Coefficients (CCS) for E2.’ WAS_SATB

BHPRM 1.0 0.ooOo 1.0 0.000Q 1.0 0.000Q 1.0

ANHPRM 2.0 o.cOOo 2.0 0.0003 2.0 0.0281 2.0

HALPOR 3.0 00006 3.0 0.0884 4.0 0.0706 3.0

WGRCOR 4.0 0.0017 6.0 0.1241 3.0 0.0547 5.0

WRGSSAT 5,0 0.0081 8.0 0.1367 11.0 0.5224 4.0

o.cs3co

0.00Q1

0.0018

0.0598

0.2824

o.oi300

00033

0,0159

0.0473

0.0175

Variable RCC: All RCCZ RI RCC; R2 RCC: R3
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val

RankCorrelationCoefficients(RCCS) for EO:WAS_PRES

WMZCDFLG 1.0 0.00+30 1.0 0J30#0 1.0 0.00C0 1.0

HALPOR 2.0 oOooo 2.0 0.oOoo 2.0 0.0000 2.0

WGRCOR 3.o 0.0000 3.0 0.0286 3.0 0.0041 3.0

ANHPRM 4.0 0.0268 9,0 0.4366 4.0 0.1070 5.0

SALPRES 5.0 0.066d 4.0 0.1111 16,0 0.7611 4.0

Rank Correlation Coefficients (RCCS) for E2: WAS_SATB

BHPRM 1.0 O.m 1.0 0.ooOo 1.0 o.ocOo 1.0

WRGSSAT 2.0 0.0000 2.0 0.00@3 2.0 0.0048 2.0

ANHPRM 3.0 O.owl 3.0 0.0013 3.0 0.1182 3.0

SHPRMHAL 4.0 0.0225 4.0 0.1842 5.0 0.1243 9.0

HALPOR 5.0 0,0269 8.5 0.4570 4.0 0.1236 4.0

0.0000

O,OQO1

0.0051

0.1268

0.0957

O.oim

o.0000

0.0335

0.2595

0,1398

Variable CMN: A1L1x5 CMN: R1,1x5 CMN: R2,1x5 CMN: R3,1x5

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val

WMICDFLG

HALPOR

WGRCOR

ANHPRM

SHPRMASP

BHPRM

ANHPRM

WGRMICH

HALPOR

WRGSSAT

Common Means (CMNS) for EO:WAS_PRES

1.0 0.oOoo 1.0 0.0000 1.0 o.@X30

2.0 0.0000 2.0 0.0002 2.0 o.0w3

3.0 O.oi)oo 3.0 0.0051 3.0 0.0093

4.0 0.0195 10.0 0.4751 6.0 0.2920

5.0 0.1439 21.0 0.8597 5.0 0.1824

Common Meres (CMNS) for E2; WAS_SATB

1.0 0.0000 1.0 0.0000 1.0 0J3000

2.0 0.ooOo 2.0 0.0031 2.0 0.0020

3.o 0.0021 4.0 0.0416 3.0 0,0471

4.0 0.0124 10.0 0.2900 8.0 0.2345

4.o 0.0143 5.0 0.0429 20.0 0.5575

1,0

2.0

3,0

7.0

12,0

1.0

3.0

2.0

io.o

6.0

O.OQOO

0,0010

0.0107

0.2881

0.5410

0.0000

0.0544

0.0+370

0,3619

0.1363

.— .
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val

Correlation Coefficients (CCS) for EO:BRAALfC

ANHPRM 1.0 O.ooc(l 1.0 O.oml 1.0 0.0000 1.0

WMICDFLG 2.0 0.WXX3 2.0 0.0016 2.0 O.(XXO 2.0

WASTWICK 3,0 0.0045 4.0 0.0584 9.0 0.2948 4.0

WGRCOR 4,0 0.C048 5.0 0.0957 3.0 0.0318 9.0

ANHBCEXP 5.0 0.C095 3.0 0.0420 6.0 0.1474 12.0

Correlation Coefficients (CCs) for E2: WAS_PRES

HALPRM 1,0 o.000i3 1.0 0,0013 1.0 Omoo 1.0

ANHPRM 2.0 oOooo 2.0 0.0020 2.0 0.0303 2.0

HALPOR 3.0 0,0090 4.0 0.1417 3,0 0.0680 5.0

ANHBCVGP 4.0 0.1123 8.0 0.3286 5.0 0.1492 20,0

SHPRMASP 5.0 0.1606 10.0 0.3784 16.0 0,5907 6.0

O.mco

O.o.wo

0.0333

0.3018

0.4274

0.0001

0.0267

0.2188

0.7457

0.3115

Variable RCC: All RCC: R1 RCC: R2 RCC: R3

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val

Rank Correlation Coefficients (RCCS) for EO;BRAALfC

WMICDFLG 1.0 oOooo 1,0 0,0000 1.0 0.0000 1.0 0.0000

ANHPRM 2,0 0.oOoo 2.0 0.0000 2,0 0.0000 2.0 0.0000

HALPRM 3.0 0.0014 5,0 0.1867 5.0 0.0998 3.0 0.0140

WGRCOR 4.0 0.0057 4.0 0.1772 6.0 0.1383 4.0 0.0570

HALPOR 5.0 0.0087 3.0 0.0980 3.0 0.0396 7.0 0,3723

Rank Correlation Coefficients (RCCS) for .E2.’WAS_PRES

HALPRM 1,0 O.m 2.0 0.0110 1.0 0,0000 1.0 O.ml

ANHPRM 2.0 0.0000 1.0 0.0036 2.0 0.0820 2.0 0.0086

HALPOR 3.0 0.0184 4.0 0.1194 6.0 0.2015 5,0 0,2157

ANHBCVGP 4.0 0.1099 11.0 0.2611 4.0 0.1347 18.0 0.8795

WGRMICI 5.0 0.1477 5.0 0.1275 8.0 0.3344 23.0 0.9673

Variable CMN: AII,1x5 CMN: R1,1x5 CMN: R2,1x5 CMN: R3,1x5

Name Rank p-Val Rank p-Va{ Rank p-Val Rank p-Val

ANHPRM

WMICDFLG

SHPRMCON

WGRCOR

WFBETCEL

BHPRM

HALPRM

ANHPRM

ANHBCEKP

HALPOR

Common Means (CMNS) for EO:BRAALfC

1.0 0.0000 1.0 0.0014 1.0 0.0000 1.0 0.ooOo

2,0 0.oOoo 2.0 0.0040 2.0 0.0069 2.0 0.0001

3.0 0.0057 12.0 0.3818 8.0 0.3098 7.0 0.1531

4.0 0.0636 5.0 0.1989 11.0 0.3914 20.0 0.5713

5.0 0.0732 10.0 0.3274 18.0 0.6060 12.0 0.2874

Common Means (CMNS) for E2.’WAS_PRES

1.0 0.Oooo 1.0 o.ck300 1.0 0.0000 1.0 0.ooOO

2.0 0.0fE30 3.0 0.0288 2.0 0.0+316 2.0 0.0027

3.0 0.0002 2.0 0.0286 6.0 0.1137 5.0 0.1184

4.0 00405 6.0 0.1860 5.0 0.1 I 37 4.0 0.0230

5.0 0.0415 16.0 0,5971 4,0 0.0956 15.0 0.6365
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Table 12.1 (Cont.)

Variable CL A11,1x5 CL R1,1x5 CL R2,1x5 CL R3,1x5

Name Rank p.VaI Rank p-Val Rank p-Val Rank p-Val

Variable

Name

CL All, 1x5 CL: RI, Ix5 CL R2,1x5

Rank p-Val Rank p-Val Rank p-Val

CL R3,1x5

Rank p-Val

WMICDFLG

HALPOR

WGRCOR

ANHPRM

SHPRMASP

BHPRM

WRGSSAT

ANHPRM

WGRMZCH

SHPRMCON

Common Locations (CLs) for EO;WAS_PRES

1.0 0.0000 1.0 0.0000 1.0 0.00C0

2.0 o.ooiXl 2.0 0.0003 2.0 0.0000

3.0 o.oo@3 3.0 0.0112 3.0 0.0093

4.0 0.0187 6.0 0.3792 6.0 0.2595

5.0 0.1237 19.0 0.7696 5,0 0.1901

Cmmnon Locations (CLS) for .E2: WAS_SATB

1.0 0.0000 1.0 0.0000 1.0 0.0000

2.0 0.0000 2.0 0.oOoo 3.0 0.0450

3.0 0,0CH31 3.0 0.0102 2.0 0.0184

4.0 0.0059 9.0 0.1714 5.0 0.0979

5.0 0.0202 13.0 0.4691 10.0 0.2278

1.0 0,0000

2.0 0.0023

3.0 0.0179

8.0 0,3770

11.0 0.4537

WMICDFLG

ANHPRM

HALPRM

WGRCOR

SHPRMDRZ

1.0 o.ot31X3

2.0 0.0001

7.0 0.2010

3,0 0.0206

10.0 0.3785

BHPRM

HALPRM

ANHPRM

ANHBCEXP

HALPOR

Common Lecations (CLs) for EO:BR4ALIC

1.0 0.000o 1.0 o.cci30 1,0 0.0000

2.0 O.m 2.0 0.oOoo 2.0 0.0000

3.0 0.0019 4.0 0.2667 6.0 0.2321

4.0 0.0427 6.o 0.3340 10.0 0,3212

5,0 0.1060 5.0 0.2785 15.0 0.5898

CommonLocations(CLS) for E2; WAS.PRES

1.0 o.oi300 1,0 0.000o 1.0 0.0000

2.0 0.000+3 4.0 0,1176 2,0 0.0025

3.0 0.0200 2.0 0.0154 3.0 0.0523

4.0 0.0602 7.0 0.2213 6.0 0.1191

5.0 0.0940 18.0 0.5620 9,0 0.2452

1.0 O.ooco

2,0 O.owo

3.0 0.0125

13.0 0.4371

9.0 0.2393

1.0 ocooo

2.0 0.0028

4.0 0.0419

5.0 0.0438

11.0 0.5243

Variable CMD: All, 2x5 CMD. R1,2x5 CMD: R2,2x5 CMD: R3,2x5

Name Rank p-VaI Rank p-VaI Rank p-Val Rank p-VaI

Variable

Name

CMD: A11,2x5 CMD: R1 ,2x5 CMD R2,2x5 CMD: R3,2x5

Rank p-Val Rank p-VaI Rank p-VaI Rank p-VaI

WMICDFLG

HALPOR

WGRCOR

ANHPRM

SHPRMASP

BHPRM

WRGSSAT

ANHPRM

WGRMICH

SHPRMCON

Common Medians (CMDS) for EO:WAS_PRES

1.0 O.m 1.0 O.COOO 1.0 0.000+3 1.0 o.Ocloo

2.0 0.0000 2.0 0.WX31 2.0 0.0000 2.0 0.0123

3.0 0.0025 5.0 0.1712 3.0 0.0663 4.0 0.1712

4.0 0.0663 16.5 0,7358 16.0 0,6626 5.0 0.1991

5.0 0.2427 16.5 0.7358 7.0 0.2674 6.0 0.2674

Common Medians (CMDS) for E2.’ WAS_SATB

1.0 0.oOoo 2.0 o.cOoo 1.0 O.cccw 2.0 0.00+31

2.0 0.0W3 1.0 O.m 2.0 0.0015 1.0 0.000+3

3,0 0.0003 3,0 0.0073 13.0 0.2674 8.0 0.2674

4.0 0.0130 9.0 0.1712 6.5 0.0477 4.0 0.0916

5.0 0.0206 16.0 0.7358 3.0 0.0244 6.5 0.1991

WMICDFLG

ANHPRM

HALPRM

HALPOR

WGRCOR

BHPRM

HALPRM

ANHPRM

ANHBCEXP

HALPOR

Common Medians (CMDS) for EO:BR4AUC

1.0 0.0000 1.0 0.0000 1.0 0.0CK30 1.0

2.0 00300 2.0 0.C4309 2.0 0.0001 2.0

3.0 00050 17.5 0.7358 13.0 0.4060 3,0

4.0 0.0155 8.5 0.3084 5.0 0.0563 11.0

5.0 0.0231 3.0 0.1257 3.0 0.0244 16.0

Common Medians (CMDS) for E2: WAS_PRES

1.0 0,0000 1.0 oCooo 1.0 o.ooi30 1.0

2,0 0.0000 5.0 0.0663 2.0 0.0113 2.5

3.0 0.0007 3.0 0.0477 4.0 0.0780 5.0

4.0 0.0595 2.0 0.0289 3.0 0.0663 2.5

5.0 0.0700 15.0 0.5918 5.5 0.1468 21,5

o.oOGil

0.0003

0.0021

0.4060

0.5918

o.cooQ

0.0289

0.1074

0.0289

0.8781

Variable

Name

CV All, I x5 CV R1,1x5 CV R2, 1x5 CV R3,1x5

Rank p-Val Rank p-Vd Rank p-VaI Rank p-Val

Variable

Name

CV AII,1x5 CV RI,1x5 CV R2,1x5 CV R3,1x5

Rank p-Vd Rank p-Val Raak p-Val Rank p-Val

WMICDFLG

ANHPRM

HALPRM

WGRCOR

SHPRMCON

BHPRM

ANHPRM

HALPOR

WGRMICH

WGRCOR

Common Variances (CVS) for E@ WAS_PRES

1.0 ‘O.0000 1.0 0.0016 1.0 0J2058 1.0

2.0 0.0042 17,0 0.8561 2.0 0.0171 2.0

3.0 0.1184 14.0 0.6965 10.0 0.4818 9.0

4.0 0.1244 16.0 0.8147 7.0 0.3521 3.0

5.0 0.1287 22.0 0.9555 3.0 0.0381 10.0

Common Variances (CVS) for .E2: WAS_SATB

1.0 o,oi300 1.0 0.0000 1.0 0LH301 1.0

2.0 0.0000 2.0 0.0030 2.0 0.0018 2.0

3.0 O.CO11 5.0 0.0243 6.0 0.1228 12.0

4.0 0.0050 3.0 0.0156 7.0 0.1353 3.0

5.0 0.0067 4,0 0.0210 3,0 0.0080 10.0

0.0+304

0.0671

0.2016

0.0943

0.2053

ANHPRM

SHPRMCON

SHBCEXP

ANRBRSAT

WGRCOR

O.0000

0.0134

0.3601

0.1013

0.3387

BHPRM

HALPRM

WGRCOR

SHPRMDRZ

ANHBCVGP

Common Variances (CVS) for EO:BRA4UC

I .0 0.0078 1.0 0.2779 1.0 0.0576

2.0 0.0426 13.0 0.4026 6.0 0.0938

3.0 0.1463 17.0 0.4412 21.0 0.5811

4.0 0.1994 6.0 0,3463 19.0 0.5557

5,0 0.2125 11.0 0.3969 9.0 0.4550

Common Variances (CVS) for E2: WAS_PRES

1.0 0.0000 1.0 0.W182 1.0 0.0633

2.0 0.0014 4.0 0.1392 4.0 0.1719

3.0 0.0296 2.0 0.0329 8.0 0.3272

4.0 0.0298 3.0 0.0713 5.0 0,2094

5.0 0.1173 20.0 0.7401 9.0 0.4415

1.0 0.CC05

22.0 0.6452

23.0 0.6840

9.0 0.1909

15.0 0.4175

11.0 0.2843

9,0 0.2669

5.0 0.0741

13.0 0.3795

1.0 0.0178

93



Table 12.1 (Cont.)

Variable
Name

WMICDFLG

IiALPOR

ANHPRM

SHPRMCON

WGRd41CI

WRGSSAT

WGRCOR

BHPRM

ANHPRM

SHRBRSAT

CIQ. AR, 2x5 CIQ. R1,2X5 CIQ:R2,2X5 CIQ. R3,2X5

Rtmk p-Val Rank p-Val Rank p-Val Rank p-Val

Variable

Name

Common Interqunrrile (CIQ) for EO:WAS.PRES

1.0 0.00CS3 1.0 0.0057 1.0 0.0012 1.0

2.0 0.00(KI 2,0 0.1257 2.0 0.0206 2.0

3.0 0.0007 8.5 0,4628 3.0 0.0342 5.0

4.0 0.0244 17.0 0.6626 16.0 0.4628 10.0

5.0 0.0595 13.5 0.5918 6.5 0.1468 17.0

CommonInterquamile(CIQ) for E2: WAS_SATB

1.0 0.000o 1.0 0.0001 1.0 0.0001 1.0

2.0 0.0019 9.0 0.2311 4.0 0.0563 6.0

3,0 0.0054 2.0 0.0206 13.5 0.3546 2.0

4.0 0.0628 13.0 0.4628 6,0 0.1074 5.0

5.0 0.1257 11.0 0.2674 5.0 0.0663 20.0

0.00Q1

0.0061

0.0780

0,3546

0,8088

ANHPRM

WMICDFLG

SHRGSSAT

WGRMICI

SHRBRSAT

O.OQOO

0.1468

0.0289

0.1074

0.6626

BHPRM

WGRCOR

SHRGSSAT

ANRBRSAT

SHRBRSAT

Variable

Name

WMICDFLG

HALPOR

WGRCOR

ANHPRA4

ANHBCVGP

WRGSSAT

BHPRM

ANHPRM

ANRBRSAT

WGRMICH

S1:All, 5x5 S1: R1,5x5 S1: R2,5x5 S1 R3,5x5

Rank p-Val Rank p-Val Rank p-Val Rank p-Vd

Statistical Independence (S1) for EO.’WAS_PRES

1,0 o.cOoo 1.0 oOooO 1.0 0.oOoo 1.0 oaooQ

2.0 0.oOoo 2.0 0.0034 2.0 0.ooOO 2.0 0.ooOO

3.0 0.0003 13.5 0.4884 4.0 0.0316 9.5 0.2687

4.0 0.0049 4.5 0.1785 8.5 0.2202 3.0 0.1010

5.0 0,0194 3.0 0.1712 13.0 0.3546 18.0 0,7358

Statistical Independence (S1) for E2:WAS_SATB

1.0 o.ts300 1.0 0.0000 1.0 0.000o 1.0 O.OCOO

2.0 0.oOoo 2.0 O.owa 2.0 o.oo@3 2.0 0.0001

3.0 0.0002 3.0 0.0316 7.5 0.0415 7.0 0.2954

4.0 0.0495 14.0 0.4530 5,0 0.0275 23.5 0.9134

5.0 0.0564 11.0 0.3856 9.0 0.0895 8.5 0.3540

Vnriable

Name

WMICDFLG

ANHPRM

HALPRM

HALPOR

SHRBRSAT

BHPRM

HALPRM

WGRCOR

ANHPRM

SHRGSSAT

CIQ AU,2X5 CIQ. Rt,2x5 CIQ. R2,2X5 CIQ. R3,2X5

Rank p-Val Rarrk p-Val Rank p-Val Rank p-VaI

Common Interqrrmrile (CIQ) for EO:BRAALJC

1.0 O.@XX) 17,0 0.7358 6.5 0.1468 1,0 0.0001

2.0 O.occcl 2.0 0.0392 1.0 0.0321 2,0 0.CK157

3,0 0.0628 13.5 0.5918 5.0 0,1074 5,5 0.2674

4.0 0.0780 5.0 0.2311 3.0 0,0663 7,0 0.3084

5.0 0.1395 7.0 0.308420.0 0,8088 24.0 0.8781

Common Interqrrartile (CIQ) for E2: WAS_PRES

1.0 o.ooi30 1.0 0.0U32 1.0 0.0021 2.0 0.0061

2.0 0,0130 2.0 0.1074 7.0 0,2674 7.0 0.1468

3,0 0.0289 11.0 0.4628 2.0 0.1074 11.0 0,3546

4.0 0.0739 22.5 0.8781 14,5 0.5918 10.0 0.3084

5.0 0.2093 18.5 0.7358 8.0 0.4060 1.0 0.0051

S1 All, 5x5 S1 R1,5x5 S1: R2,5x5 S1: R3,5x5

Rank p-Val Rank p-Val Rank p-Val Rank p-Val

Statistical Independence (S1) for EO;BRA,4LJC

1.0 O.OCQO 1.0 0.000o 1.0 0.0000 1.0 0,0000

2.0 oaoOo 2.0 0.0003 2.0 0.0001 2.0 0.0000

3,0 0,0517 7.5 0.3540 21,5 0.7776 5.0 0,1137

4.0 0.0698 17.5 0.7089 8.0 0.2202 17.0 0,7440

5.0 0.1917 23.0 0.8392 10.0 0.2687 3.0 0.0540

Statistical Independence (S1) for E2;WAS_PRES

1.0 0.0000 1,0 o.t3000 1.0 O.OCOO 1.0 0.Oooo

2.0 0.0002 10.0 0.2954 3.0 0.1137 7.0 0.2202

3.0 0.0002 2.0 0.0100 18.0 0.7089 2.0 0.0362

4,0 0.0049 14.0 0.3856 9.0 0.3856 5.0 0.1785

5.0 0.0698 17.5 0.5615 16.0 0.6359 11.0 0.3856

a
Twenty-four (24) variables included in analysis for EO: WAS_PRES and EO:BRAALIC (see Footnote b to Table 10. 1); twenty-five (25)
variables included in analysis for E2: WAS_SATB and E2: WAS_PRES (see Footnote b to Table 10, 14); for each test and dependent variable,

b
top five variables based on their ordering with p-values obtained from pooled sample of size 300 are included in table.
See Footnote c, Table 10.1.
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Table 12.2 Comparison of Variable Rankings Obtained with Common Variances (CVS) Test with Use of

Logarithmsa for Three Independent Samples of Size 100 (Column CV:RI, CV:R2, CV:R3)
and Pool@d Sample of Size 300 (Column CV:AII) for y = EO:BRAAL/@

Variable CV: A11,1x5 CV: R1,1x5 CV: R2,1x5 CV: R3,1x5

Name Raak p-Val Raak p-val Rank p-Val Rank p-Val

ANHPRM 1.0 0.0000 1.0 o.ocOo 1.0 O.ooln) 2.0 O.m

WMICDFLG 2.0 0.0002 10.0 0.0251 7,0 00035 1.0 0.0000

SHPRMCON 3,0 0.0019 11.0 0.0257 5.0 0.0022 22.0 0.7184

SHBCEXP 4,0 0.0130 15.0 0.0528 19.0 0.2129 21.0 0.6442

WASTWICK 5.0 0.0144 13.0 0,0387 4.0 0.0002 17.0 0.3413

95

a See Footnote a, Table 10.7 for description of test.
b See Footnote a, Table 12.1.

the CVS test as the most important variables affecting E2: WAS_PRES for replicate R2, the p-value is high (i.e.,

0.0633). The CIQ test misses the effect of ANHPRM on EO:BRAAL.ZC for replicates R1 and R2, with this behavior

probably resulting from the large number of zero and near-zero values associated with EO:BRAALZC (Fig. 2.4).

An important point that emerges from the results for the individual replicates is that consistency across

independent analyses does not necessarily imply that these analysis are properly identifying the dominant variables

with respect to the dependent variable under consideration. For example, all four analyses with both CCS and RCCS

identify HALPRM and A??HPRM as being the two most important variables with respect to E2: WAS_PRES (Table

12. 1) and completely fail to identify the dominant role played by BHPRM (Fig. 2.6). For E2: WAS_PRES, the three

replicates are producing similar patterns, which in turn are producing similar outcomes when analyzed with CCS and

RCCS.
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13. Discussion

Sensitivity analysis is an essential component of model development, assessment and application. Monte Carlo

procedures are widely used in sensitivity studies to develop a mapping between uncertain model inputs and

associated model results that can then be explored with regression-based techniques. Unfortunately, regression-

based techniques sometimes fail to identify important patterns in the mapping (i.e., scatterplot) between model input

and model results. The reason for this is simple; the relationships between model inputs and model results can be too

complex to be identified by the linear relationships that most regression analyses are predicated on.

The likelihood of a successful sensitivity analysis can be increased by using a number of different procedures to

identify relationships between model inputs and model results. With this strategy, a relationship that is missed by

one procedure may be identified by another procedure. Fortunately, the post-processing of model results that is

involved in the identification of patterns in scatterplots is relatively inexpensive from a computational perspective,

and so the use of a number of different procedures does not present a significant burden.

In this presentation, a sequence of procedures for identifying patterns in scatterplots is described and illustrated.

These procedures are based on attempts to recognize increasingly complex patterns in the scatterplots under

consideration and involve the identification of (i) linear relationships with correlation coefficients, (ii) monotonic

relationships with rank correlation coefficients, (iii) trends in measures of central tendency as defined by means,

medians and the Kruskal-WalIis statistic, (iv) trends in measures of variability as defined by variances and

interquantile ranges, and (v) deviations from randomness as defined by the chi-square statistic. As illustrated in a

sequence of example analyses with a large model for two-phase fluid flow, the individual procedures can differ in the

variables that they do, and do not, identify as having effects on particular analysis outcomes. The example results

indicate that the use of a sequence of procedures is a good analysis strategy and provides some assurance that an

important effect is not overlooked due to the use of an inappropriate analysis procedure.

The procedures under consideration identify patterns in scatterplots that in some sense appear to be nonrandom.

However, they provide no explanation for why these patterns exist. Once such patterns are identified, it is the

responsibility of the appropriate modelers and analysts to develop explanations for them. If such explanations

cannot be developed, then the possibility exists that an error is present in the analysis. For this reason, well-designed

sensitivity analyses provide both a way to develop insights with respect to the problem under consideration and also

a way to check the conceptual and computational implementation of the problem.

97



Intentionally Left Blank

98



14. References

Andrews, D.F., P.J. Bickel, F.R. Hampel, P.J. Huber, W.H. Rogers, and J.W. Tukey. 1972. Robust Estimates OJ

l%cation: Survey and Advances. Princeton, NJ: Princeton University Press; Ann Arbor, MI: Available from UMI,

Books on Demand Program.

Archer, G.E.B., A. Saltelli, and I.M. Sobol. 1997. “Sensitivity Measures, ANOVA-like Techniques and the Use of

Bootstrap:’ Journal of Statistical Computation and Simulation. 58(2), 99-120.

Blower, S.M., and H. Dowlatabadi. 1994. “Sensitivity and Uncertainty Analysis of Complex Models of Disease

Transmission: an HIV Model, As an Example,” International Statistical Review. 62(2), 229-243.

Breshears, D.D., T.B. Kirchner, and F.W. Whicker. 1992. “Contaminant Transport Through Agroecosystems:

Assessing Relative Importance of Environmental, Physiological, and Management Factors,” Ecological Applications.

2(3), 285-297.

Chan, M.S. 1996. “The Consequences of Uncertainty for the Prediction of the Effects of Schistosomiasis Control

Programmed:’ Epidemiology and Infection. 117(3), 537-550.

Conover, W.J. 1980. Practical Nonparametric Statistics. 2nd ed. New York: John Wiley& Sons, Inc.

Conover, W.J., M.E. Johnson, and M.M. Johnson. 1981. “A Comparative Study of Tests for Homogeneity of

Variances, with Applications to the Outer Continental Shelf Bidding Data,” Technometrics. 23(4), 351-361.

D’Agostino, R. B., and H.A. Stephens, eds. 1986. Goodness-of-Fit Techniques.

David, H.A. 1970. Order Statistics. New York, NY: John Wiley& Sons.

New York, NY: Marcel Dekker, Inc.

Draper, N. R., and H. Smith. 1981. Applied Regression Analysis. 2nd ed. New York John Wiley& Sons, Inc.

Efron, B. 1982. The Jackkn$e, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series

in Applied Mathematics 38. Philadelphia, PA: Society for Industrial and Applied Mathematics.

Efron, B., and R.J. Tibshirani. 1993. An introduction

Probability 57. London; New York: Chapman & Hall.

Gwo, J.P., L,E. Toran, M.D. Morris, and G,V. Wilson.

to the

1996.

Bootstrap. Monographs

“Subsurface Stormflow

99

on Statistics and Applied

Modeling with Sensitivity

Analysis Using a Latin-Hypercube Sampling Technique,” Groundwater. 34(5), 811-818,



Hamby, D.M. 1994. “A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models.”

Environmental Monitoring and Assessment, 32(2), 135-154.

Hamby, D.M. 1995. “A Comparison of Sensitivity Analysis Techniques,” Health Physics. 68(2), 195-204.

Helton, J.C. 1993. “Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for

Radioactive Waste Disposal,” Reliability Engineering and System Safety. 42(2-3), 327-367.

Helton, J.C. 1997. “Uncertainty and Sensitivity Analysis in the Presence of Stochastic and Subjective Uncertainty,”

.lournal of Statistical Computation and Simulation. 57(1-4), 3-76.

Helton, J.C., J.W. Garner, R.D. McCurley, and D.K. Rudeen. 1991. Sensitivi~ Analysis Techniques and Results for

Pe@ormance Assessment at the Waste Isolation Pilot Plant. SAND9O-71O3. Albuquerque, NM: Sandia National

Laboratories.

Hehon, J.C., D.R. Anderson, B.L. Baker, J.E. Bean, J.W. Berglund, W. Beyeler, K. Economy, J.W. Garner, S.C. Hera,

H.J. Iuzzolino, P. Knupp, M.G. Marietta, J. Rath, R.P. Rechard, P.J. Roache, D.K. Rudeen, K. Salari, J.D. Schreiber,

P.N. Swift, M.S. Tierney, and P. Vaughn. 1996. “Uncertainty and Sensitivity Analysis Results Obtained in the 1992

Performance Assessment for the Waste Isolation Pilot Plant,” Reliability Engineering and System Safety. 51(1), 53-

100.

Helton, J.C., J.E. Bean, J.W. Berglund, F.J.,Davis, K. Economy, J.W. Garner, J.D. Johnson, R.J. MacKinnon, J. Miller,

D.G. O’Brien, J.L. Ramsey, J.D. Schreiber, A. Shinta, L.N. Smith, D.M. Stoelzel, C. Stockman, and P. Vaughn. 1998.

Uncertainty and SensitiviQ Analysis Results Obtained in the 1996 Pe@ormance Assessment for the Waste Isolation

Pilot Plant. SAND98-0365. Albuquerque, NM: Sandia National Laboratories.

IAEA (International Atomic Energy Agency). 1989. Evaluating the Reliability of Predictions Made Using

Environmental Transfer Models. Safety Series Report No. 100. Vienna, Austria: International Atomic Energy

Agency. Sandia WIPP Central Files WPO#49330.

Iman, R.L. 1987. “Tables of the Exact Quantiles of the Top-Down Correlation Coefficient for n = 3(1)14,”

Communications in Statistics—Theoiy and Methods. 16[5), 1513-1540.

Iman, R. L., and W.J. Conover. 1979. “The Use of the Rank Transform in Regression,” Technometrics. 21(4),

499-509.

Iman, R.L., and W.J. Conover. 1982. “A Distribution-Free Approach to Inducing Rank Correlation Among Input

Variables~’ Communications in Statistics: Part B. Simulation and Computation. B11(3), 311-334.

100



Iman, R.L., and W.J. Conover. 1987. “A Measure of Top-Down Correlation,” Technometncs. 29(3), 351-357

Iman, R.L., and J.C. Hekon. 1988. “An Investigation of Uncertainty and Sensitivity Analysis Techniques for

Computer Models,” Risk Analysis. 8(l), 71-90.

Iman, R.L., and M.J. Shortencarier. 1984. A FORTRAN 77 Program and User’s Guide for the Generation of Latin

Hypercube and Random Samples for Use With Computer Models. NUREGICR-3624, SAND83-2365. Albuquerque,

NM: Sandia National Laboratories.

Iman, R.L., J.M. Davenport, E.L, Frost, and M.J. Shortencarier. 1980. Stepwise Regression with PRESS and Rank

Regression (Program and User’s Guide). SAND79-1472. Albuquerque, NM: Sandia National Laboratories.

Iman, R.L., J.C. Helton, and J.E. Campbell. 1981a. “An Approach to Sensitivity Analysis of Computer Models: Part I.

Introduction, Input Variable Selection and Preliminary Variable Assessment,” Journal of Quality Technology. 13(3),

174-183.

Iman, R.L., J.C. Helton, and J.E. Campbell. 1981b. “An Approach to Sensitivity Analysis of Computer Models:

Part II. Ranking of Input Variables, Response Surface Validation, Distribution Effect and Technique Synopsis,”

Journal of Quality Technology. 13(4), 232-240.

Iman, R.L., M.J. Shortencarier, and J.D. Johnson. 1985. A FORTWN 77 Program and User)s Guide for rhe

Calculation of Partial Correlation and Standardized Regression Coefficients. SAND85-0044; NUREG/CR-4122,

Albuquerque, NM: Sandia National Laboratories.

Kleijnen, J.P.C. 1987. Statistical Tools for Simulation Practitioners. Statistics, Textbooks and Monographs 76. New

York: Marcel Dekker.

Kleijnen, J.P.C. 1998. “Chapter 6 Experimental Design for Sensitivity Analysis, Optimization, and Validation of

Simulation Models,” Handbook of Simulation: Principles, Methodology, Advances, Application, and Practice. Ed. J.

Banks. New York, NY: John Wiley & Sons. 173-223.

Ma, J.Z., and E. Ackerman. 1993. “Parameter Sensitivity of a Model of Viral Epidemics Simulated with Monte CarlO

Techniques. II. Durations and Peaks,” International Journal of Biomedical Computing. 32(3-4), 255-268.

Ma, J.Z., E. Ackerman, and J.-J. Yang. 1993. “Parameter Sensitivity of a Model of Viral Epidemics Simulated with

Monte Carlo Techniques. I. Illness Attack Rates,” International Journal of Biomedical Computing. 32(3-4), 237-253.

MacDonald, R.C., and J.E. Campbell. 1986. “Valuation of Supplemental and Enhanced Oil Recovery Projects with

Risk Analysis,” Journal of Petroleum Technology. 38(l), 57-69.

101



McKay M.D., W.J. Conover, and R.J. Beckman. 1979. “A Comparison of Three Methods for Selecting Values of

Input Variables in the Analysis of Output from a Computer Code,” Technotnetrics. 21(2), 239-245.

Miller, R.G. 1974. “The Jackknife - A Review,” Bioinetrika. 61, 1-15.

Myers, R.H. 1990. Classical and Modem Regressicm with Applications. Boston, MA. Duxbury Press.

NCRP (National Council on Radiation Protection and Measurements). 1996. A Guide for Uncertainty Analysis in

Dose and Risk Assessments Related to Environmental Contamination. NCRP Commentary No. 14. Bethesda, MD:

National Council on Radiation Protection and Measurements.

NRC (National Research Council). 1983. Risk Assessment in the Federal Government: Managing the Process.

Committee on the Institutional Means for Assessment of Risks to Public Health, Commission on Life Sciences.

Washington, DC: National Academy Press.

NRC (National Research Council). 1993. Issues in Risk Assessment. Committee on Risk Assessment Methodology,

Board on Environmental Studies and Toxicology, Commission on Life Sciences. Washington, DC: National Academy

Press.

NRC (National Research Council). 1994. Science and Judgment in Risk Assessment. Committee on Risk Assessment

of Hazardous Air Pollutants. Washington, DC: National Academy Press.

Piepho, H.-P. 1997. “Tests for Equality of Dispersion in Bivariate Samples - Review and Empirical Comparison,”

Journal of Statistical Computation and Simulation. 56(4), 353-372.

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical Recipes in Fortran: The Art of

Scientific Computing. 2nd ed. Cambridge, England; New York: Cambridge University Press.

Saltelli, A., and T. Hornma. 1992. “Sensitivity Analysis for Model Output. Performance of Black Box Techniques on

Three International Benchmark Exercises,” Computational Statistics and Data Analysis. 13,73-94.

Saltelli, A., and J. Marivoet. 1990. “Non-Parametric Statistics in Sensitivity Analysis for Model Output. A

Comparison of Selected Techniques,” Reliability Engineering and System Safety. 28(2), 229-253.

Sahelli, A,, T.H. Andres, and T. Homma. 1993. “Sensitivity Analysis of Model Output. An Investigation of New

Techniques,” Computational Statistics and Data Analysis. 15(2), 211-238.

Sanchez, M.A., and S.M. Blower. 1997. “Uncertainty and Sensitivity Analysis of the Basic Reproductive Rate.

Tuberculosis as an Example,” American Journal oj’Epidemiology. 145(12), 1127-1137.

102



Sargent, R.G. 1996. “Some Subjective Validation Methods Using Graphical Displays of Data,” 1996 Winter

Simulation Conference Proceedings, Coronado, CA, December 8-11, 1996. Eds. J.M. Charnes, D.J. Morrice, D.T.

Brunner, and J.J. Swain. New York, NY: Association for Computing Machinery; Pkcataway, NJ: The Institute of

Electrical and Electronics Engineers. 345-351.

Scheff6, H. 1959. The Analysis of Variance. New York, NY: John Wiley & Sons, Inc.

U.S. DOE (U.S. Department of Energy). 1996. Title 40 CFR Part 191 Compliance Certcjication Application for ~he

Waste Isolation Pilot Plant. DOE/CAO-1996-2184: Carlsbad, NM: U.S. Department of Energy, Waste Isolation Pilot

Plant, Carlsbad Area Office.

U.S. EPA (Environmental Protection Agency). 1993. An SAB Report: Multi-Media Risk Assessment for Radon.

Review of Uncertainty Analysis of Risks Associated with Exposure to Radon. EPA-SAB-RAC-93-014. Washington,

DC: Environmental Protection Agency, Science Advisory Board.

U.S. EPA (Environmental Protection Agency). 1996. “40 CFR Part 194: Criteria for the Certification and Re-

certification of the Waste Isolation Pilot Plant’s Compliance with the 40 CFR Part 191 Disposal Regulations; Final

Rule,” Federal Register. 61(28), 5224-5245.

Whiting, W.B., T.-M. Tong, and M.E. Reed. 1993. “Effect of Uncertainties in Thermodynamic Data and Model

Parameters on Calculated Process Performance,” Industrial and Engineering Chemistry Research. 32(7), 1367-1371.

103

Wludyka, P. S., and P.R. Nelson. 1997. “Analysis of Means Type Tests for Variances Using Subsampling and

Jackknifing,” American Journal of Mathematical and Management Sciences. 17(1-2), 31-60.



Intentionally Left Blank

104



WIPP

UC721 - DISTRIBUTION LIST
SAND98-2202

Federal Agencies

US Departmentof Energy (4)
Ofice of Civilian Radioactive Waste Mgmt.
Attn: Deputy Director, RW-2

Acting Director, RW-10
OffIce of Human Resources& Admin.

Director, RW-30
Oflke of Program Mgmt. & Integ.

Director, RW-40
OffIce of Waste Accept., Stor., & Tran.

Forrestal Building
Washington, DC 20585

Yucca Mountain Site Characterization Ofllce
Director, RW-3
Ofilce of Quality Assurance

Attn: Project Director
P. O. Box 30307
Las Vegas, NV 89036-0307

US Department of Energy
Research & Waste Management Division
Attn: Director
P.O. Box E
Oak Ridge, TN 37831

US Department of Energy (5)
Carlsbad Area Ofllce
Attn: K. Klein

G. T. Basabilvazo
D. Galbraith
M. McFadden
J. A. Mewhinney

P.O. Box 3090
Carlsbad, NM 88221-3090

US Department of Energy
OffIce of Environmental Restoration and

Waste Management
Attm M. Frei, EM-30
Forrestal Building
Washington, DC 20585-0002

US Department of Energy (3)
OffIce of Environmental Restoration and

Waste Management
Attn: J. Juri, EM-34, Trevion II
Washington, DC 20585-0002

US Department of Energy
Ofllce of Envirottmental Restoration and

Waste Management
Attn: S. Schneider, EM-342, Trevion II
Washington, DC 20585-0002

US Department of Energy (2)
Oftice of Environment, Safety& Health
Attn: C. Bergstrom, EH-25

R. Pelletier,EH-231
Washington, DC 20585

US Department of Energy (2)
Idaho Operations 0f13ce
Fuel Processing & Waste Mgmt. Division
785 DOE Place
Maho Falls, ID 83402

US Environmental Protection Ageney (2)
Radiation Protection Programs
Attn: M. Oge
ANR-460
Washington, DC 20460

Timothy M. Barry
Chief, Science - Policy, Planning, and
Evaluation
PM 223X U.S. EPA
Washington, DC 20460

Norman A. Eisenberg
U.S. Nuclear Regulatory Commission
Ollice of Nuclear Material Safety and
Safeguards
Division of Waste Management
Washington, D. C. 20555

Distribution -1



Boards

Defense Nuclear Facilities Safety Board
Attn: D. Winters
625 Indiana Ave. NW, Suite 700
Washington, DC 20004

Nuclear Waste Technical Review Board @)
Attn: Chairman

J.L. Cohon

2300 CIarendon Ste. 1300
Arlington, VA 22203-3367

State Agencies

Attorney General of New Mexico
P.O. Drawer 1508
Santa Fe, NM 87504-1508

Environmental Evaluation Gronp (3)
Attn: Library
7007 Wyoming NE
Suite F-2
Albuquerque, NM 87109

NM Environment Department (3)
Secretary of the Environment
1190 St. Francis Drive
Santa Fe. NM 87503-0968

NM Bureau of Mines & Mineral Resources
SOCOtTO,NM 87801

LaboIIdtories/Corporations

Battelle Pacific Northwest Laboratories
Battelle Blvd.
Richland. WA 99352

Dr. Pamela Doctor
Battclle Northwest
P.O. Box 999
Richland, WA 99352

Los Ahunos National Laboratory

Attn: B. Erdal, INC-12
P.O. Box 1663
Los Alamos, NM 87544

Max Henrion
The Decision Laboratory (IDSR)
4984 El Camino Real, Suite 105
LOS Altos, CA 94022

Tech Reps, Inc. (3)
Attn: J. Chapman (1)

Loretta Robledo (2)
5000 Marble NE, Suite 222
Albuquerque, NM 87110

Westinghouse Electric Corporation (5)
Attn: Libraty

J. Epstein
J. Lee
B. A. Howard
R. Kehrman

P.O. BOX 2078
Carlsbad, NM 88221

S. Cohen & Associates
Attn: Bill Thurber
1355 Beverly Road
McLean. VA 22101

B. John Garrick
PLG Incorporated
4590 MacArthur Blvd., Suite 400
Newport Bti~ch, CA 92660-2027

Christopher G. Whipple
ICF Kaiser Engineers
1800 Harrison St., 7ti Floor
Oakland, CA 94612-3430

Dr. Kenneth T. Bogen
LLNJJENV SCI DIVL -453
P. O. Box 808
Livermore, CA 94550

David E. Bnrmaster
ALCEON Corporation
P. O. BOX 382669
Harvard Square Station
Cambridge, MA 02238-2669

M. D. McKay
F600
Los Alamos National Laboratory
Los A]amos, NM 87545

Distribution -2



Scott Ferson
Applied Biomathematics
100 North Country Road
Setauket, NY I 1733

Dr. Robert J. Budnitz
Future Resources Associates
2039 Shattuck Avenue, Suite 402
Berkeley, CA 94704

Dr. Tom Cotton
JK Research Associates
2650 Park Tower Drive, Suite 800
Vienna, VA 22180

Dr. John Kessler
Electronic Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94304-1395

D. Warner North
Decision Focus Incorporated
650 Castro Street, Suite 300
Mountain View. CA 94041-2055

S. David Sevougian
Duke Engineering and Services
CRWMS M&O
1180 Town Center Drive
Las Vegas, NV 89134

Michael B. Gross
Michael Gross Enterprises
21 Tradewind Passage
Corte Madera, CA 94925

Beta Corporation Int.

Attn: E. Bonano
6613 Esther NE
Albuquerque, NM 87109

Center for Nuclear Waste Regulato~ Analysis
(CNWRA)
southwest Research Institute
Attn: B, Sagar
P. 0. Drawer 28510
620 Culcbra Road
San Antonio, TX 78284

Banda S. Rwnarao
Duke Engineering and Services
9111 Research Blvd,
Austin, TX 78758

Series Oak Ridge, Inc (2)
Center for Risk Analysis
Attn: Steve Bartell

F. Owen Hoffman
102 Dormer Drive
Oak Ridge, TN 37810

National Academy of Sciences,
WIPP Panel

Tom Kiess (15)
St.aHStudy Director
GF456
2101 Constitution Ave.
Washington, DC 20418

Universities

University of New Mexico
Geology Department
Attn: Library
141 Northrop Hall
Albuquerque, NM8713 1

University of Washington
College of Ocean& Fishery Sciences
Attn: G. R. Heath
583 Henderson Hall, HN-15
Seattle. WA 98195

Prof. G. E. Apostoiakis
Department of Nuclear Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139-4307

Prof. V. M. Bier
Department of Industrial Engineering
University of Wisconsin
Madison, WI 53706

Prof. M. Elisabeth Pate-Cornell
Department of Industrial Engineering and
Management
Stanford University
Stanford, CA 94305

Prof. C. Frey
Department of Civil Engineering
Box 790WNCSU
Rlleigh, NC 27659-7908

Distribution -3



Prof. Yacov Y. Haimes
Center for Risk Management of Engineering
Systems
D111 Thornton Hall
University of Virginia
Charlottesville, VA 22901

Prof. D. B. Hattis
CENTED
Clark University
950 Main Street
Worcester, MA 01610

Prof. Ali Mosleh
Center for Reliability Engineering
University of Maryland
College Park, MD 20714-2115

Prof. T. G. Theofanous
Department of Chemical and Nuclear
Engineering
University of California
Santa Barbara, CA 93106

Prof. Steve Hera
Institute of Business and Economic Studies
University of Hawaii, Hilo
523 W. Lmikanhi
~]0, HI 96720-4091

Prof. Thomas E. McKone
School of Public Health
University of California
Berkeley, CA 94270-7360

Prof. Herschel Rabitz
Princeton University
Department of Chemistxy
Princeton. NJ 08544

Prof. Robert L. Winkler
Fuqua School of Business
Duke University
Durham, NC 27708-0120

F. E. Haskin
Department of Chemical and Nuclear
Engineering
University of New Mexico
Albuquerque, NM8713 1

Alan Gutjahr
Department of Mathematics
New Mexico Institute of Mining and Tech.
SOCOITO, NM 87801

Thomas H. Pigford
Department of Nuclear Engineering
4159 Etcheverry Hall
University of California
Berkeley, CA 94720

C. John Mann
Department of Geolo~
245 Natural History Bldg.
1301 West Green Street
University of Illinois
Urbana, IL 61801

Frank W. Schwartz
Department of Geology and Mineralo~
Ohio State University
Scott Hall
1090 Carmack Rd.
Columbus, OH 43210

David M. Hamby
University of Michigan
109 Observato~ St.
Ann Arbor, MI 48109-2029

Rodney C. Ewing
Nuclear Engineering and Radiological Science
University of Michigan
Ann Arbor. Ml 48109-2104

David Okrent
Mechanical and Aerospace Engineering
Department
University of Cdifomia
48-121 Engineering IV Building
Los Angeles, CA 90095-1587

Libraries

Thomas Brannigan Library
Attn: D. Dresp
106 W. Hadley St.
Las Cruces, NM 88001

Government Publications Department
Zimmerman Library
University of New Mexico
Albuquerque, NM8713 1

Distribution -4



New Mexico Junior College
Pannell Library
Attn: R. Hill
Lovington Highway
Hobbs. NM 88240

New Mexico State Library
Attn: N. McCallan
325 Don Gaspar
Santa Fe, NM 87503

New Mexico Tech
Martin Speere Memorial Library
Campus Street
SOCOITO, N&f 87810

WIPP Public Reading Room
Carlsbad Public Library
101 S. Halagueno St.
Carlsbad, NM 88220

Foreign Addresses

Atomic Energy of Canada, Ltd. (2)
Whiteshell Laboratories
Attn: B. Goodwin

T. Andres
Pinawa, Manitoba, CANADA ROE lLO

Dr. Arnold Bonne
Acting Head of the Waste Technology Section
Division of Nuclear Fuel Cycle and Waste
Management
International Atomic Energy Agency
P.(). Box 100
A-1400 Vienna
AUSTRIA

Clandio Pescatori
AERI/NEA/OECD
LeSeine St. Germain
12 Boulevard des iies
92130 Issy-les-Moulineaux
FRANCE

Francois Chenevier (2)
ANDRA
Pare de la Croix Blanche
I-7 rue Jean Mounet
92298 Chatenay-Malabry
FRANCE

Cedex

Claude Sombret
Centre d’Etudes Nucleaires de la Vallee Rhone
CENIVALRHO
S.D.H.A. B.P. 171
30205 Bagnols-Sur-Ceze
FRANCE

Commissariats a L’Energie Atomique
Attn: D. Alexandre
Centre d’Etudes de Cadarache
13108 Saint Paul Lez Durance Cedex
FRANCE

Ghislain de Marsily
University Pierre et Marie Curie
Laboratone de Geologie Applique
4, Place Jussieu
T,26 – 5e etage
75252 Paris Cedex 05
FRANCE

Bundesanstalt fur Geowissenschaften und
Rohstoffe
Attn: M. Langer
Postfach510 153
D-3063 1 Hannover
GERMANY

Bundesministerium fur Forschung und
Technologies

Postfach 200706
5300 Bonn 2

GERMANY

Gesellschafi fur Atdagen und Reaktorsicherheit
(GRS)
Attn: B. Baltes

Schwertnergasse 1
D-50667 Cologne
GERMANY

Forschunginstitute
GRS (2)
Attn: Eduard Hofer

B. Krzykacz-Hausmann

Forschungsgelande Nebau 2
D-85748 Garching

GERMANY

Tamas Tnranyi

Eotvos University (ELTE)
Po.O. BOX 32
H –1518 Budapest
HUNGARY

Distribution -5



Jan Marivoet
Centre D’Etudes de l’Energie
Nucleaire
Boeretrmg 200
B-2400 MOL
BELGIUM

Toshimitsu Homma
Nuclear Power Engineering Corporation
3-1?- 1Toranomon, Mkato-Ku
Tokyo 1015
JAPAN

Andrea Saltelli
Europmn Commission
Via Fermi
21020 Ispm (VA)
ITALY

Netherlands Energy Research Foundation ECN
Attn: J. Prij
3 Westerduinweg
P.O. Box 1
1755 ZG Petten
THE NETHERLANDS

Prof. I. Papazoglou
Institie of Nuclear Technology-Radiation
Protection
N.C.S.R. Demokritos
Aghia Papakevi
153-10 Athens
GREECE

European Commission (3)
Attn: Francesca Campolongo

Karen Chan
Stefrmo Tarantola

JRC Ispra, ISIS
I – 21020 Ispra
ITALY

Enrico Zio
Politccuico di Milano
Via Ponzio 34/3
I –20 133 Milan
ITALY

Ricardo Bolado
Polytcchnical University of Madrid
Jose Gutierrez Abascal, 2
E- 28006 Madrid
SPAIN

David Rios Insua
University Rey Juan Carlos
ESCET-URJC, C. Humanes 63
E -28936 Mostoles
SPAIN

Shingo Tashiro
Japan Atomic Energy Research Institute
Tokai-Mura, Ibaraki-Ken, 319-11
JAPAN

Prof. Roger Cooke
Dept. of Mathematics
DeMtUniversity of TechnoloW
P,O. Box 5031 2800 GA Delft
THE NETHERLANDS

Louis Goossens
Safety Science Group
Delft Univ. of Technology
Kanaalweg 2b
2628 EB Delft
THE NETHERLANDS

Prof. J.P.C. Kleijnen
Department of Information Systems
Tilburg University
5000 LE Tilburg
THE NETHERLANDS

A. Seebregts
ECN PO BOX 1
1755 ZG Petten
THE NETHERLANDS

Willem Van Groeneudaal
Tilburg University
P.O. Box 90153
NL – 5000 Le Tilburg
THE NETHERLANDS

Svensk Karubransleforsorjning AB
Attn: F. Karlsson
Project KBS (Karnbransles.akerhet)
BOX 5864
S-102 48 Stockholm
SWEDEN

Distribution -6



Prof. S. E. Magnnsson
Lund University
P.O. )30x 118

22100 Lund
SWEDEN

Prof Christian Ekberg
Chalmers University of Technolo~
Dept. of Nuclear Chemistv
S-4 1296 Gotebcwg
SWEDEN

Nationale Genossenschaft fir die Lagerung
Rzzdioaktiver Abfalle (2)
Attn: S. Vomvoris

P. Zuidema
Hardstrasse 73
CH-5430 Wettingen
SWITZERLAND

AEA Technology
Attn: J. H. Rees
D5W/29 Culham Laboratory
Abington, Oxfordshire OX 14 3DB
UNITED KINGDOM

AEA Technology
Attn: W. R. Rodwell
044/A31 Winfrith Technical Ceotre
Dorchester, DorsetDT28DH
UNITED KINGDOM

Daniel A. Galson
GaIson Science Ltd.
35, Market Place
O.akham
LeicestershireLE156DT
UNITED KINGDOM

David Draper
University of Bath
Claverton Down
Bath BA27AY
UNITED KINGDOM

AEA Technology
Attn: J. E. Tinson
B4244 Harvell Laboratory
Didcot, Oxfordshire OX 11 ORA
UNITED KINGDOM

Prof Marian Scott
Dept. of Statistics
University of Glasgow
Glasgow G12 BQW
UNITED KINGDOM

Prof. Simon French
School of Informatics
University of Manchester
Conpland 1
Manchester M13 9pl
UNITED KINGDOM

Arthur Jones
Nat. IMdio. Prot. Board
Chilton, Didcot
Oxen OX I 10RQ
UNITED KINGDOM

Prof. M. Newby
Dept. of Acturial Sci & Statistics
Chy University
Northampton SQ
London EC IV OHB
UNITED KINGDOM

Prof. Russell Cheng
University of Kent at Canterbury
Coruwallis Building
Canterbury, Kent, CT27NF
UNITED KINGDOM

B.G.J. Thompson
20 Bonser Road
Twickenham
Middlesex, TW1 4RG
ENGLAND

Other

Leonard F. Konikow
US Geological Survey
431 National Center
Reston, VA 22092

Dr. Bob Andrews
1280 Town Center Dr.
Las Vegas, NV 89314

Distribution -7

Dr. Alison Cullen
2125 North 90* Street
Seattle, WA 98103



P.S. Price
129 Oakhurst Road
Cape Elizabeth, ME 04107

Dr. Gareth Parry
19805 Bodmer Ave
Poolesville, MD 200837

Dennis Powers
Star Route Box 87
Anthony, TX 79821

Internal

M!J
0735
0737
0737

0737
0779
0779
0771
0733
1395
0771
0771
0773
1395
0776

0779
0778
0773
0734

1395
0720
0715
0715
0715
1395
1395

1395
1395
1399
1395
0733
0733
0733

0733
0733

0733

0778
0779
0779

~
6115
6831
6833

6833
6849
6848
6800
6832
6821
6000
6800
6821
6821
6850
6848
6850
6851
6803

6860
6804
6805

6805
6805
6811
6821
6821
6S21
6850
6821
6832
6832

6832
6832
6832

6832

6851
6821
6848

P. B. Davies
E. J. Nowak
J. R. Tillerson
E. H. Ahrens
D. R, Anderson
H. N. Jow
M. Chu
J. T. Holmes
M. Marietta
W. D. Weart
F. W. Bingham
G. K. Froehlich
F. D. Hansen
S. M. Howarth
K. W. Larson
C. D. Leigh
P. N. Swift
L. D. Bustard
R. Waters
K. B. Sorenson
C. E. Olson
R. L, Hunter
P. Kaplan
S. Y. Pickering
B. L. Baker
M. K. Knowles
M-A. Marten
P. E. Sanchez
Y. Wang
S. G. Bertram
L. H. Brush
R. V. Guzowski
H. W. Papenguth
A. C. Peterson
M. D. Siegel
K. M. Trauth
K. Aragon
J. E. Bean

0779
0779
0779
0779
0779
0779
0779
0779
0779
0779
0779
0733
0779
0779
0779
1395
0779
0779
0779
0779
0779
0779
0779
0733
0779
0779
0779
0779
0779
0779
0779
0779
0779
0779
0779
0779
0779
0779
1399
0778
0778
0778
0778
0778
0778
0778
1399
0735
0735
0735
0735
0735
1044
0731

6848
6848
6848
6848
6848
6848
6848
6848
6848
6848
6848
6832
6848
6848
6848
6848
6848
6848
6849
6849
6849
6849
6849
6832
6821
6849
6849
6849
6849
6849
6849
6849
6849
6849
6849
6849
6849
6849
6850
6851
6851
6851
6851
6851
6851
6851
6853
6115

6115
6115

6115
6115
7511
6811

F. J. Daws
L. J. Dotson
K. M. Economy
J. N. Emery
J. C. Helton (10)
J. D. Johnson
R. D. McCurley
J. D. Miller
D. O’Brien
H. C. Ogden
J. A. Rollstin
L. C. Sanchez
J. D. Schreiber
M. J. Shortencarier
L. N. Stnith
M. S. Tiemey
M. Williamson
T. Zimmerman
J. W. Berglund
P. J. Chen
M. E. Fewell
G. A. Freeze
J. W. Gamer
L. S. Gotnez
T. Hadgu
H. J. Iuzzolino
M. Lavenue
M. E. Lord
L. J. Rahal
J. L. Ramsey
R. P. Rechard
D. Rudeen
A. Schenker
A. H. Treadway
P. Vaughn
M. Wallace
J. A. Jones
J. H. Saloio
A. Orrell
H. A. Dockery
G. E. Barr
R. Aguilar
J. H.Gauthier
R. J. MacKinnon
M. L. Wilson
C. T. Stockman
J. J. Danneels
A. R. Lappin
R. L. Beauheim
T. F. Corbet
B. Holt
L. Meigs
A. Reiser
K. Hart (2)

Distribution -8



0731 4415 NWM Librmy (10)
9018 8940-2 Central Technical Files
0899 4916 Teehnical Library (2)
0619 15102 Review and Approval Desk,

For DOE/OSTI

Distribution -9


